

Delft University of Technology

Interactive AI for Generative Housing Design Based on Graph Neural Networks and Deep
Generative Models

Xia, Tian; Ledbetter, Alex; Bobe, Alexandru; Hofland, Jeroen; Krouwels, Berend; Wang, Tong; Siebert,
Luciano Cavalcante; Chan, Paul; Yang, Jian
DOI
10.35490/EC3.2024.188
Publication date
2024
Document Version
Final published version
Published in
Proceedings of the 2024 European Conference on Computing in Construction

Citation (APA)
Xia, T., Ledbetter, A., Bobe, A., Hofland, J., Krouwels, B., Wang, T., Siebert, L. C., Chan, P., & Yang, J.
(2024). Interactive AI for Generative Housing Design Based on Graph Neural Networks and Deep
Generative Models. In M. Srećković, M. Kassem, R. Soman, & A. Chassiakos (Eds.), Proceedings of the
2024 European Conference on Computing in Construction (pp. 469-477). (Proceedings of the European
Conference on Computing in Construction; Vol. 2024). European Council on Computing in Construction
(EC3). https://doi.org/10.35490/EC3.2024.188
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.35490/EC3.2024.188
https://doi.org/10.35490/EC3.2024.188

 2024 European Conference on Computing in Construction

Chania, Crete, Greece

July 15-17, 2024

INTERACTIVE AI FOR GENERATIVE HOUSING DESIGN BASED ON GRAPH

NEURAL NETWORKS AND DEEP GENERATIVE MODELS

Tian Xia1, Alex Ledbetter1, Alexandru Bobe1, Jeroen Hofland1, Berend Krouwels1,

,Tong Wang1, Luciano Cavalcante Siebert1, Paul Chan1, and Jian Yang2
1Delft University of Technology, Delft, Netherlands

2Shanghai Jiao Tong University, Shanghai, China

Abstract

Nowadays, the complexity of housing design has grown

substantially to meet multitudinous requirements (e.g.,

cost, space, esthetics, sustainability, circularity, and

modularity) of diverse stakeholders, which poses great

challenges to traditional labor-intensive design processes.

Automatic design tools are being developed to assist

designers handle tedious work at scale. However,

knowledge gaps still exist in harnessing deep learning

models to learn from human experience for more efficient

design generation while keeping the data understandable

and interoperable. Moreover, human-in-the-loop

approach is largely neglected in the automatic design

tools, which are essential for more customized and user-

centered design. This research utilizes graph data to

parametrically represent housing designs and graph-

representative deep generative models for design

generation, which provides an interactive design approach

for the users at every step. This method enables deep

learning models to semantically understand hidden

patterns and knowledge in housing designs and facilitate

the human-centered design process by returning feasible

and parametric housing design alternatives. All codes can

be found at: https://github.com/jlhofland/housing-design.

Introduction

The design process has been identified as one of the most

significant elements influencing housing quality (Hamzah

et al., 2011). Traditionally, the creation of housing designs

has involved labor-intensive, manual processes, relying

on the expertise of designers. This conventional approach

has been characterized by iterative design revisions and

historical references. However, it faces challenges related

to scalability and adaptability to evolving societal needs

(Williamson and Wong, 2022). In response to these

challenges, recent advancements in technology and more

specifically in the area of Generative AI have introduced

the possibility of partially automating the housing design

process (Ko et al., 2023). These advancements have the

potential to accelerate design iterations and augment the

creativity of the proposed designs (As and Basu, 2021).

While various techniques for automatic housing design

generation offer distinct advantages, they also come with

some limitations. Generative Adversarial Networks

(GANs) have the ability to produce realistic floorplan

images (He et al., 2022; Wu et al., 2019). However, the

image-based approaches lack interoperability with

common architectural applications (e.g., CAD and BIM)

(Ko et al., 2023). Moreover, it is hard to incorporate

various constraints and user requirements into the image-

based floorplan generation models. Graph-based methods

like Graph Neural Networks (GNNs) can be a

complementary approach which has good interoperability

due to its parametric nature and compatibility with state-

of-the-art generative models (Guo and Zhao, 2023).

Therefore, it is worth noting that a promising approach

lies in combining GANs with graph-based methods for

their generative ability and interoperability.

Numerous studies have incorporated graphs as semantic

representation to guide the floorplan generation with

GAN, which could be referred to as graph-constrained

Relational Generative Adversarial Networks (RaGAN)

(Nauata et al., 2021, 2020; Shabani et al., 2022). By using

graphs, the users can more easily input and modify the

layout at the semantic level, which provides a user-in-the-

loop approach and ensures that the model not only

produces functional designs but also aligns closely with

the user requirements. Bubble diagrams have long been

used as a conceptual tool in housing design for visualizing

spatial relationships and zoning (Zheng and Petzold,

2023), which has been widely incorporated as graph input

to guide floorplan generation with GANs in existing

models (Nauata et al., 2021, 2020; Shabani et al., 2022).

However, most of the models only generate floorplans

based on bubble diagrams given by users and neglect the

room layout arrangement task in the conceptual design

stage (Nauata et al., 2021, 2020; Shabani et al., 2022).

Moreover, bubble diagrams primarily serve as a

conceptual tool in housing design for visualizing numbers

and spatial relationships among rooms, which can not

incorporate constraints from building boundaries (Zheng

and Petzold, 2023). Graph2Plan (Hu et al., 2020) allows

for building boundaries as user input and then extracts the

layout bubble diagrams and generates floorplans.

However, Graph2Plan does not generate the graph but

rather retrieves it from a set of similar floorplans from a

database. This makes it less flexible as certain input

constraints might not coincide with the floorplans in the

database. Moreover, the adjacencies between rooms and

exterior walls cannot be defined. It is of vital importance

to incorporate such conditions if the housing design needs

to fit into constraints from existing walls and rooms,

which happens a lot in renovation cases. Also, the edge

features of the graph are non-configurable, which means

it does not allow for interior doors to be specified by the

user.

Heterogeneous graphs could offer a more expressive

approach for housing design generation by providing a

data-driven framework that explicitly encodes the

attributes and relationships among different rooms and

components (e.g., walls, windows, and doors) (Gan,

2022). Therefore, instead of using bubble diagrams, we

develop heterogeneous graphs to capture complex

constraints and diverse attributes for more powerful and

versatile housing design generation. To achieve higher

flexibility, we generate both layout graphs and floorplans

by using generative models based on graph representation

(Figure 1).

Figure 1: Interactive design generation process where the dots

are walls and rooms, and edges represent adjacency. For

envisioned graphical interfaces see Figure A4.

Specifically, heterogeneous graph representation will be

developed to explicitly encode the attributes and

relationships among the exterior walls and rooms which

would enable users to input their requirements and

constraints (Step 1). Starting from the input, our

generative housing design pipeline encompasses layout

graph generation model (Step 2) and floorplan generation

model (Step 3), which are developed based on DGMG (Li

et al., 2018) and RaGAN from Housegan++ (Nauata et al.,

2021) because of its wide adaptability and state-of-the-art

performance. We made improvements to the models by

incorporating edge features in the message passing over

heterogeneous layout graphs. On top of this, the user can

intervene at each step in the pipeline to make changes to

all interim results. By doing this we create a model that

proactively keeps the user in the loop and achieves more

user-centered design through a collaborative approach

compared with end-to-end models (e.g., FloorGAN

(Upadhyay et al., 2023)).

Research Methods

Overview

An overview of the pipeline is illustrated in Figure 2,

where the top depicts user interaction and the bottom is

model training. Starting with the user-input file

containing user constraints, augmented DGMG (see next

sections) will generate nodes and edges to finish the

layout graph. User interaction is available to evaluate the

generated layout and make changes along the way. When

they are satisfied, the pipeline will pass the layout graph

to Hetero-HouseGAN++ (HHGPP, see next sections) for

floorplan generation by representing the spatial

configuration of rooms through masks, which would then

be saved in parametric format. A final user-input step will

occur offering to regenerate the plan as necessary.

Initial user input: The user can input the building

boundary and specify the location of entrance doors. It is

also allowed to provide initial constraints such as the

number of rooms for each type. More importantly, the

location and adjacency of certain rooms can be specified

in the input as partial layout graphs, which is an essential

feature for the renovation housing design. It should be

noted that only a text-based interface is available for

initial user input now, which, however, can be

transformed into a graphical interface and embedded into

domain applications (e.g., CAD and BIM) in future work.

The envisioned graphical interface is depicted in Figure

A4.

Generation of layout graph: To generate the customized

layout graph based on user input, we adopt a graph

generation model based on augmented DGMG (Li et al.,

2018). The generated layout graph will explicitly

formulate the adjacency relationships of rooms and walls.

For instance, a bedroom could be adjacent to the south

side of an exterior wall and connected to the north side of

the living room through an interior wall with a door. The

model will be trained on the large-scale floorplan dataset

LIFULL, which was transformed into parametric

representation (Nauata et al., 2020). The users can

evaluate and modify the generated layout graph or

regenerate it based on their preferences.

Generation of floorplan: To acquire the floorplan with

precise spatial configurations that fits the layout, we adopt

a graph-constraint RaGAN based on Housegan++

(Nauata et al., 2021), which is referred to as HHGPP. The

model could aggregate the features of the layout graph

through message passing and generate the spatial

configuration of rooms as volume masks. The output of

Input
Generate

Layout Graph

Generate

Floorplan

12-10-2023 10

1 2 3
DGMG RaGAN

Figure 2: Pipeline for housing design, top: user interaction, bottom: model training

the pipeline will be a parametric floorplan and a graph that

depicts the layout arrangement, which can be fed into

domain applications for further editing and optimization.

The following sections explain these steps in more detail.

Initial user input

The user could input the requirements and constraints for

the housing design(Step 1, Figure 3). The requirements

would be represented as a conditioning vector. The

constraints would be transformed into a partial graph

(Step 2, Figure 3).

User input:

• A vector representing user requirements: the
number of various room types, and additional
entries indicating if the room quantity is upwards
flexible (3 vs 3+ for example).

• The constraints from building boundary and
predefined location of rooms (i.e., preferred
location of specific rooms or fixed location of
existing rooms), transformed into heterogenous-
graph representation: exterior walls as nodes (node
features with starting and ending vertices, final
element indicating with entrance door or not);
corners which connect the exterior walls as edges
(edge feature represent the corner type); predefine
rooms as nodes (node feature represent room
types); adjacency between rooms and exterior
walls as edges (edge features represent relative
direction); adjacency between rooms as edges
(edge features represent the relative direction and
connection type (i.e. through a wall or a door, or
directly connected)).

Generation of layout graph

In this section, we develop the model to generate layout

graphs conditioned on user input by completing the input

partial graph from user constraints. User requirements

such as the number of bedrooms and bathrooms are fed

into the model as a conditioning vector (Li et al., 2018) to

generate graphs that meet a client’s needs. The graph

generation model is based on augmented DGMG, which

could incorporate edge features in the message passing for

heterogeneous layout graph generation. Through training

over a large set of real architect-created home layout

graphs (Nauata et al., 2020), the model learns to generate

graph layouts that respect various implicitly learned

architectural design rules and meet user requirements and

constraints.

Figure 3 Layout Graph Generation Model. D(decision), E(Add

Edge), C(Choose connection), N(Add Node). Det. specifies that

the process is deterministic, while, L. states that the step is

learned from data.

The layout graph generation process based on augmented

DGMG follows an autoregressive generation mode (Li et

al., 2018), which is depicted in Steps 3 and 4, Figure 3.

The general procedure and our modification are described

as follows, and a more detailed illustration can be found

in (Li et al., 2018).

Layout graph generation:

(a) Choose to add a new node A (yes/no).

(b) Choose to add a new edge from source node A
(yes/no).

(c) If yes:

i. Choose a destination node B from pre-
existing nodes in the graph. In this research,
we also predict the feature of the added edge
in this step.

ii. Perform GNN message-passing to update
node representations. In particular, we
augment DGMG by incorporating edge
features in the message passing.

When the model chooses not to add another node, the
graph is complete. The output of the model would be a
complete layout graph, which could be evaluated, edited,
and regenerated through the envisioned user interface.

Generation of floorplan

To generate the floorplans with precise spatial

configuration of rooms that respect the constraints

specified in this heterogenous layout graph, a graph-

constraint RaGAN is developed based on augmentation of

Housegan++ (Nauata et al., 2021) (Figure 4).

Figure 4 Floorplan generator (top) and discriminator (bottom). ConvMPN is our backbone architecture [9]. The input graph

constraint is encoded into the graph structure of their relational networks.

Input layout graph Conv-MPN/ Upsampling

Noise

Initialization

Convolution

Output floorplan

Rendering

Conv-MPN/ Downsampling

Convolution

Input floorplan

Convolution

Pooling

Linear

+

Loss

Output

…
…

…
…

Hetero-HouseGAN++ (HHGPP) is a generative

adversarial network whose generator transforms input

data (lists of data representing layout graph, e.g. nodes,

edges, features, etc.) through Convolutional Message-

Passing Network (ConvMPN) into pixel-based room

masks. These room masks are later vectorized into

parametric representations of floorplans. The

discriminator then performs the reverse process, starting

with room masks, and resulting in a binary response as to

the validity of the room masks it was provided, given the

graph data also fed in alongside.

Our improvement in HHGPP compared with Housegan++

includes incorporating new node types, edge types, and

node and edge features for graph-constrained floorplan

generation. First, GNN message-passing occurs as

convolutions over a large data block constructed as the

concatenation of the graph node feature volumes, the

pooled features volumes of their neighbours which get

encoded with the edge type and edge features across these

connections, and the pooled feature volumes of the

disconnected nodes. These convolutions happen three

times, downscaling as we go to result in the final encoded

nodal feature volume representations. The second

innovation is to use conditional generation whereby some

room masks are predefined during mask generation such

that the generator learns to paint the remaining masks for

the floorplan.

Results and Evaluation

Training data preparation

All the data used for this project are extracted and

augmented from the LIFULL dataset (available at:

https://www.nii.ac.jp/dsc/idr/en/lifull/), a database of real

floor plan designs. Each floor plan is represented as a list

of values for room ID and type, room bounding boxes,

floorplan edges, edge adjacencies, and IDs of edges with

doors. Note that edges here refer to exterior and interior

walls, not graph edges.

We filter out floorplans with either completely

disconnected rooms or rooms that are only connected at a

corner. From this raw data, we create two types of files

used for training the layout graph generation model: user-

input files and sequences of graph generation. For training

the floorplan generation model, we transform the

bounding boxes of rooms into the masks (3D volumes) of

room nodes to represent their spatial configurations. The

pairs of layout graphs and floorplans (graphs with masks

for room nodes) will be used to train the generator and

discriminator in the HHGPP.

Network training

The layout graph generation model will be trained through

teacher forcing throughout the autoregressive generation

process of DGMG (Li et al., 2018). The sequences-type

files are lists of the ground-truth answers to the sequential

generation questions, “should another node be added ?”,

“what node should this edge be connected to?,” such that,

when followed, producing the precise home layout graph

corresponding to the LIFULL homes. Some decisions in

the sequence are binary yes/no responses, while others are

multi-class prediction-type responses. In either case,

decisions are of a discrete number of choices and proceed

by the model calculating a prediction for the logits of each

response type. This is a numerical value where a highly

positive value represents high confidence in that

prediction value being the correct one, while a low or

highly negative value indicates low confidence in that

option.

We then convert these predicted logits to probability mass

values (or likelihoods) via the sigmoid (binary) or softmax

(multi-class) equations. Finally, our loss accumulated at

each decision is equal to the negative log of the predicted

likelihood for the correct response. Minimizing this value

then seeks to maximize the likelihood of the correct

response. The corresponding loss function is illustrated in

(1):

loss=−log(softmax(predicted−logits))|correct−res
ponse (1)

During training, the model will make a predicted answer,

and loss will be accumulated if the answers are wrong.

After each batch, the loss is backpropagated through the

various network layers, and the model parameters are

updated to minimize this loss. The loss and generated

graphs can be found in Figure A1 and A2.

To train the floorplan generation model, we iterate

through the dataset in batches, following a typical training

process of GAN models by iteratively training the

discriminator, and then the generator, each per batch.

Training the discriminator involves generating a set of

room masks, and passing these into the discriminator to

get a “fake validity” score (binary response, real or fake),

then passing in the corresponding real masks to get a “real

validity score”. These are summed with fake scores

negated, along with a gradient penalty term. This loss is

then used to backpropagate and update weights. Training

the generator then proceeds by the generator producing

masks, the discriminator scoring them, and any predicted

as fake are counted up as the loss. Additionally, to train

the generator to not change the conditioned masks, an L1

loss between the conditioned and generated masks is

added to the discriminator loss. The detailed description

of the loss function can be found in (Nauata et al., 2021,

2020). This loss is then backpropagated over the generator

and weights are updated (Figure A3).

Evaluation

In this section, the evaluation methods are discussed at

different points in the pipeline.

The validity of the generated layout graph is evaluated

based on compliance with user input and basic design

rules. It should be noted that the quality of the generated

layout should be evaluated from a more comprehensive

architectural design perspective and with potential human

expert evaluation for benchmarking against other models,

which will be future works and will be discussed in the

next chapter. The validity evaluation criteria for the

current research are as follows:

 R1. the user input constraints are all fully met.

 R2. all rooms have at least one door.

 R3. exterior walls connect to two other walls and

one room, which ensures no solitary walls exist.

 R4. each room connects to at least one other room

(or wall), which ensures no solitary rooms exist.

R5. each room has outgoing room adjacencies that
cover at least two cardinal directions. This attempts
to ensure that a room is bounded in all directions.
Ground truth homes show that 99.97% of homes
meet this criteria.

Table 1: Evaluation Validity Results for DGMG, 10x100

Graph Runs

R1 R2 R3 R4 R5

Mean 0.13 0 0.061 0.091 0.337

STD 0.126 0 0.167 0.201 0.192

Table 1 shows the ratio of generated home layout graphs

that fail each of the validity criteria. These results come

from generating 100 layout graphs each from ten different

user-input files, with results averaged over the ten runs.

Finally, of the 1000 total graphs generated, they are valid

54.1% of the time with a standard deviation of 25.5%

between the ten runs. It should be noted that the failure

rate to meet R5 is significantly higher, which implies that

the graph-representative model finds it more challenging

to capture the directional relationships among rooms. It

will be discussed in the next section.

The floorplan generation model is evaluated using the

Fre´chet Inception Distance (FID). FID is a metric for

image generators that evaluates the realism of the

generated images by comparing them to a set of real,

given images (Heusel et al., 2017). In our evaluation, the

FID is used to assess the quality of the floorplans

generated by the model using the floorplans in the

LIFULL database.

Figure 5 FID Score for HHGPP

Our FID score, Figure 5, is calculated after roughly every

50000 training steps. As the model learned, the floorplan

generation model decreased the FID score from 504.2 to

a final score of 98.1, indicating more realistic generated

images. The score of 98.1 indicates a high similarity

between the two distributions of real and generated

images. Given enough computing power and training

steps, the results could be further improved.

Discussion

We set out to show that housing design assisted by

interactive AI based on graph representation is possible.

Through the design of the envisioned user interface,

review of the workflow, and evaluation of the supporting

AI models, we have shown that architects have a new tool

at their disposal to generate both home layout graphs and

corresponding floorplans pertaining to their needs at

higher efficiency. Currently, only a text-based interface is

available for users. More advanced graphical interfaces

could be developed and embedded into domain

applications (e.g., CAD and BIM) based on the graph-

based approach.

Both our augmented DGMG framework is a sufficiently

capable architecture to learn to generate valid layout

graphs that respect the user’s input constraints, and the

graph-constraint RaGAN architecture present in our

HHGPP model is sufficient to learn to translate layout

graphs into floorplans that maintain the constraints. This

is important because it shows that the user input is not too

complex to be learned by generative models in general.

However, the prediction of edge direction in the layout

generation model is still imperfect. When the model adds

a new node and a new edge from that node, it must then

decide in what direction the connection will point. It is

important to avoid contradictory constraints. The graph

generation model still finds it hard to capture and fulfill

all the hard constraints through learning. The reasons for

the imperfection can be representation-related, model-

related, or training-related. We believe the training

process is adequately done considering the loss has

dropped to a reasonably low level in different training

parameters. The graph representation of the floorplan is

quite complex in our current approach, which contains

different types of edges and nodes with different attributes

and semantic meanings. The tradeoff here is that more

expressive graph representation of the housing designs

would leave us more possibilities in the interactive design

process and in combining computational design

approaches. But it could also be more challenging for the

models to capture the complex semantic information in

the representation of housing designs since the generative

models are mostly developed for applications with simple

representations and big data (e.g., predictions of proteins

or monocular structures).

To tackle this challenge, we will test different graph

generation models (e.g., GraphRNN) to potentially

identify the one with more expressive power. We would

also try other graph representations for the layout to help

the model better capture the embedded semantic and

spatial relationships. In the meantime, the graph

representation enables us to fix the generated layout

through hardcoded rules. Also, different computational

design methods can be implemented as complementary

approach to the generative design by optimizing the

results.

Another interesting finding is that small errors in

generated layout graphs could result in noticeable

contradictions in the corresponding generated floorplans.

Even though the graph-based generative housing design

pipelines allow more user interaction and control in every

intermediate step, it could result in higher propagated

error compared with end-to-end models.

Due to time and resource limitations, we only validate our

models regarding compliance with user input and basic

design rules, and the realism of floorplans. To bring our

approach forward, we would scale up the testing and

evaluation in two ways, including developing the

qualitative matrices to evaluate the architectural quality of

the generative housing design through a computational

approach and developing a graphical user interface for

larger-scale user evaluation. We would also benchmark

the performance of our model against other state-of-the-

art models in future research.

Since the graph representation is parametric, our graph-

based approach could be compatible with various design

tasks such as building equipment arrangement (Wang et

al., 2019) and structural design (Zhao et al., 2024). It

would be a promising direction to investigate how to

integrate our graph-based method into a more generic

design approach so as to ensure a more realistic and

functional design solution.

Conclusions

In this paper, we presented an interactive AI framework

for generative housing design, leveraging Graph Neural

Networks (GNNs) and Deep Generative Models. Our

approach, exemplified by the augmented DGMG

framework for layout graph generation and Hetero-

HouseGAN++ (HHGPP) for floorplan generation,

demonstrates the viability of incorporating user

constraints and requirements into the generative design

process. Through an interactive interface, architects and

stakeholders could actively participate in the design

workflow, ensuring the production of feasible and user-

centered housing design alternatives.

Moving forward, several avenues for improvement and

exploration emerge. Firstly, the model is still insufficient

in predicting the edge features and meeting all hard

constraints in layout graph generation. We will test

different models and representations for more expressive

power in the learning for generative design. Future

research could also look into computational methods as a

complementary approach to fix and optimize the

generated design alternatives based on graph

representation. Moreover, user feedback and architectural

quality metrics will be integrated into the evaluation

process, providing a more comprehensive assessment of

the generated designs.

This research would facilitate the housing design process

through a collaborative and user-centered approach. The

graph-based approach can also be integrated into more

advanced design tasks (e.g., generative design of modular

buildings based on BIM components library) due to its

interoperability with the parametric data (e.g., IFC and

IFCOWL), which would greatly facilitate the complex

design process by harnessing the power of learning-based

models and computational design approach. Despite only

text-based interface is available for users currently, more

advanced graphical interface could be further developed

and easily embedded into domain applications (e.g., CAD

and BIM) to facilitate the real-world design process.

Acknowledgements

This work was supported by TU Delft AI Labs. All

codes can be found at:

https://github.com/jlhofland/housing-design.

References

As, I., Basu, P., 2021. AI & architecture. Routledge.

Gan, V.J.L., 2022. BIM-based graph data model for

automatic generative design of modular buildings.

Autom. Constr. 134, 104062.

https://doi.org/10.1016/j.autcon.2021.104062

Guo, X., Zhao, L., 2023. A Systematic Survey on Deep

Generative Models for Graph Generation. IEEE Trans.

Pattern Anal. Mach. Intell. 45, 5370–5390.

https://doi.org/10.1109/TPAMI.2022.3214832

Hamzah, N., Ramly, A., Salleh, H., Tawil, N.M., Khoiry,

M.A., Che Ani, A.I., 2011. The Importance of Design

Process in Housing Quality. Procedia Eng., 2nd

International Building Control Conference 20, 483–

489. https://doi.org/10.1016/j.proeng.2011.11.191

He, F., Huang, Y., Wang, H., 2022. iPLAN: Interactive

and Procedural Layout Planning. Presented at the

Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 7793–

7802.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B.,

Hochreiter, S., 2017. GANs Trained by a Two Time-

Scale Update Rule Converge to a Local Nash

Equilibrium, in: Advances in Neural Information

Processing Systems. Curran Associates, Inc.

Hu, R., Huang, Z., Tang, Y., Van Kaick, O., Zhang, H.,

Huang, H., 2020. Graph2Plan: learning floorplan

generation from layout graphs. ACM Trans. Graph. 39,

118:118:1-118:118:14.

https://doi.org/10.1145/3386569.3392391

Ko, J., Ennemoser, B., Yoo, W., Yan, W., Clayton, M.J.,

2023. Architectural spatial layout planning using

artificial intelligence. Autom. Constr. 154, 105019.

https://doi.org/10.1016/j.autcon.2023.105019

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., Battaglia, P.,

2018. Learning Deep Generative Models of Graphs.

https://doi.org/10.48550/arXiv.1803.03324

Nauata, N., Chang, K.-H., Cheng, C.-Y., Mori, G.,

Furukawa, Y., 2020. House-GAN: Relational

Generative Adversarial Networks for Graph-

Constrained House Layout Generation, in: Vedaldi, A.,

Bischof, H., Brox, T., Frahm, J.-M. (Eds.), Computer

Vision – ECCV 2020, Lecture Notes in Computer

Science. Springer International Publishing, Cham, pp.

162–177. https://doi.org/10.1007/978-3-030-58452-

8_10

Nauata, N., Hosseini, S., Chang, K.-H., Chu, H., Cheng,

C.-Y., Furukawa, Y., 2021. House-GAN++:

Generative Adversarial Layout Refinement Network

towards Intelligent Computational Agent for

Professional Architects. Presented at the Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 13632–13641.

Shabani, M.A., Hosseini, S., Furukawa, Y., 2022.

HouseDiffusion: Vector Floorplan Generation via a

Diffusion Model with Discrete and Continuous

Denoising. https://doi.org/10.48550/arXiv.2211.13287

Upadhyay, A., Dubey, A., Mani Kuriakose, S., Agarawal,

S., 2023. FloorGAN: Generative Network for

Automated Floor Layout Generation, in: Proceedings

of the 6th Joint International Conference on Data

Science & Management of Data (10th ACM IKDD

CODS and 28th COMAD), CODS-COMAD ’23.

Association for Computing Machinery, New York,

NY, USA, pp. 140–148.

https://doi.org/10.1145/3570991.3571057

Wang, K., Lin, Y.-A., Weissmann, B., Savva, M., Chang,

A.X., Ritchie, D., 2019. PlanIT: planning and

instantiating indoor scenes with relation graph and

spatial prior networks. ACM Trans. Graph. 38, 132:1-

132:15. https://doi.org/10.1145/3306346.3322941

Williamson, E., Wong, K., 2022. Valuing architectural

work: The human effects. Archit. Aust. 111, 58–59.

https://doi.org/10.3316/informit.604522451937359

Wu, W., Fu, X.-M., Tang, R., Wang, Y., Qi, Y.-H., Liu,

L., 2019. Data-driven interior plan generation for

residential buildings. ACM Trans. Graph. 38, 234:1-

234:12. https://doi.org/10.1145/3355089.3356556

Zhao, P., Liao, W., Huang, Y., Lu, X., 2024. Beam layout

design of shear wall structures based on graph neural

networks. Autom. Constr. 158, 105223.

https://doi.org/10.1016/j.autcon.2023.105223

Zheng, Z., Petzold, F., 2023. Neural-guided room layout

generation with bubble diagram constraints. Autom.

Constr. 154, 104962.

https://doi.org/10.1016/j.autcon.2023.104962

Appendix

Figure A1: Training of layout graph generation model

Figure A2: Sample of generated layout graphs

Figure A3: Training of floorplan generation model

Figure A4: Envisioned graphical user interface

(a) Drawing outline of building using mouse. At each step we
can use the buttons in the bottom to navigate through the user
input steps.

(c) Add facade features like doors and windows. In our case we
only allow for the placement of doors as our model does not
include window information.

(e) Adding edges (connections) between rooms. We can define
wether or not the connection is an adjacency or door connection.

(b) Add length and angular constraints to each wall and corner.
The interface could allow for natural angles but currently our
model is only trained on angles of 90 degrees.

(d) W e ca n n o w ad d ro om s, n o tice th a t th e p o s itio n o f th e n o d es
does not represent the spatial location. Our model only con-
strains the amount of baths, beds and living rooms but can be
expanded.

(f) We can also add an adjacency/door between rooms with a
constrained relative direction. In the example, we say the bath-
room should be south (S) of the bedroom without a door.

