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No-Directional and Backward-Leak
Uni-Directional Updatable Encryption

Are Equivalent

Huanhuan Chen, Shihui Fu(B), and Kaitai Liang

Delft University of Technology, Delft, The Netherlands
{h.chen-2,shihui.fu,kaitai.liang}@tudelft.nl

Abstract. Updatable encryption (UE) enables the cloud server to
update the previously sourced encrypted data to a new key with only
an update token received from the client. Two interesting works have
been proposed to clarify the relationships among various UE security
notions. Jiang (ASIACRYPT 2020) proved the equivalence of every secu-
rity notion in the bi-directional and uni-directional key update settings
and further, the security notion in the no-directional key update setting is
strictly stronger than the above two. In contrast, Nishimaki (PKC 2022)
proposed a new definition of uni-directional key update that is called the
backward-leak uni-directional key update, and showed the equivalence
relation by Jiang does not hold in this setting.

We present a detailed comparison of every security notion in the four
key update settings and prove that the security in the backward-leak
uni-directional key update setting is actually equivalent to that in the
no-directional key update setting. Our result reduces the hard problem of
constructing no-directional key update UE schemes to the construction
of those with backward-leak uni-directional key updates.

Keywords: Updatable encryption · Key update · Security notion

1 Introduction

When a client stores encrypted data on a cloud server, a good way of key man-
agement is to change keys periodically, so as to resist the risk of key leakage.
This process is referred to as key rotation, in which the core of the update relies
on how to update the previous encrypted data to be decryptable by a new key.
A possible way is to download and decrypt the encrypted data with the old key,
and then encrypt the data with the new key and upload the new encrypted data
again. But the download and upload process would be extremely expensive if
there exists a considerable amount of data.

Updatable encryption (UE) [3] provides a practical solution to the above
dilemma. Its core idea is that the client offers the cloud server the ability to
update ciphertexts by the update tokens, with a requirement that the update
token should not leak any information about the data. There are two flavors
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of UE depending on if ciphertexts are needed in the generation of the update
token. One is called ciphertext-dependent UE [2,3,5,6], in which clients need to
download partial components of the encrypted data, called ciphertext header,
from the cloud to generate the update token, and the token can only update the
corresponding ciphertext. The other, more practical than the previous one, is
known as ciphertext-independent UE [4,10–12,14,16], in which the token only
depends on the old and the new keys, and a single token can update all existing
ciphertexts. In this work, we only focus on the latter.

Security Notions. The security of UE schemes should be maintained even
under a temporary corruption of keys and update tokens. The original UE con-
struction and its security model against passive adversaries were proposed by
Boneh et al. [3], where the adversary in the security game should specify the
epoch keys it wishes to know before sending queries to the challenger. The con-
fidentiality notions were further strengthened by [4,11,12], which attempts to
capture the practical abilities of the adaptive attacker. The adversary can cor-
rupt epoch keys and updated tokens at any time during the game as long as
it does not trigger the trivial win conditions, which will be checked after the
adversary submits its guessing bit (more details can be found in Sect. 2). A sum-
mary of existing confidentiality notions and their major difference is presented
in Fig. 1.

Challenge Input Challenge Output
IND-Enc-notion [12] (m̄0, m̄1) (Enc(m̄0),Enc(m̄1))
IND-Upd-notion [12] (c̄0, c̄1) (Upd(c̄0),Upd(c̄1))
IND-UE-notion [4] (m̄0, c̄1) (Enc(m̄0),Upd(c̄1))

Fig. 1. A summary of confidentiality notions, where notion ∈ {CPA,CCA}. The adver-
sary in each confidentiality game provides two challenge inputs based on the oracles it
has access to and tries to distinguish the challenge outputs.

Boyd et al. [4] proved that IND-UE-notion is strictly stronger even than the
combination of the prior two (in Fig. 1) defined in [12]. They further proposed
an integrity notion called IND-CTXT. Jiang [10] defined another integrity notion
called IND-PTXT. In the CTXT game, the adversary tries to provide a valid
ciphertext that is different from the ciphertexts obtained during the game by
the challenger; while in the PTXT game, the adversary needs to provide a valid
ciphertext, whose underlying plaintext has not been queried during the game.
Those two integrity notions are similar to the integrity notions of symmetric
encryption schemes, but the adversary is provided with oracles specified in UE
and trivial win conditions are also checked after the adversary submits its forgery.

Hereafter by security notions, we mean the set of all confiden-
tiality and integrity notions in [4] and [10]: {detIND-UE-CPA,randIND-
UE-CPA,detIND-UE-CCA, randIND-UE-CCA, IND-CTXT, IND-PTXT}, where
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det/rand denotes the ciphertext updates are deterministic or randomized, respec-
tively.

Key Update Directions. The update token is generated by two successive
epoch keys via the token generation algorithm, i.e., Δe,e+1 = TokenGen(ke, ke+1)
(defined in Sect. 2); therefore the adversary may derive one of the two successive
keys from the other if the update token is known. Jiang [10] investigated three
key update directions: bi-directional key updates in which both the old key ke
and the new key ke+1 can be derived from the other, uni-directional key updates
in which only the new key ke+1 can be derived from the old key ke but ke cannot
be derived from ke+1, and no-directional key updates in which no keys in the
two successive epoch keys can be derived from the other. The direction of key
update affects the computation of leakage information known to the adversary,
which in turn affects the computation of trivial win conditions as well as security
notions. However, the main result in [10] shows that the security notions in the
bi-directional key update setting and in the uni-directional key update setting are
equivalence, while the security notions in the no-directional key update setting
are strictly stronger.

Nishimaki [14] recently introduced a new definition of uni-directional key
update that is called the backward-leak uni-directional key update for distinc-
tion, where the update direction is the opposite of the original uni-directional
key update in [10] (called the forward-leak uni-directional key update for dis-
tinction). That is, the old key ke can be derived from the new key ke+1, but ke+1

cannot be derived from ke. Nishimaki [14] demonstrated a contrasting conclusion
that the security notions in the backward-leak uni-directional key update setting
are not equivalent to those in the bi-directional directional key update setting.

But the relations among UE schemes in the four kinds of keys update settings
have not been fully investigated yet. Thus, a natural interesting open problem
that should be clear before any valuable constructions is as follows:

What are the relations among UE schemes in the bi-directional, forward-
leak uni-directional, backward-leak uni-directional, and no-directional key
update settings?

Our Contributions. At first glance, one may think that UE schemes with
no-directional key updates should be strictly strong than UE with all the other
three key update directions, just as proved in [10] that no-directional key updates
setting leaks less information about keys, tokens and ciphertexts than the bi-
directional and forward-leak uni-directional key updates. However, our main
result provides a surprising result that, for each security notion, no-directional
key update UE schemes, which were believed to be strictly stronger than the
other directional key update schemes, are actually equivalent to those with
backward-leak uni-directional key updates.

Our main technique is to analyze the relations of the trivial win conditions
for each security notion in different key update settings. As in other seman-
tic security definitions, the adversary in the security game for UE is provided
access to different oracles to capture realistic attack models. However, it may
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lead to a trivial win if the adversary queries some combinations of oracles. There-
fore, the bookkeeping technique was developed in [11,12] that tracks the leakage
information of tokens, keys, and ciphertexts known to the adversary during the
game and checks if those leakages may lead the adversary to trivially win after
the adversary submits its guessing bit. The direction of key update affects the
computation of leakage information and thus, we analyze the relations among
UE schemes by analyzing the relations of trivial win conditions in different key
update directions, especially the backward-leak uni-directional key update which
was not covered by [10].

Based on our result, when analyzing the security notions, we can treat
UE schemes with no-directional key updates as those with backward-leak uni-
directional key updates. Currently, there are only two no-directional key update
UE schemes in the literature: one is built on Ciphertext Puncturable Encryp-
tion [16] and the other is built on one-way functions and indistinguishability
obfuscation [14]. Our result can eliminate the need for constructing UE schemes
with no-directional key dates while also keeping security, since it is sufficient to
construct UE schemes with backward-leak uni-directional key updates, which is
much easier than the former. More related works are given in Appendix A.

2 Updatable Encryption

We review the syntax of UE and the confidentiality and integrity definitions.

Definition 1 ([11]). A UE scheme includes a tuple of PPT algorithms {UE.KG,
UE.Enc, UE.Dec, UE.TG, UE.Upd} that operate in epochs, starting from 0.

– UE.KG(1λ): the key generation algorithm outputs an epoch key ke.
– UE.Enc(ke,m): the encryption algorithm takes as input an epoch key ke and a

message m and outputs a ciphertext ce.
– UE.Dec(ke, ce): the decryption algorithm takes as input an epoch key ke and

a ciphertext ce and outputs a message m′.
– UE.TG(ke, ke+1): the token generation algorithm takes as input two epoch keys

ke and ke+1 and outputs a token Δe+1.
– UE.Upd(Δe+1, ce): the update algorithm takes as input a token Δe+1 and a

ciphertext ce and outputs a ciphertext ce+1.

Correctness for UE means that any valid ciphertext and its updates should
be decrypted to the correct message under the appropriate epoch key. The def-
initions of confidentiality and integrity for UE are given in Definition 2 and
Definition 3, respectively. In general, the adversary in each security game is pro-
vided with access to different oracles, which enables it to obtain information
about epoch keys, update tokens and ciphertexts from the challenger. In the
challenge phase of the confidentiality game, the adversary submits a challenge
message m̄ and a challenge ciphertext c̄ according to the information it already
has and receives a ciphertext from the challenger, and its goal is to guess the
received ciphertext is an encryption of the message of m̄ or an update of c̄. Then
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the adversary can continue to query the oracles and eventually provides a guess-
ing bit. In the integrity game, the goal of the adversary is to forge a new valid
ciphertext. In both security games, some combinations of oracles may lead to a
trivial win of the game for the adversary, so the challenger will check if those
trivial win conditions are triggered during the game by a bookkeeping technique
developed in [12].

An overview of the oracles that the adversary has access to is shown in Fig. 4,
how to compute the leakage set and its extension are described in Sect. 2.1, and
the trivial win conditions in different security games are presented in Sect. 2.2.

Definition 2 (Confidentiality, [4]). Let UE = {UE.KG, UE.Enc, UE.Dec} be an
updatable encryption scheme. For notion ∈ {detIND-UE-CPA, randIND-UE-CPA,
detIND-UE-CCA, randIND-UE-CCA}, the notion advantage of an adversary A is
defined as: AdvnotionUE,A (1λ) =

∣
∣
∣Pr[Expnotion-1UE,A = 1] − Pr[Expnotion-0UE,A = 1]

∣
∣
∣ where the

experiment Expnotion-bUE,A is given in Fig. 2 and Fig. 4, and det and rand denote the
ciphertext update procedure is deterministic and randomized, respectively. We say
a UE scheme is notion secure if AdvnotionUE,A (1λ) ≤ negl(λ)

Definition 3 (Integrity, [4,10]). Let UE = {UE.KG,UE.Enc,UE.Dec} be an
updatable encryption scheme. For notion ∈ {INT-CTXT, INT-PTXT}, the notion

advantage of an adversary A is defined as: AdvnotionUE,A (1λ) =
∣
∣
∣Pr[ExpnotionUE,A = 1]

∣
∣
∣

where the experiment ExpnotionUE,A is given in Fig. 3 and Fig. 4. We say a UE scheme
is notion secure if AdvnotionUE,A (1λ) ≤ negl(λ)

Fig. 2. Generic description of the confidentiality experiment ExpxxIND-UE-atk-b
UE,A for xx ∈

{rand, det}, atk ∈ {CPA,CCA} and b ∈ {0, 1}. The flag phase ∈ {0, 1} denotes whether
or not A has queried the O.Chall oracle, and twf tracks if the trivial win conditions
are triggered, and O = O.{Enc,Next,Upd,Corr,Chall,Upd˜C} is the set of oracles A can
access to, which are defined in Fig. 4. When atk = CCA, the decryption oracle O.Dec
is also added to O. The computation of K∗, T ∗, C∗ are discussed in Sect. 2.1.
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Fig. 3. Generic description of the confidentiality experiment ExpIND-atk
UE,A for atk ∈

{CTXT,PTXT}. The flag win tracks whether or not A provided a valid forgery, twf
tracks if the trivial win conditions are triggered, and O = O.{Enc,Next,Upd,Corr,Try}
is the set of oracles A can access to, which are defined in Fig. 4.

2.1 Leakage Sets

In security games of UE, the adversary is provided access to various oracles as
shown in Fig. 4, so it can learn some information about update keys, epoch tokens
and ciphertexts during the query phase. Moreover, it can extend the information
via its known tokens, and the extension depends on the direction of key update
and the direction of ciphertext update. We start by describing the leakage sets
in [11,12], and then show how to compute the extended leakage sets in different
key update direction settings.

Epoch Leakage Sets. We record the following epoch sets related to epoch keys,
update tokens, and challenge-equal ciphertexts.

– K: Set of epochs in which the adversary corrupted the epoch key from O.Corr.
– T : Set of epochs in which the adversary corrupted the update token from

O.Corr.
– C: Set of epochs in which the adversary learned a challenge-equal ciphertext

(the ciphertext related to the challenge inputs) from O.Chall or O.UpdC̃.

The adversary can use its corrupted tokens to extend K, T , C to infer more
information. We use K∗, K̂∗, T ∗, C∗ as the extended sets respectively, and how
to compute K∗, K̂∗, T ∗, C∗ are shown later.

Information Leakage Sets. We record the following sets related to ciphertexts
known to the adversary.

– L: Set of non-challenge equal ciphertexts (c, c, e;m) the adversary learned
from O.Enc or O.Upd.

– L̃: Set of challenge-equal ciphertexts (c̃e, e) the adversary learned from O.Chall

or O.UpdC̃.

The adversary can also use its corrupted tokens to extend L, L̃ to infer more
information about ciphertexts. In the deterministic update setting, we denote
L∗, L̃∗ as the extended sets of L and L̃, respectively.
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Setup(1λ):

k0
$← UE.KG(1λ)

Δ0 ← ⊥; e, c, twf ← 0

L, L̃, C,K, T ← ∅

O.Enc(m):

c ← c + 1

c $← UE.ENC(ke,m))

L ← L ∪ {(c, c, e;m)}
return c

O.Dec(c):

m′ or ⊥ ← UE.Dec(ke, c)

if
(
(xx = det and (c, e) ∈ L̃∗) or

(xx = rand and (m′, e) ∈ Q̃∗)
)

then

twf ← 1

return m′ or ⊥

O.Next():

e ← e + 1

ke
$← UE.KG(1λ)

Δe ← UE.TG(ke−1, ke)

if phase = 1 then

c̃e ← UE.Upd(Δe, c̃e−1)

O.Corr(inp, ê)

if ê > e then

return ⊥
if inp = key then

K ← K ∪ {ê}
return kê

if inp = token then

T ← T ∪ {ê}
return Δê

O.Upd(ce−1):

if (j, ce−1, e − 1;m) L∈� then

return ⊥
ce ← UE.Upd(Δe, ce−1)

L ← L ∪ {(j, ce, e;m)}

O.Chall(m̄, c̄)

if phase = 1 then

return ⊥
phase ← 1; ẽ ← e

if (·, c̄, e − 1; m̄1) L∈� then

return ⊥
if b = 0 then

c̃ẽ ← UE.Enc(kẽ, m̄)

else

c̃ẽ ← UE.Upd(Δẽ, c̄)

C ← C ∪ {ẽ}
L̄ ← L̄ ∪ {(c̃ẽ, ẽ)}
return c̃ẽ

O.UpdC̃

if phase �= 1 then

return ⊥
C ← C ∪ {e}
L̄ ← L̄ ∪ {(c̃e, e)}
return c̃e

O.Try(c̃)

m′ or ⊥ ← UE.Dec(ke, c̃)

if (e ∈ K∗ or (atk = CTXT and (c̃, e) ∈ L∗) or

(atk = PTXT and (m′, e) ∈ Q̃∗)
)

then

twf ← 1

if m′ �= ⊥ then

win ← 1

Fig. 4. Oracles in the UE security games. m1 is the underlying message of the challenge
input ciphertext c̄. The leakage sets L, ˜L,L∗, ˜L∗, C,K,K∗, T , T ∗,Q,Q∗, ˜Q∗ are defined
in Sect. 2.1.

In randomized UE schemes, we use Q∗, Q̃∗ to denote respectively the
extended sets of L, L̃:

– Q∗: Set of plaintexts (m, e). The adversary learned in the query phase or
could create a ciphertext of m in the epoch e.
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– Q̃∗: Set of challenge plaintexts {(m̄, e), (m̄1, e)}, where (m̄, c̄) is the query
input of O.Upd and m̄1 is the plaintext of c̄. The adversary learned in the
query phase or could create a ciphertext of m̄ or m̄1 in the epoch e.

Inferred Leakage Sets. The adversary can infer more information from K, L
and C via its corrupted tokens, which are computed as follows.

Key Leakage. Since the update tokens are generated from two successive epoch
keys by Δe+1 = UE.TG(ke, ke+1), one epoch key in {ke, ke+1} may be inferred by
the other via the known token Δe+1.

– No-directional key updates: K∗
no = K. The adversary does have more infor-

mation about keys except K, since tokens cannot be used to derive keys.
– Forward-leak uni-directional key updates:

K∗
f-uni = {e ∈ {0, . . . , l} | CorrK(e) = true},

where true ← CorrK(e) ⇐⇒ (e ∈ K) ∨ (CorrK(e − 1) ∧ e ∈ T ). The adversary
can infer more keys from corrupted tokens and keys in the previous epoch.

– Backward-leak uni-directional key updates:

K∗
b-uni = {e ∈ {0, . . . , l} | CorrK(e) = true}, (1)

where true ← CorrK(e) ⇐⇒ (e ∈ K) ∨ (CorrK(e + 1) ∧ e + 1 ∈ T ). Keys can
be inferred from corrupted tokens and keys in the next epoch.

– Bi-directional key updates:

K∗
bi = {e ∈ {0, . . . , l} | CorrK(e) = true}, (2)

where true ← CorrK(e) ⇐⇒ (e ∈ K)∨ (CorrK(e− 1)∧ e ∈ T )∨ (CorrK(e+1)∧
e + 1 ∈ T ). Besides the corrupted keys K, the adversary can infer more keys
both from key upgrades and downgrades, i.e., K∗

bi = K∗
f-uni ∪ K∗

b-uni.

In the integrity game, a set K̂ is defined to check if the adversary can trivially
forge a valid ciphertext as follows.

K̂∗ = {i ∈ {0, . . . , l} | ForgK(i) = true}
true ← ForgK(i) ⇐⇒ (i ∈ K) ∨ (CorrK(e − 1) ∧ e ∈ T ) (3)

Token Leakage. The adversary knows a token by either corrupting or inferring
from two successive keys. Then we have

T ∗
kk = {e ∈ {0, . . . , l} | (e ∈ T ) ∨ (e ∈ K∗

kk ∧ e − 1 ∈ K∗
kk}, (4)

for kk ∈ {no, f-uni, b-uni, bi}.

Ciphertext Leakages. Different from the direction of key update, ciphertexts
should always be upgraded but are not necessarily downgraded by tokens, so
there are only two types of ciphertext directions.
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– Uni-directional ciphertext updates:

C∗
kk,uni = {e ∈ {0, . . . , l} | ChallEq(e) = true}, (5)

where ChallEq(e) = true ⇐⇒ (e ∈ C) ∨ (ChallEq(e − 1) ∧ e ∈ T ∗
kk). Besides the

learned ciphertext C, the adversary can infer more ciphertexts from corrupted
tokens and ciphertexts in the previous epoch.

– Bi-directional ciphertext updates:

C∗
kk,bi = {e ∈ {0, . . . , l} | ChallEq(e) = true}, (6)

where ChallEq(e) = true ⇔ (e ∈ C) ∨ (ChallEq(e − 1) ∧ e ∈ T ∗
kk) ∨

(ChallEq(e + 1)∧e + 1 ∈ T ∗
kk). Besides the learned ciphertext C, the adversary

can infer more ciphertexts both from key upgrades and downgrades.

Remark 1. From the definition, the leakage sets have the following relations,

– (c̃e, e) ∈ L̃ ⇐⇒ e ∈ C,

– (c̃e, e) ∈ L̃∗ ⇐⇒ e ∈ C∗ ⇐⇒ {(m̄, e), (m̄1, e)} ∈ Q̃∗.

An example of the computation of leakage sets is provided in Appendix B.

2.2 Trivial Win Conditions

In the security games of UE, the leaked information probably leads the adversary
to trivially win the game. The challenger will check if any trivial win condition is
triggered at the end of the game. A summary of trivial win conditions is described
in Fig. 5, which follows from the analysis in [4,10–12]. A detailed explanation of
the trivial win condition is provided in Appendix C.

notion K
∗ ∩ C∗

�=
∅

ẽ ∈ T
∗ or

O.
Up
d(
c̄)

is
qu

eri
ed

(c,
e)

∈ L̃
∗

(m
′ , e

) ∈ Q̃
∗

e ∈ K̂
∗

(c̃,
e)

∈ L
∗

(m
′ , e

) ∈ Q
∗

detIND-UE-CPA � � × × × × ×
randIND-UE-CPA � × × × × × ×
detIND-UE-CCA � � � × × × ×
randIND-UE-CCA � × × � × × ×
IND-CTXT × × × × � � ×
IND-PTXT × × × × � × �

Fig. 5. Trivial win conditions in different security games for updatable encryption.
� and × indicate whether the security notion considers the corresponding trivial win
conditions or not. ẽ is the challenge epoch, i.e., the epoch the adversary queries O.Chall,
and e represents the current epoch.
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We review some properties of leakage sets as follows.

Definition 4 (Firewall, [4,10–12]). An insulated region with firewalls fwl and
fwr, denoted by FW, is the consecutive sequence of epochs (fwl, . . . , fwr) for
which:

– no key in the sequence of epochs (fwl, . . . , fwr) is corrupted;
– the tokens Δfwl and Δfwr+1 are not corrupted;
– all tokens {Δfwl+1, . . . ,Δfwr} are corrupted.

Denote the union of all firewalls as IR :=
⋃

(fwl,fwr)∈FW{fwl, . . . , fwr}. The
following lemma shows that IR is the complementary set of K∗

bi.

Lemma 1 (Lemma 3.1, [10]). For any K, T ∈ {0, . . . , l}, we have K∗
bi =

{0, . . . , l} \ IR, where l is the maximal number of updates.

Corollary 1. Since K∗
bi = K∗

f-uni ∪ K∗
b-uni by definition, we have {0, . . . , l} =

IR ∪ K∗
f-uni ∪ K∗

b-uni.

Remark 2. For an epoch e ∈ K∗
f-uni, it holds that either e ∈ K or there exists an

epoch ef before e, such that ef ∈ K and {ef , . . . , e} ∈ T ; for an epoch e ∈ K∗
b-uni,

it holds that either e ∈ K or there exists an epoch eb after e, such that eb ∈ K
and {e, . . . , eb} ∈ T . That follows directly from the definition.

3 Relations Among Security Notions

To capture the security for UE schemes with kk-directional key updates and
cc-directional ciphertext updates, we consider the (kk, cc)-variant of each security
notion as defined in [10] (where kk ∈ {bi, f-uni, b-uni, no} and cc ∈ {uni, bi}), and
then compare the relations among all the variants of each security notion.

Definition 5 ((kk, cc)-variant of confidentiality, [10]). Let UE = {UE.KG,
UE.Enc, UE.Dec} be an updatable encryption scheme. For notion ∈
{detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}, the
(kk, cc)-notion advantage of an adversary A is defined as

Adv
(kk,cc)-notion
UE,A (1λ) =

∣
∣
∣Pr[Exp

(kk,cc)-notion-1
UE,A = 1] − Pr[Exp

(kk,cc)-notion-0
UE,A = 1]

∣
∣
∣ ,

where the experiment Exp
(kk,cc)-notion-b
UE,A is the same as the experiment Expnotion-bUE,A

(see Fig. 2 and Fig. 4), except all leakage sets are computed in the kk-directional
key update setting and cc-directional ciphertext update setting (see Sect. 2.1).

Definition 6 ((kk, cc)-variant of integrity, [10]). Let UE = {UE.KG,
UE.Enc, UE.Dec} be an updatable encryption scheme. For notion ∈
{INT-CTXT, INT-PTXT}, the (kk, cc)-notion advantage of an adversary A is
defined as

Adv
(kk,cc)-notion
UE,A (1λ) =

∣
∣
∣Pr[Exp

(kk,cc)-notion
UE,A = 1]

∣
∣
∣ ,
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where the experiment Exp
(kk,cc)-notion
UE,A is the same as the experiment ExpnotionUE,A (see

Fig. 3 and Fig. 4), except all leakage sets are computed in the kk-directional key
update setting and cc-directional ciphertext update setting (see Sect. 2.1).

A general idea to analyze the relation of any two out of the eight variants
of each security notion is to construct a reduction B, which runs the security
experiment of one variant while simulating all the responses to the queries made
by the adversary A in the security experiment of the other variant and forwards
the guess result from A to its challenger. Recall that if a trivial win condition
is triggered, the adversary will lose the game. Therefore, if the reduction B
does not trigger trivial win conditions (when A does not), the advantage of the
reduction B will be larger than that of the adversary A. Thus, the relation of
the two variants depends on the relation of trivial win conditions in each update
direction setting.

3.1 Relations Among Confidentiality Notions

The relations of eight variants of confidentiality are shown in Fig. 6. We
mainly prove the equivalence of each confidentiality notion in the bi-directional
key update setting and backward-leak uni-directional key update setting, i.e.,
(no, bi)-notion ⇐⇒ (b-uni, bi)-notion and (no, uni)-notion ⇐⇒ (b-uni, uni)-notion.
Then the rest of the relations in Fig. 6 can easily follow from the prior work in
[10].

(bi, uni)-notion (b-uni, uni)-notion (no, uni)-notion

(bi, bi)-notion (b-uni, bi)-notion (no, bi)-notion

(f-uni, uni)-notion

(f-uni, bi)-notion

Thm.3

[10]

\

Thm.3

Thm.2

Thm.3 Thm.2 [10]

[10]

Thm.1

\Thm.3
Thm.3

\[10]

[10]

Fig. 6. Relations among the eight variants on confidentiality for notion ∈
{detIND−UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}.

The following two lemmas show UE schemes with bi-directional key updates
leak more information than those with backward uni-directional key updates,
which further leaks more information than those with no-directional key updates.
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Lemma 2. For any sets K, T , C and any cc ∈ {uni, bi}, we have K∗
no ⊆ K∗

b-uni ⊆
K∗

bi, T ∗
no ⊆ T ∗

b-uni ⊆ T ∗
bi , C∗

no,cc ⊆ C∗
b-uni,cc ⊆ C∗

bi,cc, L̃∗
no,cc ⊆ L̃∗

b-uni,cc ⊆ L̃∗
bi,cc,

Q̃∗
no,cc ⊆ Q̃∗

b-uni,cc ⊆ Q̃∗
bi,cc, L∗

no,cc ⊆ L∗
b-uni,cc ⊆ L∗

bi,cc and Q∗
no,cc ⊆ Q∗

b-uni,cc ⊆
Q∗

bi,cc.

Proof. For any cc ∈ {uni, bi}, the adversary infers more information in the bi-
directional key update setting than in the backward uni-directional key update
setting. For any K, T , C, the inferred leakage sets K∗

b-uni and K∗
bi are computed by

Eq. (1),(2), then we have K∗
no ⊆ K∗

b-uni ⊆ K∗
bi. By Eq. (4), (5), (6), we have T ∗

no ⊆
T ∗
b-uni ⊆ T ∗

bi and C∗
no,cc ⊆ C∗

b-uni,cc ⊆ C∗
bi,cc. Then we obtain L̃∗

no,cc ⊆ L̃∗
b-uni,cc ⊆ L̃∗

bi,cc

and Q̃∗
no,cc ⊆ Q̃∗

b-uni,cc ⊆ Q̃∗
bi,cc by Remark 1. We compute L∗ and Q∗ from L and

Q with T ∗, and then we have L∗
no,cc ⊆ L∗

b-uni,cc ⊆ L∗
bi,cc and Q∗

no,cc ⊆ Q∗
b-uni,cc ⊆

Q∗
bi,cc, which follows from T ∗

no ⊆ T ∗
b-uni ⊆ T ∗

bi . �

Lemma 3. For any sets K, T , C and any kk ∈ {b-uni, bi}, we have C∗
kk,uni ⊆

C∗
kk,bi, L̃∗

kk,uni ⊆ L̃∗
kk,bi, Q̃∗

kk,uni ⊆ Q̃∗
kk,bi, L∗

kk,uni ⊆ L∗
kk,bi and Q∗

kk,uni ⊆ Q∗
kk,bi.

Proof. This follows similarly as in Lemma 2 and thus we omit the details. �

(bi,bi)-notion ⇐⇒ (b-uni,bi)-notion. We prove the equivalence of (bi, bi)-variant
and the (b-uni, bi)-variant in Theorem 1, which is based on the equivalence of
trivial win conditions in Lemmas 4, 5, 6 and 7. We compare the relations of
trivial win conditions in the two settings one by one (see Sect. 2.2).

Lemma 4. For any sets K, T , C, we have K∗
bi∩C∗

bi,bi �= ∅ ⇐⇒ K∗
b-uni∩C∗

b-uni,bi �= ∅.

Proof. From Lemma 2, we know that K∗
b-uni ⊆ K∗

bi and C∗
b-uni,bi ⊆ C∗

bi,bi, so K∗
b-uni∩

C∗
b-uni,bi ⊆ K∗

bi∩C∗
bi,bi. It is sufficient to prove K∗

bi∩C∗
bi,bi �= ∅ ⇒ K∗

b-uni∩C∗
b-uni,bi �= ∅.

If the adversary never queries any challenge-equal ciphertext in an epoch in
{0, . . . , l} \ IR, it will not obtain any challenge-equal ciphertext in this set even
in the bi-directional ciphertext update setting by Eq. (6), i.e., C∗

bi,bi ∩{0, . . . , l} \
IR = ∅. This contradicts K∗

bi∩C∗
bi,bi �= ∅, since K∗

bi = {0, . . . , l}\IR by Lemma 1.
There exists an epoch e′ ∈ {0, . . . , l} \ IR, in which the adversary queries a
challenge-equal ciphertext, i.e., e′ ∈ C ∩ K∗

bi.
Note that K∗

bi = K∗
b-uni ∪ K∗

f-uni. If e′ ∈ K∗
b-uni, then e′ ∈ K∗

b-uni ∪ C ⊆ K∗
b-uni ∪

C∗
b-uni,bi, so K∗

b-uni ∪C∗
b-uni,bi �= ∅. If e′ ∈ K∗

f-uni, then there exists a smaller epoch e′′

than e′ such that e′′ ∈ K and the set {e′′, . . . , e′} ⊆ T by Remark 2. Hence, the
adversary can degrade the message from e′ to e′′ to know c̃e′′ in the bi-directional
ciphertext update setting. Therefore, we have e′′ ∈ K∩C∗

b-uni,bi ⊆ K∗
b-uni ∩C∗

b-uni,bi,
so K∗

b-uni ∪ C∗
b-uni,bi �= ∅. �

Lemma 5. For any set K, T , C, suppose K∗
kk ∩ C∗

kk,bi = ∅ for kk ∈ {bi, b-uni},
then ẽ ∈ T ∗

bi ⇐⇒ ẽ ∈ T ∗
b-uni.

Proof. From Lemma 2, we know that T ∗
b-uni ⊆ T ∗

bi , so if ẽ ∈ T ∗
b-uni, then ẽ ∈ T ∗

bi .
It is sufficient to prove ẽ ∈ T ∗

bi ⇒ ẽ ∈ T ∗
b-uni. Because the adversary queries the

challenge ciphertext in epoch ẽ (i.e., ẽ ∈ C ⊆ C∗
bi,bi) and K∗

bi ∩ C∗
bi,bi = ∅, we have
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ẽ �∈ K∗
bi. Δẽ cannot be inferred from the successive keys in epochs ẽ − 1 and ẽ.

Therefore, if ẽ ∈ T ∗
bi , it must be obtained via corrupting, that is ẽ ∈ T . Since

T ⊆ T ∗
b-uni, we have ẽ ∈ T ∗

b-uni. �

Remark 3. Note that O.Upd(c̄) is queried or not is independent of the direction
of key and ciphertext updates. Thus it will be the same whether this trivial win
condition is triggered or not in all variants.

Lemma 6. For any set K, T , C, suppose K∗
kk ∩ C∗

kk,bi = ∅ for kk ∈ {bi, b-uni},
then (c, e) ∈ L̃∗

bi,bi ⇐⇒ (c, e) ∈ L̃∗
b-uni,bi.

Proof. By Remark 1 and Lemma 2, we know that (c, e) ∈ L̃ ⇐⇒ e ∈ C∗ and
C∗
b-uni,bi ⊆ C∗

bi,bi. So if (c, e) ∈ L∗
b-uni,bi, then e ∈ C∗

b-uni,bi ⊆ C∗
bi,bi. Thus, we have

(c, e) ∈ L∗
bi,bi.

If (c, e) ∈ L̃∗
bi,bi, that is e ∈ C∗

bi,bi, then we know e ∈ IR by the assump-
tion K∗

bi ∩ C∗
bi,bi = ∅ and the fact that K∗

bi = {0, . . . , l} \ IR from Lemma 1.
Suppose {fwl, . . . , e} is the last insulated region. If the adversary never queries
the challenge-equal ciphertext in the epoch in this set, then it cannot infer any
challenge-equal ciphertext in epoch e, which contradicts e ∈ C∗

bi,bi. Therefore we
assume the adversary queries a challenge-equal ciphertext in epoch e′, where
e′ ∈ {fwl, . . . , e}. Since {fwl, . . . , e} ⊆ T even in the backward uni-directional
update setting, the adversary can update challenge-equal ciphertext from epoch
e′ to e, i.e., e ∈ C∗. So (c, e) ∈ L̃∗

b-uni,bi. �

Lemma 7. For any set K, T , C, suppose K∗
kk ∩ C∗

kk,bi = ∅ for kk ∈ {bi, b-uni},
then (m′, e) ∈ Q̃∗

bi,bi ⇐⇒ (m′, e) ∈ Q̃∗
b-uni,bi.

Proof. By Remark 2, we know that (m′, e) ∈ Q̃ ⇐⇒ e ∈ C∗. And the rest of the
proof is similar to that of Lemma 6. �

Theorem 1. Let UE be an updatable encryption scheme and confidential-
ity notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-
CCA}. For any (bi, bi)-notion adversary A against UE, there exists a
(b-uni, bi)-notion adversary B1 against UE such that

Adv
(bi,bi)-notion
UE,A (1λ) = Adv

(b-uni,bi)-notion
UE,B1

(1λ).

Proof. We construct a reduction B1 who runs the (b-uni, bi)-notion experiment
and simulates all responses of the queries made by (bi, bi)-notion adversary A.
The reduction B1 works by sending all the queries of A to its own challenger
and returning the responses to A. At last, B1 sends the guessing result received
from A to its own challenger. The challenger will check whether the reduction
wins or not. If the reduction triggers the trivial win conditions, it will lose the
game. The reduction also forwards the experiment result to A.

Notice that Lemmas 4, 5, 6, 7, and Remark 3 exactly include all the triv-
ial win conditions in the confidentiality game (see Fig. 5). Thus, we can con-
clude that the trivial win conditions in the (bi, bi)-notion and (b-uni, bi)-notion
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games are equivalent. If no trivial conditions are triggered by A, there will be
no trivial win conditions triggered by B. But if a condition is triggered in the
(bi, bi)-notion, the same condition will also be triggered in the (b-uni, bi)-notion.
Therefore, the reduction perfectly simulates the (bi, bi)-notion game to A. Then
Adv

(bi,bi)-notion
UE,A (1λ) = Adv

(b-uni,bi)-notion
UE,B1

(1λ). �

(b-uni,uni)-notion ⇐⇒ (no,uni)-notion. We further prove the equivalence of
(b-uni, uni)-variant and the (b-uni, uni)-variant in Theorem 2, which is based on
the equivalence of trivial win conditions in Lemmas 8, 9, 10 and 11.

Lemma 8. For any set K, T , C, we have K∗
b-uni∩C∗

b-uni,uni �= ∅ ⇐⇒ K∗
no∩C∗

no,uni �=
∅.

Proof. From Lemma 2, we know that K∗
no ⊆ K∗

b-uni and C∗
no,uni ⊆ C∗

b-uni,uni, so
K∗

no ∩ C∗
no,uni ⊆ K∗

b-uni ∩ C∗
b-uni,uni. It is sufficient to prove K∗

b-uni ∩ C∗
b-uni,uni �= ∅ ⇒

K∗
no ∩ C∗

no,bi �= ∅.
Suppose there exists an epoch e ∈ K∗

b-uni ∩ C∗
b-uni,uni. From e ∈ K∗

b-uni and
Remark 2, there is an epoch eb after e, satisfying eb ∈ K and {e, . . . , eb} ∈ T .
From e ∈ C∗

b-uni,uni and the definition of C∗
b-uni,uni in Eq. (5), we know that there

exists an epoch ec before e such that the adversary asks for the challenge cipher-
text in epoch ec (i.e., ec ∈ C) and {ec, . . . , e} ∈ T ∗

b-uni. If the set {ec, . . . , e} ⊆ T ,
then we can upgrade the ciphertext from epoch ec to epoch eb even in the no-
directional key update setting, since ec ∈ C and {ec, . . . , e, . . . , eb} ∈ T . There-
fore, we have eb ∈ K∗

no ∩ C∗
no,bi.

If not every epoch in the set {ec, . . . , e} is in T (i.e., there is an epoch es ∈
T ∗
b-uni\T ), then by Eq. (4), we know that es−1 and es are in K∗

b-uni. Moreover, we
have es − 1 ∈ K, because the epoch key in es − 1 cannot be inferred from the key
in es − 1 in the backward uni-directional key update setting as es �∈ T and the
adversary can only learn the epoch key in es − 1 from querying the corruption
oracle. If {ec, . . . , es−1} ∈ T , we can upgrade ciphertexts from epoch ec to epoch
es − 1 even in the no-directional key update setting, that is es − 1 ∈ K∗

no ∩ C∗
no,bi.

Otherwise, we repeat this step, substitute es−1 with a smaller epoch es−j in the
next iteration for some j > 1 such that es − j ∈ K and {ec, . . . , es − j} ∈ T ∗

b-uni,
and check if all epochs in {ec, . . . , es − j} are in T . Since the epoch length is
limited, we will stop at an epoch, say es −k, for some k > 1 such that es −k ∈ K
and {ec, . . . , es − k} ∈ T . We can upgrade ciphertext from epoch ec to epoch
es − k even in the no-directional key update setting, that is es − k ∈ K∗

no ∩ C∗
no,bi,

so K∗
no ∩ C∗

no,bi �= ∅. �

Lemma 9. For any set K, T , C, suppose K∗
kk ∩ C∗

kk,uni = ∅ for kk ∈ {b-uni, no},
then ẽ ∈ T ∗

b-uni ⇐⇒ ẽ ∈ T ∗
no.

Proof. The proof is similar to that of Lemma 5. We provide it in Appendix D.1.
�

Lemma 10. For any set K, T , C, suppose K∗
kk ∩ C∗

kk,uni = ∅ for kk ∈ {b-uni, no},
then (c, e) ∈ L̃∗

b-uni ⇐⇒ (c, e) ∈ L̃∗
no.
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Proof. The proof is similar to that of Lemma 6. We provide it in Appendix D.2.
�

Lemma 11. For any set K, T , C, suppose K∗
kk ∩ C∗

kk,uni = ∅ for kk ∈ {b-uni, no},
then (m′, e) ∈ Q̃∗

b-uni,uni ⇐⇒ (m′, e) ∈ Q̃∗
no,uni.

Proof. By Remark 1, we know that (m′, e) ∈ Q̃ ⇐⇒ e ∈ C∗. The rest of the
proof is similar to that of Lemma 10. �

Theorem 2. Let UE be an updatable encryption scheme and confidential-
ity notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-
CCA}. For any (b-uni, uni)-notion adversary A against UE, there exists a
(no, uni)-notion adversary B2 against UE such that

Adv
(b-uni,uni)-notion
UE,A (1λ) = Adv

(no,uni)-notion
UE,B2

(1λ)

Proof. The proof is similar to that of Theorem 1. We provide it in Appendix
D.3. �

Theorem 3. For notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-
CCA, randIND-UE-CCA}, Fig. 6 is the relations among the eight variants on the
same confidentiality notion.

Proof. We conclude the relations among the eight variants on confidentiality
from Theorems 1 and 2, together with the previous conclusions in [10], which
proved that a UE scheme with bi-directional key updates is equivalent to the
one with forward-leak uni-directional key updates, shown in Fig. 7.

(bi, uni)-notion (no, uni)-notion

(bi, bi)-notion (no, bi)-notion

(f-uni, uni)-notion

(f-uni, bi)-notion

\
\

Fig. 7. Relations among the six variants of confidentiality for notion ∈
{detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA} [10].

Thus, we have the relations among the eight variants on confidentiality in
Fig. 6 by the equivalences: (bi, bi)-notion ⇐⇒ (b-uni, bi)-notion from Theorem 1
and (b-uni, uni)-notion ⇐⇒ (no, uni)-notion from Theorem 2 and Fig. 7. �
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3.2 Relations Among Integrity Notions

The relations of the eight variants on integrity are illustrated in Fig. 8. We first
prove two equivalence of trivial win conditions in Lemmas 12, 14 and 16.

(bi, uni)-notion (b-uni, uni)-notion (no, uni)-notion

(bi, bi)-notion (b-uni, bi)-notion (no, bi)-notion

(f-uni, uni)-notion

(f-uni, bi)-notion

Thm.4

[10] Thm.4

Thm.4

Thm.4 Thm.4 [10]

[10]

[10]

Fig. 8. Relations among the eight variants of integrity for notion ∈ {IND-CTXT,
IND-PTXT}.

Lemma 12. For any set K, T , C, we have e ∈ K̂∗
b-uni ⇐⇒ e ∈ K̂∗

kk for kk ∈
{f-uni, bi, no}.
Proof. From Eq. (3), we know that the computation of the extended set K̂∗ is
independent of the direction of key updates. �
Lemma 13 ([10], Lemma 3.11). For any set K, T , C, suppose e �∈ K̂∗, then
we have (c, e) ∈ L∗

kk,cc ⇐⇒ (c, e) ∈ L∗
kk′,cc′ for any kk, kk′ ∈ {f-uni, bi, no} and

cc, cc′ ∈ {uni, bi}.
Lemma 14. For any set K, T , C, suppose e �∈ K̂∗, then (c, e) ∈ L∗

b-uni,cc ⇐⇒
(c, e) ∈ L∗

kk′,cc′ for any kk′ ∈ {f-uni, b-uni, bi, no} and cc, cc′ ∈ {uni, bi}.
Proof. It follows directly from Lemma 13 and L∗

no,cc ⊆ L∗
b-uni,cc ⊆ L∗

bi,cc by
Lemma 2 for any cc ∈ {uni, bi}. �
Lemma 15 ([10], Lemma 3.12). For any set K, T , C, suppose e �∈ K̂∗, then
we have (m′, e) ∈ Q̃∗

kk,cc ⇐⇒ (m′, e) ∈ Q̃∗
kk′,cc′ for any kk, kk′ ∈ {f-uni, bi, no} and

cc, cc′ ∈ {uni, bi}.
Lemma 16. For any set K, T , C, suppose e �∈ K̂∗, then we have (m′, e) ∈
Q̃∗

b-uni,cc ⇐⇒ (m′, e) ∈ Q̃∗
kk′,cc′ for any kk′ ∈ {f-uni, b-uni, bi, no} and cc, cc′ ∈

{uni, bi}.
Proof. It follows directly from Lemma 15 and Q∗

no,cc ⊆ Q∗
b-uni,cc ⊆ Q∗

bi,cc by
Lemma 3 for any cc ∈ {uni, bi}. �
Theorem 4. Let UE be an updatable encryption scheme, the integrity notion
notion ∈ {INT-CTXT, INT-PTXT}. For any (b-uni, cc)-notion adversary A
against UE, there exists a (kk′, cc′)-notion adversary B4 against UE such that

Adv
(b-uni,cc)-notion
UE,A (1λ) = Adv

(kk′,cc′)-notion
UE,B4

(1λ)

for any kk′ ∈ {f-uni, b-uni, bi, no} and cc, cc′ ∈ {uni, bi}.
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Proof. The proof is similar to that of Theorem 1. We provide the proof in
Appendix D.4. �

Theorem 5. For notion ∈ {INT-CTXT, INT-PTXT}, Fig. 8 shows the relations
among the eight variants on the same integrity notion.

Proof. We conclude the relations from Theorem 4, together with the previ-
ous conclusions in [10] that (kk, cc)-notion ⇐⇒ (no, cc′)-notion for notion ∈
{IND-CTXT, IND-PTXT}, kk ∈ (bi, f-uni) and cc, cc′ ∈ (bi, uni). �

4 Conclusion

The relations among various security notions for UE should be clearly investi-
gated before any valuable constructions. We provided a detailed comparison of
every security notion in the four key update settings, and our results showed that
the UE schemes in the no-directional key update setting, which were believed
to be strictly stronger than others, are equivalent to those in the backward-leak
uni-directional key update setting. As future work, we intend to develop an effi-
cient UE scheme with backward-leak uni-directional key updates.

Acknowledgment. We would like to thank the anonymous reviewers for their valu-
able comments. This research is supported by European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 952697 (ASSURED) and No.
101021727 (IRIS).

A Related Work

UE schemes can be built from various cryptographic primitives. The seminal
UE scheme BLMR was proposed by [3] as an application of almost key homo-
morphic pseudorandom functions, which satisfies IND-ENC instead of IND-UPD.
An ElGamal-based scheme RISE was introduced by [12] to achieve both security
definitions. To provide integrity protection, Klooß et al. [11] constructed two
generic schemes based on Encrypt-and-MAC and the Naor-Yung transform [13].
Boyd et al. [4] designed three IND-UE-CPA secure schemes, called SHINE, based
on the random-looking permutation. Jiang [10] provided a quantum-resistant
scheme based on the decisional LWE [15]. The first UE scheme with backward
uni-directional key was presented in Nishimaki [14] based on the Regev PKE
scheme, in which a scheme with no-directional key updates is also constructed
based on one-way functions [8] and indistinguishability obfuscation [1]. Slamanig
and Striecks presented a pairing backward uni-directional scheme and a pairing-
based no-directional scheme from ciphertext puncturable encryption [9].

An independent work was concurrently proposed by [7]. The main difference
between their work and ours is that we provide a detailed comparison of every
security notion in every kind of UE. Their work gave a detailed proof for equiva-
lence of confidentiality notion in the no-directional and backward uni-directional
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key update setting for UE schemes with uni-directional ciphertext updates (i.e.,
(b-uni, uni)-notion ⇐⇒ (no, uni)-notion). Our proof for this equivalence is differ-
ent, and we also provide a detailed proof for UE schemes with bi-directional
ciphertext updates and also the equivalence among integrity notions.

B An Example of Leakage Sets

An example is given in Fig. 9 to show how to compute leakage sets. We assume
the adversary corrupts epoch keys in epochs in K = {e − 5, e − 4, e − 3, e − 1}
and corrupts tokens in T = {e − 4, e − 3, e − 1 , e}, and queries a non-challenge
ciphertext, say ce−5, in epoch e − 5.

In the no-directional key update setting, the adversary cannot infer extra
keys and tokens, i.e., K∗

no = K and T ∗
no = T . However, it can infer ciphertexts in

epoch e− 4, e− 3 by using ce−5 and tokens in epochs e− 4 and e− 3, but cannot
infer the ciphertexts in epochs from e − 2 to e, because the token in epoche − 2
is unknown to the adversary in the no-directional key update setting.

Epoch e − 5 e − 4 e − 3 e − 2 e − 1 e
K � � � × � ×
T × � � × � �

K∗
no � � � × � ×

T ∗
no × � � × � �

K∗
b-uni � � � � � ×

T ∗
b-uni × � � � � �

K∗
f-uni � � � × � �

T ∗
f-uni × � � × � �

Fig. 9. Example of leakage sets. Marks � and × indicate if an epoch key or epoch
token is corrupted. The green mark � indicates an epoch key or epoch token can be
inferred from other corrupted keys and tokens. (Color figure online)

In the backward uni-directional key update setting, the adversary can infer
the key in epoch e − 2 from the known token and key in epoch e − 1, and further
infer the token in the epoch e − 2, since the key in epoch e − 3 is also corrupted,
i.e., K∗

b-uni = {e − 5, . . . , e − 1} and T ∗
b-uni = {e − 4, . . . , e}. Moreover, it can infer

the ciphertexts in epoch from e − 4 to e by ce−5 and T ∗
b-uni.

In the forward uni-directional key update setting, the adversary cannot infer
the token in epoch e − 2, since the key in epoch e − 2 is unknown to it. But it
can infer the key in epoch e via the known key in e − 1 and the known token in
e, i.e., K∗

f-uni = K ∪ {e} and T ∗
f-uni = K∗. The ciphertext it can learn is the same

as that in the no-directional key update setting.



Equivalence of Updatable Encryption 405

C Trivial Win Conditions

We give a detailed explanation for the trivial win conditions in each security
game. If K∗ ∩ C∗ �= ∅, then there is an epoch i that the adversary knows the
epoch key ki and a challenge-equal ciphertext ci in the same epoch. Then the
adversary can decrypt the challenge-equal ciphertext ci with its known key ki

and get the underlying message of ci. Thus, it can trivially win the game by
comparing the underlying message of ci with the challenge input message m̄.
This condition should be checked in all confidentiality games.

For deterministic UE schemes, if ẽ ∈ T ∗ or O.Upd(c̄) is queried, then the
adversary can obtain the updated ciphertext c1 of the challenge input ciphertext
c̄, and therefore trivially win the game by comparing c1 with the ciphertext it
receives from its challenger.

In the CCA attack, the adversary has the access to the decryption oracle. For
deterministic UE schemes, if (c, e) ∈ L̃∗, the adversary can query the decryption
oracle on the challenge-equal ciphertext c and receive its underlying message.
For a randomized UE, it should also be prohibited if the decryption returns a
message m′ such that m′ = m0 or m1, which is checked by (m′, e) ∈ Q̃∗.

If the adversary knows a ciphertext ce0 in epoch e0 and all tokens from epoch
e0 to e, it can forge a valid ciphertext in epoch e by updating ce0 via the tokens
from e0 to e. It should be checked in both integrity games if e ∈ K̂∗ which is
defined as Eq. (3). The challenger should also check if c̃ is a new ciphertext in
the CTXT game, and if the adversary knows a ciphertext of m′ in the CTXT
game.

D Proofs

D.1 Proof of Lemma 9

From Lemma 2, we know that T ∗
no ⊆ T ∗

b-uni, so if ẽ ∈ T ∗
no, then ẽ ∈ T ∗

b-uni. Notice
that ẽ �∈ K∗

b-uni, because the adversary queries the challenge ciphertext in the
epoch ẽ and K∗

b-uni ∩C∗
b-uni,bi = ∅. Then Δẽ cannot be inferred from the successive

keys in epochs ẽ−1 and ẽ. Therefore, if ẽ ∈ T ∗
b-uni, then it must be obtained from

corrupting, that is ẽ ∈ T . Since T = T ∗
no, we have ẽ ∈ T ∗

no.

D.2 Proof of Lemma 10

By Remark 1 and Lemma 2 , we know that (c, e) ∈ L̃ ⇐⇒ e ∈ C∗ and C∗
no,uni ⊆

C∗
b-uni,uni. So if (c, e) ∈ L∗

no,uni, then e ∈ C∗
no,uni ⊆ C∗

b-uni,uni. Thus, we have (c, e) ∈
L̃∗
b-uni.

If (c, e) ∈ L̃∗
b-uni, then e ∈ C∗

b-uni,uni ⊆ IR. From the definition of C∗
b-uni,uni in

Eq. (5), we know that there is an epoch ec before e, satisfying the adversary
queries the challenge ciphertext in epoch ec (i.e., ec ∈ C) and {ec, . . . , e} ∈ T ∗

b-uni,
which implies {ec, . . . , e} ∈ C∗

b-uni. From the assumption that K∗
b-uni∩C∗

b-uni,uni = ∅,
then we have {ec, . . . , e} �∈ K∗

b-uni. To meet the condition {ec, . . . , e} ∈ T ∗
b-uni,
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all tokens in epochs in {ec, . . . , e} can only be obtained by corrupting, that is
{ec, . . . , e} ∈ T = T ∗

no. We can upgrade the ciphertext from epoch ec to epoch eb
even in the no-directional key update setting. Therefore, we have e ∈ C∗

no,uni ⊆ IR
and further (c, e) ∈ L̃∗

no.

D.3 Proof of Theorem 2

We construct a reduction B2 who runs the (b-uni, uni)-notion experiment and
simulates all responses of the queries made by (no, uni)-notion adversary A. The
reduction B2 works by sending all the queries of A to its own challenger and
forwarding its received responses to A. In the end, B2 sends the guessing result
from A to its own challenger. The challenger will check if the reduction wins. The
reduction also forwards the experiment result to A. If the trivial win conditions
were triggered, the reduction will be regarded as losing the game.

From Lemmas 8, 9, 10, 11 and Remark 3, we obtain the trivial win conditions
in the (b-uni, uni)-notion and (no, uni)-notion games are equivalent. If there is a
trivial win condition that is triggered by A, then the same trivial win condi-
tion will be triggered by B, and vice versa. Therefore, the reduction perfectly
simulates the (no, uni)-notion game to A. Then, we have Adv

(b-uni,uni)-notion
UE,A (1λ) =

Adv
(no,uni)-notion
UE,B2

(1λ).

D.4 Proof of Theorem 4

We construct a reduction B4 which runs the (kk′, cc′)-notion game and simulates
all responses to the queries made by the (b-uni, cc)-notion adversary A. If there
is a trivial win condition that is triggered by A, the same trivial win condition
will be triggered by B, and vice versa, which follows from Lemmas 12, 14 and
16. Thus, the reduction perfectly simulates the game to A, and the advantages
are equal.
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