

Delft University of Technology

Composite Anderson acceleration method with two window sizes and optimized damping

Chen, Kewang; Vuik, Cornelis

DOI
10.1002/nme.7096
Publication date
2022
Document Version
Final published version
Published in
International Journal for Numerical Methods in Engineering

Citation (APA)
Chen, K., & Vuik, C. (2022). Composite Anderson acceleration method with two window sizes and optimized
damping. International Journal for Numerical Methods in Engineering, 123(23), 5964-5985.
https://doi.org/10.1002/nme.7096

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/nme.7096
https://doi.org/10.1002/nme.7096

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Received: 28 March 2022 Revised: 29 June 2022 Accepted: 10 August 2022

DOI: 10.1002/nme.7096

R E S E A R C H A R T I C L E

Composite Anderson acceleration method with two
window sizes and optimized damping

Kewang Chen1,2 Cornelis Vuik2

1College of Mathematics and Statistics,
Nanjing University of Information Science
and Technology, Nanjing, China
2Delft Institute of Applied Mathematics,
Delft University of Technology, Delft,
the Netherlands

Correspondence
Kewang Chen, College of Mathematics
and Statistics, Nanjing University of
Information Science and Technology,
Nanjing 210044, China.
Email: kwchen@nuist.edu.cn

Funding information
National Natural Science Foundation of
China, Grant/Award Number: 12001287;
Startup Foundation for Introducing Talent
of Nanjing University of Information
Science and Technology, Grant/Award
Number: 2019r106; China Scholarship
Council, Grant/Award Number:
202008320191

Abstract
In this article, we propose and analyze a set of fully nonstationary Anderson
acceleration (AA) algorithms with two window sizes and optimized damping.
Although AA has been used for decades to speed up nonlinear solvers in many
applications, most authors are simply using and analyzing the stationary ver-
sion of AA (sAA) with fixed window size and a constant damping factor. The
behavior and potential of the nonstationary version of AA methods remain an
open question. Most efficient linear solvers however use composable algorith-
mic components. Similar ideas can be used for AA to solve nonlinear systems.
Thus in the present work, to develop nonstationary AA algorithms, we first
propose a systematic way to dynamically alternate the window size m by the
multiplicative composite combination, which means we apply sAA(m) in the
outer loop and apply sAA(n) in the inner loop. By doing this, significant gains
can be achieved. Second, to make AA to be a fully nonstationary algorithm, we
need to combine these strategies with our recent work on the nonstationary
AA algorithm with optimized damping (AAoptD), which is another important
direction of producing nonstationary AA and nice performance gains have been
observed. Moreover, we also investigate the rate of convergence of these nonsta-
tionary AA methods under suitable assumptions. Finally, our numerical results
show that some of these proposed nonstationary AA algorithms converge faster
than the stationary sAA method and they may significantly reduce the storage
and time to find the solution in many cases.

K E Y W O R D S

Anderson acceleration, fixed-point iteration, nonstationary

1 INTRODUCTION

In this part, we first present a literature review on the development of Anderson acceleration (AA) method and its appli-
cations. Then we discuss our main motivations and the structure for the present work. In 1962, Anderson1 developed a
technique for accelerating the convergence of the Picard iteration associated with a fixed-point problem which is called
extrapolation algorithm. Since that, this technique has enjoyed remarkable success and wide usage, especially in elec-
tronic structure computations, where it is known as Anderson mixing. The technique is now called AA in the applied
mathematics community. In contrast to Picard iteration, which uses only one previous iterate, AA method proceeds by
linearly recombining a list of previous iterates in a way such that approximately minimizes the linearized fixed-point
residual. The usual general form of AA with damping is given in Algorithm 1.

Int J Numer Methods Eng. 2022;1–22. wileyonlinelibrary.com/journal/nme © 2022 John Wiley & Sons, Ltd. 1

https://orcid.org/0000-0001-5613-3644
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnme.7096&domain=pdf&date_stamp=2022-08-26

2 CHEN and VUIK

Algorithm 1. Anderson acceleration: AA(m)

Given: x0 and m ≥ 1.
Set: x1 = g(x0).
for k = 0, 1, 2,… do

Set: mk = min{m, k}.
Set: Fk = (fk−mk ,… , fk), where fi = g(xi) − xi.

Determine: 𝛼(k) =
(
𝛼

(k)
0 ,… , 𝛼

(k)
mk

)T
that solves

min
𝛼=(𝛼0,…,𝛼mk

)T
‖Fk𝛼‖2 s.t.

mk∑
i=0

𝛼i = 1.

Set: xk+1 = (1 − 𝛽k)
mk∑
i=0

𝛼

(k)
i xk−mk+i + 𝛽k

mk∑
i=0

𝛼

(k)
i g(xk−mk+i).

end for

Here, fk is the residual for the kth iteration; m is the window size which indicates how many history residuals will
be used in the algorithm. It is usually a fixed number during the procedure. The value of m is typically no larger than 3
in the early days of applications and now this value could be as large as up to 100.2 𝛽k ∈ (0, 1] is a damping factor (or a
relaxation parameter) at kth iteration. We have, for a fixed window size m:

𝛽k =
⎧
⎪⎨⎪⎩

1, no damping,
𝛽 (a constant independent of k), stationary Anderson acceleration,
𝛽k (depending on k), nonstationary Anderson acceleration.

We can also formulate the above constrained optimization problem as an equivalent unconstrained least-squares
problem:3,4

min
(𝜔1,… ,𝜔mk

)T

‖‖‖‖‖
fk +

mk∑
i=1
𝜔i(fk−i − fk)

‖‖‖‖‖2

. (1)

One can easily recover the original problem by setting

𝜔0 = 1 −
mk∑
i=1
𝜔i.

AA methods are “essentially equivalent” to the nonlinear GMRES methods5-9 and the direct inversion on the itera-
tive subspace method (DIIS).10-12 It is also in a broad category with methods based on quasi-Newton updating.13-17 For
example, Walker and Ni9 showed that AA without truncation is equivalent in a certain sense to the GMRES method on
linear problems and Fang and Saad15 had clarified a remarkable relationship of AA to quasi-Newton methods. However,
unlike Newton-like methods, one advantage of AA is that it does not require the expensive computation or approxima-
tion of Jacobians or Jacobian-vector products. Although AA has been used for decades, convergence analysis has been
reported only recently. For the linear case, Toth and Kelley3 first proved the stationary version of AA (sAA) without damp-
ing is locally r-linearly convergent if the fixed point map is a contraction and the coefficients in the linear combination
remain bounded. Later, Evans et al.18 extended the result to AA with damping factors and proved the convergence rate
is 𝜃k((1 − 𝛽k−1) + 𝛽k−1𝜅), where 𝜅 is the Lipschitz constant for the function g(x) and 𝜃k is the ratio quantifying the con-
vergence gain provided by AA in step k. Recently, in 2019, Pollock et al.19 applied sAA to the Picard iteration for solving
steady incompressible Navier–Stokes equations and proved that the acceleration improves the convergence rate of the
Picard iteration. More recently, De Sterck and He20 extended the result to more general fixed-point iteration x = g(x),
given knowledge of the spectrum of g′(x) at fixed-point x∗ and Wang et al.21 extended the result to study the asymptotic
linear convergence speed of sAA applied to alternating direction method of multipliers (ADMMs) method. It is worth
mentioning here that the sAA in the papers of De Sterck and He20 and Wang et al.21 is stationary in a different sense: in

CHEN and VUIK 3

those papers, the 𝛼k
i of Algorithm 1 are fixed and do not depend on the iteration, so the 𝛼i are stationary. Sharper local

convergence results of AA remain a hot research topic in this area. For more related results about AA and its applications,
we refer the interested readers to papers22-28 and references therein.

Although AA has been widely used and studied for decades, most authors are simply using and analyzing the
sAA with fixed window size and a constant damping factor. The behavior and potential of the nonstationary versions
of the AA method have not been deeply studied and few results have been reported. Anderson2 suggested a con-
ceptual procedure for adaptively choosing 𝛽k. However, he has not had an opportunity to assess its practical utility.
A dynamic approach to damping is also demonstrated by Glowinski et al.29 Evans et al.18 developed a new strategy to
adaptively choose the damping factors, where those 𝛽k are chosen by a simple heuristic strategy based on the gain 𝜃k
(𝛽k = 0.9 − 1∕2 ∗ 𝜃k). The heuristic choice of damping yields 0.4 ≤ 𝛽k ≤ 0.9, and leads to fewer iterations to convergence
than with the uniform damping factors tested on the p-Laplacian problem, where p-Laplacian is a non-contractive oper-
ator. Pollock and Rebholz30 proposed a strategy to dynamically alternate the window sizes. The window size mk is kept
at a small to moderate value (2–5) until the residual drops below a given threshold, on the order of 10−2 or 10−3, then
mk is increased to a higher steady level, for instance m = 10. This approach is appropriate for problems where the initial
residual is moderately scaled. Besides, the early days of the Anderson Mixing method (the 1980s, for electronic structure
calculations) initially dictated the window size m ≤ 3 due to the storage limitations and costly g evaluations. However, in
recent years and a broad range of contexts, the window size m ranging from 20 to 100 has also been considered by many
authors. For example, Walker and Ni9 used m = 50 to solve the nonlinear Bratu problem. A natural question is that should
we try to further speed up AA method or try to use a larger size of the window? No such comparison results have been
reported. As we know, there are two main possible directions for producing nonstationary AA. One is choosing different
damping factors 𝛽k in each iteration, see our recent work on the nonstationary AA algorithm with optimized damping
(AAoptD).31 The other way of making AA to be a nonstationary algorithm is to alternate the window size during itera-
tions. But no systematic ways have been proposed to dynamically alternate the window size m. Since most efficient linear
solvers use composable algorithmic components,32,33 similar ideas can be used for AA(m) and AA(n) to solve nonlinear
systems. Moreover, the combination of choosing optimized damping factors and alternating window sizes may lead to
significant gains over the stationary AA. Therefore, in the present work, we propose and study the fully nonstationary
AA algorithms with dynamic window sizes and optimized damping.

The article is organized as follows. Our new algorithms and analysis are developed in Section 2; the rate of convergence
to those algorithms are studied in Section 3; experimental results and discussion are in Section 4; conclusions follow in
Section 5.

2 FULLY NONSTATIONARY AA

2.1 Nonstationary AA with two window sizes

2.1.1 Motivation

For linear problems, most efficient linear solvers however use composable algorithmic components. Similar ideas can be
used for AA to solve nonlinear systems. van der Vorst and Vuik34 proposed a hybrid method GMRES recursive (GMRESR)
which consists of an outer and inner loop. In the inner loop, one approximates the solution of a linear system by GMRES
to find a good search direction. In the following picture, we visualize the strong point of GMRESR in comparison to
GMRES(m). A search direction is indicated by vi. We see for GMRES(4) that after four iterations all information is thrown
away. For GMRESR the information after four inner iterations is condensed into one search direction so information does
not get lost. This method was also further investigated by Vuik.35 He proved that GMRESR(m) converges at least as fast
as GMRES(m) if GMRES(m) does not stagnate in m iteration steps.

4 CHEN and VUIK

On the other hand, it was proved by Walker and Ni9 that AA without truncation is equivalent in a certain sense to
the GMRES method on linear problems. Therefore, motivated by the GMRESR method, to solve nonlinear problems, we
propose a systematic way to dynamically alternate the window size m in sAA by using the multiplicative composition,
which means we apply sAA(m) first in the outer loop and then apply sAA(n) in the inner loop.

2.1.2 Multiplicative composition of two window sizes

We start with composite sAA(m) with sAA(0) (i.e., Picard iteration) in each iteration. This means that after applying one
step of sAA(m) without damping, we get,

xk+1∕2 =
mk∑
i=0
𝛼

(k)
i g(xk−mk+i).

Then, we take the result xk+1∕2 as an input x̂0 = xk+1∕2 and apply Picard iteration in the inner loop:

x̂j+1 = g(x̂j).

Putting these together, we have the following nonstationary algorithm AA(m,AA(0)) as in Algorithm 2.

Algorithm 2. Anderson acceleration with dynamic window-sizes: AA(m,AA(0))

Given: x0 iterM, iterN, and m ≥ 1.
Set: x1 = g(x0).
for k = 1, 2,… , iterM do

Set: xm
k+1∕2 ← apply one step of AA(m; {xk}) as given in Algorithm 1.

Set: x̂0 = xm
k+1∕2

for j = 0, 1, 2,… , iterN do
Set: x̂j+1 ← apply one step of Picard iteration on x̂j.

end for
Set: xk+1 = x̂iterN

end for

Suppose we just do a single inner loop iteration in Algorithm 2, the total amount of work of AA(m,AA(0)) in each
iteration is much less than that of applying sAA(m) twice. Algorithm 2 also means that we may “turn off” the acceleration
for a while and then turn on the acceleration. However, the performance can be better than sAA(m), see our numerical
experiments in Section 4.

More generally, we apply sAA(m) in the outer loop and apply sAA(n) in the inner loop. So, in each iteration, after
applying sAA(m), we get,

xk+1∕2 =
mk∑
i=0
𝛼

(k)
i g(xk−mk+i).

Then we apply sAA(n) with the initial guess x0 = xk+1∕2 for iterN iterations:

xk+1 ← applying sAA(n) with initial guess x0 = xk+1∕2.

In other words, the multiplicative composition reads

xk+1 = sAA(m, sAA(n)).

We summarize this in the following algorithm in Algorithm 3.

Remark 1. There is a lot of variety here. Let m and n be the window size used in the outer loop and inner loop, respectively.
And iterM and iterN be the total numbers of iterations for the outer loop and inner loop, respectively. In the present work,
we report some results for the case where m > n and iterM ≫ iterN, which means the window size used in the inner loop

CHEN and VUIK 5

Algorithm 3. Anderson acceleration with dynamic window-sizes: AA(m,AA(n))

Given: x0, m, n, iterM, and iterN (with iterN ≥ n).
Set: x1 = g(x0).
for k = 1, 2,… , iterM do

Set: xk+1∕2 ← apply one step of AA(m; {xk}) as given in Algorithm 1.
Set: x̂0 = xk+1∕2
for j = 0, 1, 2,… , iterN do

Set: x̂j+1 ← apply one step of AA(n; {x̂j}) as given in Algorithm 1.
end for
Set: xk+1 = x̂iterN

end for

T A B L E 1 Memory requirements

Methods Memory

AA(m) m + 1 vectors in memory

AA(m,AA(n)) m + n + 2 vectors in memory

is smaller than that used in the outer loop and the maximum iterations of the inner loop is much smaller than that of the
outer loop. For example, one can choose n = 1 and iterN = 1. In this case, we could compare the convergence results of
AA(m,AA(1)) with AA(m) by calculate the residual per function evaluation of g(x). See more discussions in Section 4.

Moreover, we summarize the memory requirements for those algorithms in Section 2.1.2 (Table 1). For some problems,
memory storage could be crucial. Our numerical results show that the nonstationary AA methods with smaller window
sizes usually perform better than the stationary AA algorithm with very large window sizes, which means our proposed
nonstationary AA methods may significantly reduce the storage requirements. See more discussions in our numerical
experiments in Section 4.

2.2 Nonstationary AA with optimized damping

In this part, we briefly summarize some of our recent works on AA with optimized damping (AAoptD), which will be
used to produce a fully nonstationary AA in the next section. Suppose that 𝛽k is different at each iteration k, then we have

xk+1 = (1 − 𝛽k)
mk∑
i=0
𝛼

(k)
i xk−mk+i + 𝛽k

mk∑
i=0
𝛼

(k)
i g(xk−mk+i)

=
mk∑
i=0
𝛼

(k)
i xk−mk+i + 𝛽k

(mk∑
i=0
𝛼

(k)
i g(xk−mk+i) −

mk∑
i=0
𝛼

(k)
i xk−mk+i

)
. (2)

Let us define the following averages given by the solution 𝛼k to the optimization problem by

x𝛼k =
mk∑
i=0
𝛼

(k)
i xk−mk+i, x̃𝛼k =

mk∑
i=0
𝛼

(k)
i g(xk−mk+i). (3)

Thus, (2) becomes

xk+1 = x𝛼k + 𝛽k(x̃𝛼k − x𝛼k). (4)

A natural way to choose “best” 𝛽k at this stage is that choosing 𝛽k such that xk+1 gives a minimal residual. So we just need
to solve the following unconstrained optimization problem:

min
𝛽k

||xk+1 − g(xk+1)||2 = min
𝛽k

||x𝛼k + 𝛽k(x̃𝛼k − x𝛼k) − g(x𝛼k + 𝛽k(x̃𝛼k − x𝛼k))||2. (5)

6 CHEN and VUIK

Using the fact that

g(x𝛼k + 𝛽k(x̃𝛼k − x𝛼k)) ≈ g(x𝛼k) + 𝛽k
𝜕g
𝜕x

|||x𝛼k (x̃
𝛼

k − x𝛼k)

≈ g(x𝛼k) + 𝛽k
(

g(x̃𝛼k) − g(x𝛼k)
)
. (6)

Therefore, (5) becomes

min
𝛽k

||xk+1 − g(xk+1)||2 = min
𝛽k

||x𝛼k + 𝛽k(x̃𝛼k − x𝛼k) − g(x𝛼k + 𝛽k(x̃𝛼k − x𝛼k))||2
≈ min

𝛽k
||x𝛼k + 𝛽k(x̃𝛼k − x𝛼k) −

[
g(x𝛼k) + 𝛽k(g(x̃𝛼k) − g(x𝛼k))

] ||2
≈ min

𝛽k
|| (x𝛼k − g(x𝛼k)

)
− 𝛽k

[
(g(x̃𝛼k) − g(x𝛼k)) − (x̃

𝛼

k − x𝛼k)
] ||2. (7)

Thus, we just need to calculate the projection

𝛽k =

(
x𝛼k − g(x𝛼k)

)
⋅
[(

x𝛼k − g(x𝛼k)
)
− (x̃𝛼k − g(x̃𝛼k))

]

|| [(x𝛼k − g(x𝛼k)
)
− (x̃𝛼k − g(x̃𝛼k))

] ||22
. (8)

AA algorithm with optimized damping AAoptD(m) reads as follows:

Algorithm 4. Anderson acceleration with optimized dampings: AAoptD(m)

Given: x0 and m ≥ 1.
Set: x1 = g(x0).
for k = 0, 1, 2,… do

Set: mk = min{m, k}.
Set: Fk = (fk−mk ,… , fk), where fi = g(xi) − xi.

Determine: 𝛼(k) =
(
𝛼

(k
0 ,… , 𝛼

(k)
mk

)T
that solves

min
𝛼=(𝛼0,…,𝛼mk

)T
‖Fk𝛼‖2 s. t.

mk∑
i=0

𝛼i = 1.

Set: x𝛼k =
mk∑
i=0

𝛼

(k)
i xk−mk+i, x̃𝛼k =

mk∑
i=0

𝛼

(k)
i g(xk−mk+i).

Set: rp =
(

x𝛼k − g(x𝛼k)
)
, rq =

(
x̃𝛼k − g(x̃𝛼k)

)
.

Set: 𝛽k =
(rp − rq)Trp

‖rp − rq‖2
2

.

Set: xk+1 = x𝛼k + 𝛽k(x̃𝛼k − x𝛼k).
end for

Remark 2. This optimized damping step is a “local optimal” strategy at kth iteration. It usually will speed up the conver-
gence rate compared with an undamped one, but not always. Because in (k + 1)th iteration, it uses a combination of all
previous m history information. Besides, if the “local optimal” 𝛽k is not in the interval (0, 1], we set 𝛽k = 1∕2. Moreover,
when 𝛽k is very close to zero, the system is overdamped, which sometimes may also slow down the convergence speed.
We may need to further modify our 𝛽k to bound it away from zero by using

̂

𝛽k = max{𝛽k, 𝜂}, (9)

or

̂

𝛽k =

{
𝛽k, if 𝛽k ≥ 𝜂,

1 − 𝛽k, if 𝛽k < 𝜂,
(10)

CHEN and VUIK 7

where 𝜂 is a small positive number such that 0 < 𝜂 < 0.5. For more details on the implementation of AAoptD(m) and its
performance, we refer the readers to our recent paper.31

2.3 Fully nonstationary AA with dynamic window-sizes and optimized damping

At this stage, we are ready to present our final fully nonstationary AA algorithms. Since alternating the window sizes
and using different damping factors in each iteration are two main ways to produce nonstationary AA, we need to com-
bine those strategies to make it into a fully nonstationary algorithm. For example, we can obtain the following fully
nonstationary algorithm AA(m,AAoptD(n)) as in Algorithm 5 by using multiplicative composite combination.

Algorithm 5. Fully nonstationary Anderson acceleration: AA(m,AAoptD(n))

Given: x0, m, n, iterM, and iterN (with iterN ≥ n).
Set: x1 = g(x0).
for k = 1, 2,… , iterM do

Set: xk+1∕2 ← apply one step of AA(m; {xk}) as given in Algorithm 1.
Set: x̂0 = xk+1∕2
for j = 0, 1, 2,… , iterN do

Set: x̂j+1 ← apply one step of AAoptD(n; {x̂j}) as given in Algorithm 4.
end for
Set: xk+1 = x̂iterN

end for

Similarly, AAoptD(m,AAoptD(n)) or AAoptD(m,AA(n)) can be easily obtained. Now, we have a set of new nonsta-
tionary AA algorithms. We test and compare the performance of some of these methods with stationary AA in Section 4.
Suggestions on how to use and choose these methods are provided in our final conclusion part in Section 5.

3 RESIDUAL BOUNDS

In this section, we investigate the residual bounds of these nonstationary AA methods. The main technical results and
assumptions are adopted from papers3,18 with necessary modifications. Here we provide the convergence theorems for
AAoptD(m), AA(m,AA(1))with inner loop iteration iterN = 1 and AAoptD(m,AA(1))with inner loop iteration iterN = 1.
These typical nonstationary AA methods are extensively studied in Section 4. Similarly, one can derive the rate of
convergence to other nonstationary AA methods.

To begin with, we summarize the convergence result in Theorem 1 for AA with optimized damping as in Algorithm 4.

Theorem 1. Assume that

• g ∶ Rn → Rn has a fixed point x∗ ∈ Rn such that g(x∗) = x∗.
• g is uniformly Lipschitz continuously differentiable in the ball B(𝜌) = {u|||x − x∗||2 ≤ 𝜌}.
• There exists 𝜅 ∈ (0, 1) such that ||g(y) − g(x)||2 ≤ 𝜅||y − x||2 for all x, y ∈ Rn.
• Suppose that ∃M and 𝜖 > 0 such that for all k > m,

∑m−1
i=0 |𝛼i| < M and |𝛼m| ≥ 𝜖.

Then we have the following convergence result for AAoptD(m) given in Algorithm 4:

||f (xk+1)||2 ≤ 𝜃k+1 [(1 − 𝛽k) + 𝜅𝛽k] ||f (xk)||2 +
m∑

i=0
O(||f (xk−m+i)||22), (11)

where the average gain

𝜃k+1 =
||∑m

i=0𝛼
k
i f (xk−m+i)||2

||f (xk)||2

8 CHEN and VUIK

and

𝛽k =

(
x𝛼k − g(x𝛼k)

)
⋅
[(

x𝛼k − g(x𝛼k)
)
− (x̃𝛼k − g(x̃𝛼k))

]

|| [(x𝛼k − g(x𝛼k)
)
− (x̃𝛼k − g(x̃𝛼k))

] ||22
with

x𝛼k =
mk∑
i=0
𝛼

(k)
i xk−mk+i, x̃𝛼k =

mk∑
i=0
𝛼

(k)
i g(xk−mk+i).

Proof. We first note here that assuming 𝛼m bounded away from zero is adopted from Evans et al.18 and Pollock
et al.,19 where this condition is required in order to obtain some estimation on the residuals. We cannot get rid of this
restriction, so we also keep it here. The proof of this theorem can be found in this article18 for general damping 𝛽k.
The key ideas of the analysis are relating the difference of consecutive iterates to residuals based on performing the
inner-optimization and explicitly defining the gain in the optimization stage to be the ratio of improvement over a step
of the unaccelerated fixed-point iteration. Additionally, here we also need to use (2) and (8) to explicitly calculate these
optimized 𝛽k. ▪

Next, we provide the convergence rate for nonstationary AA methods AA(m,AA(1))with inner loop iteration iterN = 1
and AAoptD(m,AA(1)) with inner loop iteration iterN = 1, which are extensively studied in Section 4.

Theorem 2. Assume that g ∶ Rn → Rn has a fixed point x∗ ∈ Rn such that g(x∗) = x∗ and satisfies all assumptions in
Theorem 1. Then we have the following convergence rate for AA(m,AA(1)) as in Algorithm 3 with iterN = 1 inner loop
iterations:

||f (xk+1)||2 ≤ 𝜃1𝜃k+1𝜅 [(1 − 𝛽k) + 𝜅𝛽k] ||f (xk)||2 + high order terms, (12)

where

𝜃k+1 =
||∑m

i=0𝛼
k
i f (xk−m+i)||2

||f (xk)||2 , 𝜃1 =
||𝛼1

0f (x0) + 𝛼1
1f (x1)||2

||f (x1)||2
with

x0 = xk+1∕2, x1 = g(x0).

Proof. For the outer loop, according to the results in Theorem 1 with any damping factor 𝛽k ∈ (0, 1], we have

||f (xk+1∕2)||2 ≤ 𝜃k+1𝜅 [(1 − 𝛽k) + 𝜅𝛽k] ||f (xk)||2 +
m∑

i=0
O(||f (xk−m+i)||22), (13)

where

𝜃k+1 =
||∑m

i=0𝛼
k
i f (xk−m+i)||2

||f (xk)||2 .

As 𝛼k
i is the solution to the optimization problem in Algorithm 1 and the fact that 𝛼k

k = 1, 𝛼k
j = 0, j ≠ k, is in the feasible

set for the optimization problem, we immediately have

0 ≤ 𝜃k+1 ≤ 1.

For the inner loop with iterN = 1, we have the initial guess x0 = xk+1∕2, then x1 = g(x0) and

f (x0) = g(x0) − x0, f (x1) = g(x1) − x1.

CHEN and VUIK 9

Let 𝛼0 and 𝛼1 be the solution to the inner loop optimization problem, then applying Theorem 1 with m = 1 without
damping, we have

||f (x2)||2 ≤ 𝜃1𝜅||f (x1)|| + O(||f (x1)||22) + O(||f (x0)||22) (14)

with

𝜃1 =
||𝛼1

0f (x0) + 𝛼1
1f (x1)||2

||f (x1)||2
,

where 𝛼1
0 and 𝛼1

1 solves the optimization problem of AA(1) in the inner loop iteration. Similarly, since 𝛼1
0 = 0 and 𝛼1

1 = 1,
is in the feasible set for the related optimization problem, we get

0 ≤ 𝜃1 ≤ 1.

Using (13) and the fact that the inner loop use x0 = xk+1∕2 as an initial guess, we have x1 = g(x0) = g(xk+1∕2). Therefore,

||f (x1)||2 ≤ 𝜃k+1𝜅||f (xk)||2 +
m∑

i=0
O(||f (xk−m+i)||22). (15)

Since iterN = 1, so after finishing the inner loop iteration, we will set xk+1 = x2. Thus, from (14) and (15), we finally obtain

||f (xk+1)||2 = ||f (x2)||2 ≤ 𝜃1𝜃k+1𝜅 [(1 − 𝛽k) + 𝜅𝛽k] ||f (xk)||2 + high order terms, (16)

which completes the proof of this theorem. ▪

Theorem 3. Assume that g ∶ Rn → Rn has a fixed point x∗ ∈ Rn such that g(x∗) = x∗ and satisfies the assumptions in
Theorem 1. Then we have the following convergence rate for AAoptD(m,AA(1)) with iterN = 1 inner loop iterations:

||f (xk+1)||2 ≤ 𝜃1𝜃k+1𝜅 [(1 − 𝛽k) + 𝜅𝛽k] ||f (xk)||2 + high order terms, (17)

where

𝛽k =

(
x𝛼k − g(x𝛼k)

)
⋅
[(

x𝛼k − g(x𝛼k)
)
− (x̃𝛼k − g(x̃𝛼k))

]

|| [(x𝛼k − g(x𝛼k)
)
− (x̃𝛼k − g(x̃𝛼k))

] ||22
and

𝜃k+1 =
||∑m

i=0𝛼if (xk−m+i)||2
||f (xk)||2 , 𝜃1 =

||𝛼0f (x0) + 𝛼1f (x1)||2
||f (x1)||2

with

x0 = xk+1∕2, x1 = g(x0).

Proof. The proof is similar to the proof of Theorem 2 with explicitly expression for 𝛽k values, thus we omit it here. ▪

Remark 3. From the above theorems, we know that the composite AA methods not only converge but also indeed improve
the convergence rate of the Picard iteration under some suitable assumptions. Moreover, in our numerical experiments
in Section 4, we also explicitly calculate these average gains 𝜃k and 𝛽k at each iteration as described in Theorems 1–3, so
one can see how much the residual is reduced at each iteration.

4 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we numerically compare the performance of these fully nonstationary AA algorithms with regular sta-
tionary AA (with uniform window size and a constant damping factor). All these experiments are done in the MATLAB
2021b environment. MATLAB codes are available upon request to the authors.

10 CHEN and VUIK

This first example is from Walker and Ni’s paper,9 where a sAA with window size m = 50 is used to solve the Bratu
problem. This problem has a long history, we refer the reader to Glowinski et al.29 and Pernice and Walker,36 and the
references in those papers.

Example 1 (The Bratu problem). The Bratu problem is a nonlinear PDE boundary value problem as follows:

Δu + 𝜆 eu = 0, in D = [0, 1] × [0, 1],
u = 0, on 𝜕D.

In this experiment, we use a centered-difference discretization on a 64 × 64 grid and take 𝜆 = 6 in the Bratu problem.
We first use the zero initial approximate solution in all cases and then we test these methods with different initial
approximations at the end. And we also applied the preconditioning such that the basic Picard iteration still works. The
preconditioning matrix that we used here is the diagonal inverse of the matrix A, where A is a matrix for the discrete
Laplace operator.

We first solve the Bratu problem using the multiplicative composition of nonstationary AA methods with the outer
loop window size m = 20 and inner loop window size n = 1. Here, we use zero initial approximation and set the inner
iteration iterN = 1 for all composite methods, which means we only apply two iterations in the inner loop. In many
applications, the cost of evaluating g(x) usually dominates to the cost of solving the small least-squares problem, in
order to compare the performance of nonstationary AA and stationary AA, we count the number of evaluations of
g(x) and plot the residual per function evaluation of g(x). The results are shown in Figure 1. The total time used for
different methods is shown on the left side of Table 2. Here we use the Matlab commands tic and toc to record the
running time for each of these methods and we have not optimized our Matlab codes yet. From Figure 1, we see that
the nonstationary AA methods work better than regular stationary AA. The best one for this case is the fully nonsta-
tionary AA AAoptD(20,AA(1)). The convergence results are consistent with the time consumption on the left side of
Table 2.

From Theorems 1 to 3, we know that the composite AA methods not only converge but also indeed improve the
convergence rate of the Picard iteration. Here, we also explicitly calculate these average gains 𝜃k and some damping
factors 𝛽k at each iteration as in Figures 2 and 3, respectively. Thus one can see how much the residual is reduced at each

0 50 100 150 200 250 300 350 400 450 500

function evaluations of g(x)

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

re
s
id

u
a

l

64 64

Picard

AA(20)

AAoptD(20)

AA(20,AA(1))

AAoptD(20,AA(1))

AA(20,AAoptD(1))

AAoptD(20,AAoptD(1))

F I G U R E 1 Solve the Bratu problem with zero initial approximation, inner loop m = 20, and outer loop n = 1

CHEN and VUIK 11

T A B L E 2 Total time used in solving the Bratu problem on a 64 × 64 grid with the same initial approximation

Methods Time (s) Methods Time (s)

AAoptD(20,AA(1)) 53.19 AA(20,AA(2)) 30.38

AA(20,AAoptD(1)) 61.77 AAoptD(20,AA(2)) 48.89

AAoptD(20) 80.10 AA(20,AAoptD(2)) 63.15

AA(20,AA(1)) 83.61 AAoptD(20,AAoptD(2)) 72.83

0 50 100 150 200 250
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
The Bratu problem: Average gain

AA(20)

AAoptD(20)

AA(20,AA(1))

AAoptD(20,AA(1))

AA(20,AAoptD(1))

F I G U R E 2 Solve the Bratu problem with composite AA methods: Average gain

iteration. For example, as shown in Figure 2, we see that the average gain for AAoptD(AA(1)) and AA(20,AAoptD(1))
at each iteration are much better than stationary AA(20) since a small average gain 𝜃k means a faster convergence rate.
These results are consistent with convergence results shown in Figure 1.

Besides, since there is a lot of freedom in composing AA, we also test other AA(m,AA(n)) on this problem. For
example, in Figure 4, we find that the nonstationary AA methods with outer window size m = 20 and inner loop win-
dow size n = 2 give similar or even better convergence improvement, which is not surprising since a larger inner window
size is used here. The total time used for different composition methods is shown on the right side of Table 2. More-
over, some of these methods (i.e., AA(20,AA(2)) and AAoptD(20,AA(1))) are better or comparable with the stationary
AA(50). This is very important for solving larger-size problems where computer storage is crucial. Our proposed non-
stationary AA methods may save a lot of memory storage while maintaining a similar (or even faster) convergence
rate.

Lastly, some recent work by De Sterck and He37 has shown that the asymptotic convergence factor of AA(m)
can strongly depend on the initial approximation. So we test these composite methods AA(m,AA(n)) with dif-
ferent initial guesses. Instead of using zero initial approximation (i.e., x0 = [0, … , 0]), here we use an unit ini-
tial guess (i.e., x0 = [1, … , 1]) and a random initial guess in between the zero initial guess and the unit initial
guess. The results are show in Figures 5 and 6, respectively. From these two figures, we verify that the asymp-
totic convergence factor of AA(m) sometimes strongly depends on the initial approximations, so do these compos-
ite methods AA(m,AA(n)). However, these composite methods have the same trend for multiple different initial
guesses.

12 CHEN and VUIK

0 20 40 60 80 100 120 140

iteration

0.4

0.5

0.6

0.7

0.8

0.9

1

k

The Bratu problem: damping factors

AAoptD(20)

AA(20,AAoptD(1))

F I G U R E 3 Solve the Bratu problem with composite AA methods: Damping factors

0 50 100 150 200 250 300 350 400 450 500

function evaluations of g(x)

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

re
s
id

u
a
l

64 64

AA(20)

AA(30)

AA(40)

AA(50)

AA(20,AA(2))

AAoptD(20,AA(2))

AA(20,AAoptD(2))

AAoptD(20,AAoptD(2))

F I G U R E 4 Solve the Bratu problem with zero initial approximation, inner loop m = 20, and outer loop n = 2

CHEN and VUIK 13

0 50 100 150 200 250 300 350 400 450 500

function of evaluations of g(x)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

re
s
id

u
a
l

64 64

Picard

AA(20)

AAoptD(20)

AA(20,AA(1))

AAoptD(20,AA(1))

AA(20,AAoptD(1))

AAoptD(20,AAoptD(1))

F I G U R E 5 Solve the Bratu problem with unit initial approximation x0 = [1, … , 1]T , inner loop m = 20, and outer loop n = 1

0 50 100 150 200 250 300 350 400 450 500

function evaluations of g(x)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

re
s
id

u
a

l

64 64

Picard

AA(20)

AAoptD(20)

AA(20,AA(1))

AAoptD(20,AA(1))

AA(20,AAoptD(1))

AAoptD(20,AAoptD(1))

F I G U R E 6 Solve the Bratu problem with random initial approximation, inner loop m = 20, and outer loop n = 1

14 CHEN and VUIK

Example 2 (The stationary nonlinear convection-diffusion problem). Solve the following 2D nonlinear
convection-diffusion equation in a square region:

𝜖(−uxx − uyy) + (ux + uy) + ku2 = f (x, y), (x, y) ∈ D = [0, 1] × [0, 1]

with the source term

f (x, y) = 2𝜋2 sin(𝜋x) sin(𝜋y)

and zero boundary conditions: u(x, y) = 0 on 𝜕D.

In this numerical experiment, we first use a centered-difference discretization on a 32 × 32 grid. We choose 𝜖 = 1,
𝜖 = 0.1 and 𝜖 = 0.01, respectively. Those 𝜖 values indicate the competition between the diffusion and convection effect.
We take k = 3 in the above problem and use u0 = (1, 1, … , 1)T as an initial approximate solution in all cases. As in solving
the Bratu problem, the same preconditioning strategy is used here. The preconditioning matrix that we used here is the
diagonal inverse of the matrix A, where A is a matrix for the discrete Laplace operator.

For 𝜖 = 1, from Figures 7 and 9, we observe similar results that the composite methods perform much better than sAA.
Moreover, the average gain as in Figure 8 and the time cost as in Table 3 also confirm the above results. For 𝜖 = 0.1, from
Figure 10, we find that the Picard iteration does not converge anymore. However, AA methods with a small window size
already work. Moreover, some of our proposed nonstationary AA methods (e.g., AAoptD(1,AA(1)), AA(1,AAoptD(1)),
and AA(1,AA(1))) perform better than the stationary AA(1) method. For 𝜖 = 0.01, from Figures 11 and 12, we see that
the Picard method, the stationary AA(1)method and nonstationary method AA(1,AA(1))method do not converge while
other nonstationary methods still converge. However, for the converging methods, there are some wiggles in the numer-
ical approximation, see the bottom figures in Figure 13. This may result from using the central difference scheme for
the convection term. To solve this problem, we then use the upwind scheme (backward difference) for the convec-
tion term. The results are shown in Figures 14 and 15. All acceleration methods converge. AA(1,AA(1)) performs best.
AAoptD(1,AA(1)) and AA(1,AAoptD(1)) are comparable to the stationary AA(1)method. Moreover, there are no wiggles
in the numerical approximation when applying the upwind scheme for the convection term.

0 50 100 150 200 250 300 350 400 450 500

function evaluations of g(x)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

=1, m=5, n=1

Picard

AA(5)

AAoptD(5)

AA(5,AA(1))

AAoptD(5,AA(1))

AA(5,AAoptD(5))

AAoptD(5,AAoptD(1))

F I G U R E 7 Solve the convection-diffusion problem using the central discretization: 𝜖 = 1, convergence results

CHEN and VUIK 15

0 50 100 150 200 250 300

iteration

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Average gain, =1

AA(5)

AA(5,AA(1))

AAoptD(5,AA(1))

AA(5,AAoptD(1))

AAoptD(5,AA(1))

F I G U R E 8 Solve the convection-diffusion problem using the central discretization: 𝜖 = 1, average gain

0 50 100 150 200 250 300 350 400 450 500

function evaluations of g(x)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

re
s
id

u
a
l

=1, m=5, n=2

Picard

AA(5)

AA(5,AA(2))

AAoptD(5,AA(2))

AA(5,AAoptD(2))

AAoptD(5,AAoptD(2))

F I G U R E 9 Solve the convection-diffusion problem using the central discretization: 𝜖 = 1, larger inner window size

16 CHEN and VUIK

T A B L E 3 Total time used in solving the convection-diffusion problem with 𝜖 = 1

Methods Time (s) Methods Time (s)

AA(5,AA(1)) 2.45 AA(5,AA(2)) 2.03

AA(5,AAoptD(1)) 2.75 AAoptD(5,AA(2)) 2.31

AAoptD(5,AA(1)) 3.06 AA(5,AAoptD(2)) 3.93

AAoptD(5,AAoptD(1)) 4.21 AAoptD(5,AAoptD(2)) 4.11

0 50 100 150 200 250 300 350 400 450 500

function evaluations of g(x)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

re
s
id

u
a
l

=0.1

Picard

AA(1)

AAoptD(1)

AA(1,AA(1))

AAoptD(1,AA(1))

AA(1,AAoptD(1))

AAoptD(1,AAoptD(1))

F I G U R E 10 Solve the convection-diffusion problem using the central discretization: 𝜖 = 0.1, convergence results

Our next example is about solving a linear system Ax = b. As proved by Walker and Ni,9 AA without truncation is
“essentially equivalent” in a certain sense to the GMRES method for linear problems.

Example 3 (The linear equations). Apply AA and AAoptD to solve the following linear system Ax = b, where A is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 · · · 0 0
−1 2 · · · 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · 2 −1
0 0 · · · −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, A ∈ RN×N

and

b = (1, … , 1)T .

Choose N = 100 so that a large window size m is needed in AA. We also note here that the Picard iteration does not work
for this problem.

CHEN and VUIK 17

0 50 100 150 200 250 300 350 400 450

function evaluations of g(x)

10
-50

10
0

10
50

10
100

10
150

10
200

10
250

10
300

re
s
id

u
a

l

=0.01, m=1,n=1

Picard

AA(1)

AAoptD(1)

AA(1,AA(1))

AAoptD(1,AA(1))

AA(1,AAoptD(1))

AAoptD(1,AAoptD(1))

F I G U R E 11 Solve the convection-diffusion problem using the central discretization: 𝜖 = 0.01, convergence results

0 50 100 150 200 250 300 350 400 450

function evaluations of g(x)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

re
s
id

u
a
l

=0.01, m=1,n=1, (zoom in)

AAoptD(1)

AAoptD(1,AA(1))

AA(1,AAoptD(1))

AAoptD(1,AAoptD(1))

F I G U R E 12 Solve the convection-diffusion problem using the central discretization: 𝜖 = 0.01, convergence results (zoom in)

18 CHEN and VUIK

F I G U R E 13 Solve the convection-diffusion problem using the central discretization: Solutions for 𝜖 = 0.1 and 𝜖 = 0.01

0 50 100 150 200 250 300 350 400 450

function evaluations of g(x)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

re
s
id

u
a
l

=0.01, m=1,n=1

Picard

AA(1)

AAoptD(1)

AA(1,AA(1))

AAoptD(1,AA(1))

AA(1,AAoptD(1))

AAoptD(1,AAoptD(1))

F I G U R E 14 Solve the convection-diffusion problem using the upwind method: 𝜖 = 0.01, convergence results

CHEN and VUIK 19

F I G U R E 15 Solve the convection-diffusion problem using the upwind method: Solution for 𝜖 = 0.01

0 100 200 300 400 500 600 700 800 900 1000

function evaluations of g(x)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

re
s
id

u
a
l

N=100

AA(20)

AAoptD(20)

AA(20,AA(1))

AAoptD(20,AA(1))

AA(20,AAoptD(1))

AAoptD(20,AAoptD(1))

F I G U R E 16 Solve a linear problem Ax = b with N = 100: Convergence results

In our test, the initial guess is x0 = (0, … , 0)T . The result is shown in Figure 16. From Figure 16, we see that the
fully nonstationary AA methods work much better than the stationary AA method. This example also indicates that
our proposed fully nonstationary AA can be also used to solve linear systems. Moreover, we also plot the average gain
𝜃k for each iteration in Figure 17. The results are roughly consistent with the convergence results. We also notice from
Figure 17 that AA(20,AAoptD(1)) should perform better than AA(20,AA(1)), which is slightly inconsistent with the
result in Figure 16. This is because the function evaluation for the linear problem may not dominate to cost of solving the
least-squares problem.

20 CHEN and VUIK

0 50 100 150 200 250 300 350 400

iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average gain, N=100

AA(20)

AAoptD(20)

AA(20,AA(1))

AAoptD(20,AA(1))

AA(20,AAoptD(1))

AAoptD(20,AAoptD(1))

F I G U R E 17 Solve a linear problem Ax = b with N = 100: Average gain

5 CONCLUSIONS

In the present work, we propose and analyze a set of fully nonstationary AA algorithms with two window sizes and
optimized damping factors to further speed up linear and nonlinear iterations. In general, these nonstationary AA algo-
rithms can converge faster than the stationary AA method and they may significantly reduce the memory requirements
and time to find the solution. For future guidance of choosing these nonstationary AA methods, our numerical results
indicate that AA(m,AA(n)) or AAoptD(m,AA(n)) (with a very small inner window size n < m) usually converges much
faster than stationary AA(m). This is not surprising since the local convergence rate of AA with damping factors is
𝜃k((1 − 𝛽k−1) + 𝛽k−1𝜅).18 There is a lot of variety in these fully nonstationary AA methods, our future work will continue
to explore the behaviors of these methods and test them on other broader problems. Moreover, we also verify that the
asymptotic convergence factor of AA(m) sometimes strongly depends on the initial approximations, so do these compos-
ite methods AA(m,AA(n)). However, these methods still compare to each other in a similar way for multiple different
initial guesses.

ACKNOWLEDGMENTS
This work was partially supported by the National Natural Science Foundation of China (grant number 12001287); the
Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (grant number
2019r106); the first author Kewang Chen also gratefully acknowledge the financial support for his doctoral study pro-
vided by the China Scholarship Council (No. 202008320191). Moreover, the authors would like to thank the anonymous
reviewers for their valuable comments and suggestions.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Kewang Chen https://orcid.org/0000-0001-5613-3644

https://orcid.org/0000-0001-5613-3644
https://orcid.org/0000-0001-5613-3644

CHEN and VUIK 21

REFERENCES
1. Anderson DG. Iterative procedures for nonlinear integral equations. J Assoc Comput Mach. 1965;12:547-560. doi:10.1145/321296.321305
2. Anderson DGM. Comments on "Anderson acceleration, mixing and extrapolation". Numer Algorithms. 2019;80(1):135-234. doi:10.1007/

s11075-018-0549-4
3. Toth A, Kelley CT. Convergence analysis for Anderson acceleration. SIAM J Numer Anal. 2015;53(2):805-819. doi:10.1137/130919398
4. Walker HF. Anderson acceleration: algorithms and implementations. WPI Math Sciences Dept Report MS-6-15-50; 2011.
5. Carlson NN, Miller K. Design and application of a gradient-weighted moving finite element code. I. In one dimension. SIAM J Sci Comput.

1998;19(3):728-765. doi:10.1137/S106482759426955X
6. Miller K. Nonlinear Krylov and moving nodes in the method of lines. J Comput Appl Math. 2005;183(2):275-287. doi:10.1016/j.cam.2004.

12.032
7. Oosterlee CW, Washio T. Krylov subspace acceleration of nonlinear multigrid with application to recirculating flows. SIAM J Sci Comput.

2000;21:1670-1690.
8. Washio T, Oosterlee CW. Krylov subspace acceleration for nonlinear multigrid schemes. Electron Trans Numer Anal. 1997;6:

271-290.
9. Walker HF, Ni P. Anderson acceleration for fixed-point iterations. SIAM J Numer Anal. 2011;49(4):1715-1735. doi:10.1137/10078356X

10. Lin L, Yang C. Elliptic preconditioner for accelerating the self-consistent field iteration in Kohn-Sham density functional theory. SIAM
J Sci Comput. 2013;35(5):S277-S298. doi:10.1137/120880604

11. Pulay P. Convergence acceleration of iterative sequences. the case of SCF iteration. Chem Phys Lett. 1980;73(2):393-398. doi:10.1016/0009-
2614(80)80396-4

12. Pulay P. Improved SCF convergence acceleration. J Comput Chem. 1982;3(4):556-560. doi:10.1002/jcc.540030413
13. Eirola T, Nevanlinna O. Accelerating with rank-one updates. Linear Algebra Appl. 1989;121:511-520.
14. Eyert V. A comparative study on methods for convergence acceleration of iterative vector sequences. J Comput Phys. 1996;124(2):271-285.

doi:10.1006/jcph.1996.0059
15. Fang H, Saad Y. Two classes of multisecant methods for nonlinear acceleration. Numer Linear Algebra Appl. 2009;16(3):197-221. doi:10.

1002/nla.617
16. Haelterman R, Degroote J, Van Heule D, Vierendeels J. On the similarities between the quasi-Newton inverse least squares method and

GMRES. SIAM J Numer Anal. 2010;47(6):4660-4679. doi:10.1137/090750354
17. Yang C, Meza JC, Lee B, Wang LW. KSSOLV—A MATLAB toolbox for solving the Kohn-Sham equations. ACM Trans Math Softw.

2009;36(2):10, 35. doi:10.1145/1499096.1499099
18. Evans C, Pollock S, Rebholz LG, Xiao M. A proof that Anderson acceleration improves the convergence rate in linearly converging

fixed-point methods (but not in those converging quadratically). SIAM J Numer Anal. 2020;58(1):788-810. doi:10.1137/19M1245384
19. Pollock S, Rebholz LG, Xiao M. Anderson-accelerated convergence of Picard iterations for incompressible Navier-Stokes equations. SIAM

J Numer Anal. 2019;57(2):615-637. doi:10.1137/18M1206151
20. De Sterck H, He Y. On the asymptotic linear convergence speed of Anderson acceleration, Nesterov acceleration, and nonlinear GMRES.

SIAM J Sci Comput. 2021;43(5):S21-S46. doi:10.1137/20M1347139
21. Wang D, He Y, De Sterck H. On the asymptotic linear convergence speed of Anderson acceleration applied to ADMM. J Sci Comput.

2021;88(2):38, 35. doi:10.1007/s10915-021-01548-2
22. Bian W, Chen X, Kelley CT. Anderson acceleration for a class of nonsmooth fixed-point problems. SIAM J Sci Comput. 2021;43(5):S1-S20.

doi:10.1137/20M132938X
23. Brune PR, Knepley MG, Smith BF, Tu X. Composing scalable nonlinear algebraic solvers. SIAM Rev. 2015;57(4):535-565. doi:10.1137/

130936725
24. Peng Y, Deng B, Zhang J, Geng F, Qin W, Liu L. Anderson acceleration for geometry optimization and physics simulation. ACM Trans

Graph (TOG). 2018;37(4):1-14. doi:10.1145/3197517.3201290
25. Shi W, Song S, Wu H, Hsu YC, Wu C, Huang G. Regularized Anderson acceleration for off-policy deep reinforcement learning. arXiv

preprint arXiv:1909.03245, 2019.
26. Toth A, Ellis JA, Evans T, et al. Local improvement results for Anderson acceleration with inaccurate function evaluations. SIAM J Sci

Comput. 2017;39(5):S47-S65. doi:10.1137/16M1080677
27. Yang Y. Anderson acceleration for seismic inversion. Geophysics. 2021;86(1):R99-R108. doi:10.1190/geo2020-0462.1
28. Zhang J, O’Donoghue B, Boyd S. Globally convergent type-I Anderson acceleration for nonsmooth fixed-point iterations. SIAM J Optim.

2020;30(4):3170-3197. doi:10.1137/18M1232772
29. Glowinski R, Keller HB, Reinhart L. Continuation-conjugate gradient methods for the least squares solution of nonlinear boundary value

problems. SIAM J Sci Stat Comput. 1985;6(4):793-832. doi:10.1137/0906055
30. Pollock S, Rebholz LG. Anderson acceleration for contractive and noncontractive operators. IMA J Numer Anal. 2021;41(4):2841-2872.

doi:10.1093/imanum/draa095
31. Chen K, Vuik C. Non-stationary Anderson acceleration with optimized damping. arXiv preprint arXiv:2202.05295, 2022. doi: 10.48550/

arXiv.2202.05295
32. Brown J, Knepley MG, May DA, McInnes LC, Smith B. Composable linear solvers for multiphysics. Proceedings of the 2012 11th

International Symposium on Parallel and Distributed Computing; 2012:55-62; IEEE.
33. Kirby RC, Mitchell L. Solver composition across the PDE/linear algebra barrier. SIAM J Sci Comput. 2018;40(1):C76-C98. doi:10.1137/

17M1133208

info:doi/10.1145/321296.321305
info:doi/10.1007/s11075-018-0549-4
info:doi/10.1007/s11075-018-0549-4
info:doi/10.1137/130919398
info:doi/10.1137/S106482759426955X
info:doi/10.1016/j.cam.2004.12.032
info:doi/10.1016/j.cam.2004.12.032
info:doi/10.1137/10078356X
info:doi/10.1137/120880604
info:doi/10.1016/0009-2614(80)80396-4
info:doi/10.1016/0009-2614(80)80396-4
info:doi/10.1002/jcc.540030413
info:doi/10.1006/jcph.1996.0059
info:doi/10.1002/nla.617
info:doi/10.1002/nla.617
info:doi/10.1137/090750354
info:doi/10.1145/1499096.1499099
info:doi/10.1137/19M1245384
info:doi/10.1137/18M1206151
info:doi/10.1137/20M1347139
info:doi/10.1007/s10915-021-01548-2
info:doi/10.1137/20M132938X
info:doi/10.1137/130936725
info:doi/10.1137/130936725
info:doi/10.1145/3197517.3201290
info:doi/10.1137/16M1080677
info:doi/10.1190/geo2020-0462.1
info:doi/10.1137/18M1232772
info:doi/10.1137/0906055
info:doi/10.1093/imanum/draa095
info:doi/10.48550/arXiv.2202.05295
info:doi/10.48550/arXiv.2202.05295
info:doi/10.1137/17M1133208
info:doi/10.1137/17M1133208

22 CHEN and VUIK

34. van der Vorst HA, Vuik C. GMRESR: a family of nested GMRES methods. Numer Linear Algebra Appl. 1994;1(4):369-386. doi:10.1002/nla.
1680010404

35. Vuik C. Solution of the discretized incompressible Navier-Stokes equations with the GMRES method. Int J Numer Methods Fluids.
1993;16(6):507-523. doi:10.1002/fld.1650160605

36. Pernice M, Walker HF. NITSOL: a Newton iterative solver for nonlinear systems; Vol. 19, 1998:30-318.
37. De Sterck H, He Y. Linear asymptotic convergence of anderson acceleration: fixed-point analysis. arXiv preprint arXiv:2109.14176, 2021

doi: 10.48550/arXiv.2109.14176

How to cite this article: Chen K, Vuik C. Composite Anderson acceleration method with two window sizes and
optimized damping. Int J Numer Methods Eng. 2022;1-22. doi: 10.1002/nme.7096

info:doi/10.1002/nla.1680010404
info:doi/10.1002/nla.1680010404
info:doi/10.1002/fld.1650160605
info:doi/10.48550/arXiv.2109.14176

	Composite Anderson acceleration method with two window sizes and optimized damping
	1 INTRODUCTION
	2 FULLY NONSTATIONARY AA
	2.1 Nonstationary AA with two window sizes
	2.1.1 Motivation
	2.1.2 Multiplicative composition of two window sizes

	2.2 Nonstationary AA with optimized damping
	2.3 Fully nonstationary AA with dynamic window-sizes and optimized damping

	3 RESIDUAL BOUNDS
	4 EXPERIMENTAL RESULTS AND DISCUSSION
	5 CONCLUSIONS

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	References

