
Monte Carlo algorithms for performing
Bayesian inference on Piecewise Deterministic

Processes
by

Chiara Mignacco
to obtain the degree of Master of Science in Applied Mathematics

at the Delft University of Technology,
to be defended publicly on Thursday September 22, 2022 at 14:00.

Student number: 5395739
Project duration: November 15, 2021 – August 15, 2022
Thesis committee: Dr. ir. J. Bierkens, TU Delft, supervisor

Dr. ir. L. E. Meester, TU Delft
Dr. A. B. Duncan, Imperial College London, supervisor

Abstract

Since their introduction in 1993, particle filters are amongst the most popular algorithms for
performing Bayesian inference on state space models that do not admit an analytical solution.
In this thesis, we will present several particle filtering algorithms adapted to a class of models
known as Piecewise Deterministic Markov Processes (PDMP), i.e. processes governed by one
or more parameters that admit random jumps in their value at random times. Our work
will focus on object tracking, the estimation of a target’s kinematic state over time from a
sequence of noisy or incomplete measurements. Moreover, we will combine these techniques
with Markov Chain Monte Carlo methods in order to infer the model parameters. We will
perform sequential inference on both parameters and states by introducing an adaptation of
the SMC2 to PDMPs. Finally, all algorithms will be tested both on simulated and real-world
data (Piraeus AIS Dataset).

keywords: Particle Filters, Sequential Monte Carlo, Hidden Markov Model, Piecewise
Deterministic Process, Object Tracking, Markov Chains Monte Carlo.

i

Table of Contents

List of Figures iv

List of Tables vi

Acronyms vii

1 Introduction 1

2 Background on Piecewise Deterministic Processes 3
2.1 Basic Definitions . 4

2.1.1 Markov Processes . 4
2.1.2 Markov chains . 4

2.2 Piecewise Deterministic Processes . 5
2.2.1 Notation . 6
2.2.2 Model specification . 6
2.2.3 Example . 7
2.2.4 Object Tracking . 8

3 Introduction to Particle Filtering 9
3.1 The Filtering Problem . 10
3.2 The PF Algorithm . 11
3.3 SMC for Filtering and Smoothing . 12
3.4 Particle Markov Chain Monte Carlo . 13

3.4.1 Markov Chain Monte Carlo . 13
3.4.2 Particle MCMC . 14

3.5 Diversification of the Particles . 16

4 Particle Filters: Methods and Models 17
4.1 PDP Particle Filter Mixture Kernels . 17

4.1.1 Model . 17
4.1.2 Construction of the Algorithm . 18
4.1.3 Specifics of the Model . 20

4.2 Poisson Tree Particle Filter . 21
4.2.1 Model . 22
4.2.2 Construction of the Algorithm . 22
4.2.3 Intensity parameter . 24

ii

Chapter 0 – TABLE OF CONTENTS

5 Parameters and State Estimations 27
5.1 Particle MCMC based on PTPF . 27

5.1.1 Extended Probability Distribution and Conditional PTPF 27
5.1.2 Poisson Tree Gibbs sampler (PTGS) and Poisson Tree Metropolis

Hastings (PTMH) . 29
5.1.3 Some Results . 30
5.1.4 Gibbs Sampler based on PF with Mixture Kernels 30

5.2 Sequential Parameters and State Estimations: the SMC2 Algorithm 31
5.2.1 Iterated Batch Importance Sampling Algorithm 31
5.2.2 The SMC2 Algorithm . 32
5.2.3 Adaptation of SMC2 to PDPs . 33

6 Experiments 35
6.1 Results and Comparison with simulated data 35

6.1.1 Particle filters . 35
6.1.2 Particle MCMC Methods . 44

6.2 Real World Data . 44
6.2.1 The Dataset . 45
6.2.2 Preprocessing . 46
6.2.3 New Model’s Assumptions . 46
6.2.4 Results . 47

7 Discussion and Conclusion 50

A Feynman-Kac formulation 52

B Algorithms 53
B.1 PMCMC Algorithms . 53

B.1.1 Particle Independent Metropolis Hastings 53
B.1.2 Particle Marginal Metropolis Hastings 54
B.1.3 Conditional SMC . 54

C The Kalman Filter 55

Bibliography 57

iii

List of Figures

1.1 Overview of implemented models and algorithms. 2

3.1 Example of ancestral line generated using a conditional SMC algorithm with 5
particles and 4 time steps. 16

4.1 Resampling scheme. 20
4.2 Distribution of particles around a trajectory using a PF with mixture kernels. 21
4.3 Distribution of particles around a trajectory using a PTPF. 24
4.4 Example of Poisson tree. Edge x4 ∈ GrF r+1, x3 ∈ F r

0 , while x5 ∈ F r \ F r
0

([14], Figure 1, page 7). 25

6.1 Generated data: hidden trajectory (blue), observations (red crosses) and
locations of jumps (orange dots). 36

6.2 Estimated trajectories (with 95% CI) generated by PTPF (left) and PF with
mixture kernels (right). 36

6.3 Estimated trajectories (with 95% CI) generated by PTPF (left) and PF with
mixture kernels (right) with outlier. 37

6.4 RMSE for different numbers of initial particles (100, 1000, 10000) on the two
components using PF with mixture kernels. 37

6.5 RMSE for different numbers of initial particles (100, 1000, 10000) on the two
components using the PTPF. 38

6.6 Number of unique particle resampled at each iteration (above) and ESS at
each iteration (below) fo PF with mixture kernels. 40

6.7 Number of unique particles at the last iteration for PF with mixture kernels
and PTPF. 40

6.8 Distribution of particles locations around 10th, 20th and 30th observations on x
axis for n=1000 initial number of particles. 41

6.9 Distribution of particles locations around 10th, 20th and 30th observations on y
axis for n=1000 initial number of particles. 42

6.10 Distribution of particles locations around the 20th observation on x and y axes
for n=500000 initial number of particles. 43

6.11 Distribution of last five jump times of PF with mixture kernels, real jump
times (red lines) and magnitude of the acceleration. 43

6.12 Distribution of jump times of PTPF, real jump times (red lines) and magnitude
of the acceleration. 44

iv

Chapter 0 – LIST OF FIGURES

6.13 Distribution of simulated inter-arrival times for PTGS, PF MK GS and SMC2. 45
6.14 Observations and filtering estimate for the trajectories of three vessels in the

Piraeus AIS Dataset. 47
6.15 Prediction of the next observation using PF with mixture kernels and PTPF

for three different trajectories. 48
6.16 Distribution of the simulated inter-arrival times for PTGS, PF MK GS and

SMC2. 49

v

List of Tables

6.1 RMSE for different numbers of initial particles (100, 1000, 10000) on the two
components using the PF with mixture kernels. 37

6.2 Time employed for different numbers of initial particles ((100, 1000, 10000))
on the two components using PF with mixture kernels. 38

6.3 RMSE for different numbers of initial particles (10000, 20000, 30000) on the
two components using the PF with mixture kernels. 38

6.4 Time employed for different numbers of initial particles (10000, 20000, 30000)
using the PF with mixture kernels. 38

6.5 RMSE for different numbers of initial particles (100, 1000, 10000) on the two
components using PTPF. 39

6.6 Time employed for different numbers of initial particles (100, 1000, 10000)
using PTPF. 39

6.7 RMSE and computational time using N = 20000 initial particles for PTPF. . 39

vi

Acronyms

AIS Automatic Identification System . i, v, 44–47, 50

CI Confidence Interval . iv, 36, 37

ESS effective sample size . iv, 19, 21, 32, 34, 39, 40

GPS Global Positioning System. 45

GS Gibbs sampler . v, 2, 15, 30, 45, 48–50

HHM hidden Markov model . 9

IBIS Iterated Batch Importance Sampling . iii, 31

KDE Kernel Density Estimate . 44

MCMC Markov Chain Monte Carlo i–iii, 1, 13, 14, 16, 27, 29, 33, 44, 50

MH Metropolis Hastings . 14, 15

MPP marked point process . 8

pdf probability density function . 9, 44, 48

PDMP Piecewise Deterministic Markov Processes . i

PDP Piecewise Deterministic Processes 1–3, 8, 12, 16, 19, 21, 35, 46, 50

PF Particle Filter . iii–vi, 2, 9–11, 15, 17–19, 21, 22, 30–43, 45–50

PGS Particle Gibbs sampler . 14, 15, 28, 29

PIMH Particle Independent Metropolis Hastings . iii, 14, 30, 53

PMCMC Particle Markov Chain Monte Carlo iii, 1, 2, 14, 27, 30, 33, 44, 50, 51, 53

PMMH Particle Marginal Metropolis Hastings. iii, 15, 54

PTGS Poisson Tree Gibbs sampler . iii, v, 2, 15, 29, 30, 45, 48–50

vii

Chapter 0 – Acronyms

PTMH Poisson Tree Metropolis Hastings . iii, 15, 29, 30

PTPF Poisson Tree Particle Filter iii–vi, 2, 17, 21–24, 27–30, 33–44, 47, 48, 50

RMSE Root Meas Squared Error . iv, vi, 36–39

SMC Sequential Monte Carlo . iii, iv, 1, 9, 10, 14–17, 22, 31, 50, 53, 54

SSM state-space model . 9

viii

Chapter 1

Introduction

The task of filtering, within the Bayesian framework, is equivalent to estimating the posterior
distribution of the trajectory of an hidden stochastic process over a time interval, given a
sequence of its noisy observations. Many state space models admit a discrete-time Markov
chain as the underlying hidden process. This kind of models are employed in a variety of
fields, ranging from economics to physics. The state space model, in many cases of interest,
is non-linear, non-Gaussian and does not typically admit analytic solutions. As a result,
approximation methods must be used. Particle filtering methods, or Sequential Monte Carlo
(SMC), is a widespread class of algorithms used for tackling in an online manner these types
of estimation problems through a collection of weighted samples, referred to as particles.

Discrete-time models have been the focus of the majority of research on SMC techniques
and their adaptations. However, since continuous-time models are generally very effective
at modelling many physical processes, SMC methods for continuous-time models are a very
active area of research. Performing discretisation, although possible, comes with the down-
sides of being computationally taxing and producing biased estimates that are difficult to
reconcile with their unbiased counterpart. [93, 48] present a general theoretical framework
for particle filter methods in a continuous setting, as well as stability results. Moreover, SMC
is often used in combination with Markov Chain Monte Carlo with the goal of infering the
parameters governing a process. This class of methods is called Particle Markov Chain Monte
Carlo (PMCMC).

SMC algorithms are frequently applied to object tracking, i.e. the estimation of the motion
features of a particular target (e.g. aircraft, ships, etc.). We will see that a moving object
often follows trajectories that behave as piecewise deterministic processes (PDPs). PDPs
present deterministic dynamics in continuous-time aside from a countable set of stopping
times where they randomly jump to a new value and, therefore, may present a trajectory
with discontinuities.

The aim of this thesis is to present Particle Filtering algorithms that can be adapted to these
dynamics. The challenge lies in the fact that this type of process defined in continuous-time
admits the overlapping of different generations of particles, making it difficult to establish
a criterion for performing resampling. It is therefore necessary to introduce some kind of

1

Chapter 1 – Introduction

discretisation of the algorithm in order to “synchronise” [14] particles generated at different
times. We will present two algorithms that tackle this problem in different ways, namely
the Particle Filter with mixture kernels (PF MK) [101] and the Poisson Tree Particle Filter
(PTPF) [14], as well as the respective PMCMC adaptations: the Poisson Tree Gibbs sampler
(PTGS) [14] and the Particle Filter Mixture Kernels Gibbs sampler (PF MK GS). Finally
we will introduce a version of the SMC2 algorithm from [21] for PDPs. These models and
methods are summarised in Figure 1.1.

The thesis is structured as follows. In Chapter 2, we will introduce the concept of Piecewise
Deterministic Processes and the particular model of interest on which we will operate the
algorithms. We proceed with an overview of Particle filtering and PMCMC in Chapter 3,
introducing the basic forms of the most significant algorithms. Chapters 4 and 5 provide a
more in-depth explanation of some of the algorithms introduced in Chapter 2, respectively
two different particle filter algorithms and their use in the context of parameters and state
estimations. Finally, Chapters 6 and 7 are dedicated to the presentation and discussion of
the results obtained from the use of the aforementioned algorithms, applied to the model
described in Chapter 2. The code we used for the implementation of the results can be found
in [85].

State Space Models Monte Carlo algorithms

Object tracking

PDPs

SMC PMCMC

SMC²

• PTPF GS
• PF MK GS

• PTPF
• PF MK

Figure 1.1: Overview of implemented models and algorithms.

2

Chapter 2

Background on Piecewise
Deterministic Processes

Piecewise Deterministic Processes (PDP) were first introduced by [33] in 1984. The term
refers to a class of non-diffusion stochastic processes, which evolves deterministically except
for a countable set of random times, in which the process jumps to a new random value. [33]
aimed at “providing a general family of stochastic models covering virtually all non-diffusion
applications”[33].

The first attempts to build a general framework for non-diffusion processes were made
by [25] and [60], who introduced a class of models called Piecewise Linear, with the goal of
treating problems arising in queuing theory.

Mathematically, Piecewise Deterministic Processes are closely related to a class of stochastic
jump processes, for which a stochastic calculus has been developed [32].

As discussed in [23], PDPs form a family of cadlag processes, which involve a deterministic
motion interrupted by random jumps. The process’ motion is characterised by two:

• The flow F ;

• The transition measure Q, which determines the new location of the process at the
jump time.

The process follows the (deterministic) flow F (x, t) until the first jump time τ1. Then, the
new location of the jump is chosen according to the transition measure Q(F (x, τ1), ·), and the
process restarts from this new point. This fully describes a piecewise continuous trajectory.
In 2006 [69] investigated the relation between PDP and marked point process.

Since their introduction, PDP have been largely studied in the literature, both from a
theoretical and an applied point of view. Numerous problems in various fields involve PDP,
such as biological population models, reliability, mathematical finance [30, 18] and object
tracking problems [75, 95, 64]. The latter is the one we will focus on in the following sections.

3

Chapter 2 – Background on Piecewise Deterministic Processes

2.1 Basic Definitions
In this section we will give the definition of Markov Process 2.1.1, Markov chain 2.1.2 and
Piecewise deterministic process 2.2.

2.1.1 Markov Processes
For defining Markov Processes, we will use the definitions from [69]. Let (Ft)t≥0 be a filtration
and let X = (Xt)t≥0 be a measurable and adapted process defined on (Ω,F ,Ft,P), where:

• Ω is a set;

• F is a σ-algebra on Ω;

• P is a probability measure, i.e. P satisfies P(Ω) = 1.

Let X takes values in the state space (G,G).

Definition 2.1.1. The process X is a Markov process with respect to the filtration (Ft)t≥0
if for every s ≤ t there exists a Markov Kernel pst(·, ·) on G such that

P (Xt ∈ C|Fs) = pst(Xs, C) (C ∈ G)

X is a time-homogeneous process if, in addition, one may choose the Markov kernel depending
on (t− s) only. A time-homogeneous Markov process is also called a Markov process with
stationary transition probabilities.

We call the Markov kernel pst the transition probability from s to t. pst(·) is not uniquely
determined by 2.1.1 for all x ∈ G, however, since G is countably generated it holds that
if pst and p′

st are both transition probabilities, then P (Xs ∈ Cst) = 1, where Cst = {x ∈
G|pst(x, ·) = p′

st(x, ·)}

2.1.2 Markov chains
For the definitions in this section, we will refer to [77].

Definition 2.1.2. A Markov chain is a discrete-time stochastic process X = (Xn)n≥0 such
that each random variable Xn takes values in a with values in a finite or countable set S (the
state space) such that

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0)=
↑

Markov property

P (Xn+1 = j|Xn = i)

for every n ≥ 0 and j, i, in−1, . . . , i0 ∈ S.

Moreover if we have that
P (Xn+1 = j|Xn = i) = pij

does not depend on n, we call the Markov chain time-homogeneous.

4

Chapter 2 – Background on Piecewise Deterministic Processes

The transition matrix of the chain is the matrix P = (pij)i,j∈S. It satisfies the following
properties:

0 ≤ pij ≤ 1 ∀i, j ∈ S and
∑
j∈S

pij =
∑
j∈S

P (Xn+1 = j|Xn = i) = 1 ∀i ∈ S

The transition graph of the chain is the oriented graph where vertices are states and an arrow
from i to j exists if and only if pij > 0, taking value pij when it exists.

The distribution of the Markov chain at time n ≥ 0 is given by

π
(n)
i = P (Xn = i) i ∈ S

and its initial distribution is given by

π
(0)
i = P (X0 = i) i ∈ S

For every n ≥ 0, we have ∑i∈S π
(n)
i = 1.

Markov Chains on General State Spaces

We just defined Markov chains on a finite or countable set. We now generalise the notion to
general state spaces, following the definitions from [92]. Let X be a general state space and
F a σ-algebra with measurable subsets. The transition probabilities {P (x,A)}x∈X ,A∈F are
subject to the following assumptions:

• for each x ∈ X , P (x, ·) is a probability measure on (X ,F);

• for each A ∈ F , P (x,A) is a measurable function of x ∈ X .

Moreover ν is an initial distribution (any probability distribution on (X ,F)). Then the
transition probabilities and the initial distribution define a Markov Chain X0, X1, X2, . . .
such that

P (X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An) =
∫

x0∈A0
ν(dx0)

∫
x1∈A1

P (x0, dx1) . . .

· · ·
∫

xn−1∈An−1
P (xn−1, dxn)

A stationary distribution for a Markov chain on general state space is a probability measure
π(·) on (X ,F) such that π(A) =

∫
X π(dx)P (x,A) for all A ∈ F . Markov chains on general

state spaces may or may not have stationary distributions [92].

2.2 Piecewise Deterministic Processes
The following notation and definition are taken from [101].

5

Chapter 2 – Background on Piecewise Deterministic Processes

2.2.1 Notation
We will assume that, with respect to the appropriate measure dx, the distributions admit a
density. We will use the same symbol to refer to a measure and its associated probability
density, then π(x)dx = π(dx). The Dirac measure centered at x is indicated with δx(·).
For a Markov kernel K(x, dy) acting from E1 to E2 and a probability measure µ(dx) on
E1, we will write the integral operation as µK(·) =

∫
E1
K(x, ·)µ(dx). The expression

πn(xk) =
∫
πn(x1:n)dx1:k−1dxk+1:n describes the marginal of a joint density.

2.2.2 Model specification
Let’s consider a Markov chain (τj, θj)j∈N, composed by pairs of non-decreasing times τj ∈ R+

and parameters θj ∈ Ξ. The transition kernel is

p(d(τj, θj)|τj−1, θj−1) = f(dτj|τj−1)q(dθj|θj−1, τj−1, τj)

Consider the random continuous-time counting process (νt)t≥0

(νt)t≥0 : νt =
∞∑

j=1
11[0,t](τj) = max{j : τj ≤ t}

and the signal process (ξt)t≥0 taking values in Ξ

ξt = F (t, τνt , θνt)

with τ0 = 0, θ0 = ξ0 and initial distribution ξ0 ∼ q0(ξ0). Consider also the function
F : R+ × R+ × Ξ→ Ξ is deterministic with the condition F (τj, τj, θj) = θj.

Starting from ξ0 a realization of the process (ξt)t≥0 evolves deterministically according
to F until the first jump time, which occurs at τ1. At this time the process “jumps” to the
value θ1. The signal process evolves deterministically from the new value θ1 until τ2, at which
it takes the value θ2, and again for the next jumps.

We are interested in the number of jumps that occur in a finite time interval. If we consider
the interval [0, tn] the number of jumps in that time-frame is kn = νtn . We can write the joint
probability distribution of the number of jumps and their locations as:

pn(kn, dτ1:kn) = S(tn, τkn)
kn∏

j=1
f(dτj|τj−1)

where S is the survivor function1 associated with the transition kernel f(dτj|τj−1):

S(t, τ) = 1−
∫ t

τ
f(ds|τ)

The joint probability p has support in ⋃∞
k=0{k} × Tn,k, where Rk ⊃ Tn,k = {τ1:k : 0 < τ1 <

τ2 < · · · < τk ≤ tn}.
1The probability of no jumps in the interval (tn, τkn

)

6

Chapter 2 – Background on Piecewise Deterministic Processes

We also have the random variables Yn, from which the observation of the signal process in
the nth window (tn−1, tn] are sampled. The observations in Yn are conditionally independent
of the past, given the signal in (tn−1, tn].

Given a function F (deterministic with the conditions described above), the process (ξt)t∈[0,tn]
is uniquely identified by its skeleton (kn, τ1:kn , θ1:kn). For each n, we can define a collection of
random variables X(kn, ξn,0, θn,1:kn , τn,1:kn) with values in

En =
∞⋃

k=0
{k} × Ξk−1 × Tn,k

Then we have that En ⊂ En+1.

In the following chapters, we will be interested in approximating the posterior distribution of
(ξt)t∈[0,tn] given the observation process y1:n. Since the the signal process is a deterministic
function of the jump times and parameters, in order to find the posterior distribution of
(ξt)t∈[0,tn] given y1:n, it suffices to find the posterior distribution of Xn, denoted as πn(xn),
which has the form

πn(xn) ∝ pn(kn, τn,1:kn)q0(ξn,0)
kn∏

j=1
q(θn,j|θn,j−1, τn,j, τn,j−1)

n∏
p=1

g(yp|ξn,tp−1,tp)

where g is the likelihood function. In the subsequent chapters, we will describe how to
approximate this distribution using Monte Carlo methods.

2.2.3 Example
In this section, we will consider the planar motion of a vehicle following piecewise constant
acceleration dynamics.

The parameter θ has two components x and y, corresponding to the two coordinates of the
plane. Each component contains three values, position s, velocity v, and acceleration a. In
this setting Ξ takes values in R6. We have that

θj =
[
θx

j

θy
j

]
, θx

j =

s
x
j

vx
j

ax
j

 , θy
j =

s
y
j

vy
j

ay
j

and that

F (t, τνt , θνt) =
[
F x(t, τνt , θνt)
F y(t, τνt , θνt)

]
where

F x(t, τνt , θνt) =

1 (t− τνt) 1
2(t− τνt)2

0 1 (t− τνt)
0 0 1

s

x
νt

vx
νt

ax
νt

7

Chapter 2 – Background on Piecewise Deterministic Processes

and F y behaves equivalently.

The inter arrival times follow some given distribution f(dτj|τj−1), while the transition kernel
q(dθj|θj−1, τj−1, τj) which governs the random jump of the acceleration components at the
random time τj has the form

q(dθx
j |θj−1, τj−1, τj) = δsx,−

j
(dsx

j)δvx,−
j

(dvx
j)q(dax

j)

sx,−
j = sx

j−1 + vx
j−1(τj − τj−1) +

ax
j−1

2 (τj − τj−1)2

vx,−
j = vx

j−1 + ax
j−1(τj − τj−1)

At time t = 0 the vehicle has position, velocity and acceleration equal to a given ξ0.

This model could be suitable for tracking highly maneuvering targets as in [9].

2.2.4 Object Tracking
The aim of tracking is to estimate a target’s kinematic state (position, velocity, acceleration,
...) over time from a sequence of noisy or incomplete measurements. The target’s state is
a continuous process and usually presents a specific underlying structure. Nonetheless, a
discrete-time Markov process is used in various tracking systems to represent target dynamics,
and its state sampling rate is determined by the frequency at which measurements arrive
[61]. By discretising the state at observation time, we create a relatively simple setting in
which Kalman filtering [1] or particle filtering [15, 53] and smoothing methods may be used.
In real datasets, however, target trajectories are characterised by long periods of smoothness
with only a few sharp changes. For instance, aircraft and marine vehicles mostly transit in a
straight line with occasional turns to intercept new headings. The same principle applies
in many other situations involving unpredictably moving objects. This means that if the
state sampling rate is adjusted to the nature of the data we could, theoretically, obtain a
much more accurate representation of target trajectories. This would mean allocating more
particles in regions with sharp changes in trajectory and fewer in smoother regions [78].

[61, 64, 101] introduced models that consider the kinematic state as a continuous, determinis-
tic process dependent on dynamics parameters and an underlying sequence of changepoint
times. It can be thought of as a realised marked point process (MPP), and the resulting state
trajectory as a PDP [69]. Through variable rate particle filters, this sequence of changepoints
can be numerically estimated, yielding an approximation of the posterior distribution of the
current state. In tracking problems, the start and end of target manoeuvres are represented
by these changepoints, each of which is controlled by a parameter vector [12].

[61] provides an overview of the most relevant work in modelling and estimating continuous-
time jump models for application in tracking scenarios.

8

Chapter 3

Introduction to Particle Filtering

When solving real-world problems, we are often asked to estimate an unknown quantity
given certain observations of it. If we have prior knowledge about the phenomenon we want
to approximate, we can make inferences about it using a Bayesian model, based on the
well-known formula

p(x|y)︸ ︷︷ ︸
posterior distribution of x given y

∝ p(y|x)︸ ︷︷ ︸
likelihood

· p(y)︸ ︷︷ ︸
prior on y

(3.1)

for some hidden process x and its observation y.

In many cases, the observations in y are collected sequentially. Therefore, we need to
update the posterior distribution as more data becomes available (online inference). This
type of algorithm is prevalent in the field of inference on parameters and states of state-space
models (SSM). An example could be tracking an aircraft given some radar measurements, as
in [9].

In a few cases, it is possible to derive an exact analytical expression to compute the sequence
of posterior distributions. For instance, when the SSM that models the data is Gaussian and
linear, we can use the recursion given by the well-known Kalman filter. If, on the other hand,
the data belong to a partially observed, finite-state Markov chain model, it is possible to find
a solution using the hidden Markov model (HHM) filter. While these two filters are the most
widespread, there are configurations which admit other finite-dimensional filters ([99, 100]).
However, most real-world application use complex data which cannot be solved in closed
form since they could be non-linear, high-dimensional or non-Gaussian.

Particle Filters (PFs), also called Sequential Monte Carlo (SMC) methods, were intro-
duced in 1993 by [86] as a new algorithm applicable in general settings. They are a general
class of Monte Carlo methods that sample sequentially from a sequence of probability density
functions (pdfs). PFs have a lot of advantages: they are parallelisable, flexible and easy to
implement. Unlike some other algorithms, such as the extended Kalman filter [98, 51], PFs do
not make use of linearisation techniques or functional approximation. Nevertheless, PF are
computationally expensive. Fortunately, given the increasing availability of computational

9

Chapter 3 – Introduction to Particle Filtering

power, they can be successfully employed in various fields, such as computer vision [94, 87],
robotics [96], economics and mathematical finance [98, 31, 26], computational physics and
bioinformatics [66].

Particle filters can be viewed in statistics and probability as mean-field particle interpretations
of Feynman-Kac probability measures. Molecular chemistry and computational physics gave
origin to particle integration techniques [91, 67]. Path particle integration techniques of the
Feynman-Kac type are also employed in Quantum Monte Carlo, notably Diffusion Monte
Carlo methods [47, 5, 13], in computational physics. Furthermore, Feynman-Kac interacting
particle techniques are linked to mutation-selection genetic algorithms, which are utilised in
evolutionary computing to tackle complicated optimisation problems.

Given their increasing popularity, since their introduction PFs have been largely addressed
by the literature, both from a theoretical and applied point of view. A lot of tutorials have
been published on the subject, such as [83, 15, 55, 54]. The more recent paper [53], provides
a simple and unified framework including all the basic and advanced SMC methods.

The study of particle filter convergence began in 1996 [35, 36] and culminated in 2000
with the publication of the book [46] and a series of articles [27, 42, 43, 41, 84, 49, 44]. The
more recent books [38, 37] also address this topic.

In the following section, we present a general probabilistic model and its Bayesian inference
objectives, as well as a basic form of the PF algorithm.

3.1 The Filtering Problem
We now introduce the problem of estimating the posterior distribution of a hidden process,
i.e. a general version of the piecewise deterministic model described in section 2.2.2.

Let’s consider a Markov process (xt)t∈N with xt ∈ X , initial distribution µ(x1) and transition
probability p(xt|xt−1). The process x is hidden, but we have some observations of it (yt)t∈N and
yt ∈ Y . We assume the observations to be conditionally independent, given the hidden process.

We write x1:t and y1:t to indicate the signal process and its observation up to time t. Our
goal is to estimate recursively the posterior distribution p(x1:t|y1:t). In order to do that, we
use Bayes formula for conditional probabilities (as in (3.1))

p(x1, x2, . . . , xt|y1, y2, . . . , yt) = p(y1, y2, . . . , yt|x1, x2, . . . , xt)p(x1, x2, . . . , xt)
p(y1, y2, . . . , yt)

10

Chapter 3 – Introduction to Particle Filtering

where

p(y1, y2, . . . , yt) =
∫
p(y1, y2, . . . , yt|x1, x2, . . . , xt)p(x1, x2, . . . , xt)dx1d2 . . . dxt

p(y1, y2, . . . , yt|x1, x2, . . . , xt) =
t∏

i=1
p(yi|xi)

p(x1, x2, . . . , xt) = p1(x1)
t∏

i=1
p(xi|xi−1)

Particle filters provide us with an approximation of this probability density. As the number
of particles we employ in the algorithm grows, the result becomes more accurate [35, 36, 37,
42, 43]. The nonlinear filtering problem consists of computing sequentially the distributions
given by the nonlinear filtering equation

p(xt|y1, y2, . . . , yt−1) −→ p(xt|y1, y2, . . . , yt) = p(yt|xt)p(xt|y1, y2, . . . , yt−1)
p(yt|x′

t)p(x′
t|y1, y2, . . . , yt)dx′

t

(update)

−→ p(xt+1|y1, y2, . . . , yt) =
∫
p(xt+1|xt)p(xt|y1, y2, . . . , yt)dxt (prediction)

where p(x1|y1, y2, . . . , yt−1) = p(x1) for t = 1.

In Appendix A we provide a Feynman-Kac formulation of the filtering problem.

3.2 The PF Algorithm
We now describe the Particle Filter algorithm that we will use to achieve the goal we set
in the previous section, namely the recursive approximation of the sequence of densities
πt(xt|θ) = p(xt|y1:t, θ) (where θ is a fixed parameter).

First, we define a fixed number Nx of independent random variables (xn
1)1≤n≤Nx , with

common prior distribution µθ(x1). The algorithm consists mainly of three steps, a selection,
an update and a weighting step:

• Selection: Nx conditionally independent random variables are sampled from the previous
iteration (this step is skipped in the first iteration of the algorithm)

• Update: we update each of the selected particles according to a transition probability

xn
t−1 −→ xn

t ∼ qt,θ(·|xn
t−1)

for n ∈ Nx

• Weighting: we assign a weight to each particle (which will be used in the selection step
of the following iteration)

We now provide a pseudo-code version of the PF algorithm just described (Algorithm 1).
The algorithm we propose is from [21], however other schemes also exists [16, 72, 81].

11

Chapter 3 – Introduction to Particle Filtering

Algorithm 1 Particle Filter
Step 1: at iteration t = 1:

1: sample x1 from p1,θ(x1)
2: Compute and normalise the weights:

w1,θ(xn
1) = µθ(xn

1)gθ(y1|xn
1)

q1,θ(xn
1)

, W n
1,θ = w1,θ(xn

1)∑Nx
i=1 w1,θ(xi

1)

Step 2: for t = 2 : T :
1: sample the index an

t−1 ∼M(W 1:Nx
t−1,θ) of the ancestor particle n

2: sample xn
t from qt,θ(·|x

an
t−1

t−1)
3: Compute and normalise the weights:

wt,θ(x
an

t−1
t−1 , x

n
t) = pθ(xn

t |x
an

t−1
t)gθ(yt|xn

t)
qt,θ(xn

t |x
an

t−1
t−1)

, W n
t,θ = wt,θ(x

an
t−1

t−1 , x
n
t)∑Nx

i=1 wt,θ(x
ai

t−1
t−1 , x

i
t)

M(W 1:Nx
t−1,θ) stands for the multinomial distribution which assigns probabilityW 1:Nx

t−1,θ to outcome
n ∈ Nx and (qt,θ)t∈ T stands for a sequence of conditional proposal distributions depending
on θ. q is often chosen equal to the prior q1,θ(x1) = µθ(x1) and qt,θ(xt|xt−1) = µθ(xt|xt−1) for
t ≥ 2. For this choice, the weights have the form wt,θ(x

an
t−1

t−1 , x
n
t) = gθ(yt|xn

t), where gθ is the
likelihood function.

The one we just presented is the basic form of a Particle Filter algorithm. In Chapter
4 we will present some algorithms for the approximation of the posterior distribution of a
PDP given its observations.

3.3 SMC for Filtering and Smoothing
Consider again the following Markov model [100]:

xt+1 ∼ p(xt+1|xt) transition density
yt+1 ∼ g(yt+1|xt+1) observation density

where {xt} are the (hidden) states of the system and {yt} its observation over a given time
interval t ∈ {1, 2, . . . , T}. Note that p(·|·) and g(·|·) may be non-Gaussian and involve
non-linearity.

As we have already anticipated in the previous section, the problem we will deal with
is the estimation of the filtering distribution, i.e. the posterior p(xt|y1:t).

On the other hand, in the smoothing problem, all sample observations are used, there-
fore also those from the future. Hence, the objective will be to approximate p(xt|y1:T).

12

Chapter 3 – Introduction to Particle Filtering

Smoothing can be performed recursively backwards in time using the smoothing formula [63]

p(xt|y1:T) =
∫
p(xt+1|y1:T)p(xt|y1:t)p(xt+1|xt)

p(xt+1|y1:t)
dxt+1

Smoothing features are less well established than particle filtering, which is now a very
well-known theory and practice. In order to approximate the individual marginal smoothing
densities, existing methods for smoothing with particle filters have either used the two-filter
formula [71] or the two-filter method [51, 71]. Since analyses of historical states typically
focus on trajectories and therefore call for the analysis of collections of states together, these
marginal distributions are of little interest in many applications. [62] provides a sequential
procedure for Maximum a Posteriori (MAP) sequence estimation based on the Viterbi algo-
rithm and dynamic programming if a single “best” estimate for the smoothed trajectory is
required. In the Bayesian inference context, a single best estimate is uncommonly appropriate,
particularly when distributions are multimodal, therefore, in this case, we aim for random
state sequence generation.

By allowing the random creation of whole historical trajectories derived from the joint
smoothing density p(x1:t|y1:t), the new methods complete particle filtering methodology. First,
a particle-based approximation of the filtering density at each time step is created and stored
using a forward filtering pass. The next step is to perform a backwards “simulation smoothing”
pass in order to produce sampled realisations from the smoothing density.

We can make a parallelism with a technique used in linear Gaussian models and hidden Markov
models, in particular, the nonlinear/non-Gaussian equivalent of forward filtering/backwards
sampling methods [17, 57, 34].

There is a notable difference between the suggested method and the MAP estimation
discussed in [62]. The latter only uses the forward particle filter to create a grid of potential
state values at each time point and employs the Viterbi algorithm to determine the most
likely state trajectory across that grid of state values.

In this thesis, we will not address the smoothing problem but only the filtering problem. For
further reading see [73, 40, 10, 56, 65, 50].

3.4 Particle Markov Chain Monte Carlo

3.4.1 Markov Chain Monte Carlo
Markov Chain Monte Carlo (MCMC) methods, as says the name, combine the properties of
Markov chains and Monte Carlo methods:

• Monte Carlo consists in estimating the properties of a distribution by analysing random
samples from that very same distribution.

• The Markov chain side of this method refers to the concept an underlying sequential
process is involved in the sampling, and each random sample is used as a waypoint for

13

Chapter 3 – Introduction to Particle Filtering

generating the next one. Each new sample depends just on the one before it (Markov
property).

MCMC is of great use in Bayesian inference as the latter focuses on posterior distributions,
which are often difficult to work with via analytic examination. These algorithms target the
distribution pθ(x1:T |y1:T) (or p(x1:T , θ|y1:T)).

One of the most popular MCMC algorithm is the Metropolis Hastings (2).

Algorithm 2 Metropolis Hastings
1: sample X ′

1:T ∼ qθ(x1:T |y1:T)
2: given a current state sn = X1:T we compute the acceptance probability:

pa = min(1, pθ(X ′
1:T |y1:t)qθ(X1:T |y1:t)

pθ(X1:T |y1:t)qθ(X ′
1:T |y1:t)

)

3: set sn+1 = X ′
1:T with probability pa, and sn+1 = X1:T = sn with probability 1− pa

where qθ(x1:t|y1:t) is a given proposal density.

If we are targeting p(x1:T , θ|y1:T), it is common to sample alternatively from p(x1:T |θ, y1:T) =
pθ(x1:T |y1:T) and p(θ|x1:T , y1:T). However, sampling exactly from pθ(x1:T |y1:T) is feasible only
if the model is linear Gaussian or if it is a finite state space hidden Markov model ([17, 58]).
Otherwise, we require the design of the proposal densities making this type of algorithm
often impossible to implement.

3.4.2 Particle MCMC
The idea behind Particle MCMC Particle Markov Chain Monte Carlo (PMCMC) methods,
introduced by [2, 3], consists of approximating the standard MCMC algorithms by taking
the proposal distribution to be the output of an SMC algorithm using Nx ≥ 1 particles and
targeting pθ(x1:t|y1:t), for instance in a MH update [29].

PMCMC are “exact approximations” of the standard MCMC algorithms targeting either
pθ(x1:T |y1:T) or p(x1:T , θ|y1:T), i.e. “for any fixed number Nx ≥ 1 of particles their transition
kernels leave the target density of interest invariant”[3]. Moreover, they can be seen as
standard MCMC updates that, under mild standard assumptions (see [3] for more details),
lead to convergence.

The two most popular PMCMC algorithms are Particle Gibbs sampler (PGS) [29, 28]
and Particle Independent Metropolis Hastings (PIMH) [22, 45].

In Appendix B.1.1 we provide a pseudo code for the PIMH algorithm. This is the same
as the standard MH algorithm described in Algorithm 2, but, instead of sampling from a
probability distribution qθ(x1:T |y1:T), we use an SMC algorithm targeting the actual posterior

14

Chapter 3 – Introduction to Particle Filtering

distribution p(x1:T |y1:T).

If we want to sample from p(θ, x1:T |y1:T) instead, we have to use another version of Metropolis-
Hastings, namely the Particle Marginal Metropolis Hastings (PMMH) [3] (see Appendix
B.1.2). We already know that

p(θ, x1:T |y1:T) ∝ p(θ|y1:T)p(x1:T |y1:T)

This version of the algorithm, also used in [7, 4], uses as MH update

q(θ′, x′
1:T |θ, x1:T) = q(θ′|θ)pθ′(x′

1:T |y1:T) (3.2)

where pθ′(x′
1:T |y1:T) is “adapted” to θ and it can be substituted by an SMC approximation of

it. From (3.2) followed that the acceptance probability is computed as

p(θ′, x′
1:T |y1:T)q(θ, x1:T |θ′, x′

1:T)
p(θ, x1:T |y1:T)q(θ′, x′

1:T |θ, x1:T) = pθ′(y1:T)p(θ′)q(θ|θ′)
pθ(y1:T)p(θ)q(θ′|θ)

For more details see [3]

PGS is a different algorithm used to sample from the posterior density p(θ, x1:T |y1:T). The
difference from the previous algorithms is that in the step using an SMC algorithm, we must
instead use a conditional SMC update. This type of update is similar to that produced by
its standard counterpart, except that one of the trajectories is fixed at the beginning. This
means that this trajectory will “survive” and be present among the final trajectories given by
the output of the algorithm. In Appendix B.1.3 is given a general version of the conditional
SMC. Figure 3.1 shows an example of ancestral lineages generated by a conditional SMC
algorithm.

Now we can present a pseudo-code for the PGS (3).

Algorithm 3 Particle Gibbs sampler
1: Initialization: set n = 0 and θ(0), X1:T and B1:T (0) arbitrarily.
2: for n ≥ 0:

• sample θi ∼ p(·|y1:T , X1:T (n− 1))
• run a conditional SMC algorithm targeting p(x1:T |y1:T) conditional on X1:T (n− 1)
• sample X1:T ∼ p̂θ(i)(·|y1:T)

In section 5.1 we will introduce three versions of this class of methods, namely the Poisson
Tree Metropolis Hastings, the Poisson Tree Gibbs sampler [14] and the Particle Filter with
Mixture Kernels Gibbs sampler.

15

Chapter 3 – Introduction to Particle Filtering

 𝑋1
1 𝑋1

2 𝑋1
5 𝑋1

4 𝑋1
3

 𝑋4
1 𝑋4

2 𝑋4
5 𝑋4

4 𝑋4
3

 𝑋3
1 𝑋3

2 𝑋3
5 𝑋3

4 𝑋3
3

 𝑋2
1 𝑋2

2 𝑋2
5 𝑋2

4 𝑋2
3 𝐴1

4 = 4

𝐴2
3 = 4

𝐴3
5 = 3

Figure 3.1: Example of ancestral line generated using a conditional SMC algorithm with 5
particles and 4 time steps.

3.5 Diversification of the Particles
Resampling means producing several copies of the same particle, and is a practice used in
SMC algorithms to decrease variance in importance weights (Figure 4.1). In the context
of PDPs, we may incur the case where no jump occurs between two or more consecutive
observations. Thus, if we sample from the prior distribution of the model under consideration,
it is possible that no diversification in particles occurs for multiple iterations, which could
result in the propagation of errors and instability of the algorithm [101].

The problem of diversification and repeated calculations was faced in [61], which, how-
ever, does not consider the situation in which new particles are proposed without taking into
account new observations. Other authors [20] suggest the use of MCMC diversification moves
[59] are crucial for the correct and efficient functioning of the SMC algorithm. In chapter 4
we will present an algorithm from [101] that makes use of an adjustment move to tackle this
problem.

16

Chapter 4

Particle Filters: Methods and Models

In this chapter we will present, analyse and compare two existent PF algorithm, namely the
PF with mixture kernels [101] and the Poisson Tree Particle Filter [14].

4.1 PDP Particle Filter Mixture Kernels
In [39] a general framework for SMC samplers is presented. Let’s consider the model pre-
sented in Section 2.2.2 from [101]. We wish to approximate the sequence of probability
measure (πn)n∈N, which is defined on the sequence of spaces (∏n

p=1 Ep)n∈N (where (En)n∈N
is a collection of spaces). Note that the space sequence has the target at time index n as a
marginal distribution at that time index.

We wish to approximate the target distribution by the sequence (π̃n)n∈N, which has the form

π̃n(x1:n) = πn(xn)
n−1∏
p=1

Lp(xp+1, xp)

where Ln is a “backward” kernel acting from En+1 into En. This structure leads to the
incremental weights

wn(xn−1, xn) ∝ πn(xn)βn−1,m(xn)Ln−1(xn, xn−1)
πn−1(xn−1)αn,m(xn−1)Kn(xn−1, xn) (4.1)

where Kn is the Markov kernel extending π̃n−1 to π̃n. At time n the importance weights
depend only on xn and xn−1, and not on the history of the process.

4.1.1 Model
The model we will refer to in the following sections is the one described in section 2.2.2 and
2.2.3.

17

Chapter 4 – Particle Filters: Methods and Models

4.1.2 Construction of the Algorithm
The objective, as already mentioned, is to approximate the distribution of the hidden process
given its observations. Recall that {(kn, τkn , θkn)(i),w(i)

n }N
i=1 is the set of N particles generated

by us, which are used to approximate the signal process in the following way

pN(dξtn|y1:n) =
N∑

i=1
w(i)

n δ
ξ

(i)
tn

(dξtn), δ
ξ

(i)
tn

= F (tn, τ (i)
k

(i)
n

, θ
(i)
k

(i)
n

)

In order to build this approximation we need to compute the weights as specified in formula
(4.1). To do that, we have to define two fundamental elements:

• The “forward” (proposal) kernels Kn;

• The “backward” kernels Ln.
It is also possible to use kernels which are mixtures, i.e. formed by many components. In the
proposed algorithm, we will use a mixture kernel in which each component applies a different
increment to the parameter kn. The proposal kernel will have the general form

Kn(xn−1, xn) =
M∑

m=1
αn,m(xn−1)Kn,m(xn−1, xn) ∀xn,

M∑
m=1

αn,m = 1 (4.2)

which means it is a function of the current state. Note that M represents the total number
of components in the kernel.

When we apply a proposal kernel in this form, there exists an optimal1 backward kernel
(provided by [39]), which leads to the following incremental weights

wn(xn−1, xn) ∝ πn(xn)∫
En−1

πn−1(xn−1)[
∑M

m=1 αn,m(xn−1Kn,m(xn−1, xn))]dxn−1
(4.3)

However, often the denominator in equation (4.3) is intractable. In this cases we have to use
an approximation of the optimal backward kernel, which takes the form

Ln−1(xn, xn−1) =
M∑

m=1
βn−1,m(xn)Ln−1,m(xn, xn−1)

If we employ kernels in this form, the incremental importance weights will be given by

wn(xn−1, xn,m) ∝ π̃n(x1:n)
π̃n−1(x1:n−1)Kxn−1,xn

= πn(xn)Ln−1,m(xn, xn−1)
πn−1(xn−1)Kn,m(xn−1, xn) (4.4)

The choice of kernels is crucial for the correct functioning of the algorithm. We will now give
an overview of the possible kernel choices and the type of incremental weights they lead to,
together with a pseudo-code version of the PF with mixture kernels algorithm from [101].
In the next section, we will give the precise form of the kernels dependent on the model
assumptions.

We will consider two different types of moves: the birth move and the adjustment move.
1Optimal in this case means that, by performing resampling at every step, the variance of the importance

weights is minimized.

18

Chapter 4 – Particle Filters: Methods and Models

• Birth move: We call the kernel associated with this move Kn,b. This move consists in
adding one or more jump times and associated parameters. In the simple case (single
birth move) the dimensionality is increased by 1, kn = kn−1 + 1 and a new jump τn,kn

and parameter θn,kn are sampled respectively from the distributions hn(·|τn−1,kn−1) (on
(τn−1,kn−1 , tn]) and n(·|xn\θkn). The birth kernel will have the form

Kn,b(xn−1, dxn) = δkn−1+1(kn)δτn−1,1:kn−1(dτn,1:kn−1)
× δθn−1,1:kn−1(dθn,1:kn−1)hn(dτn,kn|τn−1,kn−1)ηn(dθn,kn|xn\θn,kn)

• Adjustment move: We call the kernel associated with this move Kn,a. This move
preserves the number of jumps, but changes the location of the most recent jump by
sampling another one in the interval (τn−1,kn−1−1, tn] from the distribution hn(·|xn−1).
The adjustment move does not change the parameter associated with the jump. This
move leads to a kernel in the form

Kn,a = δkn−1(kn)δτn−1,1:kn−1−1(dτn,1:kn−1)× δθn−1,1:kn−1(dθn,1:kn)hn(dτn,kn|xn−1)

In Algorithm4 we present a version of the PF algorithm for PDPs.

Algorithm 4 PDP Particle Filter with mixture kernels
1: n=1
2: for i = 1 to N do
3: X

(i)
1 ∼ η(·)

4: w
(i)
1 ∝

π1(X(i)
1)

η(X(i)
1))

5: end for
6: n← n+ 1
7: for i = 1 to N do
8: X(i)

n ∼ Kn(X(i)
n−1, ·)

9: w(i)
n ∝ w

(i)
n−1

πn(X(i)
n)Ln−1(X(i)

n ,X
(i)
n−1)

πn−1(X(i)
n−1)Kn(X(i)

n−1,X
(i)
n)

10: end for
11: Resampling can be conducted at this stage.
12: Optionally, move each X(i) according to a πn-invariant Markov kernel.
13: Go to 6
Figure 4.2 shows how a potential output of 4 looks like.

In order to avoid the problem described in section 3.5, we usually resample when the
effective sample size (ESS), defined as [74]

ESS =

(∑N
i=1 wi

)2

∑N
i=1 (wi)2 (4.5)

falls below a given threshold, usually set to be half of the total number of particles. From the
definition of ESS, this means that we resample whenever a few particles take on a very high
weight relative to the rest, leading to a degenerate model. Since the weights are normalised
at each step (so they sum to 1), the numerator in (4.5) is equal to 1. Each time resampling
is performed, all particles are assigned an equal weight (see resampling scheme Figure 4.1).

19

Chapter 4 – Particle Filters: Methods and Models

Figure 4.1: Resampling scheme.

4.1.3 Specifics of the Model
We will apply the algorithm just described to the model presented in section 2.2.3. In
particular, this model will be used in the context of object tracking. To do this, we will apply
a forward mixture kernel consisting of two elements.

• A birth move: this move adds a single jump uniformly in the interval (τn,kn−1, tn]. The
forward kernel has the form

Kn,1(xn−1, dxn) = δkn−1+1(kn−1)δτn−1,1:kn−1
(dτn,1:kn−1)× dτn,kn

tn − τn,kn−1
11(τn,kn−1,tn](τn,kn)

while the correspondent backward kernel is

Ln−1,1(xn, dxn−1) = δkn−1(kn−1)δτn,1:kn−1(dτn−1,1:kn−1)

• An adjustment move: this move applies a Gaussian random walk kernel to the last
jump time. The kernel is restricted to (τn,kn−1, tn] and we can write it as

Kn,2(xn−1, dxn) ∝ 11(τn−1,kn−1−1,tn](τn,kn)N (τn−1,kn−1 , σ
2
adjust)dτn,kn

×δkn−1(kn)δτn−1,1:kn−1−1(dτn,1:kn−1)

20

Chapter 4 – Particle Filters: Methods and Models

Figure 4.2: Distribution of particles around a trajectory using a PF with mixture kernels.

In this case the backward kernel is given by a Gaussian kernel of the same variance,
restricted to (τn−1,kn−1−1, tn−1]

Ln−1,2(xn, dxn− 1) ∝ 11(τn−1,kn−1−1,tn](τn−1,kn−1)N (τn,kn , σ
2
adjust)dτn−1,kn−1

×δkn(kn−1)δτn,1:kn−1(dτn−1,1:kn−1−1)

Moreover, we resample every time the ESS falls under 50%.

Choice of the Kernel

At each step, it is determined which of the two moves to use. To do this, we will use a
distribution of Bernoulli whose parameter is the survivor function S(·, ·) (which we defined in
section 2.2.2) in the interval (τn,kn−1, tn]. In case of outcome 1, an adjustment move will be
made, or otherwise, a birth move. This is equivalent in choosing αn,a(xn−1) (from expression
(4.2)) equal to

αn,a(xn−1)
0 if tn − τn−1,kn−1−1 > tmax

S(tn, τn−1,kn−1) o/w

4.2 Poisson Tree Particle Filter
In this section we will discuss another approach to particle filtering for PDPs, namely the
Poisson Tree Particle Filter (PTPF) [14].

21

Chapter 4 – Particle Filters: Methods and Models

As in the model in [89], the PTPF produces a branching process. What is new in this
case is the introduction of a Poisson resampling scheme. Unlike the standard PF model
presented in Algorithm 1, in which the “children” chose the parent particle from which to
generate themselves, in this model, each particle gives rise to a random number of children.
This characteristic allows us to easily generate an SMC algorithm for continuous time models.
Furthermore, this algorithm can be used in the construction of a Gibbs particle sampler (as
in [80]), which we will describe in chapter 5, and prove to be uniformly ergodic under the
standard assumptions [79].

4.2.1 Model
The underlying model for the construction of PTPF is the same as that described in sections
2.2.2 and 2.2.3, with one slight modification.

The trajectory of the signal process (ξt)t≥0, which we previously defined, in the interval
between two jumps [τkn , τkn+1 [can be identified by its initial location as well as by its end
location. While for the construction of the PF with mixture kernels we used the former
method, in this case, we will use the latter. Moreover, we will refer to the model’s propagation
kernel as K.

4.2.2 Construction of the Algorithm
We will now introduce the main elements for the construction of the PTPF from [14].

The random structure A = (V , E ,X,T, S) originates from PTPF, in particular:

• (V , E) is a directed graph. If (i, j) ∈ E , where i, j ∈ V we use the notations i → j,
i = pa(j) and j ∈ ch(i);

• X = {Xi : i ∈ V} is a collection of random variables taking values in X ;

• T = {Ti : i ∈ V} is a collection of random variables taking values ranging in [tmin,∞[;

• S ∈ V is a (random) node in the graph that identifies a selected path.

Additionally, we take into account two collections of random variables:

• The intensity parameter Λ = {Λi : i ∈ V};

• The weights W = {Wi : i ∈ V}.

Both being functions of A and of the fixed observation Υ = y. Furthermore, we will employ
a "propagation" transition kernel R(Xi, Ti, ·, ·), such that the model’s kernel K is absolutely
continuous with respect to R.

Let i identify the particle born at time Tpa(i) (pa(i) → i). We assign to this particle a
jump time Ti, until which i evolves deterministically. The location right before the jump
occurring at Ti, also called the end location, is denoted by Xi = ξ(Ti−). If Ti ≥ tmax we i is

22

Chapter 4 – Particle Filters: Methods and Models

called a terminal node and i ∈ Vend. To each particle i we assign an intensity parameter Λi,
which carries information on the “history” of the particle. The way we compute it is described
in section 4.2.3. Moreover, particle i is also assigned a weight Wi = dK

dR
l(Xi, Ti, Xj, Tj),

where dK
dR

(x, t, x′, t′) = K(x,t,dx′,dt′)
R(x,t,dx′,dt′) is the Radon-Nikodym derivative (note that we choose the

propagation kernel R such that the model kernel K is absolutely continuous with respect
to it), while l(Xi, Ti, Xj, Tj) is the likelihood in the interval [Tpa(i), Ti[. At the jump time τi

the particle i “gives birth”to a number Ni ∼ Poiss(ΛiWi) of children particles, which evolve
independently according to the kernel R(Xi, Ti, ·, ·). Note that it may happen that for a
particle i Ni = 0. In that case, that branch of the tree “dies”.

A particle is called active if it still has not been considered to give birth and if it is
not a terminal node. When there are no more active particles left, the estimate Ẑ of the
norming constant z is computed as

Ẑ =
∑

j:τj≥tmax

Wj

Cpa(j)

Finally we select a particle, S, existing at the moment tmax with probability WS/Cpa(S).
The ancestry line of this particle identifies a unique sample path of the hidden process. In
Algorithm 5 we give the pseudo-code for the PTPF algorithm from [14].

Algorithm 5 Poisson Tree Particle Filter
Initialization:
V := Vact := {0}; E := ∅; Vend = ∅; X0 := x0; T0 := t0;
C0 := Λ0 := λ0; W0 = 1
Main Loop:

1: while Vact ̸= ∅ do
2: Choose i ∈ Vact

3: if i ̸= 0 then
4: Compute Λi = L(H(Ti))
5: Ci = Cpa(i)Λi

6: end if
7: Sample Ni ∼ Poiss(ΛiWi)
8: if Ni ≥ 0 then
9: Create set ch(i) of cardinality Ni

10: V := V ⋃ ch(i), E := E ⋃{i→ j : j ∈ ch(i)}
11: for all j ∈ ch(i) do
12: Sample (Xj, Tj) ∼ R(Xi, Ti.·, ·) (propagation step)
13: Compute Wj = dK

dR
l(Xi, Ti, Xj, Tj) (weighting step)

14: if Tj ≥ tmax then
15: Vend = Vend

⋃{j}
16: Vact = Vact

⋃{j}
17: end if
18: end for
19: end if

23

Chapter 4 – Particle Filters: Methods and Models

20: Vact = Vact \ {i}
21: end while
22: if Vend ̸= ∅ then
23: Ẑ := ∑

i∈Vend

Wi

Cpa(i)

24: Select s ∈ Vend with probability P (S = s) ∝ Ws

Cpa(s)

25: Ẑ := 0
26: end if
27: Output: Ẑ, (Xan(s), Tan(s))

L(H(Ti)) is a function depending on the history of the particle i; [14] provides a way to
compute it which we will describe in the following section. Figure 4.3 shows the set of
trajectories identified by the nodes existing at a time t ≥ tmax.

Figure 4.3: Distribution of particles around a trajectory using a PTPF.

4.2.3 Intensity parameter
In this section, we first provide a way for computing the intensity parameter Λ we mentioned
in section 4.2.2, then we discuss why this approach works.

We partition the interval [tmin, tmax] into smaller sub-intervals in the following way.

tmin = t0syn < t1syn < · · · < trsyn < · · · < tqsyn = tmax

where tsyn stand for “synchronisation time”.

Now we define
F r = {i : trsyn ≤ Ti ≤ tr+1

syn }

24

Chapter 4 – Particle Filters: Methods and Models

if i ∈ F r (i.e. i is in the rth strip), we call the subset of F r of the particle that propagate in
rth the strip but whose parents were in a previous strip F r

0 :

F r
0 = {i : Tpa(i) < trsyn ≤ Ti ≤ tr+1

syn }

F r \F r
0 is the set of nodes in F r whose parents are also in F r. Gr is the subset of the particles

that “skip” the rth strip, i.e. they were born before trsyn and propagate after tr+1
syn :

G = {i : Tpa(i) < trsyn, Ti ≥ tr+1
syn }

Figure 4.4 illustrates different configurations. Let’s call Lr
0 the partial likelihood corresponding

Figure 4.4: Example of Poisson tree. Edge x4 ∈ GrF r+1, x3 ∈ F r
0 , while x5 ∈ F r \ F r

0 ([14],
Figure 1, page 7).

to a path in the previous strip. For every i ∈ F r
0 ,

Li
0 = l(ξi[tr−1

syn ,tr
syn[)

and define
Lr

0 =
∑

i∈Fr
0

Li
0

Now that we have defined the essential elements, we will propose a method for computing
the intensity parameter as in [14]. Assuming that F r

0 ̸= 0, we set

Λi =

1
Wi

Lr
i

Lr
0
b(λ0 − |Gr|) for i ∈ F r

0
1

Wi
for i ∈ F r \ F r

0
(4.6)

where b is a non-decreasing function b :] −∞,∞[→ [0,∞[. And λ0 is the expected initial
number of particles.

The idea behind this is that we want to keep the number of particles generated at each step
constant on average, so close to λ0. We have that, under (4.6), the expected number of
children of particles in F r

0 ∑
i∈Fr

0

ΛiWi = b(λ0 − |Gr|)

while the expected number of children for the nodes in F r \ F r
0 is 1. Particles corresponding

to Gr pass through the strip [trsyn, t
r+1
syn [unchanged. The expected number of particles that

exist just before tr+1
syn is obtained by combining these results

b(λ0 − |Gr|) + |Gr|

25

Chapter 4 – Particle Filters: Methods and Models

We choose b to be b(l) = max(l, b0), where b0 is a small given constant. Note that if we
choose b(l) = max(l, 0), then the expected number of particles immediately before tr+1

syn would
be equal to max(λ0, |Gr|). Hence if λ0 ≤ |Gr|, the particles in F r would have zero chance to
propagate.

It is important to note that we need to “count” how many Ti fall within a certain strip, but
we do not need to sort them, which is very important for an efficient implementation of the
algorithm.

26

Chapter 5

Parameters and State Estimations

As mentioned in section 2, MCMC methods aim to construct a Markov chain whose stationary
distribution is equal to the target distribution. In the case of the model considered in the
previous chapters, our target distribution is pθ(x1:T |y1:T), where θ is known. If we additionally
want to make inferences on the parameters of the model (θ is no longer known), the target
distribution becomes p(θ, x1:T |y1:T).

In [21], a method is proposed for performing states and parameters estimation sequen-
tially. This means that while PMCMC algorithms provide samples from p(θ, x1:T |y1:T), the
new algorithm, namely the SMC2 algorithm, provides samples from

p(θ, x1:t|y1:t) ∀t ∈ [1, T]

In Section 5.2 we will try to adapt this algorithm to a piecewise deterministic model.

5.1 Particle MCMC based on PTPF
As we mentioned in section 3.4, we are going to describe two MCMC methods for performing
parameters and states estimations based on PTPFs [14].

Before giving a pseudo-code version of the two algorithms, we define the extended probability
distributions of the PTPF and the conditional PTPF. These will lead to some interesting
results in terms of the convergence of the two PMCMC algorithms [14].

5.1.1 Extended Probability Distribution and Conditional PTPF
We define two types of extended probabilities:

• The extended proposal, the joint probability distribution of (V , E ,X,T, S), denoted
by ψ(V , E ,X,T, S)

• The extended target, the joint probability distribution of (V , E ,X,T, S) focused on
the trees with Vend ̸= ∅, i.e. marginalised to the target. The extended target is denoted
by ϕ(V , E ,X,T, S)

27

Chapter 5 – Parameters and State Estimations

In order to provide a full expression for these two probability distributions, we first need to
introduce the concept of equivalence class.

When we consider a tree, the way we label nodes and edges is not relevant to the cor-
rect functioning of the algorithm. Two trees are said to be equivalent if there is a one-to-one
correspondence between the node sets (such that the edges are preserved). Thus, two struc-
tures (V , E ,X,T, S) and (V ′, E ′,X′,T′, S ′) are equivalent if they differ only in the way they
are labelled. If we consider the propagation step of a node i, we know that the probability
that it will give birth to ni children is

e−λiwi
(λiwi)ni

ni!
(5.1)

Each of these children is assigned a pair (Xi, Ti). There are ni! ways in which these can
be assigned. So by multiplying (5.1) by ni! we obtain the probability distribution of the
equivalence class, which we will denote by [A] = [(V , E ,X,T, S)].

We can now proceed to give a precise form (from [14]) to the extended probability dis-
tributions introduced above

ψ(V , E , dx, dt) =
∏

i∈V\Vend

e−λiwi(λiwi)|chi(i)| ∏
j∈chi(i)

R(xi, ti, dxj, dtj) (5.2)

ψ(V , E , dx, dt, s) = ψ(V , E , dx, dt) ws

cpa(s)ẑ
(5.3)

where

ẑ =
∑

i∈Vend

wi

cpa(i)

Note that 5.2 is the marginal distribution of all the variables except S, and 5.3 is the
conditional distribution of S given the rest (with abuse of notation, we call both of them
ψ(·)). We write the extended target as

ϕ(V , E , dx, dt, s) = ψ(V , E , dx, dt, s) ẑ
z

= π(dxan(s), dtan(s)) · ψcond((V , E , dx, dt, s|xan(s), tan(s))
(5.4)

where ψcond is given by

ψcond((V , E , dx, dt, s|xan(s), tan(s)) =
∏

i∈V\Vend\an(s)
e−λiwi(λiwi)|chi(i)| ∏

j∈chi(i)
R(xi, ti, dxj, dtj)

×
∏

i∈an(s)\{s}
e−λiwi(λiwi)|chi(i)| ∏

j∈chi(i)\an(s)
R(xi, ti, dxj, dtj)

(see [14] for further details).

Now, we proceed with giving a definition for the conditional PTPF from [14]. This al-
gorithm will be used for the construction of the Particle Gibbs sampler. It is almost the same

28

Chapter 5 – Parameters and State Estimations

as the standard version of the PTPF, the only difference being that the node S (and thus
the path identified by it) is given as input.

Algorithm 6 Conditional PTPF
Input: (X̃1:M , T̃1:M) (conditioning path)
Initialization:
V := Vact := {0}; E := ∅; Vend = ∅; X0 := x0; T0 := t0;
C0 := Λ0 := λ0; W0 = 1

1: for k := 1 to M do
2: V := V ⋃{k}, E := E ⋃{k − 1→ k}
3: (Xk, Tk) := (X̃k, T̃k)
4: end for
5: S := M (singled out vertex S is set to be equal to the endpoint M of the fixed path

(X̃1:M , T̃1:M))
6: Vact = V \M, Vend := {M}
7: Main loop: same as the main loop in standard PTPF

Output: (V , E ,X,T, S)

Note that the output of the conditional PTPF is a tree with distribution ψcond.

5.1.2 Poisson Tree Gibbs sampler (PTGS) and Poisson Tree Metropo-
lis Hastings (PTMH)

We can now finally define the MCMC algorithms based on the PTPF. We recall that we aim
to simulate a Markov chain Ξ0,Ξ1, . . . ,Ξn, . . . , (with Ξn = {Ξn(t)|tmin ≤ t ≤ tmax}) whose
stationary distribution is the posterior distribution of the hidden process Ξ = x1:T given its
observations y1:T , i.e. p(x1:T |y1:T).

Firstly, we will introduce the PTGS algorithm, namely the version using the PTPF of
the more general PGS introduced in Section 3.4. In Algorithm 7, we provide a pseudo code
for this algorithm. Note that (X1:M , T1:n) indicates the space-time skeleton, which uniquely
identifies the piecewise deterministic path.

Algorithm 7 One step of PTGS
Input: Ẑ, (X̃1:M , T̃1:M) (Output of previous step)

1: Run PTPF and obtain Ẑ∗, (X∗
1:M , T

∗
1:M)

2: Sample U ∼U(0,1)
3: if U ≤ Ẑ∗

Ẑ
then

4: (X ′
1:M ′ , T ′

1:M ′) := (X∗
1:M ′ , T ∗

1:M ′) Ẑ ′ := Ẑ∗ (Accept proposal)
5: else
6: (X ′

1:M ′ , T ′
1:M ′) := (X̃1:M ′ , T̃1:M ′) Ẑ ′ := Ẑ (Reject proposal)

7: end if
Output: (X ′

1:M ′ , T ′
1:M ′)

29

Chapter 5 – Parameters and State Estimations

On the other hand, we call PTMH the Poisson resampling version of the PIMH (see section
3.4) (8).

Algorithm 8 One step of PTMH
Input: Ẑ, (X̃1:M , T̃1:M) (Output of previous step)

1: Run cPTPF and obtain (V , E ,X,T, S)
2: Forget S and sample a new S ′: select S ′ ∈ Vend with probability P (S ′ = s′) ∝ Ws′/Cpa(s′)

Output: (X ′
1:M ′ , T ′

1:M ′) := (Xan(S′), Tan(S′))

Both the PTGS and the PTMH produce Markov chains on the space of trees: T0,T1, . . . ,Tn,

5.1.3 Some Results
Now that we have defined the extended probability distributions and the PMCMC algorithms,
we present some results from [14].

Proposition 5.1.1. Let f be a non-negative function on the space of skeletons (x1:m, t1:m).
If the structure (V , E ,X,T) is produced by PTPF then the following estimator of zπ(f) is
unbiased

ẑπ(f) =

∑

i∈Vend

Wi

Cpa(i)
f(Xan(i), Tan(i)) if Vend ̸= ∅

0 if Vend = ∅

In particular, Ẑ is an unbiased estimator of z.

Theorem 5.1.1. Markov chains generated by algorithms PTMH and PTGS have the
equilibrium distribution equal to the target π = πpost given by (5.4).

The proof of Proposition 5.1.1 and Theorem 5.1.1 are also provided by [14].

5.1.4 Gibbs Sampler based on PF with Mixture Kernels
To describe this algorithm, we will refer to algorithm 3 presented in section 3.4. The only
element we are missing in order to construct such an algorithm is the conditional version of
the PF with mixture kernels. However, in the latter, the trajectories are built independently
of each other, so it is sufficient to add the fixed trajectory to the set of trajectories produced
by the algorithm.

Thus, with this modification of PF with mixture kernels, we can use algorithm 3 to obtain
an approximation of the target distribution. In the following chapters we will refer to this
algorithm as Particle Filter Mixture Kernels Gibbs sampler (PF MK GS).

30

Chapter 5 – Parameters and State Estimations

5.2 Sequential Parameters and State Estimations: the
SMC2 Algorithm

As we have already mentioned, in this section, we will introduce an algorithm for inference
on parameters and states in a sequential manner. This algorithm was introduced by [21], and
is proposed as a union of a PF (see 1) and the Iterated Batch Importance Sampling (IBIS)
algorithm [19]. We proceed to give a background on SMC2, its objectives and a pseudo-code
version of the algorithm.

5.2.1 Iterated Batch Importance Sampling Algorithm
We have already seen in the previous sections how PFs work. The algorithm introduced by
[19] aims at exploring consistently a sequence of distributions of interest, in our case the
posterior distribution of the parameter θ, p(θ|y1:y).

The algorithm is the following

Algorithm 9 Iterated Batch Importance Sampling [19]
Sample θm from p(θ) and set ωm ← 1. For times t = 1 . . . T :

1: Calculate the incremental weights and their weighted average

ψt(θm) = p(y1|y1:t−1, θ
m), Lt = 1∑Nθ

m=1 w
m

Nθ∑
m=1

wmψt(θm)

where p(y1|y1:0, θ
m) = p(y1|θm) for t=1.

2: Update of the importance weights

wm ← wmψt(θm)

3: If a chosen degeneracy criterion is fulfilled, sample θm independently from the mixture
distribution

1∑Nθ
m=1 ω

m

Nθ∑
m=1

ωmGt(θm, ·)

replace the current particle system with the set of new unweighted particles

(θm, ωm)← (θ̃m, 1)

Where ∑Nθ
m=1 ω

mψ(θm)∑Nθ
m=1 ω

m

when Nθ →∞, for any integrable ψ, is a consistent1 normal estimator of

E[ψ(θ)|y1:t] =
∫
ψ(θ)p(θ|y1:t)dθ

1In statistics, a consistent estimator or asymptotically consistent estimator is an estimator having the
property that as the number of data points used increases indefinitely, the resulting sequence of estimates
converges in probability [88]

31

Chapter 5 – Parameters and State Estimations

A proof for this is provided by [20]. Moreover, Lt is itself a consistent, asymptotically normal
estimator of the likelihood.

Finally, the algorithm includes a resampling and a mutation step. The resampling is
performed by means of a multinomial distribution: particles are selected in proportion to
their weight (see Figure 4.1). As a degeneracy criterion the ESS (defined as in 4.5) can be
used. In the mutation phase, new particles are proposed according to a Gaussian random
walk

θ̃m|θm ∼ N(θm, cΣ̂) (5.5)
where

Σ̂ = 1∑Nθ
m=1 ω

m

Nθ∑
m=1

ωm(θm − µ̂)(θm − µ̂)T

and
µ̂ = 1∑Nθ

m=1 ω
m

Nθ∑
m=1

ωmθm

5.2.2 The SMC2 Algorithm
We now have all the elements to define the SMC2 algorithm (Algorithm 10).

Algorithm 10 SMC2 [19]
Sample θm from p(θ) and set ωm ← 1. For times t = 1 . . . T :

1: For each particle θm, perform iteration t of the PF as described in1.
• If t = 1, sample independently x1:Nx,m1 from ψ1,θm , then compute

p̂(y1|θm) = 1
Nx

Nx∑
n=1

ω1,θ(xn,m
1)

• If t ≥ 1, sample
(
x1:Nx,m

1:t , a1:Nx,m
1:t−1

)
conditional on

(
x1:Nx,m

1:t−1 , a1:Nx,m
1:t−2

)
from ψt,θm , then

compute

p̂(yt|y1:t−1, θ
m) = 1

Nx

Nx∑
n=1

ωt,θ

(
x

an,m
t−1 ,m

t−1 , xn,m
t

)
2: Update of the importance weights

wm ← wmp̂(yt|y1:t−1)

3: If a chosen degeneracy criterion is fulfilled, sample
(
θ̃m, x̃1:Nx,m

1:t , ã1:Nx,m
1:t−1

)
independently

from the mixture distribution

1∑Nθ
m=1 ω

m

Nθ∑
m=1

ωmKt

((
θm, x1:Nx,m

1:t , a1:Nx,m
1:t−1

)
, ·
)

replace the current particle system with the set of new unweighted particles(
θm, x1:Nx,m

1:t , a1:Nx,m
1:t−1 , ωm

)
←
(
θ̃m, x̃1:Nx,m

1:t , ã1:Nx,m
1:t−1 , 1

)
32

Chapter 5 – Parameters and State Estimations

[21] also provides a formal justification of the SMC2 algorithm.

Step 3 in the algorithm involves the use of a PMCMC kernel Kt, which we describe in
the following section.

The MCMC Rejuvenation Step

This step corresponds to a scheme defined as

Algorithm 11 rejuvenation step
1: Sample θ̃ from the proposal kernel T

(
θ, dθ̃

)
2: Run a PF with the new to obtain the new paths

(
x̃1:Nx

1:t , ã1:Nx
1:t−1

)
and compute

Ẑt

(
θ̃, x̃1:Nx

1:t , ã1:Nx
1:t−1

)
3: Compute the acceptance probability

pa =
p(θ̃)Ẑt

(
θ̃, x̃1:Nx

1:t , ã1:Nx
1:t−1

)
T
(
θ̃, θ

)
p(θ)Ẑt

(
θ, x1:Nx

1:t , a1:Nx
1:t−1

)
T
(
θ, θ̃

)
and accept the move with probability min(pa, 1).

with proposal distribution

qθ

(
θ̃, x̃1:Nx

1:t , ã1:Nx
1:t−1

)
= T

(
θ, θ̃

)
ψt,θ̃

(
x̃1:Nx

1:t , ã1:Nx
1:t−1

)
which admits as invariant distribution the extended distribution πt(θ, x1:Nx

1:t , a1:Nx
1:t). Ẑt is an

unbiased estimator of p(y1:t|θ) (proved in [37], Proposition 7.4.1) and takes the form

Ẑt

(
θ, x1:Nx

1:t , a1:Nx
1:t−1

)
=
(1
Nx

)t
(

Nx∑
n=1

ω1,θ(xn
1)
)

t∏
s=2

(
Nx∑

n=1
ωs,θ(x

an
s−1

s−1 x
n
s)
)

The proposal kernel T is the Gaussian kernel (5.5).

5.2.3 Adaptation of SMC2 to PDPs
We must now readjust the algorithm presented to the context of the piecewise deterministic
model presented in section 2.2.2.

What changes from its standard counterpart is the PF component. This will therefore
be replaced by one of the two SMC algorithms presented in chapter 4, namely the PF with
mixture kernels and the PTPF

33

Chapter 5 – Parameters and State Estimations

The Model’s Parameters

As we have mentioned, the model whose parameters we wish to infer is that described in
section 2.2.2, i.e. an object moving in a plane and whose acceleration component is subject
to random changes.

In the model’s assumptions, the jump times, i.e. the time instants at which changes in
acceleration occur, are random, and the inter-arrival times are distributed as a Gamma with
given scale and shape parameters. However, the model only observes the position of the
object at regular time intervals. In a real scenario, hence with data not generated by us, we
do not know the actual value of the scale and shape parameters. Therefore, maintaining the
assumption that jump times are Gamma distributed, we will use the SMC2 algorithm to
perform Bayesian inference on them.

SMC2 with Mixture Kernels PF

This type of algorithm, as it is defined, already discretises the piecewise deterministic process.
In fact, a move (birth or adjust step) is chosen at each step for each of the particles, and it is,
therefore, possible to have a complete picture of the particles in the system at a given time
step. This allows the ESS to be calculated and thus resampling to take place. In this last
step, it is, therefore, sufficient to replace the resampling from the multinomial distribution of
the standard version with a rejuvenation step (as described in 5.2.2).

SMC2 with PTPF

Adapting the SMC2 algorithm to PTPF is less straightforward, however, as resampling in
the latter is incorporated into every particle propagation move. Furthermore, jump times are
sampled freely by using a distribution and are not forced into a precise interval.

In order to be able to determine how many particles survive at a given time t, we will
run the algorithm setting tmax = t. At this point all particles in Vend, i.e. active particles for
which he jump time Ti ≥ tmax will be used for calculating the ESS. The rejuvenation step is
obtained by running another particle filter with the new parameters for scale and shape of
the gamma distribution and with tmax = t. To calculate the acceptance probability, we must
reformulate how we calculate Ẑt. We will use the partitions introduced by [14] for particle
synchronisation in calculating the intensity parameter Λ. Ẑ will therefore be computed as

Ẑt (θ, x1:t) =
(

1
N1

syn

)(
1

N2
syn

)
. . .

(
1

N q
syn

) q∏
s=1

Ns
syn∑

n=1
ωs,θ(xn

s)

where 1 = t1syn ≤ t2syn ≤ · · · ≤ tqsyn = t are the partitions mentioned above, and Nk
syn is the

number of particles that falls in the kth partition.

34

Chapter 6

Experiments

6.1 Results and Comparison with simulated data

6.1.1 Particle filters
In this section, we will analyze the results obtained with the two different models by comparing
them. In particular, we will consider the average trajectory produced by the model versus
the actual trajectory (and thus in model bias), the number of unique particles employed at
each step, and the distribution around a single point.

Initial Settings

The model is the same we presented in section 2.2.3. First, we generated the data on which
to build the algorithms. The process was observed for a total duration of 200s, and we
generated (independent) Gaussian observations, with standard deviation of 200m every 5s
(∆t = tn+1 − tn = 5s). The acceleration components were independently sampled from
an isotropic Gaussian distribution with mean zero and standard deviation 10m/s2. The
inter-jump times were sampled from a Gamma distribution with 10 as shape and 2.5 scale
parameters as in [101]. Under these assumptions, we generated the data on which used for
implementing the models (Figure 6.1). Note that for this model (which is linear and condi-
tionally Gaussian), it is analytically impossible to integrate out the parameters θ1:kn , and only
jump times need to be sampled. This can be seen as the equivalent of the Rao-Blackwellised
SMC for discrete-time filtering [52, 20].

For the PDP PF with mixture kernels we used 1000 initial number of particles, shape
and scale parameters for the Gamma distribution respectively 5 and 1.25 (half of the param-
eters used to generate the data) and σadjust = ∆t

1000 = 5.0 · 10−3 (weight degeneracy can be
avoided by choosing σadjust orders of magnitudes smaller than the inter-observation time [101]).

For the PTPF we used 1000 initial particles, λ0 = 50, b0 = 1, shape and scale parame-
ters for the Gamma distribution respectively 5 and 1.25 (as for the PDP PF with mixture
kernels). Moreover we set ∆tsyn = tr+1

syn − trsyn = ∆t · 4.

35

Chapter 6 – Experiments

60000 80000 100000 120000 140000 160000
x

10000

12500

15000

17500

20000

22500

25000

27500

30000

y

hidden process
observations
jump locations

Figure 6.1: Generated data: hidden trajectory (blue), observations (red crosses) and
locations of jumps (orange dots).

Average Trajectory and Bias

In this section, we will compare how the weighted average of the trajectories produced by the
two algorithms approximates the hidden process for N = 1000. Then we calculate the RMSE
between the hidden trajectory and the mean trajectory of the two algorithms with particle
numbers equal to N = 100, 1000, 10000.

Firstly, we note from Figure 6.2 that both algorithms approximate the hidden trajectory rela-
tively well. However, the PF with mixture kernels appears to be more sensitive to deviations
on observations. We repeat the experiment by inserting a few observations that are much

60000 80000 100000 120000 140000

20000

22000

24000

26000

28000

30000

Figure 6.2: Estimated trajectories (with 95% CI) generated by PTPF (left) and PF with
mixture kernels (right).

noisier than the others and observe how the two algorithms approximate the trajectory. The
modified observation were the 5th, 15th, 25th and 35th. We can see from Figure 6.3 that in fact
the PF with mixture kernel tends to change its average trajectory more if noisier observations
are present, compared to the PTPF, which is less affected. Moreover, it should be noted
that deviations in the PF with mixture kernels actually only occur if for most particles a
birth move has taken place in that range. In the case of a majority of adjustment moves, in
fact, the deviation is of less interest, as is the case for the observation in position 5 and 15.

36

Chapter 6 – Experiments

60000 80000 100000 120000 140000 160000
x

10000

12500

15000

17500

20000

22500

25000

27500

30000

y

60000 80000 100000 120000 140000

20000

22000

24000

26000

28000

30000

Figure 6.3: Estimated trajectories (with 95% CI) generated by PTPF (left) and PF with
mixture kernels (right) with outlier.

We now quantify the error between the trajectory used and the ground truth for different
initial particle numbers using RMSE. To obtain the results we will present, we repeated the
experiment 10 times for each number of initial particles and averaged the output results.

We begin by reporting the results of the PF with mixture kernel. We can see from Ta-
ble 6.1 and Figure 6.4 that the error drops considerably from using 100 to 1000 initial
particles. However, the difference is not considerable when comparing the results obtained
using 1000 and 10000 initial particles. However, the time taken to complete a cycle of
iterations increases linearly with the number of particles (Table 6.2).

102 103 104
number of particles

6.3×102

6.4×102

6.5×102

6.6×102

6.7×102

6.8×102

RM
SE

0

50

100

150

200

tim
e
in
 se

co
nd

s

102 103 104
number of particles

3.2×102

3.4×102

3.6×102

3.8×102

4×102

4.2×102

4.4×102

RM
SE

0

50

100

150

200

tim
e
in
 se

co
nd

s

Figure 6.4: RMSE for different numbers of initial particles (100, 1000, 10000) on the two
components using PF with mixture kernels.

x y
Number of initial particles 100 1000 10000 100 1000 10000
RMSE 685.57 629.85 630.20 438.10 340.67 322.35

Table 6.1: RMSE for different numbers of initial particles (100, 1000, 10000) on the two
components using the PF with mixture kernels.

If we repeat the same experiment this time with N = 10000, 20000 and 30000 initial particles
(Table 6.3), we notice that there is in fact no substantial change in the RMSE. We can
conclude that using a much larger number of initial particles than a thousand (in PF with

37

Chapter 6 – Experiments

time
Number of initial particles 100 1000 10000
seconds 2.05 20.31 227.63

Table 6.2: Time employed for different numbers of initial particles ((100, 1000, 10000)) on
the two components using PF with mixture kernels.

mixture kernels) does not lead to significantly better results in terms of algorithm bias but
nevertheless takes much longer (Table 6.4).

Now, we do the same analysis for the PTPF. From Figure 6.5 and Tables 6.5 and 6.6

x y
Number of initial particles 10000 20000 30000 10000 20000 30000
RMSE 628.34 627.89 626.06 320.79 325.58 324.31

Table 6.3: RMSE for different numbers of initial particles (10000, 20000, 30000) on the two
components using the PF with mixture kernels.

time
Number of initial particles 10000 20000 30000
seconds 191.05 632.50 3679.06

Table 6.4: Time employed for different numbers of initial particles (10000, 20000, 30000)
using the PF with mixture kernels.

we can see how time also grows linearly with the number of particles and the error decreases
steadily, in particular on the y axis.

102 103 104
number of particles

3.8×103

3.85×103

3.9×103

3.95×103

4×103

RM
SE

0

100

200

300

400

500

tim
e
in
 se

co
nd

s

102 103 104
number of particles

1.85×103

1.875×103

1.9×103

1.925×103

1.95×103

1.975×103

2×103

2.025×103

RM
SE

0

100

200

300

400

500

tim
e
in
 se

co
nd

s

Figure 6.5: RMSE for different numbers of initial particles (100, 1000, 10000) on the two
components using the PTPF.

38

Chapter 6 – Experiments

x y
Number of initial particles 100 1000 10000 100 1000 10000
RMSE 4035.91 3785.23 3782.02 2030.08 1993.43 1849.14

Table 6.5: RMSE for different numbers of initial particles (100, 1000, 10000) on the two
components using PTPF.

time
Number of initial particles 100 1000 10000
seconds 14.31 46.95 509.40

Table 6.6: Time employed for different numbers of initial particles (100, 1000, 10000) using
PTPF.

We run again the algorithm with N = 20000 particles, obtaining the results shown in Table
6.7. We can see that again the bias of the algorithm do not change significantly.

We can conclude that, in terms of bias, the performance of both algorithms do not im-
prove notably after with more that 10000 initial particles.

x y
RMSE 3769.43 1849.14

Table 6.7: RMSE and computational time using N = 20000 initial particles for PTPF.

Number of Unique Particles

Figure 6.6 shows the number of unique particles that survive each resampling step and the
ESS for the PF with mixture kernels. During the resampling step usually about half of
the particles is selected to “survive” to the next step. These numbers, however, do not
give us an accurate indication of how many particles actually survive all the resempling
steps, i.e., looking at the final configuration, how many unique particles there are for each step.

Figure 6.7 depicts the number of distinct particles at each iteration of the algorithm. In order
to create these plots, at the algorithm’s last iteration, the particle histories were saved, and
the number of distinct particles at each observation time was then counted and plotted versus t.

The variety of particle positions by themselves cannot fully inform us of the algorithm’s
effectiveness. Despite the possibility of a large number of distinct particles, substantial
variance in the importance weights would lower the quality of the particle approximation.
The variance of estimates obtained from the particle set is increased through resampling,
hence we plot the same number of unique particles after resampling. These numbers exhibit
the degeneracy of the significance weights and the particle positions to varying degrees.

39

Chapter 6 – Experiments

0 10 20 30 40
time step

0

1000

2000

3000

4000

5000
nu

m
er
 o
f u

ni
qu

e
pa

rti
cle

s a
fte

r r
es

am
pl
in
g
at
 e
ac

h
st
ep

0 10 20 30 40
time step

0

2000

4000

6000

8000

10000

ES
S

Figure 6.6: Number of unique particle resampled at each iteration (above) and ESS at each
iteration (below) fo PF with mixture kernels.

Variations in particle locations are present at earlier stages in the PF with mixture kernels,
moreover, in recent history all particles are distinct. Nonetheless, some particles share the
same state, hence the number of distinct particles is less than their total number. This is
an example of the phenomenon described in section 4.1.2. Because the importance weights
are degenerate, resampling reduces diversity. Still, the PF with mixture kernels shows more
diversity that the PTPF (so the one with Poisson resampling) , which present heterogeneity
in the particles only in the very recent history.

0 10 20 30 40
time

0

2000

4000

6000

8000

10000

nu
m
be

r o
f u

ni
qu

e
tra

je
ct
or
ie
s

PF mixture kernels
PTPF

Figure 6.7: Number of unique particles at the last iteration for PF with mixture kernels
and PTPF.

40

Chapter 6 – Experiments

Distribution of the Particles around a single point

We now analyse how the particles are distributed around a single observation for the two
different algorithms. Note that these plots refer to the final configuration after resampling.

72000 74000 76000 78000 80000 82000
x

0.000

0.001

0.002

0.003

0.004

De
ns
ity

PTPF
PF with mixture kernels
Observation

88000 90000 92000 94000 96000 98000 100000 102000
x

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

De
ns
ity

PTPF
PF with mixture kernels
Observation

107500 110000 112500 115000 117500 120000 122500 125000
x

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

De
ns
ity

PTPF
PF with mixture kernels
Observation

Figure 6.8: Distribution of particles locations around 10th, 20th and 30th observations on x
axis for n=1000 initial number of particles.

Figures 6.8 and 6.9 shows the spatial distributions of the particles at three different observa-
tion times for the two algorithms considered and for x and y respectively.

We note that the particles produced by the PF with mixture kernels have a much broader
distribution around the location of the observation, while the particle distribution of the
PTPF occurs in peaks in the vicinity of the observation. This phenomenon can be related
to what we saw in the previous section. In fact, Figure 6.7 shows how the PF with mixture
kernels exhibits diversity in particles already from the first steps, while the PTPF shows
diversity only in the recent past from the last iteration. This leads the particles of the PTPF
to form peaks with small variance in contrast to the distribution of PF with mixture kernels
which, as we have already observed, has a larger variance. This aspect plays in favour of the
PF with mixture kernel, which manages to avoid the degenerate case more easily in which we
have a few very heavy particles.

It should also be noted that the variance in the distribution of particles around the ob-

41

Chapter 6 – Experiments

24000 25000 26000 27000 28000 29000
y

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
De
ns
ity

PTPF
PF with mixture kernels
Observation

18000 19000 20000 21000 22000
y

0.0000

0.0005

0.0010

0.0015

0.0020

De
ns
ity

PTPF
PF with mixture kernels
Observation

21000 22000 23000 24000 25000 26000
y

0.0000

0.0002

0.0004

0.0006

0.0008

De
ns
ity

PTPF
PF with mixture kernels
Observation

Figure 6.9: Distribution of particles locations around 10th, 20th and 30th observations on y
axis for n=1000 initial number of particles.

servation grows with increasing time in the PTPF and has the opposite trend in the pf with
mixture kernels. This could indicate that with advancing time steps, the PTPF exhibits
more diversity, and the pf with mixture kernels is instead more precise in identifying the
trajectory. The latter fact could, however, be peculiar to the particular input data.

If we increase the number of initial particles, however, both of the distributions will eventually
converge to the real one. Figure 6.10 shows the distribution of the particles around the 20th

observation time. In order to understand whether the algorithms were actually converging
towards the right distribution, we used a Kalman Filter as comparison. In we C have included
some background on the latter.

Distribution of Jump Locations

Figures 6.11 and 6.12 compare algorithm performance in terms of estimating jump locations.
It should be noted that in this setting, even though acceleration jumps occur, only the
vehicle’s position is observed. As a result, even optimal estimates of jump times will be highly
variable in recent history.

PTPF, given the way jumps are generated, has a much higher variance than PF with

42

Chapter 6 – Experiments

92000 94000 96000 98000 100000 102000
x axes

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040
De

ns
ity

PF with mixture kernels
PTPF
Kalman filter

12000 14000 16000 18000 20000 22000 24000 26000
y axes

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

De
ns

ity

PF with mixture kernels
PTPF
Kalman filter

Figure 6.10: Distribution of particles locations around the 20th observation on x and y axes
for n=500000 initial number of particles.

mixture kernels. In addition, it should be noted that the final jump times of the PTPF all
occur at a time greater than tmax (hence the distributions starting from the penultimate
jump are shown in the figure). Both algorithms also overestimate the timing of jumps. This,
as mentioned earlier, is due to the fact that only changes in position are observed. It is,
therefore, more accurate to compare jumps to changes in acceleration magnitude (also shown
in Figures 6.11 and 6.12). The acceleration magnitude is obtained by differentiating two
times the space vector.

τn, k

τn, k−1

τn, k−2

τn, k−3

��� ��� ��� ��� ��� ���
�

τn, k−4

��� ��� �	� ��� �� ���

���

�

��

���

��
��
��
d

2 s
/d
t2

Figure 6.11: Distribution of last five jump times of PF with mixture kernels, real jump
times (red lines) and magnitude of the acceleration.

43

Chapter 6 – Experiments

τk, n

τk, n−1

τk, n−2

τk, n−3

��� ��� ��� ��� ��� ���
�

τk, n−4

��� ��� �	� ��� �� ���

���

�

��

���

��
��
��
d

2 s
/d
t2

Figure 6.12: Distribution of jump times of PTPF, real jump times (red lines) and magnitude
of the acceleration.

6.1.2 Particle MCMC Methods
In this section, we will compare the results obtained using the different PMCMC methods
introduced in chapter 5. In particular, we will compare the results obtained in estimating the
shape and scale parameters of the Gamma distribution from which they are sampled in jump
times from a random guess.

In order to do that we will keep track of the time difference between two consecutive
jump times (∆τ = τi − τi−1) and plotting their distribution (obtained thorough KDE). This
is an approximation of the distribution of the inter-arrival times. Figure 6.13 shows the
results for the four algorithms we are considering for 1000 iterations, together with the pdf
of a Gamma distribution with parameters shape equal to 10 and scale equal to 2.5 (which
correspond to the one used to generate the data). Note that all algorithms seem to converge
to real distribution. However, the SMC2 appear to converge faster than the others.

6.2 Real World Data
In this section, we will test the performance of the algorithms introduced so far on a real-world
dataset. We will use the Piraeus AIS Dataset [97].

44

Chapter 6 – Experiments

0 20 40 60 80 100 120 140
Δtau

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

De
ns

ity

pdf Gammma - shape=10, scale=2.5
estimated distribution of inter arrival times - PF MK SMC2

estimated distribution of inter arrival times - PTGS $
estimated distribution of inter arrival times - PF PDP GS$

Figure 6.13: Distribution of simulated inter-arrival times for PTGS, PF MK GS and SMC2.

6.2.1 The Dataset
The Piraeus AIS Dataset contains vessel location data transmitted by several types of boats
and gathered by the AIS. The data are geographically and temporally connected, providing
information on the vessels and the area of interest, as well as meteorological data within the
larger region of the port of Piraeus (Greece), one of Europe’s and the world’s biggest ports.
The data covers over two and a half years, with a time span going from May 9th 2017 to
December 26th 2019.

Vessel Movement and AIS

Marine mobility data includes a wide range of information that can be quite useful in the
context of the maritime sector. The effective use of positional (tracking) messages is critical
in this approach. A wide range of marine monitoring applications can utilise the acquired
data, offering valuable information for collision avoidance, traffic management, intelligent
navigation, maritime situational awareness, and other real-world applications.

The Automatic Identification System (AIS) has been declared an obligatory requirement
for the most popular vessel types among the several surveillance systems used to detect
and locate boats at sea in real-time (cargo, passenger, fishing ships, etc.). The AIS is a
surveillance technique that uses both GPS and shipboard sensors.

A vessel sends AIS signals that comprise kinematic information (position, speed, etc.) as well
as static and voyage-related data on a regular basis. Among the information transmitted,
the one of interest is the vessel’s identifier, declared by its Maritime Mobile Service Identity

45

Chapter 6 – Experiments

number, position, course, heading, and speed [97].

Data Description

The AIS-related data are grouped in kinematic and static. The ones we will use for our
analysis are the former. They consist of 32 files in CSV format, each row containing a decoded
AIS message, with the following information:

• timestamp: UNIX timestamp of the received AIS message (ms.);

• vessel_id: (artificial) vessel’s identifier

• lon: longitude of vessel’s position (angular units);

• heading: vessel’s heading relative to true north (degrees [0-360));

• course: vessel’s course over ground (degrees [0-360));

• speed: vessel’s speed (knots).

6.2.2 Preprocessing
Before using the Piraeus AIS Dataset, we must modify the data so that it is usable. First,
after removing rows containing null or invalid values from the dataset, we reordered it
chronologically. Then we subtracted the minimum value of time so that t0=0. Finally, after
realising that, on average, a vessel reports its position every 1000 seconds, we divided all
values in the column containing the timestamp by 1000. In this way, we will work with a ∆t

close to 1.

6.2.3 New Model’s Assumptions
This type of problem can be modelled as described in section 2.2.2, taking into account that,
in this case, the velocities of the moving object are also observed.

So we will assume that the motion of the vessel is determined by a PDP subject to jumps in
the acceleration component. The inter arrivals times will follow a gamma distribution (whose
parameters we will infer), and the accelerations will be sampled independently of a normal
distribution. We will also assume the noise on the observed positions and velocities to be
Gaussian.

The only modification we will make to the PFs will therefore be to include a velocity
component in the weight calculation.

It should also be noted that the time intervals at which information on the vessel’s motion is
collected are no longer regular. Instead of a fixed time delta, it is sufficient to use a vector
containing the amount of time elapsed between every two consecutive observations.

46

Chapter 6 – Experiments

6.2.4 Results
Filtering

We start with the filtering problem, i.e. estimating the posterior distribution given the
observations.

We selected three vessels id and considered their position for 500 consecutive time steps. We
used both PTPF and the PF with mixture kernels to estimate the trajectories (Figure 6.14).

23.530 23.535 23.540 23.545 23.550 23.555
latitude

37.959

37.960

37.961

37.962

37.963

37.964

37.965

lo
ng

itu
de

PF mixture kernels
PTPF
observations
CI

23.5780 23.5785 23.5790 23.5795 23.5800 23.5805 23.5810 23.5815
latitude

37.930

37.935

37.940

37.945

37.950

37.955

37.960

lo
ng

itu
de

PF mixture kernels
PTPF
observations traj 1
CI

23.570 23.575 23.580 23.585 23.590
latitude

37.91

37.92

37.93

37.94

37.95

37.96

lo
ng

itu
de

PF mixture kernels
PTPF
PTPF
observations traj 1
observations traj 2
CI

Figure 6.14: Observations and filtering estimate for the trajectories of three vessels in the
Piraeus AIS Dataset.

Prediction

If we know the position of a vessel up to a certain point, we might want to predict its position
in the near future. To do this, we need to introduce the formula for the prediction step

p(xt+1|y1:t) =
∫
f(xt+1|xt)p(xt|y1:t)dxt (6.1)

In our case, this means to carry out one propagation step for each of the particles at that
time step e taking their weighted sum (the weights being the likelihood of the parent particles).

In the case of the PF with mixture kernels, this means at time step t choosing a move
(birth or adjust) for each of the particles and computing the position of the trajectory at time
t+ 1. For PTPF, we should instead run the algorithm by imposing t as tmax. We will then
proceed to calculate the position of all particles at time tmax and their respective weights.
We can then continue by running all particles (starting at time t) and this time assigning the
value of t+ 1 to tmax.

47

Chapter 6 – Experiments

0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060 0.0065 0.0070
latitude +2.3580000000e1

0.0010

0.0015

0.0020

0.0025

lo
ng

itu
de

+3.7950000000e1
estimated trajectory
observations
prediction PTPF
prediction PF mixture kernels

23.578 23.580 23.582 23.584 23.586
latitude

37.940

37.942

37.944

37.946

37.948

37.950

37.952

lo
ng

itu
de

estimated trajectory
observations
prediction PTPF
prediction PF mixture kernels

23.578 23.580 23.582 23.584 23.586 23.588 23.590 23.592
latitude

37.910

37.915

37.920

37.925

37.930

37.935

37.940

lo
ng

itu
de

estimated trajectory
observations
prediction PTPF
prediction PF mixture kernels

Figure 6.15: Prediction of the next observation using PF with mixture kernels and PTPF
for three different trajectories.

Figure 6.15 shows the results obtained using formula (6.1) for both PF algorithms we
are considering. Both predictions come very close to the actual (unseen) observations that
we are targeting.

Inference on the Parameters

So far, we have seen how to estimate the posterior distribution and how to predict the position
of the vessel at a later time, given certain model assumptions. However, the parameters
used are only a guess and may not correspond to the actual parameters of the model. In
particular, we have assumed that the inter-arrival times are distributed as a Gamma, with
given shape and scale. We will therefore use the methods introduced in the previous chapters.

We ran the PTGS, PF MK GS and SMC2 for 1000 iterations. Figure 6.16 shows the
results obtained. The distributions of simulated inter-arrival times are plotted together with
the pdf of a range with shape equal to 3 and scale equal to 5, which is the distribution to
which all methods seem to converge.

48

Chapter 6 – Experiments

−20 0 20 40 60 80 100 120 140
Δtau

0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

estimated distribution of inter arrival times - PF MK SMC2

estimated distribution of inter arrival times - PTGS $
estimated distribution of inter arrival times - PF PDP GS$
pdf Gammma - shape=3, scale=5

Figure 6.16: Distribution of the simulated inter-arrival times for PTGS, PF MK GS and
SMC2.

49

Chapter 7

Discussion and Conclusion

In this thesis, we presented several algorithms for performing inference on the states and
parameters of piecewise deterministic Markov models in the object tracking framework.

Initially, we introduced a class of algorithms called Particle Filters in order to obtain
an approximation of the posterior distribution of the hidden process given some of its noisy
observations. In particular, we discussed in detail the implementation and properties of
the PF with mixture kernels, introduced by [101], and the PTPF, presented in [14]. These
two algorithms were specifically designed to be applied to piecewise deterministic processes
and to introduce some kind of discretisation to deal with such processes. We compared the
two algorithms in terms of bias, diversification of trajectories, and general ability to return
an accurate estimate of the posterior distribution by testing them on both generated and
real-world data (Piraeus AIS dataset). We concluded that Mixture kernels outperforms PTPF
in estimating trajectories and diversity of the generated particles. However, PTPF comes
closest in recognising when the random jumps occurred.

These particle filters were then employed in the context of MCMC models to construct
PMCMC algorithms. In particular we implemented the PTGS [14] and the PF PDP GS,
i.e. GS adapted to the PF with mixture kernels. We then introduced the SMC2 model from
[21] to allow us to estimate the parameters and states sequentially. This algorithm, already
present in the discrete version, was modified to be used in conjunction with the implemented
particle filters and thus be adapted to the PDPs approximation. The models were then tested
to estimate the parameters governing the distribution of inter-arrival times. All algorithms
converged to the same distribution, known in the case of generated data and unknown in
the case of real ones, with SMC2 having the most accurate result for the same number of
iterations. This, in fact, can be attributed to the construction of the algorithm, which not only
involves multiple iterations but also inferring parameters sequentially within a single iteration.

Note that, to test each of the implemented algorithms, we made certain assumptions about
the type of underlying model we were dealing with. However, different assumptions are
possible, such as the type of distribution governing inter-arrival times or acceleration. We
can formulate the model itself differently; some examples are in [61, 90, 24].

50

Chapter – Discussion and Conclusion

Finally, PMCMC algorithms were used in this thesis to infer the parameters governing
the distribution of inter-arrival times. Still, they could be applied to estimating other
parameters as well, such as those governing the random jump of the acceleration value.

51

Appendix A

Feynman-Kac formulation

Having a sequence of observations Y1 = y1, . . . Yt = yt, YT = yT for t = 1, . . . T , we can set
Gt(xt) = p(yt|xt). We can now write the Feynman-Kac formula∫

F (x1, . . . , xT)p(x1, . . . , xT |y1, . . . , yT)dx1, . . . , dxT =

=
∫
F (x1, . . . , xT){∏T

t=1 p(yt|xt)}p(x1, . . . , xT)dx1, . . . , dxT∫
{∏T

t=1 p(yt|xt)}p(x1, . . . , xT)dx1, . . . , dxT

= E(F (X1, . . . , T))∏T
t=1 Gt(Xt)

E(∏T
t=1 Gt(Xt))

(A.1)

where F is a bounded function on the set of trajectories of Xt for t = 1, . . . T .

Computational physics, biology, information theory, and computer sciences are just some of
the fields in which Feynman-Kac path integration models appear with different interpretations
[46, 38, 37].

52

Appendix B

Algorithms

B.1 PMCMC Algorithms

B.1.1 Particle Independent Metropolis Hastings
In Algorithm 12 we give a pseudo code version of the PIMH [3], used to sample from
pθ(x1:T |y1:T).

Algorithm 12 Particle Independent Metropolis Hastings
1: Initialization: set n = 0 and run an SMC algorithm to targeting pθ(x1:T |y1:T) and

sample X1:T ∼ p̂θ(·|y1:T). Let p̂θ(y1:T) denote the corresponding marginal likelihood
estimate.

2: for n > 0:
• Run an SMC algorithm to target pθ(x1:T |y1:T) and sample X ′

1:T (0) ∼ p̂θ(·|y1:T). Let
p̂′

θ(y1:T) denote the corresponding marginal likelihood estimate.
• given the current state X1:T (n− 1) we compute the acceptance probability:

pa = min(1, p′
θ(y1:t)

pθ(y1:t)(n− 1))

• set X1:T (n) = X ′
1:T and pθ(y1:t)(n) = p′

θ(y1:t) with probability pa, and X1:T (n) =
X1:T (n− 1) and pθ(y1:t)(n) = pθ(y1:t)(n− 1) with probability 1− pa

where
p̂θ(y1:T) := p̂θ(t1)

T∏
n=2

p̂θ(yn|y1:n−1) (B.1)

and p̂θ(yn|y1:n−1) = 1
N

∑N
k=1 wn(Xn

1:n) is an estimate at time n of

pθ(yn|y1:n−1) =
∫
wn(x1:n)qθ(xn|yn, xn−1)pθ(x1:n−1|y1:n−1)dx1:n

(from [3]).

53

Chapter B – Algorithms

B.1.2 Particle Marginal Metropolis Hastings
In Algorithm 13 we give a pseudo code version of the PMMH algorithm [3], used to sample
from p(θ, x1:T |y1:T).

Algorithm 13 Particle Marginal Metropolis Hastings
1: Initialization: n=0

• set θ(0) arbitrarily
run an SMC algorithm to targeting pθ(0)(x1:T |y1:T) and sample X1:T ∼ p̂θ(0)(·|y1:T). Let
p̂θ(0)(y1:T) denote the corresponding marginal likelihood estimate (see (B.1)).

2: for n > 0:
• sample θ′ ∼ q(·|θ(n− 1))
• run an SMC algorithm to targeting pθ′(x1:T |y1:T) and sample X ′

1:T (0) ∼ p̂θ′(·|y1:T).
Let p̂′

θ′(y1:T) denote the corresponding marginal likelihood estimate.
• given the current state X1:T (n− 1) we compute the acceptance probability:

min(1, pθ′(y1:T)p(θ′)q(θ(n− 1)|θ′)
pθ(n−1)(y1:T)p(θ(n− 1))q(θ′|θ(n− 1))

andθ(n) = θ′, pθ(n−1)(y1:t)(n) = pθ′(y1:t) with probability pa, and θ(n) = θ(n − 1),
X1:T (n) = X1:T (n− 1) and pθ(y1:t)(n) = pθ(y1:t)(n− 1)) with probability 1− pa

B.1.3 Conditional SMC
In Algorithm 14 we give a pseudo code version of the Conditional SMC algorithm.

Algorithm 14 Conditional SMC
1: let B1:T be an ancestral line and X1:T its associated path.
2: for n = 1

• for k ̸= B1, sample Xk
1 ∼ q(·|y1)

• compute its associated weight w1(Xk
1) and normalise it to W k

1

3: for n = 2, 3, . . . , T :
• for k ̸= Bn, sample Ak

n−1 ∼ F(·|Wn−1)

• for k ̸= Bn, sample Xn ∼ q(·|yn, X
Ak

n−1
n−1)

• compute the associated weights w1(Xk
1:n) and normalise it to W k

n

54

Appendix C

The Kalman Filter

The Kalman filter is the most extensively used method for dynamic estimation problems in
which the state and measurements are influenced by stochastic noise with given statistical
properties. Its core idea consists in estimating a joint probability distribution over the
variables of the system for each time-frame by performing a minimisation of the variance of
the error between the estimated and true state of the system. A similar algorithm was devised
by P. Swerling and T.N. Thiele [76] before Rudolf E. Kálmán developed the procedure that
is now named after him. The Kalman filter algorithm is widely used in modern applications
including computer vision, object tracking, electronics, economics, finance and physics [68,
70, 6, 11, 8]

To implement the optimal filter, reliable statistical characterisations of the system noise and
measurement error in terms of mean and variance are needed.

Consider the linear time-varying system:
ẋ = F (t)x +B(t)u +G(t)w

yk = Hkxk + vk

with x being the state vector, u the input vector, Y the observation vector, w a mean-zero
white noise with the spectral density Q e density matrix G associated with the system’s states,
and v a mean-zero white noise with covariance matrix R associated with the observations.

Considering the first equation, in writing differential equation describing the propagation of
the optimal state estimate, the white noise term is omitted as it can not be predicted

˙̂x = F (t)x̂ +B(t)u (C.1)

Defining the estimate error as
ε ≡ x − x̂

its propagation equation is
ε̇ = F (t)ε+G(t)w

The variance of the error can be defined as

P ≡ E
[
εεT

]
55

Chapter C – The Kalman Filter

and its propagation equation, solvable for the initial condition P (t0) = P0, is

Ṗ = E
[
εε̇T

]
+ E

[
ε̇εT

]
= FP + PF T +GQGT ,

as derived in [82]. The time dependency is omitted for notation clarity.

Define the discredited state estimate correction

x̂+
k = x̂−

k +Kk

[
yk −Hkx̂−

k

]
where the subscript k denotes the time tk and the superscripts + and − are used for the
instants right after and just before an observation respectively. x̂−

k comes from the differential
equation describing the estimate propagation C.1.

Then the error variance can be written as

P+
k ≡ E

[(
xk − x̂+

k

) (
xk − x̂+

k

)T
]

Plugging in the second equation in the linear time-varying system, the discrete time update
of the matrix P is obtained

P+
k = [I −KkHk]P−

k [I −KkHk]T +KkRkK
T
k ,

The optimal gain Kk is derived by minimizing the cost Jk = trP+
k , thus

Kk = P−
k H

T
k

[
HkP

−
k H

T
k +Rk

]−1

and P−
k from the the propagation equation of P .

Ultimately, substituting the solution for the optimal gain Kk, the discrete time propgation
equation for P becomes

P+
k = [I −KkHk]P−

k .
Summing up, one has

Model ẋ(t) = F (t)x(t) +B(t)u(t) +G(t)w(t), con w ∼ WN(0, Q)
yk = Hkxk + vk, con vk ∼ WN (0, Rk)

Initialization x̂ (t0) = x0, P (t0) = P0

Propagation ˙̂x(t) = F (t)x̂(t) +B(t)u(t)
Ṗ (t) = F (t)P (t) + P (t)F T (t) +G(t)Q(t)GT (t)

Gain Kk = P−
k H

T
k

[
HkP

−
k H

T
k +Rk

]−1

Update x̂+
k = x̂−

k +Kk

[
yk −Hkx̂−

k

]
P+

k = [I −KkHk]P−
k

56

Bibliography

[1] Brian DO Anderson and John B Moore. Optimal filtering. Courier Corporation, 2012
(cit. on p. 8).

[2] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. “Particle Markov chain
Monte Carlo for efficient numerical simulation”. In: Monte Carlo and quasi-Monte
Carlo methods 2008. Springer, 2009, pp. 45–60 (cit. on p. 14).

[3] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. “Particle markov chain
monte carlo methods”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 72.3 (2010), pp. 269–342 (cit. on pp. 14, 15, 53, 54).

[4] Christophe Andrieu and Gareth O. Roberts. “The pseudo-marginal approach for
efficient computation”. In: Annals Statist (2007), pp. 27–44 (cit. on p. 15).

[5] Roland Assaraf, Michel Caffarel, and Anatole Khelif. “Diffusion Monte Carlo methods
with a fixed number of walkers”. In: Physical Review E 61.4 (2000), p. 4566 (cit. on
p. 10).

[6] Mohsen Bahmani-Oskooee and Ford Brown. “Kalman filter approach to estimate the
demand for international reserves”. In: Applied Economics 36.15 (2004), pp. 1655–1668
(cit. on p. 55).

[7] Mark A Beaumont. “Estimation of population growth or decline in genetically moni-
tored populations”. In: Genetics 164.3 (2003), pp. 1139–1160 (cit. on p. 15).

[8] Pierre Billoir, Michel De Cian, Paul André Günther, and Simon Stemmle. “A parametrized
Kalman filter for fast track fitting at LHCb”. In: Computer Physics Communications
265 (2021), p. 108026 (cit. on p. 55).

[9] W.D. Blair, G.A. Watson, T. Kirubarajan, and Y. Bar-Shalom. “Benchmark for radar
allocation and tracking in ECM”. In: IEEE Transactions on Aerospace and Electronic
Systems 34.4 (1998), pp. 1097–1114 (cit. on pp. 8, 9).

[10] Mark Briers, Arnaud Doucet, and Simon Maskell. “Smoothing algorithms for state–
space models”. In: Annals of the Institute of Statistical Mathematics 62.1 (2010),
pp. 61–89 (cit. on p. 13).

[11] Carmen Broto and Esther Ruiz. “Estimation methods for stochastic volatility models:
a survey”. In: Journal of Economic surveys 18.5 (2004), pp. 613–649 (cit. on p. 55).

[12] Pete Bunch and Simon Godsill. “Dynamical models for tracking with the variable rate
particle filter”. In: 2012 15th International Conference on Information Fusion. IEEE.
2012, pp. 1769–1775 (cit. on p. 8).

57

Chapter C – BIBLIOGRAPHY

[13] M Caffarel, DM Ceperley, and MH Kalos. “Comment on “Feynman-Kac path-integral
calculation of the ground-state energies of atoms””. In: Physical review letters 71.13
(1993), p. 2159 (cit. on p. 10).

[14] Tomasz Cakała, Błażej Miasojedow, and Wojciech Niemiro. “Particle MCMC With
Poisson Resampling: Parallelization and Continuous Time Models”. In: Journal of
Computational and Graphical Statistics 30.3 (2021), pp. 671–684 (cit. on pp. 2, 15, 17,
21–25, 27, 28, 30, 34, 50).

[15] Olivier Cappé, Simon Godsill, and Eric Moulines. “An overview of existing methods
and recent advances in sequential Monte Carlo”. In: Proceedings of the IEEE 95.5
(2007), pp. 899–924 (cit. on pp. 8, 10).

[16] James Carpenter, Peter Clifford, and Paul Fearnhead. “Improved particle filter for
nonlinear problems”. In: IEE Proceedings-Radar, Sonar and Navigation 146.1 (1999),
pp. 2–7 (cit. on p. 11).

[17] Chris K Carter and Robert Kohn. “On Gibbs sampling for state space models”. In:
Biometrika 81.3 (1994), pp. 541–553 (cit. on pp. 13, 14).

[18] S Centanni and M Minozzo. “Estimation and filtering by reversible jump MCMC
for a doubly stochastic Poisson model for ultra-high-frequency financial data”. In:
Statistical Modelling 6.2 (2006), pp. 97–118 (cit. on p. 3).

[19] Nicolas Chopin. “A sequential particle filter method for static models”. In: Biometrika
89.3 (2002), pp. 539–552 (cit. on pp. 31, 32).

[20] Nicolas Chopin. “Central limit theorem for sequential Monte Carlo methods and its
application to Bayesian inference”. In: The Annals of Statistics 32.6 (2004), pp. 2385–
2411 (cit. on pp. 16, 32, 35).

[21] Nicolas Chopin, Pierre E Jacob, and Omiros Papaspiliopoulos. “SMC2: an efficient
algorithm for sequential analysis of state space models”. In: Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 75.3 (2013), pp. 397–426 (cit. on
pp. 2, 11, 27, 31, 33, 50).

[22] Nicolas Chopin and Sumeetpal S Singh. “On particle Gibbs sampling”. In: Bernoulli
21.3 (2015), pp. 1855–1883 (cit. on p. 14).

[23] Bertrand Cloez, Renaud Dessalles, Alexandre Genadot, Florent Malrieu, Aline Marguet,
and Romain Yvinec. “Probabilistic and piecewise deterministic models in biology”. In:
ESAIM: Proceedings and Surveys 60 (2017), pp. 225–245 (cit. on p. 3).

[24] Alessandro Corbetta, Chung-min Lee, Roberto Benzi, Adrian Muntean, and Federico
Toschi. “Fluctuations around mean walking behaviors in diluted pedestrian flows”. In:
Physical Review E 95.3 (2017), p. 032316 (cit. on p. 50).

[25] David R Cox. “The analysis of non-Markovian stochastic processes by the inclusion of
supplementary variables”. In: Mathematical Proceedings of the Cambridge Philosophical
Society. Vol. 51. 3. Cambridge University Press. 1955, pp. 433–441 (cit. on p. 3).

[26] Drew Creal. “A survey of sequential Monte Carlo methods for economics and finance”.
In: Econometric reviews 31.3 (2012), pp. 245–296 (cit. on p. 10).

58

Chapter C – BIBLIOGRAPHY

[27] Dan Crisan, Pierre Del Moral, and Terry Lyons. Discrete filtering using branching and
interacting particle systems. Citeseer, 1998 (cit. on p. 10).

[28] Johan Dahlin, Fredrik Lindsten, and Thomas B Schön. “Particle Metropolis–Hastings
using gradient and Hessian information”. In: Statistics and computing 25.1 (2015),
pp. 81–92 (cit. on p. 14).

[29] Johan Dahlin and Thomas B Schön. “Getting started with particle Metropolis-Hastings
for inference in nonlinear dynamical models”. In: arXiv preprint arXiv:1511.01707
(2015) (cit. on p. 14).

[30] Angelos Dassios and Ji-Wook Jang. “Kalman-Bucy filtering for linear systems driven
by the Cox process with shot noise intensity and its application to the pricing of
reinsurance contracts”. In: Journal of applied probability 42.1 (2005), pp. 93–107
(cit. on p. 3).

[31] Paresh Date and Ksenia Ponomareva. “Linear and non-linear filtering in mathematical
finance: a review”. In: IMA Journal of Management Mathematics 22.3 (2011), pp. 195–
211 (cit. on p. 10).

[32] Mark HA Davis. “The representation of martingales of jump processes”. In: SIAM
Journal on control and optimization 14.4 (1976), pp. 623–638 (cit. on p. 3).

[33] Mark HA Davis. “Piecewise-deterministic Markov processes: A general class of non-
diffusion stochastic models”. In: Journal of the Royal Statistical Society: Series B
(Methodological) 46.3 (1984), pp. 353–376 (cit. on p. 3).

[34] Piet De Jong and Neil Shephard. “The simulation smoother for time series models”.
In: Biometrika 82.2 (1995), pp. 339–350 (cit. on p. 13).

[35] Pierre Del Moral. “Nonlinear filtering: Interacting particle resolution”. In: Comptes
Rendus de l’Académie des Sciences-Series I-Mathematics 325.6 (1997), pp. 653–658
(cit. on pp. 10, 11).

[36] Pierre Del Moral. “Measure-valued processes and interacting particle systems. Ap-
plication to nonlinear filtering problems”. In: The Annals of Applied Probability 8.2
(1998), pp. 438–495 (cit. on pp. 10, 11).

[37] Pierre Del Moral. Feynman-Kac formulae: genealogical and interacting particle systems
with applications. Vol. 88. Springer, 2004 (cit. on pp. 10, 11, 33, 52).

[38] Pierre Del Moral. “Mean field simulation for Monte Carlo integration”. In: Monographs
on Statistics and Applied Probability 126 (2013), p. 26 (cit. on pp. 10, 52).

[39] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. “Sequential monte carlo samplers”.
In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68.3
(2006), pp. 411–436 (cit. on pp. 17, 18).

[40] Pierre Del Moral, Arnaud Doucet, and Sumeetpal Singh. “Forward smoothing using
sequential Monte Carlo”. In: arXiv preprint arXiv:1012.5390 (2010) (cit. on p. 13).

[41] Pierre Del Moral and Alice Guionnet. “Central limit theorem for nonlinear filtering
and interacting particle systems”. In: Annals of Applied Probability (1999), pp. 275–297
(cit. on p. 10).

59

Chapter C – BIBLIOGRAPHY

[42] Pierre Del Moral and Alice Guionnet. “On the stability of measure valued processes
with applications to filtering”. In: Comptes Rendus de l’Académie des Sciences-Series
I-Mathematics 329.5 (1999), pp. 429–434 (cit. on pp. 10, 11).

[43] Pierre Del Moral and Alice Guionnet. “On the stability of interacting processes
with applications to filtering and genetic algorithms”. In: Annales de l’Institut Henri
Poincaré (B) Probability and Statistics. Vol. 37. 2. Elsevier. 2001, pp. 155–194 (cit. on
pp. 10, 11).

[44] Pierre Del Moral, Peng Hu, Liming Wu, et al. “On the concentration properties of
interacting particle processes”. In: Foundations and Trends® in Machine Learning
3.3–4 (2012), pp. 225–389 (cit. on p. 10).

[45] Pierre Del Moral, Robert Kohn, and Frédéric Patras. “On particle Gibbs samplers”. In:
Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. Vol. 52. 4. Institut
Henri Poincaré. 2016, pp. 1687–1733 (cit. on p. 14).

[46] Pierre Del Moral and Laurent Miclo. “Branching and interacting particle systems
approximations of Feynman-Kac formulae with applications to non-linear filtering”.
In: Seminaire de probabilites XXXIV (2000), pp. 1–145 (cit. on pp. 10, 52).

[47] Pierre Del Moral and Laurent Miclo. “Particle approximations of Lyapunov exponents
connected to Schrödinger operators and Feynman–Kac semigroups”. In: ESAIM:
Probability and Statistics 7 (2003), pp. 171–208 (cit. on p. 10).

[48] Pierre Del Moral and Spiridon Penev. Stochastic Processes: From Applications to
Theory. Chapman and Hall/CRC, 2017 (cit. on p. 1).

[49] Pierre Del Moral and Emmanuel Rio. “Concentration inequalities for mean field
particle models”. In: The Annals of Applied Probability 21.3 (2011), pp. 1017–1052
(cit. on p. 10).

[50] Randal Douc, Aurélien Garivier, Eric Moulines, and Jimmy Olsson. “Sequential Monte
Carlo smoothing for general state space hidden Markov models”. In: The Annals of
Applied Probability 21.6 (2011), pp. 2109–2145 (cit. on p. 13).

[51] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. “On sequential Monte Carlo
sampling methods for Bayesian filtering”. In: Statistics and computing 10.3 (2000),
pp. 197–208 (cit. on pp. 9, 13).

[52] Arnaud Doucet, Neil J Gordon, and Vikram Krishnamurthy. “Particle filters for state
estimation of jump Markov linear systems”. In: IEEE Transactions on signal processing
49.3 (2001), pp. 613–624 (cit. on p. 35).

[53] Arnaud Doucet, Adam M Johansen, et al. “A tutorial on particle filtering and smooth-
ing: Fifteen years later”. In: Handbook of nonlinear filtering 12.656-704 (2009), p. 3
(cit. on pp. 8, 10).

[54] Ludwig Fahrmeir and Gerhard Tutz. “State space and hidden markov models”. In:
Multivariate Statistical Modelling Based on Generalized Linear Models (2001), pp. 331–
383 (cit. on p. 10).

60

Chapter C – BIBLIOGRAPHY

[55] Paul Fearnhead. “Computational methods for complex stochastic systems: a review of
some alternatives to MCMC”. In: Statistics and Computing 18.2 (2008), pp. 151–171
(cit. on p. 10).

[56] Paul Fearnhead, David Wyncoll, and Jonathan Tawn. “A sequential smoothing al-
gorithm with linear computational cost”. In: Biometrika 97.2 (2010), pp. 447–464
(cit. on p. 13).

[57] Sylvia Frühwirth-Schnatter. “Data augmentation and dynamic linear models”. In:
Journal of time series analysis 15.2 (1994), pp. 183–202 (cit. on p. 13).

[58] Sylvia Frühwirth-Schnatter and Leopold Sögner. “Bayesian estimation of stochastic
volatility models based on OU processes with marginal Gamma law”. In: Annals of
the Institute of Statistical Mathematics 61.1 (2009), pp. 159–179 (cit. on p. 14).

[59] Walter R Gilks and Carlo Berzuini. “Following a moving target—Monte Carlo inference
for dynamic Bayesian models”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 63.1 (2001), pp. 127–146 (cit. on p. 16).

[60] BV Gnedenko and IN Kovalenko. “Introduction to the theory of mass service”. In:
Nau (trad, ingles: 1968, Jerusalem) (1966) (cit. on p. 3).

[61] Simon Godsill. “Particle filters for continuous-time jump models in tracking applica-
tions”. In: ESAIM: Proceedings. Vol. 19. EDP Sciences. 2007, pp. 39–52 (cit. on pp. 8,
16, 50).

[62] Simon Godsill, Arnaud Doucet, and Mike West. “Maximum a posteriori sequence
estimation using Monte Carlo particle filters”. In: Annals of the Institute of Statistical
Mathematics 53.1 (2001), pp. 82–96 (cit. on p. 13).

[63] Simon Godsill, Arnaud Doucet, and Mike West. “Monte Carlo smoothing for nonlinear
time series”. In: Journal of the american statistical association 99.465 (2004), pp. 156–
168 (cit. on p. 13).

[64] Simon Godsill, Jaco Vermaak, William Ng, and Jack F Li. “Models and algorithms for
tracking of maneuvering objects using variable rate particle filters”. In: Proceedings of
the IEEE 95.5 (2007), pp. 925–952 (cit. on pp. 3, 8).

[65] Pieralberto Guarniero, Adam M Johansen, and Anthony Lee. “The iterated auxiliary
particle filter”. In: Journal of the American Statistical Association 112.520 (2017),
pp. 1636–1647 (cit. on p. 13).

[66] Ehsan Hajiramezanali, Mahdi Imani, Ulisses Braga-Neto, Xiaoning Qian, and Edward
R Dougherty. “Scalable optimal Bayesian classification of single-cell trajectories under
regulatory model uncertainty”. In: BMC genomics 20.6 (2019), pp. 1–11 (cit. on p. 10).

[67] JH Hetherington. “Observations on the statistical iteration of matrices”. In: Physical
Review A 30.5 (1984), p. 2713 (cit. on p. 10).

[68] Lim Chot Hun, Ong Lee Yeng, Lim Tien Sze, Koo Voon Chet, and K Jian. “Kalman
filtering and its real-time applications”. In: Real-time Systems (2016) (cit. on p. 55).

[69] Martin Jacobsen and Joseph Gani. “Point process theory and applications: marked
point and piecewise deterministic processes”. In: (2006) (cit. on pp. 3, 4, 8).

61

Chapter C – BIBLIOGRAPHY

[70] Youngjoo Kim and Hyochoong Bang. “Introduction to Kalman filter and its applica-
tions”. In: Introduction and Implementations of the Kalman Filter 1 (2018), pp. 1–16
(cit. on p. 55).

[71] Genshiro Kitagawa. “Monte Carlo filter and smoother for nonlinear non Gaussian
state models”. In: Journal of Computation and Graphical Statistics 5 (1996), pp. 1–25
(cit. on p. 13).

[72] Genshiro Kitagawa. “A self-organizing state-space model”. In: Journal of the American
Statistical Association (1998), pp. 1203–1215 (cit. on p. 11).

[73] Genshiro Kitagawa and Seisho Sato. “Monte Carlo smoothing and self-organising
state-space model”. In: Sequential Monte Carlo methods in practice. Springer, 2001,
pp. 177–195 (cit. on p. 13).

[74] Augustine Kong, Jun S Liu, and Wing Hung Wong. “Sequential imputations and
Bayesian missing data problems”. In: Journal of the American statistical association
89.425 (1994), pp. 278–288 (cit. on p. 19).

[75] Vassilios Lasdas and MHA Davis. “A piecewise deterministic process approach to
target motion analysis (sonar)”. In: Proceedings of the 28th IEEE Conference on
Decision and Control, IEEE. 1989, pp. 1395–1396 (cit. on p. 3).

[76] Steffen L Lauritzen. “Time series analysis in 1880: A discussion of contributions made
by TN Thiele”. In: International Statistical Review/Revue Internationale de Statistique
(1981), pp. 319–331 (cit. on p. 55).

[77] Olivier Lévque. Lecture notes on Markov chains. Aug. 2011 (cit. on p. 4).
[78] X Rong Li and Vesselin P Jilkov. “Survey of maneuvering target tracking. Part I.

Dynamic models”. In: IEEE Transactions on aerospace and electronic systems 39.4
(2003), pp. 1333–1364 (cit. on p. 8).

[79] Fredrik Lindsten, Randal Douc, and Eric Moulines. “Uniform ergodicity of the particle
Gibbs sampler”. In: Scandinavian Journal of Statistics 42.3 (2015), pp. 775–797 (cit. on
p. 22).

[80] Fredrik Lindsten, Michael I Jordan, and Thomas B Schon. “Particle Gibbs with
ancestor sampling”. In: Journal of Machine Learning Research 15 (2014), pp. 2145–
2184 (cit. on p. 22).

[81] Jun S Liu and Rong Chen. “Sequential Monte Carlo methods for dynamic systems”. In:
Journal of the American statistical association 93.443 (1998), pp. 1032–1044 (cit. on
p. 11).

[82] F Landis Markley and John L Crassidis. Fundamentals of spacecraft attitude determi-
nation and control. Vol. 1286. Springer, 2014 (cit. on p. 56).

[83] Simon Maskell and Neil Gordon. “A tutorial on particle filters for on-line nonlinear/non-
Gaussian Bayesian tracking”. In: IEE Target Tracking: Algorithms and Applications
(Ref. No. 2001/174) (2002), pp. 2–1 (cit. on p. 10).

[84] Laurent Miclo and Pierre Del Moral. “Genealogies and increasing propagation of chaos
for Feynman-Kac and genetic models”. In: The Annals of Applied Probability 11.4
(2001), pp. 1166–1198 (cit. on p. 10).

62

Chapter C – BIBLIOGRAPHY

[85] Chiara Mignacco. Particle Filter Methods. Version 2.0.4. Sept. 2022. url: https:
//github.com/chiaramignacco/particle-filter-methods.git (cit. on p. 2).

[86] Daniel J. Salmond Neil J. Gordon Adrian F.M. Smith. In: IEE Proceedings F (Radar
and Signal Processing) 140 (2 Apr. 1993), 107–113(6). issn: 0956-375X (cit. on p. 9).

[87] Katja Nummiaro, Esther Koller-Meier, Luc Van Gool, et al. “A color-based particle
filter”. In: First International Workshop on Generative-Model-Based Vision. Vol. 2002.
Denmark, Kopenhagen: Datalogistik Institut, Kobenhavns Universitet. 2002, p. 01
(cit. on p. 10).

[88] Antonio Pacifico. “Robust open Bayesian analysis: Overfitting, model uncertainty,
and endogeneity issues in multiple regression models”. In: Econometric Reviews 40.2
(2021), pp. 148–176 (cit. on p. 31).

[89] Brooks Paige, Frank Wood, Arnaud Doucet, and Yee Whye Teh. “Asynchronous
anytime sequential monte carlo”. In: Advances in neural information processing systems
27 (2014) (cit. on p. 22).

[90] Guillaume Ravel, Michel Bergmann, Alain Trubuil, Julien Deschamps, Romain Brian-
det, and Simon Labarthe. “Inferring characteristics of bacterial swimming in biofilm
matrix from time-lapse confocal laser scanning microscopy”. In: arXiv preprint
arXiv:2201.04371 (2022) (cit. on p. 50).

[91] Marshall N. Rosenbluth and Arianna W. Rosenbluth. “Monte Carlo calculation of the
average extension of molecular chains”. In: Journal of Chemical Physics 23 (1955),
pp. 356–359 (cit. on p. 10).

[92] Jeffrey S Rosenthal. A First Look At Rigorous Probability Theory. World Scientific
Publishing Company, 2006 (cit. on p. 5).

[93] Mathias Rousset. “On the control of an interacting particle estimation of Schrödinger
ground states”. In: SIAM journal on mathematical analysis 38.3 (2006), pp. 824–844
(cit. on p. 1).

[94] Sankalita Saha, Neal K Bambha, and Shuvra S Bhattacharyya. “Design and implemen-
tation of embedded computer vision systems based on particle filters”. In: Computer
Vision and Image Understanding 114.11 (2010), pp. 1203–1214 (cit. on p. 10).

[95] David D Sworder, Micheal Kent, Robert Vojak, and RG Hutchins. “Renewal models
for maneuvering targets”. In: IEEE Transactions on Aerospace and Electronic Systems
31.1 (1995), pp. 138–150 (cit. on p. 3).

[96] Sebastian Thrun. “Particle Filters in Robotics.” In: UAI. Vol. 2. Citeseer. 2002,
pp. 511–518 (cit. on p. 10).

[97] Andreas Tritsarolis, Yannis Kontoulis, and Yannis Theodoridis. The Piraeus AIS
Dataset for Large-scale Maritime Data Analytics. Zenodo, Oct. 2021. url: https:
//doi.org/10.5281/zenodo.6323416 (cit. on pp. 44, 46).

[98] Rudolph Van Der Merwe, Arnaud Doucet, Nando De Freitas, and Eric Wan. “The
unscented particle filter”. In: Advances in neural information processing systems 13
(2000) (cit. on pp. 9, 10).

63

https://github.com/chiaramignacco/particle-filter-methods.git
https://github.com/chiaramignacco/particle-filter-methods.git
https://doi.org/10.5281/zenodo.6323416
https://doi.org/10.5281/zenodo.6323416

Chapter C – BIBLIOGRAPHY

[99] Paolo Vidoni. “Exponential Family State Space Models Based on a Conjugate Latent
Process”. In: Journal of the Royal Statistical Society. Series B (Statistical Methodology)
61.1 (1999), pp. 213–221 (cit. on p. 9).

[100] Mike West and Jeff Harrison. Bayesian forecasting and dynamic models. Springer
Science & Business Media, 2006 (cit. on pp. 9, 12).

[101] Nick Whiteley, Adam M Johansen, and Simon Godsill. “Monte Carlo filtering of piece-
wise deterministic processes”. In: Journal of Computational and Graphical Statistics
20.1 (2011), pp. 119–139 (cit. on pp. 2, 5, 8, 16–18, 35, 50).

64

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background on Piecewise Deterministic Processes
	Basic Definitions
	Markov Processes
	Markov chains

	Piecewise Deterministic Processes
	Notation
	Model specification
	Example
	Object Tracking

	Introduction to Particle Filtering
	The Filtering Problem
	The PF Algorithm
	SMC for Filtering and Smoothing
	Particle Markov Chain Monte Carlo
	Markov Chain Monte Carlo
	Particle mcmc

	Diversification of the Particles

	Particle Filters: Methods and Models
	PDP Particle Filter Mixture Kernels
	Model
	Construction of the Algorithm
	Specifics of the Model

	Poisson Tree Particle Filter
	Model
	Construction of the Algorithm
	Intensity parameter

	Parameters and State Estimations
	Particle mcmc based on ptpf
	Extended Probability Distribution and Conditional ptpf
	ptgs (ptgs) and ptmh (ptmh)
	Some Results
	Gibbs Sampler based on pf with Mixture Kernels

	Sequential Parameters and State Estimations: the SMC2 Algorithm
	ibis Algorithm
	The SMC2 Algorithm
	Adaptation of SMC2 to PDPs

	Experiments
	Results and Comparison with simulated data
	Particle filters
	Particle mcmc Methods

	Real World Data
	The Dataset
	Preprocessing
	New Model's Assumptions
	Results

	Discussion and Conclusion
	Feynman-Kac formulation
	Algorithms
	pmcmc Algorithms
	pimh
	pmmh
	Conditional smc

	The Kalman Filter
	Bibliography

