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Abstract— Due to the continuous increase (decrease) in the 

number of inverter-based (synchronous) generators in modern 

electrical power systems, the theoretical foundations behind 

widely used system strength and voltage stability assessment 

methods require thorough revision. The existing evaluation 

methods such as the Short-Circuit Ratio (SCR) are often based 

on simplifications which may produce inaccuracies, particularly 

when studying weak systems. As a result, a misleading estimation 

of voltage stability can occur, exposing systems to unnecessary 

renewables curtailment or other inappropriate remedial actions 

that may cause partial disruptions or potential instability. This 

paper provides a rigorous analytical revision of voltage stability 

assessment to confidently evaluate the maximum power transfer 

under various operating conditions. Subsequently, the proposed 

approach is applied as an enhanced method of system strength 

evaluation. The method is extensively tested on a single-machine-

infinite-bus test system. Numerical results show a notably more 

accurate assessment relative to the common alternative methods. 

 

Index Terms—System Strength, Voltage Stability, Weak 

Grids, Voltage Collapse, Inverter-based Resources 

I. INTRODUCTION 

Decarbonization of the electricity supply exposes power 
systems to unprecedented changes. The number of Inverter-
Based Resources (IBRs) increases rapidly as a replacement for 
a fossil-based synchronous generation. An often-encountered 
challenge in such modern power systems is voltage stability [1-
4]. The measure of voltage stability resilience is often described 
as system strength, analogous to inertia and frequency stability 
[5-9]. System strength is, however, a complex concept with 
distinct steady- and dynamic-state characteristics [9]. This 
paper focuses on steady-state characteristics. The dynamic 
performance is discussed in [8-11]. Other aspects of low system 
strength, such as protection misoperation [12, 13] and power 
quality deterioration [6], fall beyond the scope of this paper. 

A common metric to evaluate system strength is Short-
Circuit Ratio (SCR) [5]. However, SCR is merely a convenient 
simplification of system strength. Recent research highlights 
some of its main drawbacks, particularly for the analysis of 
weaker grids [9, 14-15]. New methods to tackle these 
challenges emerge, such as voltage sensitivity [15], generalized 

SCR [16], and many more, with an overview in [9, 14]. As SCR 
is unable to take into account shunt capacitors, methods like 
Effective SCR (ESCR) were proposed [17]. Moreover, the grid 
𝑋/𝑅 ratio is often neglected. The impact of multiple IBRs on 
system strength is explored extensively in [18]. Finally, load 
plays an important role in system strength evaluation, however, 
its impact is often not captured by existing methods [15, 19]. 
Therefore, most of the existing methods fail to capture the full 
scope of steady state system strength. This may result in a 
misestimation of both system strength and voltage stability.  

The result is an increased risk of voltage instabilities [1-3]. 
Alternatively, as the curtailment of renewables becomes more 
common to preserve sufficient SCR [10, 14], renewable sources 
may end up underexploited due to potentially misleading 
outcomes obtained by system strength evaluation methods. 

In this paper, an extensive and rigorous analytical derivation 
of maximum power transfer considering voltage stability limits 
is presented. This approach is further utilized to derive a novel 
and more accurate system strength evaluation method. 

The paper is divided into four sections. Section II provides 
a detailed analytical derivation of voltage stability boundaries. 
In Section III, the impacts of loads, capacitors, and the 𝑋/𝑅 ratio 
are explored. In Section IV, a novel system strength method is 
introduced and extensively validated. Finally, conclusions and 
future research directions are presented in the last section. 

II. STEADY-STATE VOLTAGE STABILITY LIMITATIONS 

For derivation and demonstration of the applied analysis, a 
single-IBR-infinite-bus system is used, as shown in Fig. 1. 
Based on this system, the following equations are written: 

~ IBR

VS∠0 Vi∠θ

Thevenin
source

P + jQZ = R+jX

Bus i  
Figure 1.  IBR grid connection, represented by a Thevenin equivalent. 

 𝑉𝑖 − 𝑉𝑠

𝑍
= 𝐼 = (

𝑆

𝑉𝑖
)

∗

→ 𝑆 = 𝑉𝑖

𝑉𝑖
∗ − 𝑉𝑠

∗

𝑍∗
= 𝑃 + 𝑗𝑄 (1) 

This work was financially supported by the Dutch Scientific Council NWO in 

collaboration with TSO TenneT, DSOs Alliander, Stedin, Enduris, VSL and 

General Electric in the framework of the Energy System Integration & Big 

Data program under the project “Resilient Synchromeasurement-based Grid 

Protection Platform, no. 647.003.004”.  
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𝑆 = (𝑉𝑖𝑐𝑜𝑠𝜃 + 𝑗𝑉𝑖𝑠𝑖𝑛𝜃)

𝑉𝑖𝑐𝑜𝑠𝜃 − 𝑗𝑉𝑖𝑠𝑖𝑛𝜃 − 𝑉𝑠
𝑅 − 𝑗𝑋

 (2) 

 𝛼 =  𝑅 𝑍2⁄       ;      𝛽 =  𝑋 𝑍2⁄       (3) 

By separating real and imaginary parts of (2) and combining 
those with (3), (4) and (5) are derived for active/reactive power. 

 𝑃 =  𝛼(𝑉𝑖
2 − 𝑉𝑖𝑉𝑠𝑐𝑜𝑠𝜃) +  𝛽𝑉𝑖𝑉𝑠𝑠𝑖𝑛𝜃 (4) 

 

 𝑄 =  𝛽(𝑉𝑖
2 − 𝑉𝑖𝑉𝑠𝑐𝑜𝑠𝜃) − 𝛼𝑉𝑖𝑉𝑠𝑠𝑖𝑛𝜃 (5) 

If 𝑅 ≈ 0 is assumed, this simplifies to the expressions in (6). 
The impact of 𝑅 > 0 is investigated in Section III.  

 𝑃 =
𝑉𝑖𝑉𝑠𝑠𝑖𝑛𝜃

𝑋
   ;    𝑄 =

𝑉𝑖
2 − 𝑉𝑖𝑉𝑠𝑐𝑜𝑠𝜃

𝑋
  (6) 

Expression (6) dictates the maximum active power transfer 
with respect to the angle stability, and the necessary reactive 
power to sustain that transfer. However, these expressions do 
not consider static voltage stability. To derive voltage stability 
limits, inspired by the approach in [18], (1) can be rewritten as: 

 𝑍 𝑆∗ = 𝑉𝑖
2 − 𝑉𝑠 𝑉𝑖

∗  (7) 

If  𝑍 𝑆∗ = 𝑎 − 𝑗𝑏, where 𝑎 and 𝑏 are real numbers, real and 

imaginary parts of (7) can be separated as in (8) and (9).  

𝑎 = 𝑉𝑖
2 − 𝑉𝑠𝑉𝑖𝑐𝑜𝑠𝜃 = 𝑓1(𝑉𝑖 , 𝜃)  (8) 

 

𝑏 = 𝑉𝑠𝑉𝑖𝑠𝑖𝑛𝜃 = 𝑓2(𝑉𝑖 , 𝜃) (9) 

The Jacobian matrix of 𝒇 = [𝑓1, 𝑓2]
𝑇 is further derived: 

𝑱 =  

[
 
 
 
 
𝜕𝑓1
𝜕𝑉𝑖

𝜕𝑓1
𝜕𝜃

𝜕𝑓2

𝜕𝑉𝑖

𝜕𝑓2

𝜕𝜃 ]
 
 
 
 

=  [
2𝑉𝑖 − 𝑉𝑠𝑐𝑜𝑠𝜃 𝑉𝑠𝑉𝑖𝑠𝑖𝑛𝜃

𝑉𝑠𝑠𝑖𝑛𝜃 𝑉𝑠𝑉𝑖𝑐𝑜𝑠𝜃
]  (10) 

A singular Jacobian matrix indicates a system voltage 
instability condition. The stability boundary is therefore found 
by solving the det(𝑱) =  0 expression, and is shown in (11). 

𝑐𝑜𝑠𝜃 =  
1

2

𝑉𝑠
𝑉𝑖

  →  𝜃𝑚𝑎𝑥  =  𝑎𝑐𝑜𝑠(
1

2

𝑉𝑠
𝑉𝑖

)  (11) 

For a base case 𝑉𝑖 = 𝑉
𝑠
= 1 𝑝𝑢, the maximum angle equals 

60°. This is lower than the angle stability limitation of 90° 
implied by the active power computed by (6). We, therefore, 
extend this approach further by incorporating the voltage 
stability boundary (11) into the power transfer (6) equation: 

 

𝑃𝑚𝑎𝑥 =
𝑉𝑖𝑉𝑠𝑠𝑖𝑛𝜃𝑚𝑎𝑥

𝑋
=

𝑉𝑖𝑉𝑠sin (𝑎𝑐𝑜𝑠 (
1
2

𝑉𝑠
𝑉𝑖

)) 

𝑋
 

(12) 

By using the trigonometric identity sin(𝑎𝑐𝑜𝑠(𝑥)) = √1 − 𝑥2, 
a novel expression for static voltage stability limit in terms of 
maximum power transfer is derived in (13). 

 

𝑃𝑚𝑎𝑥 =
1

𝑋
𝑉𝑖𝑉𝑠√1 − (

1

2

𝑉𝑠
𝑉𝑖

)
2

 (13) 

For transferring 𝑃 = 𝑃𝑚𝑎𝑥 in (13), the reactive power 
required to maintain the voltage can be computed by combining 
(6) and (11), as shown in (14): 

 

𝑄𝑃=𝑃𝑚𝑎𝑥
=

𝑉𝑖
2 − 𝑉𝑖𝑉𝑠𝑐𝑜𝑠𝜃𝑚𝑎𝑥

𝑋
=

1

𝑋
(𝑉𝑖

2 −
𝑉𝑠

2

2
)  (14) 

For an illustrative case with parameters  𝑆𝑠𝑐 = 𝑉𝑖 = 𝑉𝑠 = 𝑋 =
1 𝑝𝑢,  𝑃𝑚𝑎𝑥 is computed for the boundary stability condition 
based on the SCR metric and compared to (13): 

 

𝑆𝐶𝑅 = 1 =  
𝑆𝑠𝑐

𝑃𝑚𝑎𝑥
=

𝑉𝑖𝑛𝑜𝑚

2

𝑋
⁄

𝑃𝑚𝑎𝑥
→ 𝑃𝑚𝑎𝑥 = 1 𝑝𝑢 

(15) 

 

 

𝑃𝑚𝑎𝑥 =
1

𝑋
𝑉𝑖𝑉𝑠√1 − (

1

2

𝑉𝑠
𝑉𝑖

)
2

=
√3

2
= 0.866 𝑝𝑢  (16) 

The maximum power transfer is lower than what the SCR 
implies. This is due to an IBR being a PQ source, rather than a 
PV source. In other words, IBR does not behave as a voltage 
source but is instead perceived as a current source from the bulk 
power system perspective. This fundamentally differs from a 
synchronous generator electromagnetically coupled to the grid, 
which would be able to operate at 𝑃𝑚𝑎𝑥 ≈ 1 𝑝𝑢 in a similar case. 

SCR is therefore an over-optimistic measure of system 
strength and the voltage collapse boundary with IBRs. 
Furthermore, SCR does not take into consideration the actual 
operating voltage 𝑉𝑖. Meanwhile, expression (13) does. The 
relation is depicted in Fig. 2, by plotting the function 𝑃𝑚𝑎𝑥 =
𝑓(𝑉𝑖) for a per-unit system with base 𝑆𝑠𝑐 = 𝑋 = 𝑉𝑠 = 1. 

 
Figure 2.  Maximum power transfer as a function of operating voltage. 

For 𝑉𝑖 = 1 𝑝𝑢, a maximum of 𝑃 = 0.866 𝑝𝑢 can be 
transferred, as shown in (16). Furthermore, transferring 𝑃 =
𝑆𝑠𝑐 = 1 𝑝𝑢 (as implied by SCR) would result in a voltage 
collapse for 𝑉𝑖 = 1 𝑝𝑢. Instead, the voltage would need to be 
higher (𝑉𝑖 = 1.118 𝑝𝑢) for such a transfer to be feasible from a 
voltage stability perspective. Therefore, in a lossless system 
with a PQ source supplying power to the grid, the SCR method 
is an over-optimistic measure of system strength. In contrast, 
the derived approach (13) shows high accuracy. The analytical 
expressions are validated through simulations in Section IV. 

III. IMPACT OF LOADS, CAPACITORS AND THE X/R RATIO 

Section II explores the maximum power transfer by 
assuming there are no shunt elements like loads or capacitors, 
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and that the system impedance is dominantly reactive (𝑅 ≈ 0). 
In this section, it is further explored how these assumptions 
affect the maximum power transfer and system strength. 

A. Impact of local loads on system strength 

The system shown in Fig. 1 is altered with the addition of a 
local load at bus 𝑖 (𝑃𝐿 > 0). Deriving the boundary condition for 
such a case is relatively simple. What matters for the voltage 
stability is the power transfer towards the system, from the 
system perspective. In other words, the net maximum active 
power transfer. This can be calculated as proposed in (17): 

 𝑃𝑛𝑒𝑡_𝑚𝑎𝑥 = 𝑃𝑚𝑎𝑥 + 𝑃𝐿 (17) 

The maximum power transfer with a load included is evaluated 
analytically for a load of 𝑃𝐿 = 0.2 𝑝𝑢. The results are shown in 
Fig. 3. For nominal voltage, voltage collapse occurs at power 
transfer 𝑃𝑛𝑒𝑡_𝑚𝑎𝑥 = 1.066 (dashed line), which is precisely in 
line with (16) and (17). Furthermore, it can be seen that the 
entire plot from Fig. 2 is shifted upwards by the value of 𝑃𝐿, in 
line with the analytical expressions (16) and (17). 

 

Figure 3.  Maximum power transfer as a function of operating voltage 𝑉𝑖 with 

the presence of a local load. 

It is important to note that a constant active power load is 
assumed. If there is a voltage dependence, it should be reflected 
as 𝑃𝐿 = 𝑓(𝑉𝑖) relation. Nevertheless, the derived relationship 
(17) holds for such a case as well. However, the upward shift in 
Fig. 3 would not be distributed equally along the curve. 

B. Impact of capacitors on system strength 

The impact of shunt capacitance is evaluated now, assuming 
a capacitor 𝑄𝑐 > 0 connected in parallel at bus 𝑖 in Fig. 1. 𝑄𝑐 

can be expressed as 𝑄𝑐 =
𝑉𝑖

2

𝑋𝐶
⁄ , where 𝑋𝐶 is the capacitive 

reactance. To derive the boundary voltage stability condition, 
the impedance equivalent is first derived, as shown in (18). 

 

𝑍′ = 𝑍𝐿||𝑍𝑐 = 
𝑗𝑋𝐿 ∗ (−𝑗𝑋𝑐)

𝑗𝑋𝐿 + (−𝑗𝑋𝑐)
= 𝑗

𝑋𝐿𝑋𝑐

𝑋𝐶 − 𝑋𝐿
 (18) 

Alternatively, with the nominal reactive power of the 

capacitor 𝑄𝐶𝑛𝑜𝑚
=

𝑉𝑖𝑛𝑜𝑚

2

𝑋𝐶
⁄ , (18) can be rewritten as (19): 

 

𝑍′ =
𝑋𝐿𝑋𝑐

𝑋𝐶 − 𝑋𝐿
=

𝑋𝐿

1 − 𝑋𝐿 𝑋𝐶⁄
=

𝑋𝐿

1 −
𝑋𝐿𝑄𝐶𝑛𝑜𝑚

𝑉𝑖𝑛𝑜𝑚
2

 
(19) 

Using the voltage divider principle, the new Thevenin 
source voltage is derived in (20) and (21). 

 
𝑉𝑠

′ = 𝑉𝑠
𝑍′

𝑍
= 𝑉𝑠

1

1 −
𝑋𝐿𝑄𝐶𝑛𝑜𝑚

𝑉𝑖𝑛𝑜𝑚
2

=
𝑉𝑠

1 − 𝑓𝐶
 

(20) 

 

 
𝑓𝐶 = 𝑋𝐿 𝑋𝐶⁄ =

𝑋𝐿𝑄𝐶𝑛𝑜𝑚

𝑉𝑖𝑛𝑜𝑚
2  (21) 

By inserting (19) and (20) into (13), (22) is obtained, which 
is the novel analytical expression of the maximum active power 
transfer in the presence of a shunt capacitor. 

 

𝑃𝑚𝑎𝑥 =
1

𝑋
𝑉𝑖𝑉𝑠√1 − (

1

2

𝑉𝑠
𝑉𝑖(1 − 𝑓𝐶)

)
2

 (22) 

The necessary reactive power to sustain this active power flow 
is calculated by inserting (19) and (20) into the expression (14). 

 

𝑄𝑃=𝑃𝑚𝑎𝑥
=

1 − 𝑓𝐶

𝑋
[𝑉𝑖

2 −
1
2

(
𝑉𝑠

1 − 𝑓𝐶

)

2

] (23) 

This dependence is visualized in Fig. 4 (𝑆𝑠𝑐 = 𝑉𝑖 = 𝑉𝑠 = 1 𝑝𝑢). 
The Y-axis depicts the maximum power transfer for the reactive 
power compensation in per-unit values shown on the X-axis. 

 
Figure 4.  Maximum power transfer as a function of shunt compensation 

normalized by the short-circuit capacity. 

For no compensation, the maximum power transfer is equal 
to 0.866 per unit, as expected from (16). However, as more 
reactive compensation is added, maximum power transfer 
drops. For  𝑄𝐶𝑛𝑜𝑚

= 0.1 (0.25) 𝑝𝑢, the maximum power transfer 

drops to 0.8315 (0.7454) 𝑝𝑢, respectively. 
To understand these effects, two aspects are important. 

Capacitors increase system impedance, as per (19). This 
reduces system strength. However, they also boost the voltage 
by injecting reactive power, which increases system strength. 
Fig. 5 shows the comparison for the same voltage level, i.e. 
given the same voltage, the bus with less compensation needed 
to achieve that voltage is the stronger bus. If it is, however, 
assumed that adding a capacitor would increase the voltage, the 
maximum power transfer could increase. To showcase this, two 
illustrative cases are considered and visualized using (22); the 
first one with a nominal voltage 𝑉𝑖 = 1 𝑝𝑢, and the second one 
with an assumption that the shunt capacitor boosts the voltage 
to 𝑉𝑖 = 1.1 𝑝𝑢. The results are shown in Fig. 5. 
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Figure 5.  Maximum power transfer as a function of shunt compensation 

normalized by short-circuit capacity. Impact of a different operating voltage. 

In this case, the addition of a capacitor was able to increase 
the maximum power transfer from 0.866 to 0.875 𝑝𝑢. However, 
to maintain voltage stability, the operating voltage had to be 
increased from 𝑉𝑖 = 1 to 𝑉𝑖 = 1.1 𝑝𝑢. If the voltage remains the 
same, the maximum power transfer would decrease to 0.745 𝑝𝑢. 

Therefore, capacitors have two opposing effects on system 
strength. They increase system impedance (negative effect) but 
also increase operating voltage (positive effect). Which effect 
would be dominant depends on the system parameters, and it 
can be evaluated using (22). Simplified methods such as ESCR 
ignore these intricacies and may over- (under-) estimate system 
strength. The derived expressions are validated in Section IV. 

C. Impact of the X/R ratio on system strength 

Finally, it is explored how the 𝑋/𝑅 ratio affects maximum 
power transfer and associated system strength. If  𝑅 ≠ 0, (6) is 
no longer valid, and (4) and (5) should be used. However, the 
boundary condition defined by (11) is still applicable, as it is 
derived for any 𝑅. Therefore, (11) is integrated into (4) and (5). 
For simplicity, we define M and N, keeping in mind the 𝜃𝑚𝑎𝑥 
derived in (11), as well as the mentioned trigonometric identity. 

 

𝑀 = 𝑉𝑖
2 − 𝑉𝑖𝑉𝑠𝑐𝑜𝑠𝜃𝑚𝑎𝑥 = 𝑉𝑖

2 −
𝑉𝑠

2

2
 (24) 

 

 

𝑁 = 𝑉𝑖𝑉𝑠𝑠𝑖𝑛𝜃𝑚𝑎𝑥 = 𝑉𝑖𝑉𝑠√1 − (
1

2

𝑉𝑠
𝑉𝑖

)
2

 (25) 

Boundary active power transfer and its corresponding 
necessary reactive power can now be expressed as follows: 

 𝑃max(𝑅≠0) = 𝛼𝑀 +  𝛽𝑁  (26) 
 

 

𝑃max(𝑅≠0) = 
𝑅

𝑍2
(𝑉𝑖

2 −
𝑉𝑠

2

2
) + 

𝑋

𝑍2
𝑉𝑖𝑉𝑠√1 − (

1

2

𝑉𝑠
𝑉𝑖

)
2

 (27) 

 

 𝑄P=Pmax (𝑅≠0) = 𝛽𝑀 −  𝛼𝑁 (28) 
 

 

𝑄P=Pmax (𝑅≠0) = 
𝑋

𝑍2
(𝑉𝑖

2 −
𝑉𝑠

2

2
) − 

𝑅

𝑍2
𝑉𝑖𝑉𝑠√1 − (

1

2

𝑉𝑠
𝑉𝑖

)
2

 (29) 

From (26), the boundary transfer is increased by the value 𝛼𝑀, 
implying that system strength is increased with  𝑅 > 0. 

However, careful observation reveals that the expression 𝛽𝑁 is 
not the same as (13) due to 𝑋 ≠ |𝑍|. The impact of resistance, 
therefore, becomes more intricate. To shed light on this, Fig. 6 
plots the dependence 𝑃max(𝑅≠0) = 𝑓(𝑋, 𝑋/𝑅), with the X-axes 

depicting the system reactance 𝑋 and the 𝑋/𝑅 ratio. For 𝑋 ≈ 1 
(𝑋/𝑅 → ∞), the maximum power transfer is equal to 0.866, in 
line with (13) and Section II. However, the function  
𝑃max(𝑅≠0) = 𝑓(𝑋) reaches a maximum (𝑃max(𝑅≠0) = 𝑆𝑠𝑐 = 1 𝑝𝑢) 

for 𝑋 = 0.866, where 𝑋/𝑅 = 1.7321. Hence, decreasing the 𝑋/𝑅 
ratio from a very high value towards 1.7321 increases the 
maximum active power transfer from 0.866 to 1 per unit (from 
the red dot on the right towards the left one in Fig. 6). 

 
Figure 6.  Maximum power transfer as a function of the X/R ratio. 

However, the relationship is concave, with a peak. In other 
words, 𝑃max(𝑅≠0) drops with a further decrease of 𝑋/𝑅. For a 

fully resistive system, maximum power transfer drops to only 
0.5 𝑝𝑢. The derived analytical expressions for 𝑃max(𝑅≠0) and 

𝑄P=Pmax (𝑅≠0) are validated with simulations in Section IV. 

The question arises whether the ratio 𝑋/𝑅 = 1.7321 is a 
constant parameter that allows for peak maximum power 
transfer in every case. The answer is no, as the peak ratio also 
depends on the operating voltage 𝑉𝑖. This is demonstrated in 
Fig. 7, by plotting the 𝑃max(𝑅≠0) = 𝑓(𝑋, 𝑋/𝑅) dependence for 

typical operating voltage range 𝑉𝑖 = [0.9 − 1.1 ] 𝑝𝑢. 

 
Figure 7.  Maximum power transfer as a function of the X/R ratio and voltage. 

From Fig. 7, the maximum active power transfer occurs at 
𝑋/𝑅 = 1.381(2.415) for 𝑉𝑖 = 0.9 (1.1). Therefore, the optimal 
𝑋/𝑅 ratio for peak maximum active power transfer takes a value 
in the range [1.381 − 2.415], depending on the steady-state 
operating voltage. The common assumption that a relatively 
larger resistance increases maximum power transfer capacity is 
hence only valid up to a point, after which the opposite occurs. 
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IV. EXCESS SYSTEM STRENGTH METHOD 

In Sections II and III it is shown that SCR is an incomplete 
method that may significantly overestimate system strength. In 
this section, a new method for system strength evaluation is 
introduced, based on the analytical description of the voltage 
collapse boundary obtained in Sections II and III. The Excess 
System Strength (ESS) method is hereby introduced. It is 
defined in (30), based on the balance of system strength supply 
and demand, normalized by the bus short-circuit capacity 𝑆𝑆𝐶. 

 

𝐸𝑆𝑆 =
𝑆𝑆𝑠𝑢𝑝𝑝𝑙𝑦 − 𝑆𝑆𝑑𝑒𝑚𝑎𝑛𝑑

𝑆𝑆𝐶
 (30) 

For the bus to maintain voltage stability, there needs to be 
an excess of system strength available: 

 
𝐸𝑆𝑆 > 0  →   𝑆𝑆𝑠𝑢𝑝𝑝𝑙𝑦 >  𝑆𝑆𝑑𝑒𝑚𝑎𝑛𝑑 (31) 

The supply of system strength is defined as the maximum 
possible power transfer at the bus, considering impedance, 
capacitors and 𝑋/𝑅 ratio. Therefore, equations (13), (22) or (27) 
are to be used for 𝑃𝑚𝑎𝑥. Equation (33) exemplifies this for (13). 

 
𝑆𝑆𝑠𝑢𝑝𝑝𝑙𝑦 = 𝑃𝑚𝑎𝑥      ;         𝑆𝑆𝑑𝑒𝑚𝑎𝑛𝑑 = 𝑃𝐼𝐵𝑅 − 𝑃𝐿 (32) 

 

 

𝐸𝑆𝑆 =
1

𝑆𝑠𝑐
[
1

𝑋
𝑉𝑖𝑉𝑠√1 − (

1

2

𝑉𝑠
𝑉𝑖

)
2

− 𝑃𝐼𝐵𝑅 + 𝑃𝐿] (33) 

The 𝐸𝑆𝑆 method is hereby tested against two common 
system strength evaluation methods, SCR and ESCR. A simple 
model shown in Fig. 8 is simulated in DIgSILENT 
PowerFactory 2022. The IBR is modelled as a PQ source using 
the IEC Wind Generator Type 4B model [20]. 

~ IBR

VS = 150 kV Vi∠θ P, Q

PL

|Z| = 10 Ω

Xc

Ssc = 2250 MVA

R+jX
Thevenin

source

 
Figure 8.  Simple test system for system strength evaluation. 

Table 1 shows 20 scenarios selected to reflect various 
operating conditions. In cases A1-A3, methods are compared 
on a system with 𝑃𝐿 = 0, 𝑋𝑐 = 0, and 𝑅 ≈ 0. For case A1, 
1000 𝑀𝑊 is transferred. Both SCR and ESS indicate voltage 
stability, which is validated by simulations. Note that the ESS 
value indicates that an extra 948.5 𝑀𝑊 can be transferred 
(0.4216 ∗ 𝑆𝑆𝐶), which is also the boundary voltage stability 
condition in simulations. When the power increases to the 
boundary (1948.5 𝑀𝑊), SCR remains larger than 1, incorrectly 
indicating that more power can be transferred. Meanwhile, ESS 
is near 0, correctly indicating the boundary condition. If the 
power increases further by only 1.5 𝑀𝑊 (A3), the voltage 
collapses. This is accurately predicted by a negative ESS, while 
SCR is still larger than 1, overestimating system strength. SCR 
implies that 2250 𝑀𝑊 can be transferred, equal to 𝑆𝑆𝐶. 
However, as per derivations in Section II, this is unfeasible. 

Simulations B1-B4 explore the impacts of the operating 
voltage. For case B1, which is the same as A1 with 1000 𝑀𝑊, 

but now with 𝑉𝑖 = 0.95 𝑝𝑢, SCR has the same value as in A1. 
Thus, SCR is insensitive to the change in voltage as it is 
typically calculated with nominal values. In contrast, ESS is 
0.3633, indicating an extra ~817.5 𝑀𝑊 of capacity available 
(0.3633 ∗ 𝑆𝑆𝐶). By increasing power to the boundary condition, 
it is found that precisely 1817.5 𝑀𝑊 is the maximum power 
transfer (MPT) at 𝑉𝑖 = 0.95 𝑝𝑢, as predicted by ESS. 
Meanwhile, SCR is still larger than 1 (1.238), wrongly 
indicating that the system is far from a voltage collapse. If the 
power experiences further increase (B3), a voltage collapse 
occurs, as predicted by negative ESS. SCR is, however, still 
positive, overestimating system strength. In case B4, the 
operating voltage is increased to ~1.15 𝑝𝑢. Here, simulations 
show that the MPT is 2330 𝑀𝑊, i.e. more than what SCR 
suggests. Therefore, SCR can also underestimate system 
strength by not taking into account the operating voltage. ESS 
is conversely able to pinpoint the MPT, even with variable 𝑉𝑖. 

In cases C1 (C2), a 400 (600) 𝑀𝑊 load is introduced. Based 
on the boundary voltage stability results, the MPT is 
2348.5 (2548.5) 𝑀𝑊, respectively. This is equal to case A2 
with the addition of load, as predicted by (17). Therefore, while 
SCR labels these cases as unstable, ESS correctly characterizes 
them as boundary cases. In other words, ESS is, unlike SCR, 
able to consider the positive impact of load on system strength. 

Simulations D1-D3 show how capacitance impacts system 
strength. A shunt capacitor with 𝑄𝐶𝑛𝑜𝑚

= 250 𝑀𝑉𝐴𝑟 is added, 

and system strength is evaluated for three different voltages. In 
case D1, the MPT for 𝑉𝑖 = 1 𝑝𝑢 is found in simulations. In this 
case, SCR overestimates system strength, while ESCR, 
designed to consider capacitors, performs better. However, it 
still inaccurately indicates that there is some power transfer 
margin left. ESS locates the boundary condition accurately, as 
per (22), perfectly matching simulations. In cases D2 and D3, 
simulations are repeated for  𝑉𝑖 = 0.9 (1.1) 𝑝𝑢, respectively.  
ESCR is unable to accurately find the boundary condition, 
overestimating (underestimating) system strength in D2 (D3). 
On the other hand, ESS is again able to precisely match the 
boundary condition, and thus perform much better.  

Finally, cases E1-E8 show the impact of resistance on 
system strength. Cases E1-E3 show the operation for the ratio 
𝑋/𝑅 = 10. For case E1, one already sees a problem for SCR, as 
it is equal to case A1, where 𝑅 ≈ 0. Meanwhile, ESS predicts 
that an extra ~1050.75 𝑀𝑊 (0.4670 ∗ 𝑆𝑆𝐶) of transfer is possible 
before a voltage collapse (note the difference with case A1). 
Indeed, simulations confirm that 2050.8 𝑀𝑊 is the boundary 
condition for voltage stability, as seen from case E2. If power 
is increased further (E3), a voltage collapse occurs. SCR fails 
in evaluating this, while ESS predicts the voltage collapse point 
accurately. Simulations E4-E6 evaluate the impact of the 𝑋/𝑅 
ratio on power transfer. When the ratio decreases from 10 to 5  
(E2 to E4), the MPT is increased. The same occurs when the 
𝑋/𝑅 ratio is decreased to 2  (E5). However, when the 𝑋/𝑅 ratio 
further decreases to 1 (E6), the MPT in simulations decreases, 
as predicted in Section II-c (Fig. 7). Therefore, the expressions 
for ESS correctly evaluate the impact of the 𝑋/𝑅 ratio on system 
strength, as per E1-E6. Meanwhile, SCR falls short in 
determining the MPT as it does not consider the 𝑋/𝑅 ratio. This 
is emphasized further in cases E7 (E8), where 𝑉𝑖 = 0.9 (1.1) 𝑝𝑢, 
with a 500 𝑀𝑊 load in the latter case. SCR significantly over- 
(under-) estimates system strength in these two scenarios. 
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Conversely, ESS once again precisely matches the boundary 
voltage collapse point found in simulations. 

These simulations verify the analytical results derived in 
Sections II and III and show that ESS is a much more accurate 
measure of the steady state system strength. SCR (ESCR) can 
significantly over- or under-estimate system strength, as they 
are not able to accurately take into account impacts of voltage, 
loads, capacitors and 𝑋/𝑅 ratio. Meanwhile, ESS is shown to be 
very accurate, in line with the detailed analytical expressions 
for maximum power transfer. Therefore, it can be concluded 
that ESS is a far more suitable measure of system strength. 

V. CONCLUSION 

The importance of accurate system strength evaluation in 
progressively weaker grids is only increasing. In this paper, a 
new system strength method is proposed, based on a rigorous 
analytical derivation of IBR maximum active power transfer. 
Unlike existing SCR-based methods, the proposed method also 
considers voltage, loads, capacitors, and 𝑋/𝑅 ratio accurately. 
Simulation results confirm superior performance at identifying 
the power transfer margin and the voltage collapse point. 

The method can be used as a replacement or a complement 
to SCR for a more accurate evaluation of system strength and 
voltage stability limits in a variety of operating scenarios. This 
ultimately allows for more robust renewables integration 
planning, as well as screening for weak buses with potential 
voltage instability risks. For future work, ESS will be expanded 
to consider the impact of multiple IBRs on system strength. 
Additionally, incorporating the impact of contingencies and 
IBRs’ small-signal stability limits into ESS shall be explored. 
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Operating 

scenario 

𝑷𝑰𝑩𝑹 

[MW] 

𝑸𝑰𝑩𝑹 

[MVAr] 

𝑽𝒊  

[kV] 
𝜽 [deg] 

𝑷𝑳 

[MW] 

𝑸𝑪𝒏𝒐𝒎
 

[MVAr] 
𝑿/𝑹 𝑺𝑪𝑹 𝑬𝑺𝑪𝑹 𝑬𝑺𝑺 

Voltage 

collapse 

A1 1000.0 234.5 150.0 26.39 0 0 inf. 2.250 - 0.4216 No 

A2 1948.5 1124.9 150.0 59.99 0 0 inf. 1.154 - ≈ 0.001 Boundary 

A3 1950.0 - 150.0 - 0 0 inf. 1.153 - -0.0006 Yes 

B1 1000.0 142.5 142.5 27.89 0 0 inf. 2.250 - 0.3633 No 

B2 1817.5 905.6 142.5 58.23 0 0 inf. 1.238 - ≈ 0.001 Boundary 

B3 1850.0 - 142.5 - 0 0 inf. 1.216 - -0.0144 Yes 

B4 2330.0 1850.3 172.6 64.15 0 0 inf. 0.965 - ≈ 0.001 Boundary 

C1 2348.5 1124.9 150.0 59.86 400 0 inf. 0.958 - ≈ 0.001 Boundary 

C2 2548.5 1124.9 150.1 59.87 600 0 inf. 0.882 - ≈ 0.001 Boundary 

D1 1860.3 734.3 150.1 55.71 0 250 inf. 1.209 1.075 ≈ 0.001 Boundary 

D2 1722.5 539.37 142.5 53.68 0 250 inf. 1.306 1.161 ≈ 0.001 Boundary 

D3 2126.9 1154.3 165.0 59.21 0 250 Inf. 1.057 0.940 ≈ 0.001 Boundary 

E1 1000.0 126.9 150.0 25.89 0 0 10 2.250 - 0.4670 No 

E2 2050.8 925.5 150.0 59.93 0 0 10 1.097 - ≈ 0.001 Boundary 

E3 2055 - 150.0 - 0 0 10 1.094 - -0.0018 Yes 

E4 2131.3 721.0 150.0 59.99 0 0 5 1.056 - ≈ 0.001 Boundary 

E5 2245.9 134.8 150.0 59.95 0 0 2 1.002 - ≈ 0.001 Boundary 

E6 2173.3 -582.3 150.0 59.91 0 0 1 1.035 - ≈ 0.001 Boundary 

E7 1683.8 -697.4 135.1 56.19 0 0 1 1.336 - ≈ 0.001 Boundary 

E8 3188.4 -429.2 165.0 62.91 500 0 1 0.706 - ≈ 0.001 Boundary 

TABLE I.  SIMULATION RESULTS BASED ON FIG. 8 SYSTEM, COMPARING DIFFERENT SYSTEM STRENGTH METRICS OVER VARIOUS OPERATING SCENARIOS. 
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