
 
 

Delft University of Technology

Calculating Thermodynamic Factors for Diffusion Using the Continuous Fractional
Component Monte Carlo Method

Hulikal Chakrapani, Thejas; Hajibeygi, Hadi; Moultos, Othonas A.; Vlugt, Thijs J.H.

DOI
10.1021/acs.jctc.3c01144
Publication date
2024
Document Version
Final published version
Published in
Journal of chemical theory and computation

Citation (APA)
Hulikal Chakrapani, T., Hajibeygi, H., Moultos, O. A., & Vlugt, T. J. H. (2024). Calculating Thermodynamic
Factors for Diffusion Using the Continuous Fractional Component Monte Carlo Method. Journal of chemical
theory and computation, 20(1), 333-347. https://doi.org/10.1021/acs.jctc.3c01144

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1021/acs.jctc.3c01144
https://doi.org/10.1021/acs.jctc.3c01144


Calculating Thermodynamic Factors for Diffusion Using the
Continuous Fractional Component Monte Carlo Method
Thejas Hulikal Chakrapani, Hadi Hajibeygi, Othonas A. Moultos, and Thijs J. H. Vlugt*

Cite This: J. Chem. Theory Comput. 2024, 20, 333−347 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Thermodynamic factors for diffusion connect the Fick and Maxwell−Stefan diffusion coefficients used to quantify
mass transfer. Activity coefficient models or equations of state can be fitted to experimental or simulation data, from which
thermodynamic factors can be obtained by differentiation. The accuracy of thermodynamic factors determined using indirect routes
is dictated by the specific choice of an activity coefficient model or an equation of state. The Permuted Widom’s Test Particle
Insertion (PWTPI) method developed by Balaji et al. enables direct determination of thermodynamic factors in binary and
multicomponent systems. For highly dense systems, for example, typical liquids, it is well known that molecular test insertion
methods fail. In this article, we use the Continuous Fractional Component Monte Carlo (CFCMC) method to directly calculate
thermodynamic factors by adopting the PWTPI method. The CFCMC method uses fractional molecules whose interactions with
their surrounding molecules are modulated by a coupling parameter. Even in highly dense systems, the CFCMC method efficiently
handles molecule insertions and removals, overcoming the limitations of the PWTPI method. We show excellent agreement between
the results of the PWTPI and CFCMC methods for the calculation of thermodynamic factors in binary systems of Lennard-Jones
molecules and ternary systems of Weeks−Chandler−Andersen molecules. The CFCMC method applied to calculate the
thermodynamic factors of realistic molecular systems consisting of binary mixtures of carbon dioxide and hydrogen agrees well with
the NIST REFPROP database. Our study highlights the effectiveness of the CFCMC method in determining thermodynamic factors
for diffusion, even in densely packed systems, using relatively small numbers of molecules.

1. INTRODUCTION
Multicomponent mass transfer by diffusion is crucial for the
design and optimization of many industrial processes.1,2 Self-
and mutual diffusion are the two main categories. Self-diffusion
is reflected by the displacements of individual molecules,3 while
mutual diffusion describes the collective molecular transport of a
species due to a concentration or chemical potential gradient.
Mutual diffusion in gases and liquids often dictates the design
principles of chemical reactors and separators,4,5 and is

traditionally treated using the Fick and Maxwell−Stefan (MS)
approaches.6 For an n-component system, Fick’s approach
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linearly correlates the mass flux of a component to the
concentration gradients of all n species in a mixture. The
proportionality constants are identified as the Fick diffusion
coefficients. There are (n − 1)2 independent Fick diffusion
coefficients.5 The MS approach uses nonequilibrium thermody-
namics to relate the drag force experienced by a species to its
chemical potential gradient, considering interactions with all
other species.5 The chemical potential gradients act as driving
forces for diffusion, so the Maxwell−Stefan diffusion coefficient
emerges as an effective inverse friction coefficient that balances
this driving force.2 As chemical potential gradients are not
directly accessible, one needs to convert them into concen-
tration gradients, making Fick coefficients the preferred choice
for experiments.2,5,7 In a molar reference frame, the diffusion
coefficients from the Fick and MS frameworks can be related via
the so-called thermodynamic factors for diffusion,7 as follows

=D BFick 1 (1)

where DFick is a square matrix of size (n − 1) consisting of the
Fick diffusivities, B is a square matrix of the same size, which
depends on the n(n − 1)/2 MS diffusivities,5 and the matrix Γ
contains the thermodynamic factors for diffusion. The elements
of Γ are given by7

= + x
x

ln
ij ij i

i

j T p, ,

i
k
jjjjjj

y
{
zzzzzz

(2)

where T is the absolute temperature, and p is the pressure. The
term Σ enforces that during differentiation the mole fractions
{xi} of all species remain constant, except for the nth
component. This constraint ensures that the mole fractions
sum to unity during the differentiation. δij is the Kronecker delta,
equal to 1 when i equals j and 0 otherwise, and Γi is the activity
coefficient7 of component i. Note that for an n-component
system, the Γ matrix containing (n − 1)2 elements is not
symmetric.5,7 For an ideal n-component mixture, we have Γi = 1,
so Γij = δij.
Thermodynamic factors Γ for binary and multicomponent

systems can be determined from experiments and molecular
simulations.7 Activity coefficient models or equations of state
can be fitted to experimental or simulation data, from which the
elements of Γ can be obtained by differentiating eq 2.7 In
molecular simulations, activity coefficients can be obtained from
Widom’s Test Particle Insertion (WTPI) method.8−10 This
indirect approach involves differentiating a fitted model for γi,
and the quality of the obtained thermodynamic factors is
dependent on the accuracy of the activity coefficient model. The
variability of the elements of Γ with different activity coefficient
models further complicates their determination. In molecular
simulations, besides fitting the simulation data to activity models
or equations of state, there are alternative approaches to obtain
thermodynamic factors for diffusion: (1) Kirkwood-Buff
Integrals (KBIs);11−19 (2) simulations in the grand-canonical
ensemble;20 and (3) the Permuted Widom Test Particle
Insertion (PWTPI) method.21,22 The Kirkwood−Buff meth-
od18 relies on the evaluation of radial distribution functions and
their integration over volume. This avoids pitfalls associated
with molecular insertions at high densities, as in the grand-
canonical ensemble and Widom’s test particle insertion
method,10 and it provides a method to obtain thermodynamic
factors directly, i.e., without fitting the data to an activity
coefficient model or an equation of state. KBIs only converge for

large systems and necessitate a nontrivial interpretation,12−14

thus, can be cumbersome to compute. For systems with n > 2,
the expressions for obtaining Γij from KBIs are complex.23,24

Around a decade ago, to obtain thermodynamic factors directly
from molecular simulations, the PWTPI method21,22 was
introduced as a modified version of the conventional WTPI
method.8,10 In this method, combinations of independently
generated test molecules for a single system state are used to
directly compute the composition derivative of the excess
chemical potential of the system and thereby the thermody-
namic factors for diffusion. This method avoids explicit
differentiation of excess chemical potentials or activity
coefficients and provides a direct route to calculate thermody-
namic factors from a single simulation, at roughly the same
computational cost as the WTPI method. The PWTPI method
faces the same challenges at high densities as simulations in the
grand-canonical ensemble and the WTPI method, so it is
unsuitable for systems with liquid-like densities at standard
conditions.10 WTPI and PWTPI can be classified as single-step
insertion methods, where whole test molecules are inserted in a
single Monte Carlo step. The Configurational Bias Monte Carlo
(CBMC) method is an example of a single-step insertion
method commonly used to insert fragments of large molecules
like polymers.10 For successful test molecule insertions in the
WTPI, PWTPI, and CBMC methods, cavities/voids must be
available within the simulation box in which the test molecule
can fit. In dilute systems, voids are plentiful, while the availability
of cavities in dense systems is exceedingly rare, posing a
challenge for successful test molecular insertions. Should a void
be present and successful insertion of a test molecule occur in
rare instances, these infrequent events significantly impact the
statistics, leading to imprecise estimations of free energies.10 For
example, Torres-Knoop et al.25 compared the CBMC and the
CFCMC methods for computing adsorption properties in
porous materials like zeolites and metal−organic frameworks.
The authors showed that the efficiency of insertion depends on
the density of the system and that the CBMC method can yield
unphysical results when systems are dense. To summarize,
Monte Carlo methods such as the WTPI, PWTPI, and CBMC
that attempt to insert molecules in a single step fail when
molecular systems possess liquid-like densities.10

There is, thus, a clear need to develop an efficient method to
calculate thermodynamic factors for diffusion in dense systems
that is also computationally inexpensive. In this work, we present
a modified version of the PWTPI method to directly calculate
thermodynamic factors for diffusion Γij from molecular
simulations that overcomes the limitations at high den-
sities.26−28 The Continuous Fractional Component Monte
Carlo (CFCMC)method26−31 is used to facilitatemolecular test
insertions at high densities, thereby overcoming the limitation of
the PWTPI method. The CFCMC method uses the gradual
insertion and removal of so-called fractional molecules by
coupling their interactions to the surrounding molecules by the
parameter λ. By setting up an expanded ensemble in which λ is
an additional degree of freedom, the effect is that molecules can
be inserted or removed in multiple stages or Monte Carlo trial
moves so that the surrounding molecules can adapt to the
insertion or removal of test molecules. The CFCMCmethod has
been successfully used in the grand-canonical,28 Gibbs,29

osmotic,28 and reaction32 ensembles. It has also been used for
calculating the free energies28,30,33,34 and partial molar proper-
ties of fluids.35 We first establish equivalence with the PWTPI
method for a binary system of molecules interacting via

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c01144
J. Chem. Theory Comput. 2024, 20, 333−347

334

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01144?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Lennard-Jones (LJ) potentials and a ternary system of repulsive
molecules interacting through the Weeks−Chandler−Andersen
(WCA) potential.10,36 Thermodynamic factors for diffusion are
computed for molecular systems with realistic force fields,
namely, binary mixtures of hydrogen and carbon dioxide. These
binary mixtures are pertinent for hydrogen storage in large
porous reservoirs, and their thermodynamic factors for diffusion
have not been calculated using molecular simulations.37−39 In
subsurface hydrogen storage, a highly compressible gas like
supercritical carbon dioxide is also injected to confer mechanical
stability to the reservoir.40,41 These gases form nonideal binary
mixtures due to carbon dioxide’s supercritical behavior, and
predicting their mutual diffusion requires thermodynamic
factors for diffusion. Based on relevance to subsurface hydrogen
storage applications, thermodynamic factors for diffusion at 5
mol fractions are calculated at pressures of 50 and 500 bar and a
temperature of 323.15 K. Thermodynamic factors for diffusion
are then compared to three activity coefficient models fitted to
the Gibbs-excess energy data obtained from the NIST Reference
Fluid Thermodynamic and Transport Properties (REFPROP)
database.42 We demonstrate that our method can accurately
predict thermodynamic factors using systems consisting of
about 100 molecules, provided that finite-system size effects are
eliminated.
The article is organized as follows. In Section 2, the

expressions from the PWTPI and the CFCMC methods for
the thermodynamic factors of binary and ternary systems are
presented. The simulation details and force field used in this
work are described in Section 3. In Section 4, the
thermodynamic factors for diffusion computed for the binary
and ternary systems from CFCMC are compared to the values
from the PWTPI method. The values of the thermodynamic
factors for diffusion for binary mixtures of hydrogen and carbon
dioxide are presented and discussed. Our findings are
summarized in Section 5.

2. THEORY
Mathematical expressions for the elements of the ΓPWT matrix
from the PWTPI method21,22 for binary and ternary systems are
presented and briefly discussed in this section. Equivalent
expressions for the CFCMC method are derived. For a detailed
background on these topics, the reader is referred to the original
articles on the PWTPI method21,22 and the CFCMC simulation
technique.26−28,31

2.1. Thermodynamic Factors from the Permuted
Widom’s Test Particle Insertion Method. In an n-
component system, the relation of the activity coefficient Γi of
the ith component (see eq 2) to its chemical potential μi is

9

=
k T

xln lni
i i

i

o

B

i
k
jjjjj

y
{
zzzzz (3)

where μi
o is the chemical potential of the pure component i, and

xi is the mole fraction of component i. The chemical potential μi
of a component i in a multicomponent system is defined as the
change in the Gibbs free energy G of the system upon the
addition of a single molecule while fixing the composition of the
remaining n − 1 components at constant temperature and
pressure

= G N N N p T
N

( , ,. . . , , , )
i

n

i p T N

1 2

, , j i

i
k
jjjjj

y
{
zzzzz

(4)

= [ + ]
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i
k
jjjjj

y
{
zzzzz

(5)

whereNj is the total number of molecules of the jth component,
Gid is the ideal gas contribution to the Gibbs free energy, p is the
pressure, and T is the absolute temperature. Adding and
subtracting Gid in eq 5 eliminates finite-size effects22 as the
contribution of Gid to values in the Γ matrix is known a priori.
Upon inspection of eqs 2−5, it is evident that the values of the Γ
matrix are second-order derivatives of the Gibbs free energy with
respect to the number of molecules. It is often difficult to
analytically express the Gibbs free energy in terms of
thermodynamic variables like pressure, temperature, and the
number of molecules of the components due to the complexity
of the system. In the PWTPI method, the second-order
derivatives of the Gibbs free energy are expressed as two
successive first-order forward differences.21 Following Balaji et
al.,22 the elements of the thermodynamic factors estimated using
the PWTPI method ΓPWT can be derived by combining
equations eqs 2−5. The diagonal and off-diagonal elements of
the ΓPWT matrix for an n-component system equal
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where =N Ni
N

itotal is the number of molecules in the system,
V is the volume of the simulation box, ΔU+i and ΔU+ij are the
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changes in the potential energy of the system due to the addition
of a single molecule of type i and two molecules of types i and j
(where j can equal i), respectively. = k T( )B

1, where kB is the
Boltzmann constant. The terms enclosed within parentheses
⟨···⟩ denote ensemble averages at constant temperature and
pressure. Note that the term ΔU+in emerges from the
requirement that during differentiation of eq 2, the mole
fractions of all components be held constant except the nth.7,21

The thermodynamic factors are influenced by the system size
due to the extensive nature of Ni, Nj, and V, as pointed out by
Balaji et al.21 in their original manuscript on the PWTPI
technique. To remove this finite-size dependence, we invoke the
thermodynamic limit, where Ntotal → ∞ while keeping all ratios
Ni/Nj≠i fixed and scaling V proportionally withNtotal to maintain
a constant density, ρ =Ntotal/V. In this limit, terms like (Ni + 1)/
V converge to Ni/V = ρi, an intensive thermodynamic property,
effectively eliminating finite system effects. In a subsequent
work, Balaji et al.22 removed these finite-size effects by
subtracting the ideal gas contribution to the total Gibbs energy,
as shown in eq 5.
The matrix of thermodynamic factors for a binary system

consists of a single element and can be obtained by setting n = 2
and i = 1 in eq 6
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An alternate expression can be derived by setting n = 2 and i =
2 in eq 6, which yields an identical average value for ΓPWT.21

The matrix of thermodynamic factors ΓPWT for a ternary
system follows by substituting n = 3 into eq 721,22
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For a mixture of ideal gases (ΔU+ij = 0), eqs 9−12 yield an
identity matrix.21 In the case of a ternary color mixture, where
the interaction energies are independent of the molecule types
(ΔU+i andΔU+ij are identical for all i and j), eqs 9−12 again yield
an identity matrix.21

2.2. Thermodynamic Factors from the Continuous
Fractional Component Monte Carlo Method. The
CFCMC method aids in the gradual insertion and deletion of
test molecule(s) by coupling their interactions to the
surrounding molecules by a parameter λ. The parameter λ is
an additional degree of freedom in an expanded ensemble.
Groups containing multiple fractional molecule(s) can be
defined in the simulation.28,30 At λ = 0, fractional molecules
behave like ideal gas molecules with no interactions with the
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surrounding molecules, while at λ = 1, fractional molecules
develop full interactions with the surrounding molecules.26−28

A biasing potential W(λ) is added to facilitate sampling of λ
values.28,30 For a detailed background on CFCMC, the reader is
referred to the original articles.26−28,30

Poursaeidesfahani et al.29 derived simple relations equating
the ensemble averages calculated in the conventional Gibbs
Ensemble and the CFC version of the Gibbs Ensemble. To
define thermodynamic factors within the CFCMC framework
(ΓCFC), we need to find expressions equivalent to the individual
terms appearing in eqs 6 and 7, corresponding to the PWTPI
method. Following Poursaeidesfahani et al.,29 the ensemble
averages in the CFCNPT and PWTPI frameworks can be related
as29

=
+

+ +V
N
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1
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N i

V i i
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i
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=
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=
+ +

+ + V
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V
i j

( )
( 1)( 1) CFCNPT

( )
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2
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2 (18)

where the bracket ⟨···⟩i/ii/ij,CFCNPT denotes the ensemble average
at constant pressure and temperature and in the presence of
fractional group(s). Fractional groups of two fractional
molecules of type i (ii), one fractional molecule of type i and
one fractional molecule of type j (ij), or a single fractional
molecule of type i (or j) correspond to independent simulations.
At λ = 0, the molecules within the fractional group exhibit no
interactions with the surrounding molecules, transitioning into
whole molecules with complete interactions at λ = 1. The terms
on the left side of eqs 16−18 can be computed using any
fractional group since they all yield (statistically) identical values
when λ = 0. The function δ(λ) is the Dirac delta function. In the
above discussion, system states are sampled in the presence of a
biasing potentialW(λ),29 which ensures uniform sampling of λ.
To calculate the ensemble average of the type ⟨X⟩i/ii/ij,CFCNPT,
appropriate weights are multiplied to X to obtain the Boltzmann
averages.29 The thermodynamic factors ΓCFC for an n-

component system in the CFCNPT ensemble can then be

readily obtained by replacing the individual terms in eqs 6 and 7

using relations from eqs 13−18. The thermodynamic factor

ΓCFC in the CFCNPT method for a binary system reads as
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This expression is derived in the presence of a fractional

molecule of type 1. An equivalent expression for ΓCFC derived

using a fractional molecule of type 2 where n = 1 is
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The expressions for the ΓCFC matrix for a ternary system are
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2.3. Using Gibbs−Duhem Equations for Simplifying
Thermodynamic Factors. The generalized Gibbs−Duhem
relation at constant temperature and pressure constrains the
changes in the partial molar property of a multicomponent
mixture.43,44 This was used by Balaji et al.21,22 to achieve better
statistics and faster convergence of the elements of the ΓCFC

matrix. Using the Gibbs−Duhem equations for a binary system
yields21,22

= +x xCFC
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which on expansion reads
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where the common term x1x2Ntotal has been factored out to

simplify the expression. The application of the Gibbs−Duhem

equation eliminates terms emanating from single-molecule test

insertions; see eq 26. ⟨ΓCFC⟩ converges faster toward the

thermodynamic factor than eqs 19 or 20.21,22 Invoking the

Gibbs−Duhem relations for a ternary system yields21,22

= +x x(1 )(1 )11
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where 31
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CFC are defined as
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Note that the notation ∼ on 31
CFC and 32

CFC emphasizes that
these elements do not belong to the matrix of thermodynamic
factorsΓCFC of a ternary system since Γij

CFC is only defined for i≤
2 and j ≤ 2.
The number of simulations and the associated terms required

to compute thermodynamic factors for binary and ternary
systems are summarized and tabulated in Tables 1 and 2. For a

binary system, application of the Gibbs−Duhem equation (eq
25) results in the elimination of single molecule test insertion
terms.21,22 The single-molecule test insertion terms for a ternary
system do not cancel, barring exceptions, e.g., when x1 = 0.5, x2 =
0.25, and x3 = 0.25.21,22 For binary and ternary systems, terms
involving molecules i and j result in identical ensemble averages
as terms j and i. The binary and ternary systems require three and

Table 1. List of Independent CFCMC Simulations Required
to Compute the Thermodynamic Factor ΓCFC at a Given
System Composition for Binary Systems, See Eq 26a

simulation
molecule(s) in
fractional group term

1 1,1 + +N N V
( 1)

( 1)( 2)
/

( )

1 1
2

11,CFCNPT

i
k
jjjjj

y
{
zzzzz

2 1,2 + +N N V
( 1)

( 1)( 1)
/

( )

1 2
2

12,CFCNPT

i
k
jjjjj

y
{
zzzzz

3 2,2 + +N N V
( 1)

( 1)( 2)
/

( )

2 2
2

22,CFCNPT

i
k
jjjjj

y
{
zzzzz

aEach row lists the simulation number, the molecule types in the
fractional groups, and the associated term in eq 26. Inserting a
fractional group consisting of molecules 1 and 2 results in the same
ensemble average as when the order is reversed.
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nine independent simulations, respectively, at a given
composition of the system.

3. METHODS
All simulations are performed in the CFC version of the NPT
ensemble as implemented in the open-source software Brick-
CFCMC.28,30 Binary systems consisting of 200 molecules
interacting via the Lennard-Jones (LJ) potential are simulated
in a 3D simulation box with periodic boundary conditions. The
interaction parameters in reduced units are σ11 = 1.0, σ22 = 1.2,
σ12 = σ21 = 1.1, ε1 = 1.0, ε2 = 0.5, and ε12 = ε21 = 0.1. The LJ
potential is truncated and shifted for interactions beyond 2.5σ11.
Following Balaji et al.,20 simulations are performed at a reduced
pressure p = 2.8 and temperature T = 2 at 9 different
compositions from x1 = 0.1 to x1 = 0.9.
Ternary systems consist of 100 molecules and interact

through the soft repulsive WCA potential10,36 in a three-
dimensional box with periodic boundary conditions. The
interaction parameters in reduced units are σij = 1 (for all i
and j), εij = 1 (for all i = j), ε12 = 0.4, ε13 = 0.2, and ε23 = 0.5. The
potential is truncated and shifted at a cutoff radius of 21/6σ11.
Following Balaji et al.,22 all simulations are performed at a
reduced pressure of 6.8, a reduced temperature of 2, and system
compositions varying between x1 = 0.1 to 0.9, while x2 = x3.
Binary mixtures of hydrogen and carbon dioxide containing

200 molecules are simulated using rigid molecular models in a

three-dimensional box with periodic boundary conditions. The
hydrogen molecule exhibits anisotropy due to its two nuclei and
nonspherical charge distribution.45,46 Molecular models of
hydrogen, aimed at capturing its thermodynamical behavior,
can be classified as single-site45,47,48 or multisite models.49,50

Single-site models consist of a single LJ interaction site, while
multisite models also include a point quadrupole to model
anisotropic interactions. The three-site Marx model45,50 was
selected for its accuracy in reproducing the bulk densities and
fugacities of hydrogen at pressures up to 1000 bar.33,51 Quantum
effects emanating at low temperatures are insignificant for the
temperatures considered in this work (323.15 K) .52,53 Carbon
dioxide is simulated as a rigid linear molecule using the TraPPE
force field.54,55 The TraPPE force field compares favorably with
the experimental data for the vapor−liquid equilibrium of pure
carbon dioxide and its multicomponent mixtures for a wide
range of temperatures, pressures, and compositions.54,55 The
model has three LJ sites to model the repulsive and dispersion
interactions.54,55 Each LJ site is also conferred a partial charge to
capture electrostatic interactions. Simulations of binary systems
of carbon dioxide and hydrogen are conducted at pressures of 50
and 500 bar, respectively. A fixed temperature of 323.15 K is
chosen while exploring compositions from xHd2

= 0.1 to 0.9,
where xHd2

is the mole fraction of hydrogen. A cutoff radius of 10
Å is used for all LJ interactions, and analytic tail corrections are
applied. The interaction parameters between unlike LJ sites are
defined using the Lorentz−Berthelot mixing rules.10,56 Electro-
static energies are computed using the Ewald summation.57

Cutoff distances for real-space electrostatic interactions are
chosen to limit the number of k-vectors in Fourier space to a
maximum of k = 8, thereby making simulations computationally
less expensive.28,57 We choose a real-space cutoff of 11 Å with a
damping parameter of α = 0.3 Å−1 for 50 bar. At 500 bar, we
choose a real space cutoff of 19 Å with a damping parameter of α
= 0.17 Å−1. These settings ensure that the electrostatic energies
are computed with a relative precision of 10−6. The force field
parameters for hydrogen and carbon dioxide are listed in Table
3.

Every cycle of a CFCNPT simulation contains Ntotal Monte
Carlo (MC) moves, where Ntotal is the total number of
molecules. In the binary and ternary systems, molecule
translations, volume changes, λ changes, and CFC hybrid trial
moves28,30 are selected with probabilities of 0.5, 0.01, 0.19, and
0.3, respectively. In hydrogen carbon dioxide binary mixtures,
translations, rotations, volume changes, λ changes, and CFC
hybrid trial moves28,30 are selected with probabilities of 0.3, 0.2,

Table 2. List of Independent CFCMC Simulations Required
to Compute the Matrix of Thermodynamic Factors ΓCFC at a
Given System Composition for Ternary Systems, See Eqs
21−24 and Eqs 27−32a

Simulation
Molecule(s) in
fractional group Term

1 1 +N V
( 1)
( 1)

/
( )

1 1,CFCNPT

i
k
jjjjj

y
{
zzzzz

2 2 +N V
( 1)

( 1)
/

( )

2 2,CFCNPT

i
k
jjjjj

y
{
zzzzz

3 3 +N V
( 1)

( 1)
/

( )

3 3,CFCNPT

i
k
jjjjj

y
{
zzzzz

4 1,1 + +N N V
( 1)

( 1)( 2)
/

( )

1 1
2

11,CFCNPT

i
k
jjjjj

y
{
zzzzz

5 1,2 + +N N V
( 1)

( 1)( 1)
/

( )

1 2
2

12,CFCNPT

i
k
jjjjj

y
{
zzzzz

6 1,3 + +N N V
( 1)

( 1)( 1)
/

( )

1 3
2

13,CFCNPT

i
k
jjjjj

y
{
zzzzz

7 2,2 + +N N V
( 1)

( 1)( 2)
/

( )

2 2
2

22,CFCNPT

i
k
jjjjj

y
{
zzzzz

8 2,3 + +N N V
( 1)

( 1)( 1)
/

( )

2 3
2

23,CFCNPT

i
k
jjjjj

y
{
zzzzz
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aEach row lists the simulation number, the molecule type(s) in the
fractional groups, and the associated term in eqs 21−24 and eqs
27−32. Inserting a fractional group consisting of molecules i and j
results in the same ensemble average as when their order is reversed.

Table 3. Interaction Parameters for the TraPPE Force Field
of Carbon Dioxide, the O�C�O, and the Three-Site Marx
Model for Hydrogena

atom ε/kB/[K] σ/[Å] q/[e]

O�[C]�O 27.0 2.80 0.70
[O]�C�O 79.0 3.05 0.35
H−[L]−H 3.05 2.958 −0.936
[H]−L−H 0.468

aEach row contains the LJ and the electrostatic interaction parameters
for the atom highlighted between brackets []. Parameters between
dissimilar species are calculated using the Lorentz−Berthelot mixing
rules.10,56 The bond lengths O�(C�O) and H−(L−H) equal 1.16
and 0.37 Å, respectively, where the brackets () represent the bond.
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0.01, 0.19, and 0.3, respectively. The probabilities for molecule
translations, rotations, λ changes, and CFC hybrid trial moves
are selected to be of similar magnitudes. Modifying these
probabilities does not impact the thermodynamic properties of
the system. Volume changes are computationally expensive
since configurational energies need recalculation based on
updated intermolecular distances after rescaling the simulation
box. Consequently, volume changes are typically executed with a
probability of 0.01.28,30 The maximum displacements for
molecule translations, volume changes, rotations, and λ changes
are adjusted to obtain acceptance ratios of ca. 50%. Ninit
initialization and Nequil equilibration cycles are performed to
remove molecule overlaps and develop the biasing potential
W(λ), respectively. A production phase lasting Nprod cycles
ensures a uniform distribution of observed λ values. At every
mole fraction, simulations are repeated Nrep with distinct
random number generator seeds to obtain better statistics for
each term in Tables 1−3. The convergence of the values of ΓCFC

is achieved by adequately sampling λ = 0 and λ = 1. Note that the
delta functions in the expression for the thermodynamic factors
of binary mixtures (eq 26) and ternary mixtures (eqs 21−24 and
eqs 27−32) are evaluated only when λ is either 0 or 1. For
intermediate values of λ, the Lennard-Jones and electrostatic
interactions are scaled based on the value of λ. The complete
expressions for the Lennard-Jones and electrostatic interactions
as a function of λ are provided by Hens et al.28 The values for
Ninit,Nequil,Nprod, andNrep for all systems are provided in Table 4.
Error bars are computed by dividing all simulations into 5 groups
and calculating their standard deviation.

4. RESULTS AND DISCUSSION
As a first benchmark case, we compare thermodynamic factors
computed using the CFCMC and PWTPI methods21 for a
binary mixture of LJ molecules. In the second benchmark case,
thermodynamic factors for a ternary WCA molecule system are
computed using the CFCMC method and compared to the
PWTPI method.22 The CFCMC method is used next to
calculate the thermodynamic factors for diffusion in a real
molecular system consisting of binary mixtures of hydrogen and
carbon dioxide.
4.1. Binary LJ Mixtures. For binary LJ systems, the

thermodynamic factor for diffusion is calculated using eqs 19,
20, 25, and 26. Figure 1 is a numerical test of eqs 13−15, wherein
the terms from the two methods show nearly exact agreement.

Note that the terms in eqs 15−18, representing the single
molecule insertions, are omitted since they cancel out on
application of the Gibbs−Duhem equation; see eq 26. The ideal
gas terms responsible for the finite-system size corrections
appearing in eq 19 agree exactly with the corresponding terms
from the PWTPI method (data not shown).
The values of ⟨ΓCFC⟩ obtained from applying eq 26 are shown

in Figure 2 as a function of the number of CFCMC cycles. To
emphasize the role of statistics, we plot Sim

CFC
i

from 40
independent simulations, where Simi denotes the ith simulation
for 1 ≤ i ≤ 40, while ⟨ΓCFC⟩ is calculated as an average of these

Table 4. Number of Initialization (Ninit), Equilibration
(Nequil), and Production (Nprod) Cycles in the CFCMC
Simulations for the Binary, Ternary, and Hydrogen and
Carbon Dioxide Mixturesa

system Ninit Nequil Nprod Nrep

binary 104 5 × 106 108 40
ternary 104 107 108 40
hydrogen + carbon dioxide 104 5 × 105 8 × 106 100

aNrep is the number of repetitions for each simulation, aimed at
improving statistics by using different random number generator
seeds and averaging the results. The computational requirements,
expressed in units of CPU hours, for the calculation of
thermodynamic factors at a single mole fraction are approximately
14,400 for a binary mixture of LJ molecules, approximately 10,800 for
a ternary mixture of WCA molecules, and approximately 92,160 for a
binary mixture of hydrogen and carbon dioxide.

Figure 1. Individual terms (Table 1) from the CFCMC method,
plotted as a function of the number of CFCMC production cycles for a
binary mixture of LJ molecules simulated at a reduced temperature T =
2, reduced pressure p = 2.8, and x1 = 0.1. An average (reduced) density
of ρ = 0.43 agrees well with the simulations from the PWTPM
method.21 Each data point is a block average over 40 independent
CFCMC simulations. Lines represent mean values from the PWTPI
method (eq 8) for the corresponding CFCMC terms. Terms related to
single molecule insertions are omitted as these are canceled out by the
Gibbs−Duhem equation (eq 26).

Figure 2. Evolution of ⟨ΓCFC⟩ with the number of CFCMC production
cycles is plotted for a binary mixture of LJ molecules atT = 2 and p = 2.8
in reduced units and x1 = 0.1. Every symbol and the accompanying
errors in measurement are computed by evaluating block-averages of

Sim
CFC

i
from 40 independent simulations, where i corresponds to the

number of the independent simulations. For comparison with the
PWTPI method, ⟨ΓPWT⟩ is plotted as a dashed line. The inset zooms in
on ⟨ΓCFC⟩ between 5× 107 and 9 × 107, while retaining ⟨ΓPWT⟩ for
comparison.
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simulations. Individual simulations show large fluctuations in
the early stages of an MC simulation (107 cycles) and converge
toward a unique value at later stages. The fluctuations are
primarily caused by infrequent sampling of the states λ = 0 and λ
= 1, which vanish with the progression of the simulation. The
value of ⟨ΓCFC⟩, in sharp contrast, achieves convergence early on
with an uncertainty of approximately 2% (see inset of Figure 2).
The error associated with the term ⟨ΓCFC⟩ can be decreased by
ensuring better sampling of the λ space, achieved by either
performing many simulations concurrently or running signifi-
cantly longer simulations. Amean value of ⟨ΓCFC⟩ for the last 107
cycles is calculated at every mole fraction.
Given the excellent agreement of the individual terms

between the PWTPI and the CFCMC methods (Figure 1),
we expect a similar agreement between the resulting
thermodynamic factors ⟨ΓCFC⟩ and ⟨ΓPWT⟩. To facilitate
comparison between the two methods, the thermodynamic
factors ⟨ΓPWT⟩ from the original PWTPI article have been
corrected for the finite-size effects.21 Figure 3 shows that the

thermodynamic factors calculated from the two methods agree
within 2% for all mole fractions, except between x1 = 0.4 and x1 =
0.6, where the agreement is between 5 and 6%. Note that the
thermodynamic factors from the PWTPI method ΓPWT lie
within the error bars of ΓCFC. These differences can be attributed
to insufficient statistics and are expected to vanish with longer
simulations. These simulations also emphasize the low
computational requirements of the CFCMC method.
Figure 4 shows the thermodynamic factors ⟨ΓCFC⟩ for five

system sizesNtotal = 100, 200, 300, 400, and 600 at x1 = 0.1 and x1
= 0.5. The values of thermodynamic factors for diffusion at x1 =
0.1 computed from the five different system sizes yield
approximately 0.88, indicating the absence of any finite-system
size effects on ⟨ΓCFC⟩. At x1 = 0.5, the values of ⟨ΓCFC⟩ vary
around a mean value of 0.48, with the highest uncertainty at
Ntotal = 600. The uncertainty vanishes with longer simulations.
4.2. Ternary WCA Mixtures. We now assess the perform-

ance of the CFCMC method for predicting the matrix of
thermodynamic factors for diffusion ΓCFC values for ternary
mixtures. The densities obtained from the CFCMC simulations
at all mole fractions are close to 0.7 (in reduced units) and agree

with the values reported by Schnell et al.20 After repeating the
procedure outlined for binary mixtures, the individual terms
between the two methods are compared and found to be in
nearly exact agreement (data not shown). ⟨Γij

CFC⟩ values
resulting from eqs 27−30 are shown in Figure 5. Once again,

the two methods show excellent agreement for ⟨Γij
CFC⟩ at all

compositions of the system. Schnell et al.20 already showed that
thermodynamic factors for ternary systems calculated using the
PWTPI method are equivalent to values obtained from the
grand-canonical Monte Carlo method and molecular dynamic
simulations in the NVT ensemble, both using the KB approach.
From Figure 5, it can be thus concluded that the CFCMC
method provides an alternative method for calculating
thermodynamic factors in ternary systems, alongside the
GCMC and MD simulations. Small systems consisting of only
100 molecules are sufficient to accurately compute ⟨Γij

CFC⟩.
4.3. BinaryMixtures of CarbonDioxide andHydrogen.

We used the CFCMC method to calculate thermodynamic

Figure 3. Comparison between the thermodynamic factors obtained
using the CFCMC method ⟨ΓCFC⟩ (eq 25) and the PWTPI method
⟨ΓPWT⟩21 for a binary mixture of LJ molecules at a reduced temperature
T = 2 and a reduced pressure of p = 2.8. The reduced densities range
between 0.4 at x1 = 0.1 and 0.6 at x1 = 0.9. The black dashed-dotted line
connecting the black diamond symbols is drawn to aid the eye.

Figure 4.Thermodynamic factors ⟨ΓCFC⟩ for systems consisting of 100,
200, 300, 400, and 600 binary LJ molecules for x1 = 0.1 and x1 = 0.5.
Average values of ⟨ΓCFC⟩ computed across all system sizes are plotted as
dashed lines.

Figure 5. Comparison between elements of the matrix of thermody-
namic factors ΓCFC for ternary mixtures of WCA molecules obtained
using the CFCMC method ⟨Γij

CFC⟩ (eq 25) and the PWTPI method
⟨Γij

PWT⟩.22 The simulations are performed at a reduced temperature of
T = 2, a reduced pressure of p = 6.8, and at every x1, the relation x2 = x3 is
satisfied. The number densities at all mole fractions were ca. 0.7 in
reduced units, in agreement with Schnell et al.20 The dashed lines
connecting the dots are drawn to aid visualization.
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factors for a molecular system comprising binary mixtures of
hydrogen and carbon dioxide. To the best of our knowledge, the
PWTPI method has not been used previously to calculate
thermodynamic factors for systems other than single LJ or WCA
interaction sites. Figure 6 shows excellent agreement between

the mixture densities computed from the CFCMC method and
the NIST Reference Fluid Thermodynamic and Transport
Properties (REFPROP) database42 at p = 50 and 500 bar. This
agreement spans over two decades on the vertical axis, from
exhibiting ideal gaslike behavior at 50 bar, to demonstrating
liquid-like behavior at 500 bar. At p = 500 bar, mixtures
containing minute quantities of hydrogen (xHd2

≈ 0.1) exhibit a
liquid-like behavior in which molecular insertion techniques,
such as WTPI and PWTPI, will fail due to the large mixture
densities (see Table 5). As a consequence, performing
thermodynamic factor computations using the PWTPI method
becomes impractical in such cases. Gibbs-excess energiesGEx for
the binary mixtures are extracted from REFPROP at both

pressures to facilitate comparison with computed values for
⟨ΓCFC⟩. Figure 7 shows the Gibbs-excess energies normalized by

RT, whereR is the universal gas constant, plotted as a function of
xHd2

. Three activity coefficient models�Strict Regular, Margules,
and van Laar�are fitted to the normalized Gibbs-excess
energies.7 The strict regular model consists of a single free
parameter, whereas both the Margules and van Laar models
accommodate two free parameters to describe the Gibbs-excess
energies. By definition, the Gibbs-excess energies approach zero
for the pure systems (xHd2

= 0 and xHd2
= 1). Figure 7 shows that all

three models describe the normalized Gibbs-excess energies
well, barring minor differences at p = 500 bar. Also note that the
typical energy scale for the normalized Gibbs-excess energy of
ca. 0.5 (dimensionless) is typical for a dense gaseous system.44

The thermodynamic factors from all three models are computed
from the fit coefficients by following the procedure outlined by
Taylor and Kooijman.7 Figure 8 shows a comparison between
the thermodynamic factors calculated using the CFCMC
method ⟨ΓCFC⟩ and the three activity coefficient models, and
the raw data accompanying the plot are listed in Table 6. At p =
50 bar, good agreement is found for all three activity coefficient
models, wherein the values of thermodynamic factors lie close to
1. This is in accordance with the properties of a gaseous mixture
at low pressures, where it behaves like an ideal gas. For p = 500
bar, ⟨ΓCFC⟩ is significantly smaller than 1, emphasizing the
nonideal behavior of the binary mixtures. It can be further
inferred that the interactions between the unlike species
(hydrogen−carbon dioxide) are much less favorable than the
interactions of like species (hydrogen−hydrogen or carbon
dioxide−carbon dioxide). On closer inspection of the figure, it is
visible that the circular symbols lie closer to the Margules and
van Laar models than the Strict Regular model. The Margules
and van Laar model describe the simulation data accurately at
xHd2

= 0.1, 0.7, and 0.9, whereas minor differences are observed at
xHd2

= 0.3 and 0.5. The apparent accuracy of theMargules and van
Laar models hinges on the fact that these models allow 2 free
parameters, which results in better fits to the shape of Gibbs-
excess energies, thus leading to a better description of the

Figure 6. Densities of binary mixtures of carbon dioxide and hydrogen
are plotted as a function of the mole fraction of hydrogen. The symbols
are densities computed from CFCMC simulations, compared to the
data from the NIST Reference Fluid Thermodynamic and Transport
Properties (REFPROP)Database.42 Red symbols and lines are data at p
= 50 bar, and green symbols correspond to p = 500 bar. Error bars in the
simulations are smaller than the symbol sizes. All data are reported forT
= 323.15 K. The data accompanying this plot is tabulated in Table 5.

Table 5. Mixture Densities Relevant to Figure 6 for Binary
Mixtures of Carbon Dioxide and Hydrogen at p = 50 and 500
bar and T = 323.15 Ka

p = 50 bar p = 500 bar

xHd2
ρMix
CFC ρMix

RFP
ρMix
RFP

[mol/m3] ρMix
CFC ρMix

RFP
ρMix
RFP

[mol/m3]

0.1 86.1(6) 89.3 2241.9 828(4) 816.4 20,508
0.3 62.7(4) 64.4 2049.1 593(3) 573.9 18,270
0.5 43.6(2) 44.5 1932.5 385(2) 378.4 16,444
0.7 26.8(1) 27.2 1861.7 223(1) 221.2 15,138
0.9 11.2(1) 11.3 1820.7 89.9(4) 89.6 14,423

aρMix
CFC and ρMix

RFP are the mixture densities obtained from CFCMC
simulations and the REFPROP42 database, respectively. The
corresponding molar densities expressed in units of mol/m3 are also
tabulated. The densities are reported in units of kg/m3, and the
uncertainty in the least significant digit of ρMix

CFC is provided within the
brackets ().

Figure 7. Gibbs-excess energies GEx in units of RT, where R is the
universal gas constant, for binary mixtures of carbon dioxide and
hydrogen, obtained from REFPROP42 are plotted as symbols for p = 50
and 500 bar. Gibbs-excess energies derived from three different activity
coefficient models, Regular, Margules, and van Laar, are fitted to the
symbols. All data are reported at T = 323.15 K.
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thermodynamic factors. With respect to the value of ⟨ΓCFC⟩, the
sizes of the error bars are largest at xHd2

= 0.3 and 0.5, which we
expect will diminish with more or longer simulations. Figure 8
illustrates an important point that the different activity
coefficient models describing the same Gibbs-excess energies
can lead to slightly different thermodynamic factors ⟨ΓCFC⟩.
Barring the minor discrepancies between the predictions of the
thermodynamic factor from the CFCMC method and the
activity coefficient models, it is important to note that with a
mere 200 molecules, accurate predictions can be made for the
thermodynamic factors of real molecules at low and high
pressures.
Figure 9 shows the thermodynamic factors ⟨ΓCFC⟩ for three

system sizesNtotal = 100, 200, and 400 at p = 50 and 500 bar and
xHd2

= 0.5. The values of thermodynamic factors for diffusion at p
= 50 bar computed from the three different system sizes yield
approximately 0.90, indicating the absence of any finite-system
size effects on ⟨ΓCFC⟩. At p = 500 bar, the values of ⟨ΓCFC⟩ vary
around a mean value of 0.28, with the highest uncertainty at
Ntotal = 400. The uncertainty will vanish with longer simulations.
4.4. PWTPI vs CFCMC for Dense Systems. We show

numerically that traditional test molecule insertion methods

such as the WTPI and the PWTPI methods perform poorly in
dense systems in comparison to the CFCMC method.
Simulations are performed in the NPT and CFCNPT
ensembles, where whole test molecules and fractional molecules
are inserted, respectively, in a single-component system
consisting of 100 WCA molecules. The temperature is fixed at
2 (reduced units), and the pressure is varied between 0.1 and 60
(reduced units), respectively. Fifteen independent simulations
are performed at every pressure, and the mean and uncertainty
of an observable are calculated using the method of block
averages, as mentioned in Section 3. The densities computed
from the PWTPI and CFCMC methods agree within 0.5% of
each other, despite varying by a factor of 30 over the entire
pressure range. From Figure 10, the free energy term for a single
test molecule insertion from the PWTPI and the CFCMC
methods agree excellently for p below 30. At higher pressures,
the disagreement between the methods is evident, and there are
notable uncertainties in the PWTPI method’s free energy
predictions. An identical conclusion follows for the free energy
terms related to the two-molecule insertions; see Figure 11.
Large uncertainties and the overestimation of the insertion free
energies are typical of single-step insertion methods such as the
WTPI and PWTPI in dense systems.10 Our conclusions match
those of Torres-Knoop et al.,25 who showed in the context of
adsorption in porous materials that single-stage insertions yield

Figure 8.Thermodynamic factors ⟨ΓCFC⟩ calculated using the CFCMC
method for binary mixtures of carbon dioxide and hydrogen are
compared to the thermodynamic factors from differentiating the
activity coefficient models in Figure 7. Simulation data at two different
pressures of 50 and 500 bar and a temperature of T = 323.15 K are
plotted using symbols. The thermodynamic factors computed from
activity coefficients are shown as lines. The dashed line is used to
highlight the thermodynamic factor for ideal mixtures. The data
accompanying this plot are tabulated in Table 6.

Table 6. Thermodynamic Factors Relevant to Figure 8 for BinaryMixtures of CarbonDioxide andHydrogen at p = 50 and 500 bar
and T = 323.15Ka

p = 50 bar p = 500 bar

xHd2
⟨ΓCFC⟩ ΓReg

RFP ΓMar
RFP ΓvanLaar

RFP ⟨ΓCFC⟩ ΓReg
RFP ΓMar

RFP ΓvanLaar
RFP

0.1 0.95(0) 0.97 0.96 0.96 0.73(3) 0.75 0.73 0.73
0.3 0.91(2) 0.92 0.91 0.92 0.36(6) 0.42 0.39 0.39
0.5 0.91(2) 0.90 0.90 0.90 0.27(5) 0.31 0.31 0.31
0.7 0.92(2) 0.92 0.92 0.92 0.46(3) 0.42 0.45 0.45
0.9 0.97(1) 0.97 0.97 0.97 0.78(1) 0.75 0.78 0.78

a⟨ΓCFC⟩ represent thermodynamic factors computed from CFCMC simulations using eq 26. ΓMar
RFP, ΓReg

RFP, and ΓvanLaar
RFP are determined by fitting the

Strict Regular, Margules and van Laar activity coefficient models7 to the Gibbs excess energies (REFPROP42) of the mixtures and then numerically
differentiating the model with respect to xHd2

. Uncertainties in the least significant digit of ⟨ΓCFC⟩ are provided within the brackets ().

Figure 9. Thermodynamic factors ⟨ΓCFC⟩ of equimolar mixtures
comprising carbon dioxide and hydrogen were computed for systems
containing 100, 200, and 400 molecules. Calculations are performed at
p = 50 and 500 bar at a fixed temperature of 323.15 K and xHd2

= 0.5.
Average values of ⟨ΓCFC⟩ computed across all system sizes are plotted as
dashed lines.
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unphysical results for thermodynamic quantities. The authors
showed that the CFCMC technique outperforms the CBMC
technique (another single-step insertion technique) in terms of
insertion efficiency in dense systems.

5. CONCLUSIONS
We have introduced a new method to calculate thermodynamic
factors for diffusion of binary and multicomponent systems,
inspired by the Permuted Widom Test Particle Insertion
(PWTPI) method.21,22 The PWTPI method, just like the
conventional Widom’s Test Particle Insertion (WTPI) method,
struggles with molecule insertions at large densities. Differ-
entiation of activity coefficient models provides an indirect route
to calculate thermodynamic factors for diffusion, but this route is
unattractive since their prediction varies (significantly) with the
choice of the model. The accuracy in the prediction of
thermodynamic factors is also hampered by the quality of the
fit to experimental vapor−liquid equilibrium (VLE) data. The
CFCMCmethod uses groups of fractional molecules to facilitate
molecule insertions and removals in stages. This feature of the
CFCMCmethod alleviates the aforementioned deficiency of the
PWTPI method at high densities. It also provides a direct route
to accurately calculate the thermodynamic factors for diffusion

inmolecular systems frommultiple simulations. Following Balaji
et al.,22 we provide expressions for the thermodynamic factors
for diffusion by eliminating the finite system size effects.
An equivalence was first established between the expressions

for thermodynamic factors calculated from the CFCMC and
PWTPI methods using the technique outlined by Poursaei-
desfahani et al.29 The resulting expressions for the thermody-
namic factors from the CFCMC method were benchmarked to
the PWTPI method for a binary system consisting of Lennard-
Jones molecules21 and a ternary system of WCA molecules.22

Excellent agreement was found for the binary and ternary
systems between the two methods. The CFCMC method was
then used to calculate the thermodynamic factors for binary
mixtures of carbon dioxide and hydrogen at p = 50 bar and 500
bar and T = 323.15 K. The large liquid-like densities of binary
mixtures with minute quantities of hydrogen (xHd2

≈ 0.1) will
pose significant challenges for the calculation of thermodynamic
factors using the PWTPI method. We show that the
thermodynamic factors calculated using the CFCMC method
are in excellent agreement with corresponding values from the
NIST REFPROP database.42 Our method demonstrates an
efficient route to accurately predict thermodynamic factors in
dense systems, even with relatively small system sizes consisting
of approximately 100 molecules.
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(19) Dawass, N.; Krüger, P.; Schnell, S. K.; Moultos, O. A.;
Economou, I. G.; Vlugt, T. J. H.; Simon, J.-M. Kirkwood-Buff Integrals
Using Molecular Simulation: Estimation of Surface Effects. Nanoma-
terials 2020, 10, 771.
(20) Schnell, S. K.; Englebienne, P.; Simon, J.-M.; Krüger, P.; Balaji, S.
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