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Abstract: Recently, Basu and Holstlag (2021) proposed a unified f ramework f or de-
scribing outer length scales (OLS). By utilizing this framework, we document various char-
acteristics of OLS in nocturnal boundary layers over the US Great Plains. 
OCIS codes: (000.0010) Atmospheric and Oceanic Optics; (010.1330) Atmospheric Turbulence

Based on the variance and flux budget equations, Basu and Holtslag [1] derived closed-form solutions for outer
length scale (OLS; denoted as LX ) and turbulent Prandtl number(Prt ) for steady-state, stably stratified conditions.
Specifically, they deduced:

LX =

(√
Prt0Prt

cθ

)(
σθ

Γ

)
, (1)

where the standard deviation of potential temperature is σθ . The gradient of mean potential temperature is rep-
resented by Γ. The turbulent Prandtl number for non-buoyant flows is denoted by Prt0; it is typically assumed to
be equal to 0.85. The coefficient cθ is approximately equal to 2. This newly proposed OLS (LX ) was shown to
be related to several other well-known characteristic length scales of turbulence (e.g., Hunt length scale, Ellison
length scale, Ozmidov length scale) for different asymptotic stability conditions (e.g., near-neutral, very stable).
Furthermore, various analytical results of [1] were in close agreement with published observational and direct
numerical simulation generated data (e.g., [2, 3]).

According to the hypothesis by Kolmogorov–Obukhov–Corrsin, within the inertial-convective range (r), the
second-order structure function of potential temperature (ST

2 ) is written as:

ST
2 (r) =C2

T r2/3, (2)

where C2
T is the so-called temperature structure parameter. Based on the results from [1], Basu and Holtslag [4]

further derived:

C2
T =

(
cPrt0

c2
θ

)(
σ2

θ

L2/3
X

)
, (3)

where the coefficient c is typically assumed to be around 3.2. By plugging in the typical values of the various
coefficients, we can simplify Eq. (3) as follows:

C2
T = cX

(
σ2

θ

L2/3
X

)
, (4)

where, cX is approximately equal to 0.68.
Under the assumptions of stationarity and homogeneity, the following relationship can be easily derived from

the definition of ST
2 :

ST
2 (r) = 2σ

2
T [1−C(r)] , (5)

where C(r) is the autocorrelation function of potential temperature. By combining Eqs. (2), (4), and (5), one can
arrive at:

C(r) = 1−
(cX

2

)( r
LX

)2/3

. (6)

Thus, for r = LX , the autocorrelation is approximately equal to 0.66. This simple finding is rather powerful as
it will allow one to estimate LX solely from measured temperature time series. Furthermore, with the estimated
value of LX , Eq. (4) can be subsequently used to predict the associated C2

T value.
During this presentation, we will demonstrate the prowess of the proposed approach by using measurement data

from the CASES-99 field campaign [6]. For our analyses, data from sonic anemometers located at seven levels (5,
10, 20, 30, 40, 50, and 55 m) on a 60-m tower are considered. A few examples are shown in Fig. 1.
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Fig. 1. Structure function analysis of four representative (normalized) temperature (θn) time series
from the CASES-99 field campaign. Each time series is ten minutes long (sampling frequency of 20
Hz). The normalized series are shown at the bottom of the corresponding structure function plots.
The black circles denote measured ST

2 values. The magenta colored lines on the structure function
plots denote the estimated LX values. The estimated C2

T values and other meteorological variables
are also reported on these plots. From the estimated C2

T values, one can predict ST
2 values by making

use of Eq. (2). These predicted ST
2 values are depicted on the structure function plots as red lines.

The vertical blue lines simply denote r = z, where z is the height of the sonic anemometers. The
horizontal blue lines represent ST

2 = 2. When the autocorrelation drops to zero, the ratio
(
ST

2 /σ2
θ

)
approaches to 2 according to Eq. (5).

It is important to note that, more than fifty years ago, Fried [5] proposed a similar (not the same) formulation
for OLS estimation from the autocorrelation function. In contrast to our analytical approach (utilizing the variance
and flux budget equations), Fried’s approach was based on heuristic arguments.
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