]
TUDelft

Black-box Adversarial Attacks using Substitute models: Effects of Data
Distributions on Sample Transferability

Pietro M. Vigilanza Lorenzo
Supervisor(s): Stefanie Roos, Jiyue Huang, Chi Hong
EEMCS, Delft University of Technology, The Netherlands
June 17, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering



Abstract

Machine Learning (ML) models are vulnerable
to adversarial samples — human imperceptible
changes to regular input to elicit wrong output on a
given model. Plenty of adversarial attacks assume
an attacker has access to the underlying model or
access to the data used to train the model. In-
stead, in this paper we focus on the effects the data
distributions has on the transferability of adversar-
ial samples under a “black-box” scenario. We as-
sume an attacker has to train a separate model (the
“substitute model”) and generate adversaries us-
ing this independent model. The substitute models
are trained with different data distributions: sym-
metric, cross-section or completely disjoint data to
the one used to train the target model. The re-
sults demonstrate that an attacker only needs se-
mantically similar data to execute an effective at-
tack using a substitute model and well-known gra-
dient based adversarial generation techniques. Un-
der ideal attack scenarios, target model accuracies
can drop below 50%. Furthermore, our research
shows that generating adversarial images from an
ensemble increases average attack success.

1 INTRODUCTION

Machine Learning (ML) techniques have gained enormous
popularity within the last decade, and their presence in our
everyday life decision making is increasingly common. Thus,
understanding when and why ML systems can fail in their re-
spective tasks is of utmost importance for safety and security
of a digital system. Failing to acknowledge these errors can
be a tangible risk for all sectors of society that heavily rely
on the decisions of these algorithms. For example, one of the
latest innovations in machine learning technology is to create
models that can effectively drive a vehicle in public streets
[1]. If a malicious actor can find a feasible vector of attack
that can trick the system into making incorrect decisions, both
the driver and nearby civilians can be in imminent danger.

One such area that exploits predictable vulnerabilities in
how ML systems classify input is known as adversarial re-
search. Adversarial samples are data intentionally generated
by an attacker to cause a model to wrongly classify the input
or make a mistake [4]. This area of research has been gaining
momentum since Szegedy [26] and his colleagues uncovered
that deep learning models used for computer vision tasks can
make drastic mistakes in classification just by adding these
small, human-imperceptible alterations to the original image
as shown in Figure 1. These adversarial images are able to
trick ML systems into making erroneous classifications with
a high degree of success [6].

Multiple well-known approaches exist to generate adver-
sarial data and trick a model. In this paper, we will focus
primarily on a vector of attack known as model substitution,
wherein an attacker trains a separate independent model that
attempts to closely represent the model the attacker wishes to
compromise i.e. the target model[8]. The attacker then gen-
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Figure 1: Example of a correctly classified road sign (“stop sign”),
and later misclassified after imperceptible adversarial noise is added
(turning into a “green light”). A huge risk vector for autonomous
driving models

erates adversarial data using the substitute model and verifies
if the data is also adversarial in the target.

This research specifically delves into the effects of adver-
sarial data transferability under different data distributions us-
ing multiple classifier models. The focus on the effects of
data distributions is a novel extension to previous work, as
the aim of this paper is to evaluate how well an attacker could
fare if his data is different from the one used during the train-
ing phase of the target model. This premise also uncovers
important implications in the capability of an attacker - if an
attacker is able to successfully compromise a target model
using different training data, it implies that an attacker sim-
ply needs data that is ”similar” enough to the one used by the
target to successfully conduct an attack.

The results from this research! shows that an attacker does
not necessarily need the same data used by the target model to
elicit drops in accuracy below 50% from the target when feed-
ing adversarial samples generated by the substitute model.

2 RELATED WORK

Before delving further into the research, we will briefly look
at some of the body of work related with substitute model
attacks, semantic similarity and robustness of data.

2.1 Using a substitute model for black-box attacks

The underlying assumption of a black-box attack is that an at-
tacker does not have access to the underlying model in ques-
tion to generate adversarial samples. A worrying discovery in
the field shows that rather than being an impediment, an at-
tacker does not need to know the underlying model to gener-
ate successful adversarial samples. Usually, adversarial sam-
ples that are found in independent models trained to solve the
same task have high chance of also being adversarial in the
target model. This property is known as adversarial trasnfer-
ability [16] [28] [29]. The implication is that adversarial sam-
ples are not unique to a specific model as long as the models
solve a similar problem [6].

Furthermore, Papernot et. al. [19] demonstrated that adver-
sarial attacks using substitute models can be both successful
in intra-technique and cross-technique situations. This means
these attacks also succeed when the substitute model uses a

'all code is openly available in the following link:
https://github.com/Ray-Escobar/substitute, ttack



different ML technique to that of the target. The results show
that adversarial attacks are feasible under a black-box sce-
nario where the attacker does not have access to the architec-
ture of the underlying target model.

2.2 Adversarial attacks using semantically similar
data

To our knowledge, only one example of using semantically
similar data to conduct an attack has been used. Pepernot
et. al. [20] successfully generated adversarial data by train-
ing a substitute model using new MNIST [14] numbers writ-
ten on a track-pad, and adapting them so that the new num-
bers are similar to the original MNIST dataset numbers. This
small example with MNIST does hint that two models can be
trained on distinct, semantically similar data to generate ad-
versarial samples. Further research on this topic can illustrate
how well adversarial samples transfer from one model to an-
other when their training data becomes increasingly different
and complex.

2.3 Robust and non-robust data features

Most of the spotlight in adversarial research has been given
to uncovering new forms of attack, or training models that
are resistant to modern adversarial techniques. These papers
focus on the models internals while potentially ignoring the
effects the dataset itself might have on the model. Ilyas et. al.
[11] argues that adversarial samples exist in deep neural net-
works due to the features present in the dataset that modern
classifiers use to reach high degree of classification. The re-
searchers demonstrate that the existence of “non-robust” fea-
tures in images (i.e. human-imperceptible features present in
the data distribution of the samples) are what allow models to
reach high levels of accuracy at the cost of becoming suscep-
tible to adversarial samples.

The theories presented in this research suggest that adver-
sarial data can be generated from a substitute model as long as
the substitute model also learns similar non-robust features to
the ones present in the target model. This would indicate that
transferability between models could be due to the inherent
non-robustness of dataset distributions.

2.4 Research Gap

From the previous section, we noticed that there seems to be
a gap in research on the efficacy of successfully creating ad-
versarial samples from a substitute model trained with data
that follows a different distribution from the one used by tar-
get model. Papernot et. al. [20] did showcase that the at-
tack vector was possible in a rather small experiment with a
very simple MNIST dataset. Using different distributions on
a feature-rich dataset could yield interesting results that could
line up well with the previously conducted MNIST experi-
ment, and further solidify the notion that an attacker simply
needs similar enough data.

Furthermore, Papernot’s experiment showcases how to
conduct a substitute attack, but could be further substantiated
with other practical and concrete reason that shows why the
samples are transferable. Looking deeper into how both the
target and substitute models form their decision boundaries
could yield interesting insights into what is happening inside

the model. That is why Ilyas’ research on non-robustness is a
fit method to explain why samples transfer from one model to
another. If two separate models are using the same non-robust
features to perform its classification, then we can safely con-
clude that transferability between independent model occurs
due to the non-robust features present in the dataset. Combin-
ing both Papernot’s and Ilyas’ insights in adversarial research
would present a new explanation for adversarial transferabil-
ity.

In the next sections we will present the methods used to
combine both approaches to conduct our experiment. Using
these two insights, this research will primarily focus on train-
ing a substitute model by taking a dataset from a separate
distribution that still preserves key features that make it se-
mantically similar to the ones used to train the target model.
Creating a concrete framework for measuring semantic simi-
larity is out of the scope of this paper, but we intuitively define
semantically similar datasets as a two datasets that are derived
from a different distributions, yet the underlying features that
both datasets contain are equal — thus making them fit to
solve the same classification problem.

3 PROBLEM DESCRIPTION

The following section describes the components used to eval-
uate different models under a substitute attack. This exper-
iment is based on a binary classification problem in which
Convolutional Neural Networks (CNN) are tasked with cor-
rectly differentiating cat and dog images. The section starts
with a brief description of CNNs, followed by defining our
threat model and finally explaining the dataset splits used to
create new semantically similar distributions from a single
big dataset.

3.1 Convolutional Neural Networks (CNN)

In the field of deep learning a CNN is a type of deep neural
network most commonly used in image classification tasks.
These networks use a special architecture known as convo-
lution layer which uses local receptive fields composed of
kernels and pooling layers to reduce the amount of weights
a model uses [17]. Following the convolution layers, the out-
put is fed into a fully connected layer which then determines
a classification.

As such, a CNN is represented by the following mapping
function:

F,X): R — RL

Where @ are the weights of the model, X € R? is a vector
of real numbers of d dimensions from a distribution D, and L
is the number of classes in our classification problem.

In a given classification problem, we optimize the set of pa-
rameters 0 = {61, ..., 0, } during a training phase so that in
a test phase the parameters output a confidence F'(X,6) =y
if a given image is a cat or a dog. To optimize the perfor-
mance of a model, a CNN uses a loss function that measures
how far the model is from the expected results. We can define
a loss function as the following mapping:

JO,X,Y): RE - R



As the mapping suggests, the function takes the output vec-
tor from our CNN, known as the logits, and outputs a real
number that measure how far the output is from the expected
Y. The greater this magnitude, the farther our model is from a
correct output. The optimization process works by taking the
gradient of the loss function in terms of weights and biases to
slowly decrease the error of the network.

max pooling vec

convolution +
nonlinearity
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Figure 2: Architecture of the cat or dog CNN model[23].

3.2 Threat Model Taxonomy

Before delving into the specific strategies used to setup the
experiment, first we will describe the components of the
threat model. The given scenario assumes an attacker wishes
to compromise a CNN’s accuracy without having access to
the model or to its hyper-parameters. This classic scenario is
known as a black-box attack, where the attacker tries compro-
mise a system in which they have limited knowledge or access
to the internals. The attacker’s goal is to produce a minimally
altered image that is miscalssified by the CNN in question.
The threat model is composed of the following actors:

Target Model: The farget models are CNNs trained at
high accuracy that the attacker wishes to compromise. The
attacker aims to generate adversarial data such that the target
outputs an incorrect classification on an otherwise correctly
classified image. The attacker wishes to minimize the target
model’s accuracy.

Substitute Model: The substitute model is the model
trained by the attacker to generate adversarial images. The
attacker only knows the type of data required to train a sub-
stitute model, and uses gradient based attacks to generate ad-
versarial images using the substitute model. The attacker also
knows the classification problem the target classifier is solv-
ing, thus the substitute model is trained to solve the same ex-
act problem.

Robustness: As defined by frameworks from Ilyas et. al.
[11] and Tsipras et. al. [27], features of a data distribution D
may have “robust” and “non-robust” features. As defined by
these frameworks, non-robust features are features that cor-
relate to the true expected label of the sample Y, but when
an adversarial perturbation is applied, these non-robust fea-
tures correlate to wrong label Y. On the other hand, robust
features correlate to the expected label Y regardless if an ad-
versarial perturbation has been applied.

One can intuitively think about robust features as the
human-perceivable attributes of an image — “a furry animal

with a snout, ears and four legs”. Non-robust features are
visually imperceptible and are inherent to the overall distri-
bution D.

Non-robust features
Correlated with label on average,
but can be flipped within £; ball

Robust features
Correlated with label
even with adversary

Input

Figure 3: Robust features and non-robust features[3].

An attacker alters these non-robust features within a certain
[2 euclidean boundary, referred to as “ball”, in the hopes of
causing an incorrect classification by an arbitrary classifier
within the output domain L. Figure 4 shows an example of
how these robust and non-robust features are perceived.

Gradient-Based Attacks: This research only considers
gradient based attacks. Under normal training conditions, to
increase the model accuracy the gradient is taken with re-
spects to the weights and biases of the CNN model. Over
multiple iterations, the slight changes to these parameters
slowly increase the model’s accuracy.

The general notion of gradient based attacks is that the gra-
dient of the model is instead calculated with respects to the
input vector [5] [6]. Since the gradient points towards the di-
rection that increases the cost function given an input vector,
an attacker hopes that by applying this gradient to the original
image the target model misclassifies the image.

The two gradient based attacks explored in this experiment
is the Fast Gradient Sign Method (FGSM) [6] and Projected
Gradient Descent (PGD) [13]. The definition of both attacks
are listed below. Note that PGD is an iterative version of
FGSM:

* Fast Gradient Sign Method (FGSM) [6]
X = X + esign(VxJ(0,X,Y))
* Projected Gradient Descent (PGD) [13]

Xgt =X
X4y = Clipx (X3 + asign(Vx J(0, X4, Y)))

3.3 Dataset Distributions and Semantic Similarity

The core of this experiment is to generate two datasets Dr
and Dg from common dataset distribution D such that Dy
and Dg are semantically similar. Classifier C'y (target model)
is then trained using dataset Dy, while classifier C's (the sub-
stitute model) is trained with Dg. The three splits used to
alter the distributions of the datasets are the following:

1. Equal. Dy and Dg have all items in common.
2. Cross Section. D7 and Dg share some items.

3. Disjoint. D and Dg share no items.
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Figure 4: Anatomy of an adversarial attack via substitute model. (0) Dataset is collected and then (1) split according to a data distribution. We
train a (2) target model and a (3) substitute model with their respective data. (4) Adversarial data can be generated iteratively over a dataset

and then (5) fed to the target model.

Since its necessary that both our datasets D7 and Dg
can be used to solve the same classification problem, both
datasets need to be semantically similar. In this context, se-
mantic similarity consists of two datasets that follow different
data distributions, but portray similar features. This allows
either dataset to be used for solving the same classification
problem.

4 EXPERIMENTAL SETUP

The experimental setup is composed of a cats and dogs
dataset, pre-trained CNN models and the execution of the
adversarial attacks. This section explains in detail how the
models were trained with the dataset, and how the attacks
were conducted. Figure 4 above can be referenced for a high
level diagram of the substitute attack procedure.

4.1 Dataset - OxfordIIITPets

The ideal dataset for this experiment requires having substan-
tial data that can be easily split into our three distributions
while preserving semantic similarity. In the context of a clas-
sification problem, we wish to split data items on an arbitrary
feature while preserving the output label domain L of the tar-
get classification problem i.e. classifying an image as a cat or
a dog.

To derive different data distributions that are semantically
similar, we use the Oxford IIIT Pets image dataset [21]. This
dataset contains a total of 7,349 cats and dogs split on 37
unique breeds. The original purpose of the dataset is to solve
the multi-class breed classification problem.

The reason this dataset fulfils the requirements for this ex-
periment is that it allows to make simple splits on breeds
while still preserving the nature of the cats and dogs clas-
sification problem. Given the numerous breeds, splits can be
made to create datasets that have symmetric sets of breeds,
share a cross-section of breeds or have no breeds in common
and use them to train the classifiers.

It is important to highlight that different datasets can be
considered for this experiment. For example, one can take
datasets with traffic signs images from around the world and
create splits based on the country of origin, or take a dataset of
vehicles and create splits based on old and new vehicles. The
important constraint to preserve is that the datasets should be
semantically similar.

4.2 CNN Models Used

The models used for this experiment consist of popular, and
accessible CNNs that are proficient at solving image classifi-
cation problems. All models were created and trained using
the machine learning library PyTorch [22]. The following
three models below are used to generate target and the substi-
tute models for this experiment:

1. GoogLeNet [25]
2. Resnet-50 [8]
3. DenseNet-121 [9]

The reasoning behind choosing this subset of models was
due to their sizes. GoogLeNet is the smallest model with 11
million parameters, followed by Resnet-50 with 23 million
parameters, while DenseNet-121 is the biggest model with
60 million parameters. By choosing the models of different
architectures and sizes we can make our attacks more diverse
and objective.

All models in the experiment are trained using an ADAM
stochastic optimizer[12] for nine epochs or until the model
reaches a 99% accuracy on a given test set. After seven
epochs, the learning rate is slightly decremented by a value
of 0.01 to make parameter changes less drastic and more pre-
cise.

Furthermore, training is done by fine-tuning pre-trained
models via transfer-learning[30] — a method by which one
adjusts a pre-trained model by changing the output layer to
represent the desired classification problem, and modify the
already existing weights and biases of the model. In this case



the the models are all pre-trained with ImageNet[2] data and
the final layer is altered to only have two output neurons. Us-
ing the transfer-learning technique allowed to train models
that reach classification accuracy of 95% or more in fewer
epochs and using less data.

To guarantee greater entropy between models while using
transfer-learning, non of the weights and biases were frozen
during training phase and the training gradients were applied
throughout the whole model. This creates a desired setup in
which any two model’s weights and biases have a greater dif-
ference between each other, thus simulating a realistic black-
box attack where the attacker may be far from having the
same parameter values as the target model.

4.3 Executing the adversarial attack

The experimental phase closely resembles the work of Liu
et. al. [15] with the added factor that data distributions are
not the same across model, and the adversarial samples are
derived using the substitute models.

The ensuing process starts by preparing the datasets that
represent the three data distributions described above. For
the symmetric datasets the training and test data used was the
one suggested by the OxfordIIIT dataset. For the other two
distributions, a process of random sampling without replace-
ment was used to create random splits on the data based on
breeds. Once the datasets are prepared, each target model
and substitute model are loaded and trained with the assigned
data.

After the training phase, the attack phase is performed and
measured under intra-model and cross-model attacks. For the
attack, a random batch of 200 images are selected from the
whole OxfordIIIT dataset. The selected batch is first evalu-
ated on the target model untampered to measure a baseline
accuracy. The accuracy of the model is measured by count-
ing all correct classifications over the number of items in the
whole batch. The higher this value, the better the model is at
solving the classification problem.

After the baseline accuracy evaluation, each image from
the batch is then used to generate two adversarial samples
where one is made using FGSM and the other using PGD.
The attacks were made possible using Clever Hans [18], an
open source library which has a collection of popular adver-
sarial attacks.

For all experiments we used an « value of 0.1 for each
attack. This o value determines an alteration range/ball in an
image — the greater this « the greater the image perturbation.
The « value chosen for this experiment was arbitrarily picked,
but resulted in images where perturbations are unnoticeable
for the human viewer as depicted in Figure 5.

Additionally, since PGD is iterative it also requires a step
size § chosen to be 0.01. This step size allows PGD to explore
the direction of highest increment in the loss function given
an exploration size of «. Forty iterations were used for the
PGD exploration phase.

After the 200 adversarial images are generated per attack,
the target’s accuracy is measured using the adversarial batch
and compared with the original, untampered data accuracy.

0 50 100 150 200

Figure 5: Example of a correctly classified dog, which is then clas-
sified as a cat after PGD is applied in one of our models. Notice that
using an « value of 0.1 makes human-imperceptible changes on the
image.

4.4 Verifying Models use similar Non-Robust
features

The final step in the test-bed is to generate a non-robust
dataset D . Non-robust data per-definition, is data that is
perturbed with adversarial methods to be classified differently
than it’s actual real class Y [11]. The process to generate a
non-robust dataset follows closely the one by Ilyas et. al. [11]
with one distinct difference. Instead of using a single model
to generate non-robust data, we create an ensemble of three
substitute models — one from each of the aforementioned
CNNs chosen for the experiment. Each model is trained with
the whole OxfordIIIT dataset until accuracy levels of each
model is above 95%.

Algorithm 1 An algorithm to generate D . Assumes PGD
runs for 40 iterations.

Require: C = {C4,Cs,...C,} > Ensemble of classifiers
Require: D > Dataset. In this case OxfordIIIT Pets

Dnr < {}
a<+ 0.1 > Perturbation ball
€+ 0.01 > Perturbation step
for x € D do
if x is correctly classified in ensemble C' then
for c € C do

a2’ + PGD(c,x,q,¢€)

if 2’ is adversarial for all ¢ € C then
Dyg < DyrU2’
break

end if

end for
end if
end for

With our newly trained ensemble, we pick images from the
OxfordIIIT dataset and apply PGD using one of the substi-
tute models, and verify that the image is also adversarial in
the the other two members of the substitute ensemble. This
entails making sure that cat or dog images are classified as
their opposite class by all three substitute models after adver-
sarial perturbation is applied. The parameters used for the
PGD attack were the same as discussed in 4.3. Pseudo-code
for this algorithm is present in Algorithm 1.
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Figure 6: FGSM attack transferability. Accuracy of target models (lines in graph) under the different distributions with following substitutes:
(a) GoogLeNet (b) ResNet-50 (c) DenseNet-121
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Figure 7: PGD attack transferability. Accuracy of target models (lines in graph) under the different distributions with following substitutes:
(a) GoogLeNet (b) ResNet-50 (c) DenseNet-121

Using this technique we were able to generate a small
dataset of 500 images that together form D . These images
were then subsequently fed into target and substitute mod-
els to measure if the images elicited a wrong classification
from both the adversary and the substitute. If the image is
wrongly classified in both models, then we can conclude that
both models were using the same non-robust features to per-
form their respective classifications.

5 RESULTS

The result section is split into three parts. For all sections we
measure the accuracy of models — the percentage of images
classified correctly given a batch to evaluate. The higher the
accuracy, the better the model performed in classifying the
image batch.

We first look at the accuracies reached with all models in
the classification problem without any image perturbations.
Afterwards, the accuracy of these same models are measured
after adversarial samples are generated using the substitute
models under the different data distributions. The final part
uses the the non-robust dataset Dy r to measure how suscep-
tible the target and substitute models are to the same adver-
sarial alteration of non-robust features.

5.1 Baseline Accuracies

Given the simple cat or dog binary classification problem, all
target models trained have near perfect accuracy at identi-
fying the animal type in their respective test sets as seen in
Table 1. The results are the average accuracies obtained by
randomly selecting 200 samples from the whole dataset.

In section 5.2, we take these same 200 samples and apply
an adversarial perturbation to measure the effects in the accu-
racy of the models.

Target Model Accuracy on Clean Test Data
Models GoogleNet | ResNet-50 | DenseNet-
121
Symmetric 0.95 0.98 1.00
Cross-Section || 0.97 0.99 0.99
Disjoint 0.99 0.97 0.98

Table 1: Target model accuracy in cat or dog image classification
with no perturbations in images. All models are very accurate with
their assigned test data.

5.2 Attack Transferability

We now look at the success of transferability using our sub-
stitute models. As shown by our baseline accuracies, when
given non-adversarial data these models are proficient at clas-
sifying our original 200 cat and dog images. After adversarial
perturbations are applied, substantial degradation of accuracy
is observed over three data splits.

Symmetric: Both target and substitute models are trained
with the same exact data. For the training, we used the rec-
ommended test and train data provided by OxfordIIIT dataset.
The results in Figure 5 and Figure 6 show that symmetric at-
tacks are the most effective attack overall. A well selected
model by an attacker can decrease performance of the target
to worse than a guess. The results closely follow what had



Accuracy with non-robust dataset (symmetric)

Accuracy with non-robust dataset (cross-section)

Accuracy with non-robust dataset (disjoint)

B Target
Substitute

8588388
45 582388

=
=}

Accuarcy on NR Dataset
<]

Accuarcy on NR Dataset

=
=3
=
B

o
o

- Target
Substitute

EE Target
Substitute

a8 88388

Accuarcy on NR Dataset
&

—
=)

GoogleNet ResNet-50

Models

DenseNet-121 GoogleNet

ResNet-50
Models

o

DenseNet-121 GooglLeNet ResNet-50

Models

DenseNet-121

Figure 8: Performance of target and substitute model with D x r dataset (a) Symmetric (b) Cross-Section (c) Disjoint

been seen in previous adversarial research [15].

Cross-Section: The following experiment assumes a
cross-section of size 10. This means that the data used to
train the target and substitute models had 10 breeds in com-
mon each. In the context of the OxfordIIIT, this means that
slightly less than half of the samples in the the target and
substitute datasets are the same. The results are similar to
those using symmetric dataset except for GoogLeNet. In the
cross-section attacks the data shows the the GoogLeNet tar-
get is generally more resilient than the other two targets ex-
cept when the substitute is also a GoogleNet. On the other
hand, both the Resnet-50 and Densenet-121 accuracies are
greatly diminished with PGD when using the Resnet-50 or
DenseNet-121 as substitutes.

Disjoint: Under a disjoint distribution, the target and sub-
stitute models were trained with a total of 18 breeds each.
Under the disjoint experiment no two images or breeds were
equal between the datasets of the substitute and the target. To
ensure this, distinct breeds were picked at random for each
dataset. The results in Figure 5 and Figure 6 show that over-
all, the targets are the most resilient to the substitute attack
compared to symmetric and cross-section attacks. This ten-
dency can be seen with every model — the greater the differ-
ence between the datasets, transferability of adversarial sam-
ples decreases (and accuracy of model increases). It’s still
important to highlight that in best-case scenarios, all target
models under any substitute still drop to accuracies that could
be considered low by the standards of well trained models.
When using the correct substitute model and PGD attack the
accuracy of the target models can drop to less than 50%.

5.3 Sensing Non-Robustness

In our second experiment, we generated dataset Dy p com-
posed of only non-robust samples. These non-robust samples
are generated by applying PGD on given image s,q, using
one of our three substitutes from an ensemble such that image
Sadw 1S adversarial for all ensemble members. In the context
of our dataset, this would mean perturbing a cat such that all
three models classify it as a dog, or vice versa. The method
above yielded around 500 adversarial images from a set of
2500 randomly selected images from the whole OxfordIIIT
dataset.

We then measure the accuracy of the same target and sub-
stitute models used in section 5.2 under the new dataset D g.

Similar accuracies between target and substitute model of
same architecture would suggest that the misclassification of
the image is elicited by similar non-robust features. The main
aim of the experiment is to understand adversarial transfer-
ability as a consequence of models using similar non-robust
features to assist in their classification task. The results of the
experiment are present in Figure 8.

Compared to the results from the first experiment, the re-
sults shown in the graphs have more variance and are less
conclusive. Some results point strongly towards our hypoth-
esis of similar non-robust feature usage, such as the symmet-
ric DenseNet-121 results, both the Resnet-50 from symmet-
ric and disjoint experiments, and both the GoogLeNet results
from the cross-section and disjoint experiment. The target
and substitute models in these tests had a similar accuracies
and within a 15% range in distance.

Other results were less conclusive, such as the symmetric
GoogLeNet that had a difference of 27% in accuracy. Further-
more, some model pairs had very similar accuracies in one
distribution test, while in others the difference could be very
sizable. This phenomenon was present in the GooglLeNet,
where in the symmetric distribution the accuracies between
the target and substitute were very distant, while in the other
two distributions the accuracies were rather similar.

Two additional observations arose from conducting the ex-
periment. We can notice that overall, these non-robust sam-
ples s,q4, on average can transfer to any model. Compared
to the previous experiment, the overall accuracies of all mod-
els were on average lower. Rather than seeing one model
drastically under performing, we can see that with the non-
robust data all three models generally under perform in the
classification task (with GoogLeNet still being the most re-
silient). Additionally, once inspecting the samples from our
non-robust data, we noticed that a clear majority of the sam-
ples were from cats being miscalssified as dogs. Even more
interesting is that the images of adversarial dogs had an un-
canny similarity to cat features. An explanation of this ob-
servation could be due to the fact that cats were under repre-
sented in the OxfordIIIT dataset. Overall, 70% of the samples
were dogs while only 30% of the samples were cats. This
could suggest that our classifiers had trouble identifying cat
features, thus making cat images, and cat-like images more
susceptible to adversarial perturbation.



6 CONCLUSION AND DISCUSSION

This section summarizes the implications from the results
found in section 5.

6.1 Attackers only need similar enough data

Results found in first part of the experiment point towards a
general notion that an attacker simply needs similar enough
data to perform adversarial attacks using a substitute model
under a black-box scenario. This conclusion both aligns with
the current notions of adversarial research, and expands the
body of work by providing a new attack vector using seman-
tically similar data. If an attacker knows the underlying prob-
lem that a CNN in the wild is trying to solve, he can attempt
to find a dataset that is similar enough to the one used in the
target model and use it to train a substitute model. The at-
tacker does not need the exact same data used to train the tar-
get model to create effective adversarial samples that majorly
degrade the target model’s accuracy.

Furthermore, the more similar the data is to the one used to
train the target model, the more effective the attack is. From
the results, the symmetric attacks are the most effective rend-
ing some models completely unusable when adversaries are
fed into the model. Regardless, the cross-section and disjoint
attack also decreased the accuracy of target model below the
boundaries of what is considered a high-accuracy classifier
by modern standards (above 95% accuracy).

In terms of transferability, the results show that the closer
the model’s architecture is to the target model’s architecture,
the better the adversarial samples will transfer. A noticeable
observation within these results is that more complex mod-
els seem more prone to be affected by adversarial images.
To the best of our knowledge, we are the first to observe
that the more complex the target model is, the more com-
plex the substitute model should be for an effective attack. In
general more complex models fared worse in all three data
distributions, and samples transferred between the Resnet-50
and Densenet-121 samples had a higher chance of also be-
ing adversarial over samples derived from the GooglLeNet.
This results could suggest that that models with more hyper-
parameters tend to over-fit more thus making them more sus-
ceptible to adversarial samples, or that the Resnet-50 and the
Densenet-121 architectures are very similar hence increas-
ing chance of transferability. Given these observations, an
attacker wishing to compromise a target model could con-
sider choosing a diverse set of substitute models based on
their sizes and architectures to maximize chance of success.

This threat vector can be appealing for numerous reasons.
First, if an attacker is able to find a dataset that closely follows
the target dataset, it’s feasible — and in some scenarios triv-
ial — to train a high-accuracy model using transfer-learning
technique discussed in 4.3. Second, is that an attack via sub-
stitute model uses conventional techniques to train models
to generate adversaries without delving into more complex
methods that can be found in adversarial literature.

6.2 Non-Robustness in Data

Results found in our non-robustness analysis are not conclu-
sive on the notion of models picking-up similar non-robust

features. Our experimental results show multiple fluctuations
in the accuracy between model pairs and between different
architectures.

This experiment still yielded fascinating observations in
adversarial generation. First of all, if an attacker wants to
increase his chances of generating an adversarial sample, us-
ing an ensemble of models could increase the likelihood of
success. Our result suggest that using an ensemble produces
samples that were overall adversarial regardless of the target
model. This method of attack can be appealing in a black-box
scenario, since an attacker with little knowledge of the under-
lying model could simply select a set of popular architectures
and generate a highly non-robust dataset from an ensemble.

The second relevant observation was that our non-robust
dataset Dy g turned out to be mostly composed of cat sam-
ples (that under adversarial perturbation are classified as
dogs). As explained in our results section, a potential rea-
son behind this frequency of cat samples could be due to the
fact that cats are underrepresented in the dataset compared to
dogs. This could mean that if an attacker has any insights in
the data distribution used to train a target, he could increase
his chances of success by generating adversaries from under-
represented groups in the dataset.

6.3 Future Work

The main purpose of this research was to expand our notion
of adversarial transferability. The current paper addresses a
lot of core concepts in regards to similarity of data, but more
could be expanded on this idea.

This work uses an intuitive version of what semantic sim-
ilarity between datasets entail, yet it does not present a con-
crete framework in which one can objectively analyze seman-
tic similarity or measure it. Developing this similar exper-
iment but with a measurable way to evaluate similarity be-
tween datasets could yield more precise results and further
substantiate the results achieved in this paper.

An important shortcoming of this experiment was the sec-
ond part on non-robust features since it could not conclu-
sively explain why transferability occurs using non-robust
data. Even though the notion of non-robust features is rather
compelling, using these concepts did not yield very conclu-
sive evidence. Further research should look into other meth-
ods to explain why transferability of adversarial samples oc-
cur based on how models form their decision boundaries.

Of course, recreation is an important aspect in research,
and we believe that recreating this experiment while altering
some parameters could be insightful. For example, further re-
search could look into studying the transferability of samples
while manipulating the « values of the gradient based attacks
used in this experiment, or even explore new types of attacks.
Expanding on the currently selected subset of models would
be useful in attempting to provide more evidence on how the
size of networks affect transferability.

7 RESPONSIBLE RESEARCH

7.1 Integrity of Research

When performing the experimental phase of the research,
we designed the test-bed to emphasize reproducible results.



Following the current standards for reproducible research in
computational science[24], we decided to use a well-known
and easily available dataset, make the code base public and
give a brief description of the environment used to run the
code. This way its guaranteed that someone can download
the code and run the experiments again.

All results presented here are also not unique instances,
rather they were the average of multiple runs of the whole
experiment. This meant training the specified CNN models,
and running each model through numerous iterations of ran-
domly selected adversarial images and measuring the model’s
accuracy.

7.2 Ethics of Adversarial Research

Adversarial samples have been an alarming discovery since
they first started to appear in the early 2010’s. Invariably, any
research that expands on the possibilities of attacks should
raise ethical concerns. In this paper all adversarial work has
been performed for expository purposes that intend to raise
awareness and concern for a new potential way attacking
Deep Neural Networks. The more is known about what is
possible with adversarial research, the more we will get to un-
derstand why it happens and how it can be addressed. Itis still
very concerning topic, and according to Gupta and Dasgubta
[7], adversarial attacks are not yet considered a threat that is
being allocated significant cyber-security resource. Both re-
searchers still argue that as adversarial research expands fur-
ther, it will soon become a threat that will cause Al-based sys-
tems vulnerable. Furthermore, as ML systems become more
common in our environment, these models might need to go
under scrutinous certification processes to ensure some guar-
antees — such as using state-of-the-art adversarial training
methods to make ML systems more resistant [10].
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A Non-Robust dataset cat-like dog

As explained in our second experiment in section 5.3, when
creating the non-robust dataset one interesting observation is
that there were very few dogs in the set Dypr. Among the
very few dogs that made it into this dataset, most exhibited
some cat-like features.

Below we added two of these images. Notice how these
dogs have very pronounced, pointy ears, and round faces.
These features can be associated with cat features.

Figure 9: Two PGD-perturbed dog samples from the generated
Dnr. Both of these images are classified as cats by the whole en-
semble. Interestingly, these dogs seemingly have cat-like features
such as being small, pronounced ears and round faces.
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