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Shape optimization in unsteady flow problems enables the consideration of dynamic effects 
on design. The ability to treat unsteady effects is attractive, as it can provide performance 
gains when compared to steady-state design methods for a variety of applications in 
which time-varying flows are of paramount importance. This is the case, for example, 
in turbomachinery or rotorcraft design. Given the high computational cost involved in 
time-accurate design problems, adjoint-based shape optimization is a promising option. 
However, efficient sensitivity analysis should also be accompanied by a significant decrease 
in computational cost for the primal flow solution, as well. Reduced-order models, like 
those based on the harmonic balance concept, in combination with the calculation of 
gradients via adjoint methods, are proposed for the efficient solution of a certain class 
of aerodynamics optimization problems. The harmonic balance method is applicable if the 
flow is characterized by discrete finite dominant flow frequencies that do not need to be 
integer multiples of a fundamental harmonic. A fully-turbulent harmonic balance discrete 
adjoint formulation based on a duality-preserving approach is proposed. The method is 
implemented by leveraging algorithmic differentiation and is applied to two test cases: 
the constrained shape optimization of both a pitching airfoil and a turbine cascade. A key 
advantage of the current approach is the accurate computation of gradients as compared 
to second order finite differences without any approximation in the linearization of the 
turbulent viscosity. The shape optimization results show significant improvements for the 
selected time-dependent objective functions, demonstrating that design problems involving 
almost-periodic unsteady flows can be tackled with manageable computational effort.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The advancement of computational resources has enabled the application of CFD-based design methods to complex 
shapes, discretized on large domains, often in combination with high fidelity models [1,2].
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Optimization methods for design purposes have significantly improved, offering the possibility to deal with complex 
problems at a reduced computational cost [3–5]. In particular, adjoint-based optimization methods [6,7] provide a very 
efficient approach for computing design sensitivities irrespective of the number of design variables. In applications where 
the number of design variables is considerably greater than the number of objective functions, adjoint methods allow the 
computation of optimal solutions in the most cost-effective way, making them well suited for complex industrial applica-
tions [8–10].

To date, most of the work on adjoint methods has been based on the assumption of steady flow. Obtaining the adjoint 
solution of an unsteady flow problem can pose a challenge because of the associated large computational and memory 
requirements [11]. However, accounting for time-dependent flow phenomena in the optimization process is often essential 
in applications characterized by intrinsic unsteady effects, such as the aerodynamic design of rotorcraft, turbomachinery, 
open rotors, and wind turbines, to name a few. Furthermore, unsteady adjoint-based optimization methods can pave the 
way to the solution of multidisciplinary problems characterized by time-dependent phenomena such as those encountered 
in aeroelasticity or noise reduction [12], for example.

Given the computational cost of accurately obtaining an unsteady solution and thus its adjoint, sufficiently accurate re-
duced order methods [13] must be used, if the objective is to solve design problems routinely. Among others, the Harmonic 
Balance method (HB) is a promising option for applications involving quasi-periodic flows characterized by a finite amount 
of dominant frequencies that need not be harmonics of each other [14–16].

Considerable development has been dedicated to HB methods for turbomachinery applications, whereby the flow spec-
trum is dominated by the blade passing frequencies [15]. One technique that is a subset of the harmonic balance method, 
sometimes referred to as the Time Spectral method [14,17,15], has been originally formulated for periodic flow problems, 
and associated adjoints have been derived [18–21].

HB adjoint-based optimization opens up the possibility to deal with problems featuring flow frequencies that are not 
harmonically related, thus without the restriction of resolving harmonics of a single fundamental flow frequency. Cur-
rently available methods in the literature are limited to inviscid flow problems or frozen turbulence assumptions during 
design [22,23], which can have a strong impact on the final optimization result [24]. In this work, a fully-turbulent HB 
adjoint-based shape optimization method is proposed and implemented within the SU2 open-source software environ-
ment [25,26]. The algorithm is based on the duality-preserving approach [27–30], which allows the adjoint solver to inherit 
the same convergence properties of the primal flow solver. The chosen algorithm ensures robust convergence of the numer-
ical solution of the turbulent adjoint equations.

The method is described in detail first, followed by the illustration of two application cases. An airfoil pitching at a rate 
characterized by two frequencies that are not harmonically related is first considered, followed by a turbine cascade subject 
to unsteady inlet conditions.

2. Method

2.1. Time discretization

The semi-discrete form of the Navier–Stokes equations, for a generic cell volume �, is

�
∂U

∂t
+R(U ) = 0 , t > 0 . (1)

U = (ρ, ρv1, ρv2, ρv3, ρE) is the vector of conservative variables, with ρ the density, v the velocity vector, and E the total 
specific energy. � and its boundary ∂� are assumed to vary their position in time, with velocity u� , without deforming. R
is the residual operator for the spatial integration of the convective and viscous fluxes, i.e., F c and F v . Using an Arbitrary 
Lagrangian–Eulerian (ALE) formulation [31],

R(U ) = f (F c, F v) in�, t > 0

v = u� on ∂�, t > 0
(2)

with

F c =
⎛
⎝ ρ(v − u�)

ρv × (v − u�) + p Ī
ρE(v − u�) + pv

⎞
⎠ , (3)

where p is the static pressure. The viscous fluxes are given by

F v =
⎛
⎝ ·

μτ̄
μτ̄ · v + κ∇T

⎞
⎠ , (4)

where T is the static temperature, κ the thermal conductivity, μ the dynamic viscosity and τ̄ the viscous stress tensor
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τ̄ = ∇v + ∇vᵀ − 2

3
Ī(∇ · v) . (5)

The turbulence modeling is considered, according to the Boussinesq hypothesis, by defining μ = μl + μt and κ = κl + κt . 
μl and μt are the laminar and turbulent dynamic viscosities, whereas κl and κt are the laminar and turbulent thermal 
conductivities.

The application of time-discretization to (1), using an implicit Euler scheme, leads to

�Dt(U q+1) +R(U q+1) = 0 , (6)

where q is the physical time step index, and Dt is the time-derivative operator. For a dual time stepping approach [32,33]
with pseudo-time τ , one would obtain the following discretization

�
�U q+1

�τ
+ �Dt(U q+1) +R(U q+1) = 0 , (7)

where the additional term is used to relax the solution at each physical time step.

2.2. Harmonic balance operator

As given in Ref. [15], the Fourier coefficients resulting from the application of the discrete Fourier transform (DFT) are

ûk = 1

N

N−1∑
n=0

U ne−iωktn , (8)

where Ũ = [U 0, U 1, ..., U N−1], is the vector of the conservative variables evaluated at N time instances

t = [t0, t1, ..., tN−1] . (9)

Hence the corresponding Fourier coefficients are

û = [u0, u1, ..., uK−1] , (10)

with N = 2K + 1, ωk = 2πkfk and K being the number of frequencies. An odd number of time instances is used in 
this work in order to prevent numerical instabilities [34]. The ensemble of the K resolved frequencies is denoted by 
ω = [0, ω1, ..., ωK , ω−K , ..., ω−1]. By defining the DFT matrix as

Ek,n = 1

N
e−iωktn , n,k ∈ [0, N] , (11)

and its inverse discrete Fourier transform (IDFT)

E−1
n,k = eiωktn , n,k ∈ [0, N] , (12)

one can calculate the Fourier coefficients as

û = EŨ , (13)

with the corresponding vector of conservative variables

Ũ = E−1û . (14)

If the frequencies fk (and hence ωk) are not multiples of f1, once the DFT matrix from (11) or the IDFT matrix from (12)
are constructed, it is not possible to obtain an analytical expression for the corresponding inverse matrix.

The time operator of (6) can be approximated using spectral interpolation. Applying the spectral operator to the vector 
of conservative variables Ũ , evaluated at N time instances, yields

Dt(U ) ≈ Dt(Ũ ). (15)

Given that û is independent from time, using (14) and (13), one can write

Dt(Ũ ) = Dt(E−1û) = ∂ E−1

∂t
û = ∂ E−1

∂t
EŨ . (16)

From (12)

∂ E−1
= E−1 D , (17)
∂t
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where

Dk,n = iωkδk,n . (18)

D is the diagonal matrix given by

D = diag (0, iω1, ..., iωK , iω−K , ..., iω−1) . (19)

One can combine (16) with (17) and define the spectral operator matrix H as

H = E−1 D E . (20)

Here, E−1 is given analytically by (12), and E is computed by inverting E−1 using Gaussian elimination. It eventually follows 
that

Dt(Ũ ) = H Ũ . (21)

2.3. Time-domain harmonic balance

Considering Ũ , the set of the conservative variables evaluated at N time instances, one can write (7) for a single time 
instance n as

�
�U q+1

n

�τ
+ �Dt(U q+1

n ) +R(U q+1
n ) = 0 . (22)

Linearization of the residual yields

R(U q+1
n ) = R(U q

n) + ∂R(U q
n)

∂U q
n

�U n = R(U q
n) + J�U n . (23)

From (21), Dt is a linear operator, so the following manipulations are possible:

Dt(�U n) = Dt(U q+1
n − U q

n) = Dt(U q+1
n ) −Dt(U q

n) , (24)

and

Dt(U q+1
n ) =

N−1∑
k=0

Hn,k�U k +
N−1∑
k=0

Hn,kU q
k . (25)

Substitution of the linearized expressions transforms (22) into

(
�I

�τ
+ J + �Hn,n

)
�U n +R(U q

n) = −
N−1∑
k=0

(1 − δn,k)Hn,k�U k −
N−1∑
k=0

Hn,kU q
k . (26)

In this work, a semi-implicit approach is used to solve (26) as

(
�I

�τ
+ J

)
�U n = R̃n(Û

q
) , (27)

where

R̃n(U q) = −R(U q
n) −

N−1∑
k=0

Hn,k�U k −
N−1∑
k=0

Hn,kU q
k . (28)

Equation (27) is solved for each time instance in a segregated manner. Therefore, an unsteady flow problem characterized 
by K frequencies requires that the solution of 2K + 1 nonlinear systems of equations need to be computed. The current 
harmonic balance approach is implemented in the open-source SU2 code [25,26].
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2.4. Governing equations of the adjoint solver

The adjoint equations are now derived for the proposed Harmonic Balance formulation described in Sec. 2.3 for both 
laminar and turbulent flows.

Equation (27) is reformulated in terms of a fixed-point iteration for each U n as

U q+1
n = Gn(U q) , (29)

where Gn is the iteration operator of the pseudo time-stepping at time instance n. If Gn is contractive, i.e., || ∂Gn
∂U n

|| < 1, 
according to the Banach fixed-point theorem [35], (29) admits a unique fixed-point solution U ∗

n such that

R̃n(U ∗) = 0 ⇐⇒ U ∗
n = Gn(U ∗) . (30)

The aerodynamic design problem, including a possible explicit dependence of the objective function J on the vector of the 
design variables α, can be expressed as

minimize
α

J (U (α), X(α))

subject to U n(α) = Gn(U (α), Xn(α)), n = 1,2, ...N

Xn(α) = Mn(α).

(31)

Xn are the physical grids constructed for each time instance, and Mn(α) is a differentiable function representing the mesh 
deformation algorithm. The objective function J is obtained as the spectral average (using (42)) over the resolved time 
instances

J = f (J (U 1, X1),J (U 2, X2), ...,J (U N , X N)) . (32)

The Lagrangian of the constrained optimization problem is given by

L = J +
N∑

n=1

{
λn(Gn(U (α), Xn(α)) − U n(α))ᵀ + μn(Mn(α) − Xn(α))ᵀ

}
, (33)

with λ and μ being the adjoint variables. Given the constraint equations in (31)

U n(α) − Gn(U (α), Xn(α)) = 0, n = 0,1, ..., N − 1

Xn(α) − Mn(α) = 0,
(34)

and omitting in the notation the explicit dependence from the independent variables, one can express the differential of the 
Lagrangian as

dL =
N−1∑
n=0

(
∂J
∂U n

ᵀ
+

N−1∑
k=0

λk
∂Gk

∂U n

ᵀ
− λn

)
dU n +

N−1∑
n=0

(
∂J
∂ Xn

ᵀ
+ λn

∂Gn

∂ Xn

ᵀ
− μn

)
dXn +

N−1∑
n=0

μn
∂Mn

∂α
dα , (35)

from which the adjoint equations can be obtained as

∂J
∂U n

ᵀ
+

N−1∑
k=0

λk
∂Gk

∂U n

ᵀ
= λn , (36)

and

∂J
∂ Xn

ᵀ
+ λn

∂Gn

∂ Xn

ᵀ
= μn . (37)

Equation (37) can be solved directly once the solution of (36) is known. Similar to the flow solver, (36) can be seen as a 
fixed-point iteration in λn , namely

λ
q+1
n = ∂N

∂U n
(U ∗

n,λq, Xn) , (38)

where Û
∗
n is the numerical solution for the flow equation (30) and N is the shifted Lagrangian defined as

N = J +
N∑

λnGᵀ
n (U , Xn) . (39)
n=1
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Table 1
Simulation parameters of the pitching NACA64A010 airfoil test case. The reduced frequency ω∗
is based on the semi-chord length.

Symbol Value Units

Free-stream temperature T∞ 288.15 [K]
Mach number Ma∞ 0.78 [–]
Reduced frequencies [ω∗

1,ω∗
2] [0.197,0.512] [–]

Since Gn is contractive, ∂N
∂U n

is also contractive because∣∣∣∣
∣∣∣∣ ∂

∂λn

(
∂N
∂ Û n

)∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣ ∂Gn

∂ Û n

ᵀ∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣ ∂Gn

∂ Û n

∣∣∣∣
∣∣∣∣ < 1 . (40)

Therefore, according to the fixed-point theorem, (38) will converge at the same rate as the primal flow solver.
The right hand side of equation (38) is obtained using Algorithmic Differentiation applied to the underlying source code 

of the program that computes Gn . The AD tool adopted [36] makes use of the Jacobi taping method in combination with the 
Expression Templates feature of C++, leading only to a small runtime overhead.

Finally, the gradient of the objective function J with respect to the vector of the design variables α can be computed 
from the converged flow and adjoint solutions using

dLᵀ

dα
= dJ ᵀ

dα
= μn

∂Mᵀ
n (α)

∂α
. (41)

3. Results

The proposed HB-based adjoint method has been applied to two test cases: the fluid dynamic shape optimization of both 
a pitching airfoil and a turbine cascade. For both cases, a harmonic balance flow solution has been first obtained and verified 
against a fully-unsteady simulation using a second-order dual time stepping method [33]. For the spatial discretization, 
second-order accuracy has been obtained for the convective fluxes using a centered scheme or the MUSCL approach [37]
and for the viscous fluxes using a corrected average-of-gradients method. The reader is referred to Ref. [26] for details on 
the numerical methods and tools available in SU2.

The results obtained with the HB solver at N time instances for a generic quantity of interest  are interpolated to a 
larger time vector t∗ of length N∗ using

∗ = E∗−1
(E ) , (42)

where E∗−1 is the larger interpolated IDFT matrix of size N∗ × N given by E∗−1
n,k = eiωkt∗n , and E−1 is the N × N IDFT matrix.

The constrained shape optimization problem is solved once the gradient is obtained from the adjoint solution, using a 
modified version of the nonlinear least-squares method (SLSQP) [38]. Accurate gradient values are obtained by leveraging 
Algorithmic Differentiation (AD). The reverse mode of the open-source AD tool CoDiPack [29,39] is used in this work to 
linearize the primal solver.

3.1. NACA64A010 pitching airfoil

A two-dimensional pitching NACA 64A010 airfoil in inviscid flow is considered first. The rigid body motion is imposed 
by assigning a time-varying angle of attack computed as

α = 1.01[sin(ωt) + sin(2.6ωt)] . (43)

The flow is transonic with shocks appearing along the upper and lower surfaces of the airfoil while pitching, as can be 
observed in Figs. 5a, 5b and 5c. The convective fluxes are computed with the JST scheme [32]. The mesh is composed 
entirely of triangular elements. It contains approximately 11 000 grid points with 200 points along the airfoil and 100 
points on the far-field boundary. The main simulation parameters are summarized in Table 1.

A reference time-accurate simulation was performed with 160 time steps per smallest period (corresponding to 2.6 ω1) 
in order to get a well-resolved solution in time. Fig. 1a and 1b show the mesh close to the airfoil and the frequency 
spectrum of the drag coefficient. Fig. 1b shows that the overall dominant frequencies are the pitching frequencies ω, 2.6ω
and their linear combinations. This analysis is performed to select the relevant frequencies for the HB computation.

The test case is then simulated using the harmonic balance method with several choices for the number of time instances 
with the two input frequencies as pitching frequencies. Fig. 2 shows the convergence of the harmonic balance solution to 
the fully-unsteady solution with an increase in the number of input frequencies. The converged solution for the selected 
time instances of both the lift and the drag coefficient is interpolated using (42). According to the spectrum of the drag 
coefficient (Fig. 1b), the selected input frequencies are reported in Table 2.
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Fig. 1. NACA 64A010 airfoil mesh at t = 0 and spectrum of the drag coefficient.

Fig. 2. Lift coefficient cl and drag coefficient cd: HB solution obtained for different time instances vs time accurate solution. Tref is the reference time 
interval corresponding to the highest frequency.

Table 2
Optimal time period ratio Topt/T0 and input frequencies for the pitching airfoil test case, with 
ω2 = 2.6ω1. T0 is the period corresponding to the lowest frequency value.

Time instances Topt/T0 Input frequencies

5 1.13 0,±ω1,±ω2

7 1.00 0,±ω1,±ω2,±2ω1

9 1.41 0,±ω1,±(ω2 − ω1),±ω2,±(ω2 + ω1)

11 1.38 0,±ω1,±(ω2 − ω1),±2ω1,±ω2,±(ω2 + ω1)

In order to ensure convergence for any set of frequencies, an optimal time pseudo-period is selected using the algorithm 
proposed in Ref. [40]. A uniform time sampling within the pseudo-period T is adopted, and the values of the optimal time 
period are reported in Table 2.

Overall, the agreement of the lift coefficient is excellent, resulting in a root-mean-square-error (RMSE) of 0.00275 with 
just two input frequencies, due to the fact that the movement of the airfoil is primarily in the direction of the lift (Fig. 2a). 
Conversely, in the case of drag, a larger number of input frequencies is required to capture the fully-unsteady result due 
to the dominant non-linearities in the flow (shocks). Hence, more than five time instances are necessary for the accurate 
determination of the drag coefficient, as can be seen in Fig. 2b. Since the selected objective function is the drag coefficient, a 
suitable number of input frequencies should be identified. The time-averaged drag coefficient is 0.0027 for 5 time instances, 
0.0028 for 9, 11 and 13 time instances compared to 0.0028 for the time-accurate unsteady solution. It can be inferred that 
9 time instances are sufficient for shape optimization. Fig. 2 reports also the steady-state values of Cl and Cd obtained with 
α = 0.

After the analysis of the flow solution, the adjoint-based shape optimization problem is considered. The time-averaged 
drag coefficient cd is minimized over the pseudo-period. Equality constraints on the lift coefficient (cl ) and the maximum 
thickness (θmax) are imposed. The resulting optimization problem is set as follows
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Fig. 3. Comparison between the normalized gradients of the objective function calculated with the reverse mode of the AD and the second order central 
finite difference (a); flow and adjoint solver convergence history of the density residual relative to the first time instance (b).

Fig. 4. Shape optimization convergence history of the drag coefficient (a); baseline vs optimized airfoil (b).

minimize
α

cd (U n, Xn,α)

subject to: cl = cl0 ,

δmax = δmax0 ,

U n = Gn , n = 1,2, ...N

Xn = Mn .

(44)

50 Hicks–Henne bump function variables [41] distributed uniformly over the upper and lower surfaces of the airfoil are 
chosen as the design variables.

The gradients of the discrete adjoint are first compared with the gradients obtained with a second-order accurate fi-
nite difference (FD) method. This verification is performed over a set of 8 Hicks–Henne bump functions with the first 4 
located on the suction side of the airfoil and the others on the pressure side. Fig. 3a depicts the comparison between the 
adjoint-based gradients and the FD gradients. Fig. 3b shows the convergence of both the flow and the adjoint solver as a 
function of the number of iterations. As discussed in Sec. 2.4, the convergence rate of the adjoint solver is inherited from 
the primal flow solver. The computational time ratio between the adjoint solution and the flow solution is about 1.3. The 
average computational time for one iteration of the primal solver was approximately 0.28 seconds, using the 4 cores Intel 
Xeon E5-1620 Processor with hyper-threading.

Fig. 4a reports the reduction in drag coefficient with the number of optimizer iterations as well as the lift coefficient 
constraint. The shape optimization process (Fig. 4) achieves a decrease in drag coefficient of about 50%, while maintaining 
the lift coefficient and the maximum thickness within 1% of the constraint value.

The Mach contours of the baseline airfoil compared with the contours of the optimized airfoil at different time instances 
are reported in Fig. 5. The optimized airfoil shape leads to an attenuation of the strong shocks characterizing the baseline 
configuration, resulting in drag reduction.

Finally, the unsteady optimization results are compared with those obtained from a similar constrained steady state 
optimization of the airfoil at α = 0. The final shape given by the unsteady design method differs from the steady one and 
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Fig. 5. Pitching airfoil Mach number contours calculated at three different time instances with the HB method, for both the baseline (a), (b), (c) and the 
optimized (d), (e), (f) profile (for interpretation of the references to color in this figure, the reader is referred to the web version of this article).

Fig. 6. Schematic geometry of the T106D-EIZ turbine cascade [42] and blade mesh.

it is shown in Fig. 4b. Furthermore, when the steady-optimized airfoil undergoes the pitching motion prescribed by the test 
case, the reduction of the time-averaged drag coefficient is 44%, whereas it was reduced by more, i.e. 50%, for the unsteady 
optimization. This shows that the inclusion of unsteadiness is worthwhile in this case.

3.2. T106D-EIZ turbine cascade

The aim of this test case is to assess the capability of the HB-based design method for fully-turbulent flows. In the 
experimental setup [42], the unsteadiness in the wake of an upstream blade row is approximated by a moving bar, as 
depicted in Fig. 6a. The moving bars are located at xb/l = 0.7 upstream of the cascade inlet plane, having a velocity vb =
21.4 m/s parallel to the inlet. A schematic representation is shown in Fig. 6a, and the main operating conditions for the test 
case are reported in Table 3.

The two-dimensional flow domain is discretized with approximately 40 000 elements (Fig. 6b), and the Roe scheme is 
selected for the convective flux discretization. A suitable spacing of quadrilateral elements is used to cluster the near wall 
cells such that y+ is less than 1. This test case is a benchmark for the study of laminar-to-turbulent transition. However, 
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Table 3
Simulation parameters of the T106D-EIZ test case, as described in [42]. Re2 is the Reynolds 
number based on the exit velocity and density; Ma2 the exit Mach number; T u1 the inlet 
turbulence intensity.

Symbol Value Units

Exit Reynolds number Re2 200 000 [–]
Exit Mach number Ma2 0.593 [–]
Bars speed vb 21.4 [m/s]
Background turbulence level T u1 2.5 [%]
Eddy viscosity ratio μt/μ 100 [–]

Fig. 7. Validation of steady state simulation results with experimental data [42].

since the present work aims to assess the methodology for design optimization only, the computations are performed 
assuming fully-turbulent conditions, employing the SST turbulence model [43].

In order to calculate the cascade performance, the total pressure loss coefficient is evaluated as

ζP =
〈
Ptot,1

〉
∂�1

− 〈
Ptot,2

〉
∂�2〈

Ptot,2
〉
∂�2

− 〈P2〉∂�2

, (45)

where 
〈
Ptot,1

〉
∂�1

and 
〈
Ptot,2

〉
∂�2

are the inlet and outlet total pressure averaged over their corresponding boundary, respec-
tively. 〈P2〉∂�2

is the average static pressure at the cascade outlet. The averages at the boundaries are calculated using a 
mixed-out averaging procedure [44].

First, a validation is performed using the experimental data [42] of the turbine cascade operating at steady state (Fig. 7). 
The simulation results show a very good agreement with the experimental data. As expected, the main deviation between 
CFD and experiments occurs at about x/l = 0.75, possibly due to transition not being accurately modeled.

For this test case, two configurations are considered for design: i) a spatially non-uniform, time-dependent inlet boundary 
condition; ii) a spatially uniform, time-dependent inlet boundary condition. The terminology OptC1 and OptC2 is used to 
refer to the first and the second shape optimization problem, respectively.

3.2.1. OptC1 configuration
In this configuration, an inlet boundary condition is imposed in order to reproduce the wakes generated by the moving 

bars. The imposed values of the total pressure, temperature, and flow direction at the boundary are interpolated from the 
results of a steady state simulation of the flow past the bars. With this boundary condition, only multiples of the blade 
passing frequency are expected. The fundamental blade passing frequency, given a ratio between the blade pitch and the 
bar pitch yp/yb = 3, is defined as

f1 = 3
vb

yp
. (46)

To verify the HB solution, a second-order time-accurate URANS simulation using the dual time stepping method is per-
formed with a time-step 150x smaller than the lowest period (1/ f1). The total pressure loss coefficient from this simulation 
is compared in Fig. 8a with the HB solution obtained with 3, 5, and 7 time instances. The selected time instances corre-
spond to the solution for the frequency vectors ωN3 = [0, ± ω0], ωN5 = [0, ± ω0, ± 2ω0] and ωN7 = [0, ± ω0, ± 2ω0, ± 3ω0]. 
The resolved frequencies are, therefore, multiples of the fundamental blade passing frequency only. The total pressure loss 
coefficient, defined in (45), and shown in Fig. 8a as function of time, is obtained by spectral interpolation of the harmonic 
balance results using (42). The RMSE of the total pressure loss coefficient for the solution obtained with 5 time instances 
is equal to 0.010. The harmonic balance solution obtained with 5 time instances is about 9x faster than the time-accurate 
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Fig. 8. Comparison of the total pressure loss coefficient ζP as function of time, obtained with time accurate and HB simulations (a); convergence history of 
the first time instance density residual (b).

Fig. 9. Verification between the normalized gradients of the objective function ζp with respect to the design variables α calculated with the adjoint mode 
of the AD and second order central difference finite difference (FD).

solution calculated over a total simulation time of five periods, which includes the initial transient before reaching conver-
gence to a periodic flow field solution. 5 time instances are used for shape optimization, as a trade-off between accuracy 
and computational cost.

In Figs. 11a, 11b, and 11c, the Mach number contours from the HB simulation are reported for 3 different time instances 
with the simulation period given by T = 1/ f1. The results show the bar wakes entering the cascade and a separation area 
occurring at about x/l = 0.7.

Next, the shape optimization problem of the cascade configuration is considered. It can be expressed as

minimize
α

ζP (U n, Xn,α)

subject to: αout < αout0 + 4◦ ,

δt = δt0 ,

U n = Gn , n = 1,2, ...N

Xn = Mn ,

(47)

where the time-averaged total pressure loss coefficient ζP , obtained from (42), is selected as objective function. Inequality 
constraints on the absolute exit flow angle (αout) and trailing edge thickness (δt ) are imposed. The optimization is performed 
using an ensemble of 16 geometrical design parameters α based on a free-form deformation (FFD) approach [45]. The 
gradients of the objective function are again obtained with the proposed adjoint technique and compared with the same 
gradients obtained by second-order central finite differences (FD). The results of this comparison are reported in Fig. 9a, 
showing excellent agreement between AD and FD gradients (RMSE = 2 · 10−5). The ratio between the computational time 
of the adjoint solution and the primal flow solution is approximately 1.7. The average primal solver CPU time per iteration 
was about 1.41 seconds on a 4 cores Intel Xeon E5-1620 Processor with hyper-threading.

Fig. 10 shows that the convergence of the optimization to the minimum objective is nearly reached after only 7 evalua-
tions, although satisfying the constraint requires more evaluations. Fig. 10b highlights that the performance of the optimized 
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Fig. 10. Shape optimization history of the total pressure loss coefficient and comparison between baseline and optimized blade profile (OptC1).

Fig. 11. Mach number contours calculated at three different time instances with the HB method, based on the OptC1 test case, for both the baseline (a), 
(b), (c) and the optimized (d), (e), (f) blade profile.

blade is significantly improved, as the total pressure loss coefficient is approximately 38% lower, while the constraint on the 
absolute outlet flow angle is satisfied. The separation area, as seen in Fig. 11, is considerably smaller with the optimized 
blade shape. The unsteady optimization leads to a decrease in the peak of the total pressure loss coefficient of 44% and a 
reduction of 54% of the signal amplitude (Fig. 12a). Furthermore, the objective function spectrum obtained from a URANS 
simulation of the optimized blade (Fig. 12a) does not contain additional frequencies when compared with the baseline 
configuration.

3.2.2. OptC2 configuration
In order to investigate the capabilities of the HB-based design method to deal with problems characterized by frequencies 

that are not multiples of one fundamental harmonic, a second configuration of the T106D-EIZ cascade is considered. In 
analogy with previous work [46], a time fluctuating inlet total pressure is prescribed as

P̃ tot = P tot [1 + A1 sin(ω1t) + A2 sin(ω2t)] , (48)
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Fig. 12. Total pressure loss coefficient evolution in time calculated with URANS simulation for both the baseline and the optimized configuration.

Fig. 13. Comparison of the total pressure loss coefficient ζP as function of time, obtained with time-accurate and HB simulations (a); flow and adjoint solver 
convergence history of the first time instance density residual (b).

Table 4
Input frequencies corresponding to a different number of resolved time instances, 
for the OptC2 (i.e. ω2 = 2.7ω1) configuration, and corresponding RMSE of the total 
pressure loss coefficient between time-accurate and HB simulation results.

N. time instances Input frequencies RMSE

5 0,±ω1,±ω2 0.041
7 0,±ω1,±(ω2 − ω1),±ω2 0.019

Fig. 14. Shape optimization history of the total pressure loss coefficient and comparison between baseline and optimized blade profile (OptC2).
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Fig. 15. Mach number contours calculated at three different time instances with the HB method, based on the OptC2 test case, for both the baseline (a), 
(b), (c) and the optimized (d), (e), (f) blade profile.

where A1 = A2 = 0.04, ω1 = 2π f1, and ω2 = ω1/2.7.
As for the OptC1 configuration, a time-accurate simulation is performed to verify the HB solution and select the relevant 

input frequencies by analyzing the spectrum of the total pressure loss coefficient. Fig. 13a depicts the evolution in time of 
the total pressure loss coefficient resulting from both the URANS and HB computations. Table 4 reports the input frequency 
vectors for the HB simulation with the associated RMSE between the HB and URANS values of the total pressure loss 
coefficient.

Figs. 15a, 15b, and 15c show Mach number contour plots, obtained for 3 of the 7 resolved time instances. In this case, 
as opposed to the OptC1 configuration, the inlet flow field at the upstream boundary is uniform in space with no incoming 
wakes, given that time-varying, but uniform-in-space, values of total pressure and total temperature are imposed.

After analysis of the flow solution, the shape optimization is performed based on 7 time instances, and the corresponding 
averaged total pressure loss coefficient is chosen as the objective function. The adjoint-based gradients needed for the 
optimization are first compared with second-order finite differences. The results of this comparison are reported in Fig. 9b, 
and are characterized by a RMSE lower than 2 · 10−5. Furthermore, as seen in Fig. 13b, the adjoint solver again inherits the 
convergence rate from the primal solver and its computational cost is about 1.7 higher than that associated with the primal 
solver. The average computational cost of the primal solver, for a single iteration, was about 1.98 seconds on a 4 cores Intel 
Xeon E5-1620 Processor with hyper-threading.

The design problem considered in this test case is analogous to that for the OptC1 configuration, and it is formally 
expressed by (47). Fig. 14a shows that the final design is reached after approximately 14 optimizer evaluations, satisfying 
the constraint on the outlet flow angle. The Mach contour plots for the optimized shape are shown in Fig. 15. Again, the 
flow separation on the rear suction side is significantly mitigated for all of the resolved time instances, due to the lower 
camber angle of the optimized blade profile (Fig. 14b). In this case, a reduction in the average pressure loss coefficient 
of approximately 14% is achieved with both the amplitude and maximum peak reduced by 44% and 29%, respectively. The 
time-dependent simulation of the optimized blade confirms these results (Fig. 12b) and reveal that no additional frequencies 
in the objective function spectrum are present when compared with those appearing in the solution for the baseline shape.

4. Conclusions

A fully-turbulent harmonic balance discrete adjoint formulation has been developed and applied to the shape optimiza-
tion of two test cases in unsteady flows: i) a pitching airfoil with a moving grid, and ii) an axial turbine cascade subject 
to unsteady flow conditions at the inlet. The proposed method is based on a duality-preserving algorithm, which enables 
the adjoint solver to inherit the convergence properties from the primal flow solver. Due to its efficiency, the framework 
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enables shape optimization for quasi-periodically forced nonlinear fluid problems characterized by a set of frequencies that 
are not necessarily integer multiple of one fundamental harmonic.

The results of the two test cases have clearly demonstrated that the method is capable of providing accurate gradients in 
the unsteady setting, as compared to sensitivities computed by second-order finite differences. The gradient-based unsteady 
optimization has led to improvements of practical significance. The mean and the amplitude of the time-varying aerody-
namic losses have been minimized with respect to the baseline configuration. This has been accomplished by considering 
the minimum number of input frequencies, according to a spectral analysis of the flow field, which results in significant 
computational cost savings.

The development of a fully-turbulent adjoint optimization framework based on HB paves the way to the solution of 
additional unsteady design problems that are encountered in numerous advanced applications, such as the multi-disciplinary 
optimization of turbomachinery, including novel concepts of propulsion systems based on boundary layer ingestion. Future 
efforts will be devoted to the comparison between fully-turbulent, time-accurate and HB adjoint-based shape optimization 
methods in order to assess advantages and drawbacks.
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