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Analysis of Bicycle Headway Distribution,
Saturation Flow and Capacity at a
Signalized Intersection using Empirical
Trajectory Data

Yufei Yuan1, Bernat Goñi-Ros1, Mees Poppe1,
Winnie Daamen1, and Serge P. Hoogendoorn1

Abstract
Predicting the bicycle flow capacity at signalized intersections of various characteristics is crucial for urban infrastructure
design and traffic management. However, it is also a difficult task because of the large heterogeneity in cycling behavior and
several limitations of traditional capacity estimation methods. This paper proposes several methodological improvements,
illustrates them using high-resolution trajectory data collected at a busy signalized intersection in the Netherlands, and inves-
tigates the influence of key variables of capacity estimation. More specifically, it shows that the (virtual) sublane width has a
significant effect on the shape of the headway distribution at the stop line. Furthermore, a new method is proposed to calcu-
late the saturation headway (a key variable determining capacity), which excludes the cyclists initially located close to the stop
line using a distance-based rule instead of a fixed number (as is usually done in practice). It is also shown that the saturation
headway is quite sensitive to the sublane width. Moreover, a new, empirically based method is proposed to identify the num-
ber of sublanes that can be accommodated in a given cycle path, which is another key influencing variable. This method yields
considerably lower estimates of the number of sublanes than traditional methods, which rely solely on the (available) cycle
path width. Finally, the authors show that methodological choices such as the sublane width and the method used to estimate
the number of sublanes have a considerable effect on capacity estimates. Therefore, this paper highlights the need to define a
sound methodology to estimate bicycle flow capacity at signalized intersections and proposes some steps to move toward
that direction.

The ability to predict the bicycle flow capacity of cycle
paths at signalized intersections is crucial for urban
infrastructure design and traffic management. Capacity
(maximum hourly rate at which bicycles can pass the
stop line of cycle paths) depends on various key vari-
ables, such as the geometric characteristics of cycle
paths, the interference with other traffic modes (e.g., car
traffic), the traffic control schemes, and the cyclist head-
way distributions. Estimation of the latter is a difficult
task because of the large heterogeneity in cycling beha-
vior. Previous studies on headway distribution models
mainly focus on motorized vehicles, and can be split into
two categories. The first states that all the headways can
be modeled from a single distribution. Examples are the
normal distribution (1), the exponential distribution (2),
the gamma distribution (3), and the lognormal distribu-
tion (4). The second category consists of composite head-
way models. In this case, the total headway distribution
is made up of two different headway distributions,

resulting from whether the vehicle/bicycle is following
the vehicle/bicycle in front or moving freely. Examples of
composite headway models are a semi-Poisson model
(5), a generalized queueing model (6), and a distribution-
free approach (7). Applications of headway distribution
models on cyclist data are rare. A distribution-free (or
rather, non-parametric) model estimation approach fol-
lowing the theory of composite headways has been per-
formed on a cyclist intersection in the Netherlands (8).

Another key variable of capacity estimation is the
saturation flow, which is often calculated as the inverse
of the average headway observed between cyclists and
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their leaders once the queue is moving in a stable man-
ner, multiplied by the number of cyclist sublanes that the
cycle path can accommodate. There are multiple exam-
ples of empirically derived saturation flows, and various
values of saturation flows have been reported. A study in
the Netherlands reported 3,000–3,500 cyclists per hour
for a 0.78m-wide cyclist lane (9). An empirical analysis
in California and Colorado suggested a maximum flow
rate of 4,500 cyclists per hour on a 2.43m-wide cycle
path, and it concluded that cyclist saturation headway
started at the sixth cyclist in a queue (10). A case study
in Beijing, China found 1,836–2,088 cyclists per hour for
a 1.25m-wide path (11). A 2m-wide cycle-track in
Santiago de Chile was reported to have a saturation flow
of 4,657 cyclists per hour, whereas for Tavistock Square
in London the saturation flow was equal to 4,320 cyclists
per hour for a path with the width of 1m (12). Another
point of interest related to saturation flow calculation is
the cycle path width. Usually, cyclists can form multiple
queues as the ‘‘sublane’’ of a bicycle path is not fixed;
this is different from the lane usage of motorized vehi-
cles. In the literature, many different sublane widths have
been suggested, for example, 0.78m in the Netherlands
(9), 1.00m in Germany (13) and even 1.60m in Norway
(14). However, there is a lack of a unified paradigm to
compute saturation flow rate and thus the bicycle flow
capacity. Besides, there are several limitations in tradi-
tional calculation methods. For instance, the calculation
of the number of sublanes in Botma and Papendrecht
was solely based on the available cycle path width, and
ignored leader–follower relations in queue discharge pro-
cesses (9); the calculation of saturation headway in
Raksuntorn and Khan suffered from the problem of
headways close to zero, because leader–follower pairs
were not clearly identified (10).

Generally, the capacity of a cycle path at a signalized
intersection (C) is calculated as follows (9, 10):

C = qs �
Te

T
ð1Þ

where:

qs =u � 1

hs
ð2Þ

and:

Te = TG � TL + TYG ð3Þ

In Equations 1–3: qs denotes the saturation flow; hs
denotes the saturation headway between leader–follower
pairs; T denotes the total cycle time; Te is the effective
green time; TG is the total green time; TL is the start-up
lost time; TYG is the period of the yellow phase in which
cyclists still pass the stop line; and u is the number of

virtual sublanes in a given cycle path. This paper pro-
poses a series of methodological improvements on capac-
ity estimation, illustrates them using high-resolution
trajectory data collected at a busy intersection in the
Netherlands, and investigates the influence of key vari-
ables. More specifically, it shows that the (virtual) sub-
lane width has a significant effect on the shape of the
headway distribution at the stop line. Furthermore, a
new method is proposed to calculate the saturation head-
way hs (a key variable determining capacity), which
excludes the cyclists initially located close to the stop line
using a distance-based rule instead of a fixed number (as
is usually done in practice), and the authors show that
the saturation headway is quite sensitive to the sublane
width. Moreover, a new, empirically based method is
proposed to identify the number of sublanes u available
to cyclists in a given cycle path, which is another key
variable influencing capacity. The authors show that this
method yields considerably lower estimates of the num-
ber of available sublanes than traditional methods, which
rely solely on the (available) cycle path width. Finally, it
is shown that methodological choices such as the values
of the sublane width, as well as the method used to esti-
mate the number of available sublanes, have a consider-
able impact on capacity estimates.

The rest of this paper is structured as follows. the next
section first describes the data set used in this study, and
then illustrates the calculations of several key variables of
capacity estimation. The results of the analyses are then
presented. The final section contains the conclusions of
this study and some suggestions for future research.

Data and Methods

This section describes the empirical trajectory data set
analyzed in this study, and then it describes the method
used to measure cyclist headways at the stop line as well
as the methods proposed to estimate the saturation head-
way, the saturation flow, the start-up lost time and thus
the capacity of cycle paths at signalized intersections. For
clarification and easy reference purposes, all the variables
introduced in this work and their definitions are listed in
Table 1.

Data Set Characteristics

The data set analyzed in this study consists of the trajec-
tories of 691 cyclists moving along a cycle path that leads
to a signalized intersection in Amsterdam (the
Netherlands). The cycle path is 2m wide, unidirectional,
and segregated from car traffic. Traffic demand for this
cycle path is relatively high in peak hours, and consists
of people riding both bicycles and scooters. In this data
set the percentage of scooters is very low; hereafter we
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refer to these as cyclists in both cases with an assumption
that there is no effect on the analysis results. Access to
the intersection is regulated by a traffic light.

The trajectories were derived from top-view video
images using the methodology described in Goñi-Ros
et al. (15). The video images were obtained using two
cameras mounted on a 10m pole, which was placed next
to the cycle path (more details about this type of

installation can be found in Duives [16]). The two cam-
era views can be seen in Figure 1 in (15). The two camera
views combined covered 20m of cycle path upstream of
the traffic light. The frame rate varied between 5 and
10fps during the video recordings.

Traffic along this cycle path stretch was recorded
between 12:45 and 19:00 h on June 6, 2016. By looking
at the video footage, the queue discharge periods that

Table 1. Variables and Their Definitions (in Alphabetical Order of the Notation Names)

Notations Definitions

C capacity of a cycle path at a signalized intersection
d distance to the stop line, d 2 D
ds distance threshold leading to the most accurate estimate of the saturation headway
D a set containing various consecutive values of d
�hc(d) average headway of cyclists closer to the stop line than d
�hf(d) average headway of cyclists farther from the stop line than d
�hE

f (d) piecewise linear function fitting to the (d,�hf(d)) points

hi headway of cyclist i
hs saturation headway between leader–follower pairs
i cyclist index, i= 1, 2, . . . ,N. It gives the rank of the cyclists regarding the time when

they pass cross-section xref

j index of the leader of cyclist i (j\i)
k index of queue discharge period
Mc(d) a set containing the indices i of all cyclists whose initial longitudinal position xi

is higher than xref � d for a given value of distance d
Mf(d) a set containing the indices i of all cyclists whose initial longitudinal position xi

is lower than xref � d for a given value of distance d
N total number of cyclists in a queue
Nk

c(d) number of cyclists standing closer to the stop lane than d in a queue discharge period k

NE
c(d) linear function fitting to the (d,Nk

c(d)) data points of all the selected discharge periods
qs saturation flow

Rk
l number of cyclists who are in each position l of a chain in each queue discharge period k

tc headway increment because of the start-up reaction and acceleration
ti time instant when cyclist i passes cross-section xref

tG time instant when the green phase starts
T total cycle time
Te effective green time
TG total green time
TL start-up lost time
TYG period of the yellow phase where cyclists still pass the stop line
w width of a virtual sublane for each cyclist
W physical width of a cycle path
Wa available cycle path width
Wu actually used cycle path width
xi longitudinal position of cyclist i
xref position of a reference cross-section along the roadway used to calculate headways
yi(ti) lateral displacement of cyclist i at time instant ti
l index of cyclist position in a leader–follower chain, l= 1, � � � ,L
Lk total number of chain positions in each queue discharge period k
u number of virtual sublanes in a given cycle path
uE empirical number of sublanes
uT theoretical number of sublanes
KN kernel distribution function, which is a non-parametric function
N (mN,sN) normal distribution function
mN and sN mean and standard deviation of the headways
X (mX,sX) lognormal distribution function
mX and sX mean and standard deviation of the natural logarithm of the headways
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met the following criteria were selected (see also Goñi-
Ros et al. [15]): (a) the queue is formed by at least
seven cyclists; (b) no more than two cyclists within the
queue are riding scooters; (c) all cyclists move toward

the stop line and pass it without getting out of the
path; (d) no pedestrian crosses the cycle path during
the queue discharge process; (e) the discharge process
is not affected by downstream traffic conditions; and

(a)

(b) (c)

(d) (e)

Figure 1. Illustration of the methods used to calculate different variables. (a) Illustration of the method used to calculate the time
headways (w = 1.0 m). The numbers assigned to (ti, yi) points correspond to the cyclist indices i. Green phase starts from time tG;
(b) Example of piecewise-linear function fit to determine the distance threshold ds (w = 1.0 m); (c) Illustration of the method used to
calculate the saturation headway (hs) and the headway increment tc, once the distance threshold ds has been identified (w = 1.0 m);
(d) Linear relation between Nk

c (d) and d. Light blue markers denote the number of cyclists standing closer to the stop line than d in each
queue discharge period k. (e) Illustration of the method used to empirically determine the number of sublanes (based on the data for the
same queue discharge period shown in Figure 1[a]). Blue numbers correspond to cyclist identification indices (i); red numbers correspond
to the cyclist position within the chain (l); and black numbers correspond to the Rk

l values. In this case, uk
E ¼ 2.
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(f) all cyclists pass the stop line before the end of the
green phase.

The total number of selected queue discharge periods
was 57, with an average queue size of 12.12 cyclists, 2%
of which were scooters (see also Goñi-Ros et al. [15]).
For every selected period, the trajectories of all cyclists
forming part of the queue were derived using a procedure
that comprises six steps: (1) video clip decomposition; (2)
manual cyclist tracking; (3) height transformation; (4)
orthorectification and scaling; (5) time coding; and (6)
trajectory merging. Please refer to Goñi-Ros et al. (15)
for a full description of this procedure.

Definition of Headway of a Cyclist

In road traffic, the (gross) time headway—or simply
headway—of a vehicle n is defined as the difference
between the time when a certain part (e.g., rear bumper)
of the preceding vehicle in the same lane (i.e., vehicle
n� 1) passes a reference cross-section along the roadway
(xref) and the time when the same part of vehicle n passes
that cross-section (17). Thus defined, the value of the
headway is a direct consequence of the longitudinal
acceleration behavior of the driver, which is mostly influ-
enced by the movement of the preceding vehicle in the
same lane, and can be used to calculate the capacity of a
roadway (18). In bicycle traffic, however, the definition
of headway is less straightforward, as cyclists can gener-
ally not be allocated to well-defined lanes. This makes it
difficult to identify the preceding cyclist that constrains
the longitudinal acceleration of a given cyclist.

To overcome this issue, headways can be defined
based on the concept of virtual sublane, as proposed, for
example, by Hoogendoorn and Daamen (8) and Botma
and Papendrecht (9). For a given queue discharge period,
let us assign an index i to every cyclist in the queue, where
the index gives the rank of the cyclists regarding the time
they pass cross-section xref (i= 1, 2, . . . ,N , where N is
the total number of cyclists in the queue). Furthermore,
let ti denote the time instant when cyclist i passes cross-
section xref, and let yi(ti) denote the lateral displacement
of cyclist i at time instant ti. Then, the following rule can
be used to determine leader j (see also Figure 1a). The
leader of cyclist i is the cyclist with the largest index j\i

for which:

jyj(tj)� yi(ti)jł
w

2
ð4Þ

where w.0 denotes the width of a virtual sublane for
each cyclist.

Parameter w corresponds to the minimum width of
the space right in front of the cyclist that needs to be
empty so that he/she can move forward in a safe manner.
The value of w is around 75–80cm in Hoogendoorn and

Daamen (8) and Botma and Papendrecht (9), 100cm in
Brilon et al. (13), and 160cm in Allen at al. (14). This dif-
ference between studies are partially as a result of the dif-
ferent bicycle points used to define lateral positions yi

and yj (e.g., center or end of handlebar) in each study.
Another reason is the lack of knowledge on the size of
the lateral influencing area of cyclists (swerving and
swaying), which leads to different assumptions on the
value of w.

Here, the leader of cyclist i is defined as the cyclist
that passed cross-section xref earlier than cyclist i closer
in time, within the virtual sublane used by cyclist i (which
has a width equal to w). Once cyclist i has been assigned
a leader j, his/her headway hi can be calculated as fol-
lows (see also Figure 1a):

hi = ti � tj ð5Þ

Note that using the method described above, it is not
possible to assign a leader to some cyclists, particularly
those who are initially located close to the stop line
(because no cyclist passes the stop line before them
within their virtual lane). For these cyclists, it is assumed
that tj in Equation 5 is the time instant when the green
phase starts (tG), as shown in Figure 1a for the calcula-
tion of h1.

Headway Distribution Modeling

Using the method described in above, the headways of
cyclists at the intersection stop line (i.e., xref was defined
as the cross-section of the stop line) in the 57 selected
queue discharge periods were calculated. As will be dis-
cussed later, the headways at the stop line are relevant
for the estimation of saturation headway, start-up lost
time, and thus cycle path capacity.

A histogram of the headways of all cyclists who have
a leader (all following headways) was built. Three differ-
ent functions were fitted to the headway data to deter-
mine the shape of the distribution: (a) normal
distribution function, N (mN,sN); (b) lognormal distribu-
tion function, X (mX,sX); and (c) kernel distribution
function, KN. The first and second functions are well-
known parametric functions, where parameters mN and
sN correspond to the mean and standard deviation of
the headways, and parameters mX and sX correspond to
the mean and standard deviation of the natural loga-
rithm of the headways. Instead, KN is a non-parametric
function, which has been fit using the MATLAB func-
tion fitdist(x,’kernel’) with a normal smoothing function
and default parameter values.

Note that a critical influencing factor of the headway
calculation method (see ‘‘Definition of Headway of a
Cyclist’’) is the virtual sublane width (w). To investigate
the sensitivity of the headway distribution to the virtual
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sublane width, the authors calculated the headways, built
the histograms and fit the distribution functions for vari-
ous values of w.

Calculation of Saturation Headway

Similarly to road traffic (19), the saturation headway for
cyclists can be defined as the average headway between
cyclists and their leaders once the queue is moving in a
stable manner. Like in road traffic, the first group of
cyclists in a queue generally have longer headways than
cyclists located more upstream (10). The main reason is
that they generally lose time reacting to the traffic light
(15) and they pass the stop line when still accelerating to
their desired speed, whereas the other cyclists pass the
stop line at more or less constant speed. For this reason,
in practice, the headways of the first group of cyclists are
excluded when calculating the saturation headway (10).

As mentioned above, when calculating the saturation
headway, the basic assumption is that once the queue
moves in a stable manner, the average headway stays
constant, whereas the average headway of the first group
of cyclists is longer. Therefore, the main challenge is to
determine which headways need to be excluded from the
calculation. For example, Raksuntorn and Khan ana-
lyzed the discharge process on a 2.43m-wide cycle path
and estimated that the headways of the first five cyclists
in the queue need to be excluded (10); note, however,
that they did not calculate the headways based on the
concept of virtual sublane (see ‘‘Definition of Headway
of a Cyclist’’), so their headways are not necessarily the
difference in passing times between follower–leader pairs.
Here, the authors propose to exclude not a fixed number
of cyclists (like in Raksuntorn and Khan [10]), but those
cyclists who are initially closer than a certain distance to
the stop line (ds, distance threshold). The reason is that
the authors deem the initial distance to the stop line to
influence the speed of cyclists at the stop line more than
their ranking regarding their initial proximity to the stop
line. In other words, beyond a certain initial distance ds,
cyclists are assumed to have enough space to accelerate
to their desired speed before crossing the stop line, and
only then they are included in the calculation of the
saturation headway.

To determine the distance threshold ds leading to the
most accurate estimate of the saturation headway, a
model-based approach was used (see also Figure 1b). Let
Mc(d) and Mf(d) denote two disjoint sets containing the
indices i of all cyclists (in all selected discharge periods)
whose initial longitudinal position xi is higher and lower
than xref � d, respectively, for a given value of distance
d. Here, the headways of cyclists who did not have a
leader were excluded. Firstly, a set D containing various
consecutive values of d was defined, and the average

headways contained in sets Mc(d) and Mf(d) calculated
for all values of d contained in set D. Thus, the average
headway of cyclists closer to the stop line than d and the
average headway of cyclists farther from the stop line
than d (which can be denoted by �hc(d) and �hf(d), respec-
tively) were obtained for all the specified values of d.
Secondly, the authors visualized the results in a plot
where the axes were d and the average headway in set
Mf(d) (see Figure 1b). A visual inspection of this plot
shows that the average headway of cyclists initially
located farther from the stop line than d decreases more
or less linearly with d and becomes quite stable after a
certain value of d. Thirdly, the value of d that leads to
the most accurate estimate of the saturation headway
(i.e., ds) was identified by fitting the following piecewise
linear function to the (d, �hf(d)) points (note that the data
points for d. 12m were not used to fit the piecewise lin-
ear function, because for d. 12m the number of ele-
ments (cyclists) in set Mf(d) is too low and the average
headway �hf(d) varies too much for different values of d).
(see also Figure 1b):

�hEf (d)=
a1 + b1 � d if d\ds
A1 if d ø ds

�
ð6Þ

which has three parameters: a1, b1 and ds, and
A1 = a1 + b1 � ds.

Once the distance threshold ds has been derived, the
saturation headway (hs) can be defined as the average
headway of all cyclists initially located farther from the
stop line than ds (see also Figure 1c):

hs = �hf(ds) ð7Þ

Note that the distance threshold ds may be different
for different values of w. The authors calculated the
saturation headway using the headway data derived
using different virtuals sublane widths (w) to investigate
the sensitivity of the saturation headway to the value of
w. In all cases, the piecewise linear model (Equation 6)
fits the (d, �hf(d)) data points reasonably well (R2 higher
than 0.96).

Calculation of Start-Up Lost Time

As discussed in ‘‘Calculation of Saturation Headway’’,
the first group of cyclists in the queue (more specifically,
those located closer to the stop line than ds), generally
experience a start-up reaction and acceleration time,
which causes them to have longer headways at the stop
line on average than the following cyclists. For the latter,
the influence of start-up reaction and acceleration on
their headways at the stop line is minimal, so their head-
way is shorter (hs, on average).

6 Transportation Research Record 00(0)



The average headway of the first group of cyclists in
the queue (both with and without a leader) can be
decomposed into two elements: the saturation headway
(hs) and a headway increment tc resulting from the start-
up reaction and acceleration, which can thus be defined
as follows (see also Figure 1c):

tc = �hc(ds)� hs ð8Þ

Similar to the work in Raksuntorn and Khan (10), the
start-up lost time (TL) can then be defined as the head-
way increment (tc) multiplied by the expected number of
cyclists standing closer to the stop line than ds before the
traffic light turns green (NE

c (ds)):

TL =NE
c (ds) � tc ð9Þ

Variable NE
c (ds) in Equation 9 is determined using a

linear model estimated by fitting the following linear
function to the (d,Nk

c (d)) data points of all the selected
discharge periods k (see Figure 1d):

NE
c (d)= a2 + b2 � d ð10Þ

where: a2 and b2 are constants; d denotes an element
(distance value) of set D (see ‘‘Calculation of Saturation
Headway’’); and k is an index identifying the queue dis-
charge period.

As shown in Figure 1d, variable NE
c (ds) is obtained by

substituting d in Equation 10 by the value of ds, which is
derived as explained in ‘‘Calculation of Saturation
Headway’’. The start-up lost time assuming different vir-
tual sublane widths (w) was calculated to investigate the
sensitivity of TL to the value of w.

Calculation of the Number of Sublanes

The number of virtual sublanes (u) can be calculated
either theoretically (which is the traditional approach,
used for example in Botma and Papendrecht (9)) or
based on empirical observations as proposed in this
work. Theoretically, u could be calculated as follows (9):

uT =
Wa

w
ð11Þ

where Wa is the available cycle path width, which is the
path width that is actually used by cyclists if we look at
their positions on the ground (Wu) plus w=2 on each side
(so plus w in total):

Wa =Wu +w ð12Þ

From this definition of available cycle path width, it
follows that in some sites Wa may not be equal to the
physical width of the cycle path (W ). For example, in this
study’s site, the cycle path is segregated from both the

road and the sidewalk, so cyclists tend to use the full
width of the cycle path (Wu ’ W ); therefore, Wa.W .
Instead, in the sites analyzed in Raksuntorn and Khan
(10), the cycle paths are not segregated from the road, so
cyclists do not use the full width of the cycle path
(Wu\W ), which implies that the difference Wa �W is
probably lower and maybe even negative.

This theoretical definition of u may overestimate the
number of virtual sublanes that can be accommodated in
a given cycle path. An alternative method to calculate u
is to determine the actual number of virtual sublanes
observed in empirical data (�uE). For this purpose, the
authors propose the following innovative approach. For
a given discharge period k, the leader–follower chains (as
shown in Figure 1e) are built. Then, the number of
cyclists Rk

l who are in each position l of a chain are
counted, where l= 1, � � � ,Lk . For example, l= 1

means the first position in a chain, and in Figure 1e there
are two cyclists who are in the first position of a chain,
so Rk

1 = 2. The total number of chain positions (Lk) dif-
fers among queue discharge periods.

The number of virtual sublanes of a given discharge
period can then be defined as follows:

uk
E =

PLk

l= 1

Rk
l

Lk
, ð13Þ

and the number of virtual sublanes (�uE) is the average
value of uk

E in all queue discharge periods.
The saturation flow (qs in Equation 2) and the capac-

ity of the cycle path (C in Equation 1) were calculated
assuming different sublane width (w) and using different
estimates of the number of sublanes u (theoretical
and empirical methods). The traffic control scheme
parameters were set to TG = 20s, and TYG= 4s and
T 2 {60, 120}s.

Results

This section presents the results of the previously
described analyses, which have been performed using the
empirical trajectory data set described in the same
section.

Headway Distribution Functions and Influence of
Virtual Sublane Width

The histograms shown in Figure 2, a–d provide an over-
view of the empirical headway distributions at the stop
line with different virtual sublane widths (w). These fig-
ures show that the change in virtual sublane width has a
significant influence on the shape of the headway distri-
bution. In general, headways decrease as the width of
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virtual sublane increases: the average headway decreases
from 2.16 to 1.28s if w increases from 0.7 to 2.0m (see
Table 2). This makes sense, because with greater values
of w cyclists can be assigned to leaders that are laterally
more distant and pass the stop line closer in time (see
‘‘Definition of Headway of a Cyclist’’). However, the
headway varies considerably among cyclists: the range
between first (Q1) and third quantiles (Q3) is 0.80–1.36s

wide depending on the sublane width (see Table 2). As
expected, the kernel distribution function fits the head-
way histogram best, followed by the lognormal distribu-
tion which also fits the data reasonably well (see
Figure 2, a–e). Besides, it is observed that the average
headway of cyclists who have a leader is generally
smaller than the one derived from all cyclists (with and
without a leader) (see Table 2).

Figure 2. Headway distributions and negative log likelihood with three distribution functions with respect to different sublane widths.
Note only the headways of cyclists who have a leader (following headways) have been included in this analysis. (a) Headway distribution
with w = 0.80m; (b) headway distribution with w = 1.00m; (c) headway distribution with w = 1.20m; (d) headway distribution with
w = 1.40m; (e) negative log likelihood of three distribution functions with different sublane widths.
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Distance Threshold, Saturation Headway and Start-Up
Lost Time

The distance threshold ds used to exclude the first group

of cyclists of the queue when calculating the saturation

headway (see ‘‘Calculation of Saturation Headway’’)

decreases slightly with the increasing sublane width (see

Figure 3a and Table 2). For sublane widths between 0.7

and 2.0m, ds is estimated to be 6.5–8.25m, which implies

the exclusion of the first 6.1–7.6 cyclists, according to the

linear model shown in Figure 1d. This is a slightly higher
number than in Raksuntorn and Khan (10), in which the
authors estimated that the first five cyclists needed to be
excluded, although the available width of the cycle path
analyzed in their study (10) is slightly lower than in this
study’s site.

The saturation headway decreases with the increasing
sublane width (see Figure 3b and Table 2), as expected.
More specifically, the saturation headway decreases from
1.72 to 1.10s if w increases from 0.7 to 2.0m.

Table 2. Values of Different Variables with Respect to the Sublane Width w

Virtual sublane width w (m)

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Headway of cyclists that have a leader (s)
Mean 2.16 2.05 1.93 1.84 1.79 1.70 1.66 1.61 1.54 1.49 1.44 1.37 1.32 1.28
Median 1.82 1.70 1.61 1.54 1.50 1.43 1.41 1.37 1.33 1.30 1.26 1.19 1.18 1.16
1st Quantile (Q1) 1.29 1.21 1.16 1.12 1.11 1.08 1.07 1.02 0.98 0.94 0.91 0.85 0.82 0.79
3rd Quantile (Q3) 2.65 2.49 2.35 2.20 2.17 2.03 2.00 1.96 1.83 1.79 1.74 1.67 1.63 1.59
Headway of all cyclists (s)
Mean 2.30 2.19 2.07 1.98 1.91 1.83 1.78 1.73 1.65 1.59 1.55 1.47 1.43 1.38
Median 2.00 1.85 1.76 1.68 1.65 1.58 1.54 1.50 1.43 1.40 1.33 1.29 1.26 1.22
Q1 1.38 1.30 1.24 1.20 1.17 1.12 1.11 1.08 1.02 0.98 0.94 0.88 0.86 0.84
Q3 2.85 2.73 2.56 2.45 2.37 2.23 2.19 2.14 2.01 1.98 1.92 1.83 1.80 1.73
Normal distribution N
Parameter mN 2.16 2.05 1.93 1.84 1.79 1.70 1.66 1.61 1.54 1.49 1.44 1.37 1.32 1.28
Parameter sN 1.26 1.20 1.13 1.07 1.03 0.96 0.95 0.91 0.91 0.91 0.89 0.87 0.83 0.82
Lognormal distribution X
Parameter mX 0.63 0.57 0.52 0.47 0.45 0.40 0.37 0.34 0.28 0.24 0.20 0.13 0.09 0.05
Parameter sX 0.52 0.52 0.51 0.51 0.50 0.50 0.51 0.52 0.55 0.59 0.60 0.63 0.65 0.67
Distance threshold ds (m)

8.25 7.75 8.25 8.25 8.00 7.75 7.75 7.00 6.75 7.00 6.50 6.75 7.00 6.75
Saturation headway hs (s)
Mean 1.72 1.66 1.52 1.45 1.42 1.40 1.36 1.34 1.29 1.26 1.21 1.16 1.12 1.10
Median 1.57 1.43 1.32 1.23 1.25 1.22 1.21 1.20 1.18 1.15 1.11 1.08 1.03 1.03
Q1 1.09 1.08 0.98 0.94 0.95 0.94 0.94 0.93 0.91 0.89 0.86 0.81 0.77 0.75
Q3 2.20 2.15 1.97 1.77 1.72 1.66 1.61 1.60 1.54 1.52 1.46 1.43 1.38 1.36
Start-up lost time TL (s)
Mean 3.15 3.18 3.86 4.04 4.05 3.69 3.77 3.66 3.40 3.17 3.22 3.07 3.18 2.96
Median 3.26 3.92 4.12 4.46 4.18 4.01 3.93 3.89 3.49 3.29 3.28 3.14 3.09 2.89
Q1 3.10 2.65 3.26 3.41 3.03 2.73 2.66 2.63 2.36 1.97 1.95 1.44 1.61 1.36
Q3 3.97 3.76 4.76 5.49 5.71 5.60 5.63 5.15 4.79 4.41 4.47 4.35 4.38 4.12
Theoretical number of sublanes (uT)

3.86 3.50 3.22 3.00 2.82 2.67 2.54 2.43 2.33 2.25 2.18 2.11 2.05 2.00
Empirical number of sublanes (uE)
Mean (�uE) 2.18 2.04 1.93 1.86 1.82 1.72 1.68 1.63 1.59 1.52 1.51 1.49 1.45 1.46
Median 2.17 2.00 1.83 1.82 1.80 1.67 1.63 1.63 1.50 1.40 1.38 1.38 1.33 1.30
Q1 1.83 1.75 1.69 1.63 1.63 1.40 1.40 1.31 1.23 1.13 1.13 1.13 1.11 1.09
Q3 2.50 2.27 2.18 2.03 2.00 1.91 1.86 1.83 1.83 1.80 1.76 1.71 1.68 1.70
Saturation flow qs (cyc./h)
With u = uT 8060 7610 7645 7456 7133 6866 6741 6532 6495 6449 6476 6528 6579 6574
With u = �uE 4561 4435 4573 4626 4617 4424 4452 4376 4437 4347 4497 4613 4653 4800
Capacity C (cyc./h)
u = uT, T = 120s 1401 1320 1283 1240 1186 1162 1137 1107 1115 1120 1121 1139 1142 1153
u = uT, T = 60s 2801 2641 2566 2480 2371 2324 2273 2214 2230 2239 2243 2278 2283 2305
u = �uE, T = 120s 793 770 768 769 767 749 751 742 762 755 779 805 807 842
u = �uE, T = 60s 1585 1539 1535 1539 1535 1497 1501 1483 1523 1509 1558 1609 1615 1683
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Furthermore, hs is a highly stochastic variable (the
range between Q1 and Q3 of hs is 0.61–1.11s depending
on the value of w (see Table 2)). For values of w

between 1.00 and 1.40m (which can be considered as
reasonable values of w), the saturation headway equals
1.34–1.45s.

The start-up lost time, instead, seems to increase for
w = [0.7, 1.1]m and decrease for w = [1.1, 2.0]m (see
Figure 3c). For values of w between 1.00 and 1.40m, TL

is within the range of 3.66–4.04s. This variable is
highly stochastic, as the range between Q1 and Q3 of TL

is 0.87–2.87s depending on the value of w (see Table 2).
Thus, the value of TL is again slightly higher than the TL

value reported in Raksuntorn and Khan (10), which was
2.5s, as more cyclists (1.1–2.6 more) are included in the
first cyclist group of the queue in the present study.

Saturation Flow and Capacity Estimation

Clearly, the proposed empirical method to calculate the
average number of virtual sublanes �uE (see ‘‘Calculation
of the Number of Sublanes’’) yields considerately lower

(a) (b)

(c) (d)

(e) (f)

Figure 3. Relations of distance threshold, saturation headway, start-up lost time, number of sublanes, saturation flow and capacity with
respect to the sublane width chosen to calculate the headways at the stop line. (a) relation between sublane width and distance threshold;
(b) relation between sublane width and saturation headway; (c) relation between sublane width and start-up lost time; (d) relation
between sublane width and number of sublanes; (e) relation between sublane width and saturation flow; (f ) relation between sublane
width and capacity (TG = 20s, and TYG = 4s).
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estimates than the theoretical method, especially for
lower values of w (see Figure 3d). The estimates obtained
using the empirical method are between 1.46 and 2.18
virtual sublanes (depending on the value of w), 27–44%
less than the theoretical method. This may be explained
by the fact that cyclists do not always sufficiently utilize/
occupy the space of cycle paths when they form leader–
follower pairs during queue-formation processes. Note,
however, that uE is a stochastic variable, as the range
between Q1 and Q3 of uE is 0.37–0.67 depending on the
value of w (see Table 2).

The fact that the observed number of sublanes is much
lower than the theoretically assumed number of sublanes
has enormous implications for the calculation of the
saturation flow (and thus the capacity). As shown in
Figure 3e and Table 2, the saturation flow calculated
using the mean empirical estimates of u (�uE) and satura-
tion headway (hs) is around 4350–4800cyc./h depending
on the value of w (values similar to those observed by
Raksuntorn and Khan (10) and Seriani et al. (12) in cycle
paths of similar widths), 27–43% lower than the satura-
tion flow calculated using the theoretical estimates of u
(uT). Also, the saturation flow changes less with w if the
empirical estimate of u is used (see Figure 3e). This has
crucial implications for the estimation of capacity (as
shown in Figure 3f, and Table 2).

Conclusions

The ability to predict the bicycle flow capacity at signa-
lized intersections of various characteristics is crucial for
urban infrastructure design and traffic management.
However, it is also a difficult task because of the large
heterogeneity in cycling behavior as well as several limita-
tions of traditional capacity estimation methods (e.g., the
ignorance of leader–follower relations). This study pre-
sented an improved methodology to estimate the satura-
tion flow and the capacity of cycle paths at signalized
intersections. More specifically, this methodology
includes a method to measure headways between leader–
follower pairs using the concept of virtual sublane, an
improved method to calculate the saturation headway
and the start-up lost time (using a distance-based rule),
as well as a new empirically based method to estimate the
number of virtual sublanes that the cycle path can
accommodate. Estimates of these variables were derived
from cyclist trajectory data of a busy intersection in
Amsterdam (the Netherlands). One of the main findings
is that saturation headway, start-up lost time, and num-
ber of virtual sublanes are highly stochastic variables.
This needs to be taken into account when interpreting
the saturation flow and capacity estimates calculated
using the means of these variables. For a reasonable
range of w (which is considered to be 1.00–1.40m), the

authors estimated (for the site in Amsterdam) that the
saturation headway is 1.34–1.45s depending on the value
of w, the start-up lost time is 3.66–4.04s, the number of
virtual sublanes (measured using the empirical method) is
1.63–1.86 (whereas the theoretical number is 2.43–3.00),
and the saturation flow is 4,376–4,626cyc./h. The satura-
tion flow estimates are significantly lower (27–43%
lower) than if the theoretical method is used to calculate
the number of virtual sublanes (uT =Wa=w), as is usually
done in practice.

Further research is necessary to identify the lateral
influencing area of cyclists and to define the virtual sub-
lane width based on empirical evidence. Moreover, it is
necessary to analyze more sites with various cycle path
widths (Wa) to establish an empirical relation between
number of virtual sublanes and Wa, which would allow
more accurate prediction of the capacity of cycle paths
of various width and other characteristics to be made,
and also for optimal widths of cycle paths to be derived.
This is very useful for cycle path design and traffic man-
agement. Alternative methods to measure the number of
sublanes can also be explored. In this work, no distinc-
tion was made between scooters and different types of
bicycles (e.g., electric bicycles, and human-powered
bicycles including regular bicycles, cargo bicycles, racing
bicycles). Note, however, that the percentage of scooters
in this data set was very low. As future work, the influ-
ence of the presence of scooters, and different composi-
tion of bicycle types on the calculation of bicycle
headway and capacity should be investigated. Also the
influence of traffic composition should take into account
different traffic conditions. This is not trivial, as traffic
operations are different for regular and saturated flow
conditions. For the latter, conflicts caused by speed dif-
ferences among road users would not be so different
dependent on the composition, as the flow is fully
packed in this situation.
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