
Parallel cost-aware optimization of multidimensional black-box functions

Oliver Sihlovec

Supervisor(s): Matthijs Spaan1, Joery de Vries1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Oliver Sihlovec
Final project course: CSE3000 Research Project
Thesis committee: Matthijs Spaan, Joery de Vries, Christoph Lofi

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Scientific problems are often concerned with opti-
mization of control variables of complex systems,
for instance hyperparameters of machine learning
models. A popular solution for such intractable
environments is Bayesian optimization. However,
many implementations disregard dynamic evalua-
tion costs associated with the optimization proce-
dure. Furthermore, another common trope among
Bayesian algorithms is that they are short-sighted
and do not consider long-term effects of their ac-
tions. This paper investigates the viability of multi-
timestep cost-aware Bayesian optimizers and eval-
uates their performance in environments with de-
layed rewards. To this end, we combine existing
works on parallel Bayesian optimizers and cost-
aware heuristics. Our findings reveal that although
such parallel optimizers yield more optimal results
and are more resistant to delayed feedback com-
pared to their myopic counterparts, they are unable
to achieve cost-awareness.

1 Introduction
Bayesian Optimization [1] is an algorithmic technique de-
signed for optimization of expensive to evaluate, black-box
functions. Such functions commonly occur in domains such
as Hyperparameter Optimization [2] or Algorithm Selection
[3], wherein evaluating the cost function is expensive in terms
of time and or resources. Bayesian optimizers find near global
optimums by iteratively estimating the posterior distribution
of unknown function values for desired set of points given the
priors, as parameterized by previously evaluated data. These
proxies are then used to optimize for a utility metric corre-
lated to the actual fitness of the objective function. As a result,
the optimization is shifted from the real world to a surrogate
space that is significantly cheaper to evaluate.

An extension of the aforementioned problem is multi-
objective Bayesian optimization, where the goal is to deter-
mine the Pareto set of the objective functions. This set is
composed of all parameter combinations that are not a strict
improvement over any other combination with respect to the
objectives.

For both single and multi objective variants, Bayesian op-
timizers typically implement an acquisition function, which
outputs promising data points that are likely to yield near
optimal values, or exploratory points that reveal information
about the functional landscape. This reduces the number of
function invocations and avoids searching the objective space
using brute-force.

However, current approaches assume that the cost of function
evaluation is uniform in terms of the input, which is not nec-
essarily true in practice. As an example, consider the case
of optimizing the architecture of neural networks, where in-
creasing the number of neurons per layer leads to longer train-
ing times, as the machine learning algorithm needs to fine-
tune more weights.

Abdolshah et al. [4] propose a multi-objective cost-aware ac-
quisition function that supplements the scalarized Upper Con-
fidence Bound (UCB) acquisition function with cost-aware
heuristic that encourages evaluation of inexpensive inputs.
The underlying acquisition function, however, suffers from
two main drawbacks. Firstly, it is one of the simplest ac-
quisition functions and is thus sensitive to the hyperparame-
ter pertaining to exploration versus exploitation trade-off [5].
Secondly, UCB is short-sighted when subjected to delayed
feedback, therefore only performing single-step optimization
and as a result does not plan out future actions. This particular
drawback is especially significant, as it can have a consider-
able impact on the results of optimization for such ill-defined
environments[6].

An alternative to UCB is the Expected Improvement (EI) that
leverages the likelihood of improvement and the associated
potential gain, which is more robust to hyperparameter selec-
tion. Unfortunately, it is greedy by design and is thus just as
myopic as UCB. To this end, Wang et al. [7] introduce an
extension (qEI), which maximizes the expected improvement
across a set of multiple points, hence taking future evalua-
tions into account. Moreover, since the evaluations are per-
formed in parallel and the algorithm is compatible with both
synchronous and asynchronous environments, it is no slower
than the standard EI with respect to wall-clock speed.

Thus, the goal of this paper is to answer the following re-
search questions:

1. Does parallelization of the acquisition function enhance
the optimality of multi-objective Bayesian optimizers?

2. Can parallel expected improvement (qEI) be adapted
in order to achieve cost-awareness for multi-objective
Bayesian optimization?

3. Is the multi-timestep variant of cost-aware Bayesian op-
timization of multiple objectives resilient to environ-
ments with delayed feedback?

2 Related Work
To the best of our knowledge, no existing research investi-
gates multi-objective cost-aware Bayesian optimization from
the perspective of parallel acquisition functions. However,
there do exist various works that explore the building blocks
underpinning this paper.

Lee et al. [8] propose a method for parallel cost-aware
Bayesian optimization of a single objective. Their algorithm
also penalizes expensive inputs during the early stages and
gradually relaxes this constraint. Unlike [4], their approach
does not assume an a priori set of cost preferences and is
specifically tailored for problems concerning hyperparame-
ter optimization. Instead, they utilize specialized algorithms
that infer the cost by counting the flops of the model’s sub-
routines. This approach is thus more suitable for black-box
settings, wherein the user does not possess any prior knowl-
edge about the system.

Guinet et al. [9] also introduce an algorithm for cost-aware
hyperparameter optimization using Bayesian optimizers. Re-

markably, they treat the cost as a separate objective and at-
tempt to find the Pareto frontier thereof and the original ob-
jective adjusted by a scaling parameter for each iteration of
the algorithm. As a result, varying the scaling parameter con-
trols the cost-awareness of the optimizer. Similarly to the
work of Lee et al. [8], the authors also adopt the same models
for cost inference.

Finally, Daulton et al. [10] present a method for parallel
Bayesian optimization of multiple objective functions. More
specifically, their acquisition function directly optimizes for
the improvement of dominated hypervolume [11]. This con-
trasts scalarizitation of the individual objectives that trans-
forms multi-objective optimization to a single-objective set-
ting. However, this approach also condenses multiple objec-
tives into a scalar value representing the fitness of a sample,
but does so at a different stage. Last but not least, the authors
design this acquisition function particularly for noisy envi-
ronments that considerably distort the output values of the
objectives.

3 Background
This section outlines the theoretical framework necessary for
defining the problem and methodology in the subsequent sec-
tions.

Bayesian Optimization
Bayesian optimization aims to determine the global optimum
of a black-box objective function. In this paper, the global
maximum is henceforth considered in place of global opti-
mum. Thus, Bayesian optimizers seek to find:

max
x∈X

f (x) (1)

where f denotes the objective function and X ⊆ Rd rep-
resents the input space of dimensionality d. Function f
is further assumed to be noisy, expensive to evaluate, non-
differentiable and with unknown analytical expression. As a
result, Bayesian optimizers approximate the posterior distri-
bution of unknown datapoints given a set of previously eval-
uated inputs and attempt to find the maximum thereof.

Multi-Objective Optimization
The aforementioned problem can be extended to multidimen-
sional objective functions. Supposing an m-dimensional ob-
jective function f : Rd → Rm, a point y = {y1, .., ym}, is said
to be Pareto optimal if and only if there exists no other point
y∗ = {y∗1, .., y

∗
m} for which y∗1 ≥ y1, .., y∗m ≥ ym, with at least

one inequality being strict. Otherwise, y∗ is said to dominate
y, which is denoted by y∗ ≻ y. The goal in this setting is
to determine the set of inputs that map to the Pareto optimal
front over the objective landscape. This can be achieved us-
ing Chebyshev’s scalarization, that is, finding the minimum
of the scalarized multi-objective function:

argmax
x∈Rd

min(w1 f1(x), ..,wm fm(x)) (2)

where wi are the weights of the respective objectives, whose
variations facilitate modelling of the Pareto front.

Gaussian Process
A collection of random variables is said to follow Gaussian
Process if and only if each of its finite subsets is normally
distributed. Assuming that the black-box function follows the
Gaussian Process, denoted as

f ∼ GP(µ, k) (3)

then the distribution of known function outputs for a collec-
tion of inputs X is given by

f (X) ∼ N(µ(X),Σ(X)) (4)

where µi = µ(Xi) represents the mean of point i and Σi j =
k(Xi, X j) represents the noise given by the covariance between
points i and j. It can as a result be shown [12, pp. 13-16] that
the posterior distribution of an unknown set of datapoints X∗
is estimated according to:

f (X∗)|X∗, f (X), X ∼ N(µ(X∗),Σ(X∗)) (5)

where

µ(X∗) = µ(X) + k(X∗, X)k(X, X)−1(f (X) − µ(X))

Σ(X∗) = k(X∗, X∗) − k(X∗, X)k(X, X)−1k(X, X∗)

Acquisition Function
In order to avoid querying random inputs, Bayesian opti-
mizers utilize acquisition functions that strategically select
the next datapoint which is likely to yield an improvement.
Furthermore, acquisition functions are commonly equipped
with parameters controlling the exploration versus exploita-
tion trade-off. That is, rather than selecting a supposedly
slightly more optimal input, an acquisition function may in-
stead decide to explore regions with high uncertainty. An
example of an acquisition function is the Upper Confidence
Bound, defined as follows:

x∗t+1 = argmax
x∈RD

(µt(x) +
√
βσt(x)) (6)

where x∗t+1 denotes the next promising input, µt(x) denotes
the expected point x’s output value, as predicted by the cur-
rent fit and σt(x) represents its standard deviation. Parameter√
β controls the exploitative or exploratory behaviour of the

optimizer.

An alternative to UCB is Multi-points Expected Improvement
(qEI) that maximizes the improvement across a batch of q
points:

X∗t+1 = argmax
X∈Rd×q

E[(max
i=1,...,q

f (Xi) − f (xmax))+] (7)

where X∗t+1 denotes the next batch of promising inputs,
f (xmax) denotes the current global maximum and Xi repre-
sents the i-th point of batch X, with (x)+ = max(x, 0). The
expectation is assumed to be non-negative, as querying a sub-
optimal batch of points would yield no improvement.

Cost-Awareness
In the context of this research, we define the cost as a sec-
ondary objective separate to those encapsulated in multi-
objective optimization. However, taking the cost into account
can indirectly optimize for the primary objectives. For in-
stance, it can facilitate more evaluations of the objective func-
tions under the assumption that the cost corresponds to the
time of execution. Towards this end, we follow the verbatim
definition of cost-aware constraints by Abdolshah et al. [4]:
Definition 1 (Cost-Aware Constraints). Let I =
(i1, i2, ..., ik)|{i1, i2, ..., ik} ⊂ Z+d , i j , i j′∀ j , j′ be a
cost-aware constraint over k dimensions of the search space
(1 ≤ k ≤ d). Then selecting x(i j) value as a input from
dimension i j of the search space is more expensive than
selecting the same value of x from dimension i j+1 of the
search space given that x1,...,k are in the same normalized
range and j ∈ Z+k−1.
As a result, this definition can be understood as specifying
the relative cost of a subset of features based on a sorted tuple
of indices [4]. Based on this definition, the authors propose
the following heuristic that assigns the cost to a given input
vector at timestep t:

C(x, t) =
k∏

j=1

(1 − π(xI(j) , t)) (8)

π(xI(j) , t) = Exp(xI(j) , λ) = λe
−λx, λ =

1
θI(j) t + 1

(9)

where π(xI(j) , t) follows the exponential distribution, with re-
spective weights θI(j) being sampled from Dirichlet’s distri-
bution θI(1) , ..., θI(k) ∼ Dir(1, ..., 1) and sorted descendingly as
given by I.

4 Methodology
This section is divided into three subsections, first of which
is dedicated to the explanation of our algorithm. The second
subsection describes the simulation of an environment with
delayed rewards. The final subsection explains the experi-
mental setup, whose results will be reviewed in the following
sections.

Algorithm
Abdolshah et al. [4] combine the concepts of multi-
objective optimization, upper-confidence bound (UCB) and
cost-awareness into the following acquisition function:

α(x,Wt, t) = Q(x,Wt) × (1 −C(x, t)) (10)
where Q(x,Wt) refers to the UCB acquistion function (6),
whose Gaussian process estimates the scalarized utility given
by (2). The Chebyshev scalarization is weighted by normal-
ized weights Wt drawn from a uniform distribution. The sec-
ond term C(x, t) refers to the cost-aware constraints (8).

We propose an adjustment to the aforementioned acquisition
function, such that we substitute parallel expected improve-
ment (7) for the UCB (6). Furthermore, since the cost heuris-
tic is not defined for a batch of points, we aggregate the cost

by taking the average of the individual costs per point in the
batch:

C(X, t) =
1
q
×

q∑
i=1

C(Xi, t) (11)

As a result, we implement Bayesian Optimization for mod-
elling of the Pareto front by varying the weights Wt at every
timestep t and utilizing the Gaussian Process regressor for es-
timating the output space of each objective. Our adjusted ac-
quisition function then maximizes the expected improvement
of the scalarization of the primary objectives, for a batch of
points at timestep t + 1, whilst penalizing expensive regions
of the input space. For more details, the implementation is
outlined in the pseudocode that can be found in the appendix.

Simulation of Delayed Environment
For the purpose of this paper, we simulate the delay by halt-
ing the objective outputs, storing them in a temporary buffer
and forwarding a dummy output to the optimizer. The de-
lay is controlled by parameter d, which corresponds to the
response period. That is, the optimizer receives a response
every d timesteps, which contains the true objective outputs
of d previous queries.

In practice, there are many strategies that the optimizers can
adopt to combat the delay. Based on the previous definition
of delay, the optimizers studied in this paper impute the sup-
pressed output values as predicted by their internal Gaussian
process regressors. While the actual evaluations are unavail-
able, the queried datapoints are mapped to these predictions.
The optimizers then update their observations accordingly as
soon as the objective outputs are released. Formally, we can
represent this as:

Y t
i j = fi(x j) if t − j ≥ d or t ≡ 0 (mod d)

Y t
i j ∼ N(µi(x j),Σi(x j)) otherwise

where Y t is an m × t matrix containing the observed out-
put of objective i for query point x j at timestep j, t de-
notes the current timestep, fi is the i-th objective function and
N(µi(x j),Σi(x j)) follows the definition of Gaussian Process
from equation (5).

Lastly, we adapt our implementation of qEI such that the
batch of points returned by the acquisition function at each
timestep is queried sequentially. As a result, the optimizer
does not need to impute the missing data as long as the en-
tirety of the batch has not been processed. One consequence
of this method is that depending on the choice of d and q, the
degree of parallelism, the optimizer might have access to the
objective values for some inputs of the previous batch, while
having to impute the outputs for the rest.

Experimental Setup
The evaluation consists of two experiments. The first exper-
iment serves as a proof of concept, exploring performance
of cost-aware qEI (CA-qEI) in a correctly specified environ-
ment. The second experiment evaluates the impact of an

environment with delayed feedback on optimality and cost-
awareness of CA-qEI. In both settings, our method is bench-
marked against the baselines, the default cost-unaware qEI
(simply qEI) and cost-aware UCB (CA-UCB) [4], respec-
tively. For completeness, an overview of the performance of
a random strategy in both experiments can be found in the
appendix.

In both settings, the algorithm is going to be evaluated both in
terms of optimization performance as well as cost-awareness.
The former will be measured using the dominated hypervol-
ume [11]. This metric is useful for quantifying the fitness of a
Pareto front with respect to a given reference point, being pro-
portional to the optimality of the given solution. On the other
hand, cost-awareness is going to be measured by assessing
the difference of cumulative sums of L1 norms per each di-
mension of the input space. Aboldshah et al. [4] used this
metric, as cost-unaware implementations are positively cor-
related with a more uniform distribution of the expenses per
dimension, hence the difference being negligible or possibly
negative and vice-versa for their counterparts.

For the first experiment, we assume a budget of fifty
timesteps and eight-fold parallelization. Cross-in-tray [13]
and Hölder table functions [14] constitute the two objectives,
which we seek to optimize on interval [−10, 10] for both
dimensions of the input space. With x representing the 2-
dimensional input vector, the two functions are respectively
defined as:

f1(x) = 0.0001 ×

∣∣∣∣∣∣∣∣∣sin(x1) sin(x2) exp

∣∣∣∣∣∣∣∣∣100 −

√
x2

1 + x2
2

π

∣∣∣∣∣∣∣∣∣ + 1

∣∣∣∣∣∣∣∣∣
0.1

f2(x) =

∣∣∣∣∣∣∣∣∣sin(x1) cos(x2) exp

∣∣∣∣∣∣∣∣∣1 −
√

x2
1 + x2

2

π

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ (13)

In the second experiment, we also assume a budget of 50 it-
erations. Furthermore, we reinforce robustness by varying
the delay parameter, which takes values of 5, 10 and 25. We
also vary the degree of parallelization, which corresponds to
8 in the first setting and is then increased to 16 for the lat-
ter two. Finally, we utilize the shifted Drop-wave function
[13] and Rastrigin function [15] on interval [−5, 5] for both
dimensions, as the two objectives. With x once again rep-
resenting the 2-dimensional input vector, these functions are
respectively defined as follows:

f1(x) = 2
1 + cos

(
12
√

(x1 + π)2 + (x2 − π)2
)

(x1 + π)2 + (x2 − π)2 + 2

f2(x) = 20 +
2∑

i=1

x2
i − 10 cos(2πxi) (14)

5 Results
Figures 1a through 1f showcase the results pertaining to the
first experiment. We can firstly observe that the dominated
hypervolume has converged by the end of the experiment,
aside for a small deviation in case of cost-unaware qEI. Al-
though CA-qEI was constrained by the cost of inputs, it has
achieved dominated hypervolume of 0.7202, which is slightly
more optimal than the score of the default qEI of 0.6427.
Meanwhile, cost-aware UCB only attained 0.5630 for the
same metric, hence being inferior to both variants of qEI
and only barely outperforming random strategy with score of
0.4769, whose plot can be found in the appendix.

However, only UCB has managed to accomplish cost-
awareness, where the disparity between sums of selected in-
puts became increasingly more apparent with each timestep.
Both implementations of qEI on the other hand have in fact
prioritized the more expensive dimension, although the dif-
ference is insignificant compared to CA-UCB. Interestingly,
CA-qEI appears to have actually been more agnostic to the
relative costs than standard qEI, albeit by a tiny margin.

Figures 2a through 2f depict the results observed in the sec-
ond experiment1. Once again, the dominated hypervolume
has stabilized near the final timesteps for all settings. Addi-
tionally, we can see that CA-qEI and regular qEI outperform
CA-UCB when operating with higher batch sizes, peaking
at 0.4986 and 0.5081 respectively in dominated hypervolume
for delay of 10 timesteps and batch size of 16. On the other
hand, both variants of qEI were unable to outperform CA-
UCB when having prepared 8 inputs in advance. Meanwhile,
CA-UCB has converged to a dominated hypervolume of ap-
proximately 0.3 in all three settings. However, it is important
to remark that the random strategy. detailed in the appendix,
resulted in a dominated hypervolume of 0.2372, which is very
competitive with all strategies except for qEI and CA-qEI for
one of the configurations.

Similarly to the first experiment, CA-qEI and baseline qEI
struggle to maintain cost-awareness, regardless of the setting,
which can be observed from the rapid oscillations of cost dif-
ferences of selected outputs. However, CA-UCB was able to
swiftly establish a foothold and continued to widen the gap
with each timestep. Its cost-awareness was most prevalent
when subjected to a delay of 5 timesteps, amounting to a cost
difference of 56.0938. The performance in the remaining set-
tings was very comparable, with a delay of 10 timesteps re-
sulting in a final cost difference of 27.8347, while a delay of
25 timesteps resulted in a final cost difference of 28.7093.

6 Discussion
Firstly, it is important to emphasize that qEI is more success-
ful than UCB in terms of multi-objective optimization, as evi-
denced by all experiments, which we believe can be attributed
to the ability of performing significantly more queries in the
commensurate number of timesteps. This supports the hy-
pothesis that parallelization can refine serial implementations
1Since CA-UCB is a non-parallel acquisition function, parameter q
was omitted.

(a) Pareto optimality of CA-qEI (b) Pareto optimality of qEI (c) Pareto optimality of CA-UCB

(d) Cost per dimension difference of CA-qEI (e) Cost per dimension difference of qEI (f) Cost per dimension difference of CA-UCB

Figure 1: Multi-objective optimization of Cross-in-tray and Hölder table functions

(a) Pareto optimality of CA-qEI (b) Pareto optimality of qEI (c) Pareto optimality of CA-UCB

(d) Cost per dimension difference of CA-qEI (e) Cost per dimension difference of qEI (f) Cost per dimension difference of CA-UCB

Figure 2: Multi-objective optimization of Drop-wave and Rastrigin functions with delayed feedback

and that qEI is a noteworthy candidate for multi-objective op-
timization problems.

Secondly, the results of both experiments highlight that the
heuristic proposed by Abdolshah et al. [4] revised for paral-
lel acquisition functions (11) did not lead to cost-awareness
in context of qEI. This indicates that qEI is cost-agnostic by
nature, which might be attributed to the sensitivity of the ac-
quisition function. In spite of a robust and representative sam-
pling, only a small subset of inputs leads to an improvement.
Consequently, the optimizer has little liberty in preserving the
relative costs of the input dimensions. An alternative explana-
tion could be that in order to maximize the expected improve-
ment, qEI has to recommend a diverse batch of datapoints.
However, this diversity averages out the aggregated sum of
inputs and thus inhibits cost-awareness. Therefore, CA-qEI
is unsuitable for settings wherein cost-awareness plays a ma-
jor role.

Lastly, the second experiment has revealed that qEI retains its
edge over UCB, despite having to perform serialized queries,
thus bolstering the versatility of the former approach. How-
ever, tuning the batch size for a given delay is crucial, as the
degree of success varies significantly based on the choice.
The graphs indicate that a small or negative difference be-
tween the batch size and the delay might cause the model to
adopt a judicious random search, given the similarity of the
shape of the curves to random strategies. Meanwhile, CA-
UCB seems to have relied on the cost-aware constraints for
datapoint selection, as the model was unable to adjust the up-
per confidence bound while awaiting a response. This would
explain the similar results across all three environment set-
tings. Finally, inspection of a random strategy illustrates how
harmful delayed environments can be, as only one configu-
ration of qEI and CA-qEI managed to produce a noticeable
improvement to the random method.

7 Responsible Research
The black-box functions used for evaluation are synthetic in
origin and freely available, hence not posing any privacy con-
cerns. To the best of our knowledge, findings described in this
research paper do not create an opportunity for exploitation
by malicious parties. The reported results can be reproduced
by executing the main class of the provided codebase thanks
to the fixed seed that eliminates any undesired randomness.
The repository2 also features a step-by-step installation guide
and documentation in case that the reader would like to ex-
periment with various hyperparameters. Furthermore, access
to high-end hardware or a GPU is not a limiting factor, as the
experiments are compatible even with less powerful devices.

8 Conclusions and Future Improvements
This research paper proposed an improvement to cost-aware
optimization of multidimensional black-box functions. This
improvement involved parallelization of the predictive model
that outputs a batch of datapoints likely to yield an improve-
ment.
2https://github.com/osihlovec/ca-qei

We have firstly investigated whether parallelization enhances
optimality of multi-objective Bayesian otimizers. The exper-
iments support this hypothesis, as parallel implementations
managed to improve the optimality by approximately 16% in
an environment with immediate feedback.

We have additionally sought to adapt the parallel expected
gradient (qEI) method [7] in order to achieve cost-awareness
in terms of multi-objective Bayesian optimization. Our re-
sults demonstrate that approach described by Abdolshah et al.
[4] is unsuitable for qEI, as cost-aware parallel gradient (CA-
qEI) has performed almost identically to its cost-agnostic
counterpart. Contrasting these results to works shown to be
cost-aware further reinforce this conclusion.

The third goal of this paper is to assess whether cost-aware
parallelization diminishes the impact of environments with
delayed responses. The second experiment has revealed that
careful tuning of the degree of parallelism is crucial for alle-
viating the undesirable effect of such environments in terms
of optimization. Finally, the results of this experiment indi-
cate that model of [4] is still able to preserve cost-awareness,
although the degree thereof is dependent on length of the de-
lay.

An interesting avenue of future work would entail explor-
ing other parallel acquisition functions. Based on the ex-
periments, our method seems to only consider a very small
selection of unexplored datapoints to be promising. A less
discriminatory acquisition function could thus facilitate the
cost-aware heuristic more effectively.

An additional point of improvement would be to perform a
more thorough experimentation. The short time-frame of this
research was a considerable limiting factor. As a result, there
has been little room for increasing the number of timesteps,
repetition of the experiments followed by construction of con-
fidence intervals, or even an analysis of scalability with re-
spect to higher input and output space dimensionalities. A
rigorous evaluation of all aforementioned aspects would with-
out a doubt augment the robustness of our research.

Finally, an alternative approach to cost-awareness is also
worth entertaining. For example, rather than relying on a sim-
plistic heuristic that conforms to the relative importance of
input dimensions, one could employ Bayesian optimization
to estimate the costs of unseen samples based on previous
observations and attempt to minimize them as a secondary
objective akin to works of [8] and [9].

References
[1] Apoorv Agnihotri and Nipun Batra. “Explor-

ing Bayesian Optimization”. In: Distill (2020).
https://distill.pub/2020/bayesian-optimization. doi:
10.23915/distill.00026.

[2] Vu Nguyen. “Bayesian Optimization for Accelerating
Hyper-Parameter Tuning”. In: 2019 IEEE Second In-
ternational Conference on Artificial Intelligence and
Knowledge Engineering (AIKE). 2019, pp. 302–305.
doi: 10.1109/AIKE.2019.00060.

https://doi.org/10.23915/distill.00026
https://doi.org/10.1109/AIKE.2019.00060

[3] Min Jiang and Yimin Chen. “Research on bayesian op-
timization algorithm selection strategy”. In: The 2010
IEEE International Conference on Information and
Automation. 2010, pp. 2424–2427. doi: 10 . 1109 /
ICINFA.2010.5512281.

[4] Majid Abdolshah et al. Cost-aware Multi-objective
Bayesian optimisation. 2019. arXiv: 1909 . 03600
[cs.LG].

[5] Erich Merrill et al. “An Empirical Study of Bayesian
Optimization: Acquisition Versus Partition”. In: Jour-
nal of Machine Learning Research 22.4 (2021), pp. 1–
25. url: http://jmlr.org/papers/v22/18-220.html.

[6] Max Simchowitz et al. “Bayesian decision-making
under misspecified priors with applications to meta-
learning”. In: CoRR abs/2107.01509 (2021). arXiv:
2107.01509. url: https://arxiv.org/abs/2107.01509.

[7] Jialei Wang et al. Parallel Bayesian Global Optimiza-
tion of Expensive Functions. 2019. arXiv: 1602.05149.

[8] Eric Hans Lee et al. Cost-aware Bayesian Optimiza-
tion. 2020. arXiv: 2003.10870 [cs.LG].

[9] Gauthier Guinet, Valerio Perrone, and Cédric Archam-
beau. Pareto-efficient Acquisition Functions for Cost-
Aware Bayesian Optimization. 2020. arXiv: 2011 .
11456 [cs.LG].

[10] Samuel Daulton, Maximilian Balandat, and Eytan
Bakshy. Parallel Bayesian Optimization of Multiple
Noisy Objectives with Expected Hypervolume Im-
provement. 2021. arXiv: 2105.08195 [cs.LG].

[11] Andreia P. Guerreiro, Carlos M. Fonseca, and Luı s Pa-
quete. “The Hypervolume Indicator”. In: ACM Com-
puting Surveys 54.6 (July 2021), pp. 1–42. doi: 10 .
1145 / 3453474. url: https : / / doi . org / 10 . 1145 %
2F3453474.

[12] Carl Edward Rasmussen and Christopher K. I.
Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. MIT
Press, 2006, pp. I–XVIII, 1–248. isbn: 026218253X.

[13] Ali R. Al-Roomi. Unconstrained Single-Objective
Benchmark Functions Repository. Halifax, Nova Sco-
tia, Canada, 2015. url: https : / /www.al - roomi .org /
benchmarks/unconstrained.

[14] Momin Jamil, Xin-She Yang, and Hans-Jürgen Zeper-
nick. “8 - Test Functions for Global Optimization: A
Comprehensive Survey”. In: Swarm Intelligence and
Bio-Inspired Computation. Ed. by Xin-She Yang et al.
Oxford: Elsevier, 2013, pp. 193–222. isbn: 978-0-12-
405163-8. doi: https://doi.org/10.1016/B978-0-12-
405163- 8.00008- 9. url: https://www.sciencedirect.
com/science/article/pii/B9780124051638000089.

[15] Aimo. Törn and A. Zhilinskas. Global optimization
/ Aimo Törn, Antanas Žilinskas. English. Springer-
Verlag Berlin ; New York, 1989, x, 255 p. : isbn:
0387508716 3540508716. url: http: / /www.loc.gov /
catdir/enhancements/fy0814/89138974-t.html.

A Additional experiments
Figures 3a up to 3d demonstrate the performance of a random
strategy in previously defined experiments. More specifically,
this strategy involved uniform and independent sampling of
50 datapoints in an interval of [0, 1] for both dimensions and
then rescaling these inputs according to the search space of
the given problem. Since the seed was fixed across all ex-
periments, the samples in both experiments are equivalent,
but have been rescaled differently. This explains the identical
shape of cost per dimension in both experiments. The final
difference is nonzero, however, the prior oscillation indicates
that this is a temporary deviation, which would be corrected
with additional timesteps.

https://doi.org/10.1109/ICINFA.2010.5512281
https://doi.org/10.1109/ICINFA.2010.5512281
https://arxiv.org/abs/1909.03600
https://arxiv.org/abs/1909.03600
http://jmlr.org/papers/v22/18-220.html
https://arxiv.org/abs/2107.01509
https://arxiv.org/abs/2107.01509
https://arxiv.org/abs/1602.05149
https://arxiv.org/abs/2003.10870
https://arxiv.org/abs/2011.11456
https://arxiv.org/abs/2011.11456
https://arxiv.org/abs/2105.08195
https://doi.org/10.1145/3453474
https://doi.org/10.1145/3453474
https://doi.org/10.1145%2F3453474
https://doi.org/10.1145%2F3453474
https://www.al-roomi.org/benchmarks/unconstrained
https://www.al-roomi.org/benchmarks/unconstrained
https://doi.org/https://doi.org/10.1016/B978-0-12-405163-8.00008-9
https://doi.org/https://doi.org/10.1016/B978-0-12-405163-8.00008-9
https://www.sciencedirect.com/science/article/pii/B9780124051638000089
https://www.sciencedirect.com/science/article/pii/B9780124051638000089
http://www.loc.gov/catdir/enhancements/fy0814/89138974-t.html
http://www.loc.gov/catdir/enhancements/fy0814/89138974-t.html

(a) Pareto optimality of a random strategy in a correct environment (b) Pareto optimality of a random strategy in a delayed environment

(c) Cost per dimension difference of a random strategy in a correct
environment

(d) Cost per dimension difference of a random strategy in a delayed
environment

Figure 3: Evaluation of the performance a random strategy in previous experiments

	Introduction
	Related Work
	Background
	Methodology
	Results
	Discussion
	Responsible Research
	Conclusions and Future Improvements
	Additional experiments

