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Scaling of the Steady-State Load Flow
Equations for Multi-Carrier Energy
Systems

A. S. Markensteijn, J. E. Romate, and C. Vuik

Abstract Coupling single-carrier networks (SCNs) into multi-carrier energy sys-
tems (MESs) has recently become more important. Steady-state load flow analysis
of energy systems leads to a system of nonlinear equations, which is usually
solved using the Newton-Raphson method (NR). Due to various physical scales
within a SCN, and between different SCNs in a MES, scaling might be needed to
solve the nonlinear system. In single-carrier electrical networks, per unit scaling is
commonly used. However, in the gas and heat networks, various ways of scaling
or no scaling are used. This paper presents a per unit system and matrix scaling
for load flow models for a MES consisting of gas, electricity, and heat. The effect
of scaling on NR is analyzed. A small example MES is used to demonstrate the
two scaling methods. This paper shows that the per unit system and matrix scaling
are equivalent, assuming infinite precision. In finite precision, the example shows
that the NR iterations are slightly different for the two scaling methods. For this
example, both scaling methods show the same convergence behavior of NR in finite
precision.

1 Introduction

Multi-carrier energy systems (MESs) have become more important over the years,
as the need for efficient, reliable and low carbon energy systems increases. In these
energy systems, different energy carriers, such as gas, electricity, and heat, interact
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with each other leading to one integrated energy network. An important tool for the
design and operation of energy systems is steady-state load flow (LF) analysis of the
energy networks. LF models for single-carrier networks (SCNs) have been widely
studied, but only recently LF models for MESs have been proposed.

Steady-state LF analysis leads to a system of nonlinear equations, which is
usually solved using the Newton-Raphson method (NR). The quantities in the LF
equations can be several orders of magnitude apart, such that scaling might be
needed to solve the nonlinear system.

In single-carrier electricity networks, per unit scaling is generally used (e.g.
[1]). In the per unit system, every variable and parameter is scaled to obtain
dimensionless equations. In gas and heat networks, a more ad hoc approach to
scaling is used. In MESs, the SCN variables, having various scales, are combined.
This requires a consistent way to scale the LF equations for MES. In [2], the per
unit system is extended to the heat network for consistency throughout an example
MES. To the best of the authors knowledge, there is no equivalent of the per unit
system for a gas network.

Another option to scale the system of nonlinear LF equations is by scaling the
equations and variables using scaling matrices. Even though this method is a well
known scaling method, it is not generally used for LF analysis in any of the SCNs.

We introduce a per unit scaling for MESs consisting of gas, electricity, and heat,
by extending the per unit scaling of an electricity network to gas and heat. We
compare the per unit scaling with matrix scaling for NR, and show that they are
equivalent when using the same base values. The advantages and disadvantages of
both methods are discussed.

Using a small MES consisting of gas, electricity, and heat, we investigate the
effect of the two scaling methods on the convergence of NR. Despite numerical
(round-off) errors, both scaling methods show the same convergence behavior.

2 Steady-State Load Flow

An important tool for the design and operation of energy systems is steady-state LF
analysis. The inflow and outflow of the energy system are assumed constant, and the
network flows and potentials are determined by the LF equations. For instance, in a
gas pipeline network, the gas inflow and outflow are assumed constant, and the gas
flow in the pipes and the pressures at the start and end of the pipes are determined.

Energy systems are mathematically represented by a network or graph, which is a
collection of nodes, connected by (directed) links. Flow enters the network through
sources and leaves the network through sinks. This is represented by an open link
connected to a single node only, called terminal link and terminal node respectively.
For steady-state LF, the variables of interest are associated with the network nodes,
links, or terminal links. Conservation of energy holds in all the single-carrier
(SC) nodes. All SC (terminal) links representing a physical component have a
link equation that relates link and nodal variables. SC nodes and coupling nodes
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can have additional node equations that relate the (terminal) link variables of the
links connected to that node. There are generally more variables than nodal and
link equations. Therefore, some variables are assumed known, called the boundary
conditions (BCs) of the network. Collecting all the nodal and link equations, some
of which are nonlinear, into one system, and substituting the BCs, gives the system
of LF equations:

F (x) = 0 (1)

with F ∈ R
n the vector of (nonlinear) LF equations and x ∈ R

n the vector of
variables. For specific LF models, see for instance [1] for electricity, [3] for gas, and
[4] for MESs.

3 Scaling

The parameters and the dependent and independent variables in the LF equations
can be several orders of magnitude apart, even within one SCN. For instance, gas
flow ∼ 1 kg s−1 whereas pressure ∼ 105 Pa. These different scales might result in
issues with solving the system of nonlinear equations, see Sect. 4. Normalizing or
scaling the variables and parameters for electricity networks is commonly done,
and is called the per unit system (e.g. [1]). Another option is to scale the system
of equations and the independent variables by scaling matrices, without scaling the
equation parameters. To investigate the effect of scaling on the system of equations,
we consider dimensional analysis.

The LF equations are a mathematical representation of a physical phenomenon.
Physical quantities are not just numerical values, they also have a dimension and
a unit measure associated with them. For instance, the diameter D of a gas pipe
has dimension ‘length’, and could have a unit measure of 1 cm and a value of 15.
Denoting the unit measure of length by l and the value of D by k, we can write
D = kl. We can scale D by changing the unit measure with a scaling factor kl ∈ R,
and generally kl > 0, such that l → kll. Using this new unit measure for D will
change the unit measure and the value (to k/kl), but not the dimension.

Based on the logic as laid out for dimensional analysis in for instance [5],
quantities can only be combined in limited ways. Quantities can be multiplied,
which multiplies the dimension in the same way. To add two quantities, they must
have the same dimension and the same unit measure. Other functional relations are
only possible if all arguments are dimensionless. For instance, if f (x) = sin (x),
then both f (x) and x must be dimensionless. Using these concepts recursively,
a function of multiple arguments can be made. An equation that satisfies these
properties is called ‘complete’ in [5]. A consequence is that the algebraic form of
the equation is unit independent. That is, if the unit measure of any dimension is
changed, the algebraic form of the equation remains the same. However, the value



716 A. S. Markensteijn et al.

of the function might be changed, just like the value of some of the quantities is
changed. This can be seen as follows.

Since two (or more) terms can only be added if the terms have the same
dimension and unit measure, we can limit ourselves to functions consisting of only
one term. Furthermore, for dimensionless quantities, or for a dimensionless group
consisting of the power product of some quantities, the changes in unit measures
cancel out. Hence, we only need to consider the change in value of functions of
the form f (y1, . . . , yn) = y

a1
1 · · · yan

n . We can assume that all yi have a single
(primary) dimension. Scaling each yi by changing the unit measures of the primary
dimensions by a factor ki gives

f (y1, . . . , yn) → f (k1y1, . . . , knyn) = (
k
a1
1 · · · kan

n

) (
y

a1
1 · · · yan

n

)

= (
k
a1
1 · · · kan

n

)
f (y1, . . . , yn) (2)

such that f is scaled by a power product of the unit measure scaling factors.
An equation describing a physical model does not need to be complete for the

model to be valid. In fact, the commonly used form of the link equation for a
transmission line in an electrical network is not a complete equation. It contains
terms sin δk and cos δk , with δk the voltage angles difference of link k. Based on
the logic provided above, δi and δj should be dimensionless. However, they have
dimension ‘plane angle’. The link equation can be turned into a complete equation
by using δk/δ0 instead of δk, with a δ0 reference angle.

3.1 Per Unit System

The per unit system is commonly used in electricity networks, and extended in [2]
to the heat network. We consider a more general extension of the per unit system to
heat and gas networks. In the per unit system, a quantity x is scaled by a base value:

xp.u. = xa

xb
(3)

Here, xa is the unscaled or actual quantity, usually in S.I. units, xb is a chosen base
value with the same dimension as xa , and xp.u. is the scaled quantity. The scaled
quantity is dimensionless but is given p.u. as unit. Hence, the scaled quantity is also
called the per unit quantity or value.

There are two main differences between the per unit system and changing the unit
measures. The first is that the base value has a dimension, unlike the scaling factor
of the unit measure. Second, only the unit measure scaling factors of the primary
dimensions are chosen, whereas in the per unit system, the base value for derived
quantities might be chosen. The first point has no consequence for the argumentation
resulting in (2). However, the second point can lead to some difficulties. Since
derived quantities are combinations of other quantities, and applying the same
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logic that resulted in a complete equation, only a limited set of base values can
be specified. The base values for the other quantities then follow from dimensional
analysis. The set of base values that can be specified is not unique, neither are the
resulting base values of the other quantities. However, it is possible to find a set of
base values such that the equation remains a complete equation. For such a set of
base values, the argumentation resulting in (2) is still valid. We can now look at the
effect of the per unit system of the equation.

Suppose we have a (complete) equation of the form f
(
xa, pa

)
, with xa ∈ R

n all
the variables, and pa ∈ R

m all other quantities, dimensionless or not, appearing in
the algebraic form of f . We take a set of base values b1, . . . , bk, with k ≤ n + m,
and scale each x ∈ xa and p ∈ pa according to (3), with xb and pb power products
of the base values b1, · · · , bk . If the base values are chosen such that the equation
f remains a complete equation after scaling, the equation is scaled according to:

f
(
xa, pa

) = [
b

α1
1 · · · bαk

k

]
f

(
xp.u., pp.u.

)
(4)

Usually, only the variables are explicitly denoted as arguments for the function, such
that f

(
xa, pa

)
is written as f (xa) and f

(
xp.u., pp.u.

)
as fp.u.

(
xp.u.

)
. For the scaled

equation we then find

f (xa) = [
b

α1
1 · · · bαk

k

]
f

(
xp.u., pp.u.

) := fbfp.u.
(
xp.u.

)
(5)

where fb = [
b

α1
1 · · · bαk

k

]
is called the base value of the function f . That is, for a

suitable set of base values, the same expression of the LF equations can be used for
both the unscaled and per unit quantities, and all independent variables and all LF
equations can be scaled to similar orders of magnitude.

For an electricity network, the base values of the voltage amplitude and the power
are chosen. The base values of the other variable (current amplitude) and of the
parameters of the LF equations (admittance) are determined by the requirement that
the LF equations remain a complete equation, using dimensional analysis (e.g. [1]).

The per unit system is then easily extended to the gas and heat SCN, and to a
MES. We choose the base values for pressure and flow in the gas network, and for
pressure, mass flow, temperature, and power in the heat network. The base values of
the other variables and parameters are determined based on dimensional analysis.
For the couplings in a MES, we choose the base values of the power of every carrier
involved in the coupling, and again determine the base values of the other quantities
according to dimensional analysis.

The advantage of scaling derived quantities instead of scaling primary dimen-
sions becomes clear when considering transformers in an electrical network, or
compressors in a gas network. These components change the voltage or pressure
level, and their link equation has the general form f (x1, x2, r) = x1 − rx2 = 0,
with x1 and x2 the voltages or pressures, and r some ratio. Since x1 and x2 have
the same dimension, r must be dimensionless. Hence, changing the unit measures
will scale the values of x1 and x2 with the same factor, and will leave r unscaled.
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In practice, x1 and x2 might be orders of magnitude apart when using the same unit
measure. In the per unit system, it is possible to use a different base value for x1 and
x2, such that both x1 ∼ 1 p.u. and x2 ∼ 1 p.u. Note that the scaled x1 and x2 now
have different unit measures, despite both of their units being denoted by p.u. Due
to the requirement for addition of dimensional quantities, r needs to scaled with
rb = (x1)b/(x2)b.

3.2 Matrix Scaling

Another option is to scale the independent variables and the equations only, using
scaling matrices [6]. Taking non-singular matrices Tx, TF ∈ R

n×n, the scaled
variables x̂ and scaled equations F̂ are given by:

x̂ = Txx (6)

F̂
(
x̂
) = TFF

(
T −1

x x̂
)

= TFF (x) (7)

Unlike the per unit scaling, scaling with matrices requires us to also choose the
scaling for the equations instead of only for the variables. However, per unit scaling
requires base values for all parameters in every equation. Furthermore, matrix
scaling is generally easier to implement than per unit scaling.

If we take Tx as a diagonal matrix with (Tx)ii = (xb)i , where (xb)i the base value
of xi ∈ x used in per unit scaling, it follows from (5) that TF is a diagonal matrix
with (TF )ii = (fb)i , where (fb)i the base value of fi ∈ F found in per unit scaling.
Therefore, in infinite precision, the per unit scaling and matrix scaling will result in
the same scaled system of equations F̂ and the same scaled variables x̂. Hence, the
per unit system and matrix scaling are said to be equivalent.

4 Newton-Raphson

We use the Newton-Raphson method (NR) to solve the system of non-linear LF
equations (1). The iteration scheme in multiple dimensions is given by [6]:

J
(
xk

)
sk = −F

(
xk

)
, with xk+1 = xk + sk (8)

J
(
xk

)
is the Jacobian matrix. We take ek = ||F (

xk
) ||2 as error of NR at iteration

k, with || · ||2 the 2-norm. For the stopping criterion we take ek ≤ τ for some
chosen tolerance τ . If the equations in F are several orders of magnitudes apart,
the smaller ones might be ignored during NR, or NR might not convergence to a
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solution since the larger ones will never reach the required tolerance. Therefore, we
scale all equations in F to be of same order of magnitude.

Since per unit scaling and matrix scaling are equivalent, we only consider matrix
scaling. The iteration scheme of NR is adjusted to:

Ĵ
(
x̂k

)
ŝk = −F̂

(
x̂k

)
, with x̂k+1 = x̂k + ŝk (9)

It is straightforward to show that Ĵ
(
x̂
) = TF J (x) T −1

x . Then, for the scaled step it

holds that ŝk = −TxJ (x)−1 F
(
xk

) = Txsk , meaning that scaling does not affect the

NR iterations. We take êk = ||F̂k||2 = ||TFF
(
T −1

x x̂
) ||2 as error of the scaled NR.

Since all f̂i ∈ TFF are roughly of the same order of magnitude, we take êk ≤ τ as
stopping criterion.

5 Numerical Results

The previous analysis only holds in infinite precision. In finite precision, an NR step
might be affected. In the per unit system, the scaled variables and parameters are
plugged into (1) to obtain the scaled system of equations, denoted by Fp.u.. With
matrix scaling, the unscaled variables and parameters are used in (1). Then, the
scaled system of equations is given by F̂ = TFF

(
T −1

x x̂
)
. Due to round-off errors,

generally Fp.u. �= F̂, even though Fp.u. and F̂ will be close. Similarly, Jp.u. �= Ĵ ,
such that ŝk �= skp.u. �= Txsk . We model a small MES to investigate the effect of finite
precision on NR for the two different scaling options.

We consider the small MES shown in Fig. 1, and use the LF model as described in
[4]. The resulting system of nonlinear equations is scaled using the per unit system
and using matrix scaling. The resulting scaled systems Fp.u. and F̂ are solved using
NR as described in Sect. 4, with a tolerance of τ = 10−6. For comparison, we
also solve the unscaled system using NR. Denoting the unscaled system by F, the
(unscaled) error at each NR iteration is given by ek = ||Fk (x) ||2. To compare
with the error of NR for the scaled systems, we calculate the scaled error of the
unscaled NR iteration by ẽk = ||TFFk (x) ||2. Note that ẽk is different from the error

êk = ||F̂k (
x̂
) ||2 = ||TFFk

(
T −1

x x̂
) ||2 of scaled NR, since scaled NR uses the scaled

update ŝk instead of sk .
Table 1 gives the errors for NR. We can see that the errors for the per unit scaling

and the matrix equals are unequal, but close, to each other and to the error of
unscaled NR. Hence, scaling affects NR in finite precision. In this example, this
effect does not result in a significant difference between the solutions to the LF
problem.



720 A. S. Markensteijn et al.

heat network
electricity network
gas network

1h

2h

0h

2e0e

1e1g

0g

2g
0c

1c

Fig. 1 Network representation of a small MES. Each SCN consists of three nodes. The gas and
electricity networks have an external source connected at nodes 0g and 0e, the heat network has
no external sources. In each SCN, nodes 1 and 2 are sinks. The SCNs are coupled by a gas-boiler,
node 0c , and a combined heat and power plant (CHP), node 1c. The links show defined direction
of flow, the terminal links show actual direction of flow

Table 1 Errors of NR for each iteration k, using a tolerance of τ = 10−6. Here ẽk = ||TFFk ||2,
êk = ||F̂k ||2 and ek

p.u. = ||Fk
p.u.||2. The last column gives the relative difference between the errors

of scaled NR and unscaled NR

k ẽk êk ek
p.u.

|ẽk−êk |
|ẽk |

|ẽk−ek
p.u.|

|ẽk |
0 1.0310 × 106 1.0310 × 106 1.0310 × 106 0.0000 0.0000

1 1.3081 × 103 1.3081 × 103 1.3081 × 103 2.6421 × 10−14 1.0951 × 10−14

2 5.7417 × 10−1 5.7417 × 10−1 5.7417 × 10−1 1.5071 × 10−12 9.6527 × 10−13

3 7.0379 × 10−4 7.0379 × 10−4 7.0379 × 10−4 6.5244 × 10−10 7.7472 × 10−10

4 3.2883 × 10−9 3.2890 × 10−9 3.2886 × 10−9 1.8566 × 10−4 7.4581 × 10−5

5 6.6172 × 10−11 – – – –

6 Conclusion

We extended the per unit system used in electrical networks for scaling the load flow
(LF) equations to gas networks, heat networks, and multi-carrier energy networks
(MCNs). The per unit system scales the equations by scaling all variables and
parameters. The base values are determined by dimensional analysis, such that the
scaled system is also dimensionless. Another option is to use scaling matrices, which
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explicitly scales the equations. We showed that base values can be chosen such that
the per unit system is equivalent to using scaling matrices, in infinite precision.

Newton-Raphson’s method (NR) is used to solve the (scaled) system of nonlinear
LF equations. In infinite precision NR is unaffected by scaling. Using the LF
equations for a small MCN, we showed that both scaling methods lead to slightly
different NR steps, meaning that NR is affected by scaling in finite precision.
However, the difference in the solution found for the LF problem is small. Hence,
for this example, the per unit system and scaling matrices are equivalent in finite
precision.
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