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Abstract 

Nowadays, the complexity of housing design has grown 

substantially to meet multitudinous requirements (e.g., 

cost, space, esthetics, sustainability, circularity, and 

modularity) of diverse stakeholders, which poses great 

challenges to traditional labor-intensive design processes. 

Automatic design tools are being developed to assist 

designers handle tedious work at scale. However, 

knowledge gaps still exist in harnessing deep learning 

models to learn from human experience for more efficient 

design generation while keeping the data understandable 

and interoperable. Moreover, human-in-the-loop 

approach is largely neglected in the automatic design 

tools, which are essential for more customized and user-

centered design. This research utilizes graph data to 

parametrically represent housing designs and graph-

representative deep generative models for design 

generation, which provides an interactive design approach 

for the users at every step. This method enables deep 

learning models to semantically understand hidden 

patterns and knowledge in housing designs and facilitate 

the human-centered design process by returning feasible 

and parametric housing design alternatives. All codes can 

be found at: https://github.com/jlhofland/housing-design. 

Introduction 

The design process has been identified as one of the most 

significant elements influencing housing quality (Hamzah 

et al., 2011). Traditionally, the creation of housing designs 

has involved labor-intensive, manual processes, relying 

on the expertise of designers. This conventional approach 

has been characterized by iterative design revisions and 

historical references. However, it faces challenges related 

to scalability and adaptability to evolving societal needs 

(Williamson and Wong, 2022). In response to these 

challenges, recent advancements in technology and more 

specifically in the area of Generative AI have introduced 

the possibility of partially automating the housing design 

process (Ko et al., 2023). These advancements have the 

potential to accelerate design iterations and augment the 

creativity of the proposed designs (As and Basu, 2021). 

While various techniques for automatic housing design 

generation offer distinct advantages, they also come with 

some limitations. Generative Adversarial Networks 

(GANs) have the ability to produce realistic floorplan 

images (He et al., 2022; Wu et al., 2019). However, the 

image-based approaches lack interoperability with 

common architectural applications (e.g., CAD and BIM) 

(Ko et al., 2023). Moreover, it is hard to incorporate 

various constraints and user requirements into the image-

based floorplan generation models. Graph-based methods 

like Graph Neural Networks (GNNs) can be a 

complementary approach which has good interoperability 

due to its parametric nature and compatibility with state-

of-the-art generative models (Guo and Zhao, 2023). 

Therefore, it is worth noting that a promising approach 

lies in combining GANs with graph-based methods for 

their generative ability and interoperability.  

Numerous studies have incorporated graphs as semantic 

representation to guide the floorplan generation with  

GAN, which could be referred to as graph-constrained 

Relational Generative Adversarial Networks (RaGAN) 

(Nauata et al., 2021, 2020; Shabani et al., 2022). By using 

graphs, the users can more easily input and modify the 

layout at the semantic level, which provides a user-in-the-

loop approach and ensures that the model not only 

produces functional designs but also aligns closely with 

the user requirements. Bubble diagrams have long been 

used as a conceptual tool in housing design for visualizing 

spatial relationships and zoning (Zheng and Petzold, 

2023), which has been widely incorporated as graph input 

to guide floorplan generation with GANs in existing 

models (Nauata et al., 2021, 2020; Shabani et al., 2022). 

However, most of the models only generate floorplans 

based on bubble diagrams given by users and neglect the 

room layout arrangement task in the conceptual design 

stage (Nauata et al., 2021, 2020; Shabani et al., 2022). 

Moreover, bubble diagrams primarily serve as a 

conceptual tool in housing design for visualizing numbers 

and spatial relationships among rooms, which can not 

incorporate constraints from building boundaries (Zheng 

and Petzold, 2023). Graph2Plan (Hu et al., 2020) allows 

for building boundaries as user input and then extracts the 

layout bubble diagrams and generates floorplans. 

However, Graph2Plan does not generate the graph but 

rather retrieves it from a set of similar floorplans from a 

database. This makes it less flexible as certain input 

constraints might not coincide with the floorplans in the 

database. Moreover, the adjacencies between rooms and 

exterior walls cannot be defined. It is of vital importance 

to incorporate such conditions if the housing design needs 

to fit into constraints from existing walls and rooms, 

which happens a lot in renovation cases. Also, the edge 

features of the graph are non-configurable, which means 

it does not allow for interior doors to be specified by the 

user.  

Heterogeneous graphs could offer a more expressive 

approach for housing design generation by providing a 

data-driven framework that explicitly encodes the 

attributes and relationships among different rooms and 

components (e.g., walls, windows, and doors) (Gan, 



2022). Therefore, instead of using bubble diagrams, we 

develop heterogeneous graphs to capture complex 

constraints and diverse attributes for more powerful and 

versatile housing design generation. To achieve higher 

flexibility, we generate both layout graphs and floorplans 

by using generative models based on graph representation 

(Figure 1).   

 
Figure 1: Interactive design generation process where the dots 

are walls and rooms, and edges represent adjacency. For 

envisioned graphical interfaces see Figure A4. 

Specifically, heterogeneous graph representation will be 

developed to explicitly encode the attributes and 

relationships among the exterior walls and rooms which 

would enable users to input their requirements and 

constraints (Step 1). Starting from the input, our 

generative housing design pipeline encompasses layout 

graph generation model (Step 2)  and floorplan generation 

model (Step 3), which are developed based on DGMG (Li 

et al., 2018) and RaGAN from Housegan++ (Nauata et al., 

2021) because of its wide adaptability and state-of-the-art 

performance. We made improvements to the models by 

incorporating edge features in the message passing over 

heterogeneous layout graphs. On top of this, the user can 

intervene at each step in the pipeline to make changes to 

all interim results. By doing this we create a model that 

proactively keeps the user in the loop and achieves more 

user-centered design through a collaborative approach 

compared with end-to-end models (e.g., FloorGAN 

(Upadhyay et al., 2023)). 

Research Methods 

Overview 

An overview of the pipeline is illustrated in Figure 2, 

where the top depicts user interaction and the bottom is 

model training. Starting with the user-input file 

containing user constraints, augmented DGMG (see next 

sections) will generate nodes and edges to finish the 

layout graph. User interaction is available to evaluate the 

generated layout and make changes along the way. When 

they are satisfied, the pipeline will pass the layout graph 

to Hetero-HouseGAN++ (HHGPP, see next sections) for 

floorplan generation by representing the spatial 

configuration of rooms through masks, which would then 

be saved in parametric format. A final user-input step will 

occur offering to regenerate the plan as necessary.  

Initial user input: The user can input the building 

boundary and specify the location of entrance doors. It is 

also allowed to provide initial constraints such as the 

number of rooms for each type. More importantly, the 

location and adjacency of certain rooms can be specified 

in the input as partial layout graphs, which is an essential 

feature for the renovation housing design. It should be 

noted that only a text-based interface is available for 

initial user input now, which, however, can be 

transformed into a graphical interface and embedded into 

domain applications (e.g., CAD and BIM) in future work. 

The envisioned graphical interface is depicted in Figure 

A4. 

Generation of layout graph: To generate the customized 

layout graph based on user input, we adopt a graph 

generation model based on augmented DGMG (Li et al., 

2018). The generated layout graph will explicitly 

formulate the adjacency relationships of rooms and walls. 

For instance, a bedroom could be adjacent to the south 

side of an exterior wall and connected to the north side of 

the living room through an interior wall with a door. The 

model will be trained on the large-scale floorplan dataset 

LIFULL, which was transformed into parametric 

representation (Nauata et al., 2020). The users can 

evaluate and modify the generated layout graph or 

regenerate it based on their preferences. 

Generation of floorplan: To acquire the floorplan with 

precise spatial configurations that fits the layout, we adopt  

a graph-constraint RaGAN based on Housegan++ 

(Nauata et al., 2021), which is referred to as HHGPP. The 

model could aggregate the features of the layout graph 

through message passing and generate the spatial 

configuration of rooms as volume masks. The output of 
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Figure 2: Pipeline for housing design, top: user interaction, bottom: model training 



the pipeline will be a parametric floorplan and a graph that 

depicts the layout arrangement, which can be fed into 

domain applications for further editing and optimization.  

The following sections explain these steps in more detail. 

Initial user input 

The user could input the requirements and constraints for 

the housing design(Step 1, Figure 3). The requirements 

would be represented as a conditioning vector. The 

constraints would be transformed into a partial graph 

(Step 2, Figure 3). 

User input: 

• A vector representing user requirements: the 
number of various room types, and additional 
entries indicating if the room quantity is upwards 
flexible (3 vs 3+ for example). 

• The constraints from building boundary and 
predefined location of rooms (i.e., preferred 
location of specific rooms or fixed location of 
existing rooms), transformed into heterogenous-
graph representation: exterior walls as nodes (node 
features with starting and ending vertices, final 
element indicating with entrance door or not); 
corners which connect the exterior walls as edges 
(edge feature represent the corner type); predefine 
rooms as nodes (node feature represent room 
types); adjacency between rooms and exterior 
walls as edges (edge features represent relative 
direction); adjacency between rooms as edges 
(edge features represent the relative direction and 
connection type (i.e. through a wall or a door, or 
directly connected)). 

Generation of layout graph 

In this section, we develop the model to generate layout 

graphs conditioned on user input by completing the input 

partial graph from user constraints. User requirements 

such as the number of bedrooms and bathrooms are fed 

into the model as a conditioning vector (Li et al., 2018) to 

generate graphs that meet a client’s needs. The graph 

generation model is based on augmented DGMG, which 

could incorporate edge features in the message passing for 

heterogeneous layout graph generation. Through training 

over a large set of real architect-created home layout 

graphs (Nauata et al., 2020), the model learns to generate 

graph layouts that respect various implicitly learned 

architectural design rules and meet user requirements and 

constraints. 

 

 
Figure 3 Layout Graph Generation Model. D(decision), E(Add 

Edge), C(Choose connection), N(Add Node). Det. specifies that 

the process is deterministic, while, L. states that the step is 

learned from data. 

The layout graph generation process based on augmented 

DGMG follows an autoregressive generation mode (Li et 

al., 2018), which is depicted in Steps 3 and 4, Figure 3. 

The general procedure and our modification are described 

as follows, and a more detailed illustration can be found 

in (Li et al., 2018). 

Layout graph generation: 

(a) Choose to add a new node A (yes/no). 

(b) Choose to add a new edge from source node A 
(yes/no). 

(c) If yes: 

i. Choose a destination node B from pre-
existing nodes in the graph. In this research, 
we also predict the feature of the added edge 
in this step. 

ii. Perform GNN message-passing to update 
node representations. In particular, we 
augment DGMG by incorporating edge 
features in the message passing. 

When the model chooses not to add another node, the 
graph is complete. The output of the model would be a 
complete layout graph, which could be evaluated, edited, 
and regenerated through the envisioned user interface. 

Generation of floorplan 

To generate the floorplans with precise spatial 

configuration of rooms that respect the constraints 

specified in this heterogenous layout graph, a graph-

constraint RaGAN is developed based on augmentation of 

Housegan++ (Nauata et al., 2021) (Figure 4).  

Figure 4 Floorplan generator (top) and discriminator (bottom). ConvMPN is our backbone architecture [9]. The input graph 

constraint is encoded into the graph structure of their relational networks. 
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Hetero-HouseGAN++ (HHGPP) is a generative 

adversarial network whose generator transforms input 

data (lists of data representing layout graph, e.g. nodes, 

edges, features, etc.) through Convolutional Message-

Passing Network (ConvMPN) into pixel-based room 

masks. These room masks are later vectorized into 

parametric representations of floorplans. The 

discriminator then performs the reverse process, starting 

with room masks, and resulting in a binary response as to 

the validity of the room masks it was provided, given the 

graph data also fed in alongside.  

Our improvement in HHGPP compared with Housegan++ 

includes incorporating new node types, edge types, and 

node and edge features for graph-constrained floorplan 

generation. First, GNN message-passing occurs as 

convolutions over a large data block constructed as the 

concatenation of the graph node feature volumes, the 

pooled features volumes of their neighbours which get 

encoded with the edge type and edge features across these 

connections, and the pooled feature volumes of the 

disconnected nodes. These convolutions happen three 

times, downscaling as we go to result in the final encoded 

nodal feature volume representations. The second 

innovation is to use conditional generation whereby some 

room masks are predefined during mask generation such 

that the generator learns to paint the remaining masks for 

the floorplan.  

Results and Evaluation 

Training data preparation 

All the data used for this project are extracted and 

augmented from the LIFULL dataset (available at: 

https://www.nii.ac.jp/dsc/idr/en/lifull/), a database of real 

floor plan designs. Each floor plan is represented as a list 

of values for room ID and type, room bounding boxes, 

floorplan edges, edge adjacencies, and IDs of edges with 

doors. Note that edges here refer to exterior and interior 

walls, not graph edges.  

We filter out floorplans with either completely 

disconnected rooms or rooms that are only connected at a 

corner. From this raw data, we create two types of files 

used for training the layout graph generation model: user-

input files and sequences of graph generation. For training 

the floorplan generation model, we transform the 

bounding boxes of rooms into the masks (3D volumes) of 

room nodes to represent their spatial configurations. The 

pairs of layout graphs and floorplans (graphs with masks 

for room nodes) will be used to train the generator and 

discriminator in the HHGPP. 

Network training 

The layout graph generation model will be trained through 

teacher forcing throughout the autoregressive generation 

process of DGMG (Li et al., 2018). The sequences-type 

files are lists of the ground-truth answers to the sequential 

generation questions, “should another node be added ?”, 

“what node should this edge be connected to?,” such that, 

when followed, producing the precise home layout graph 

corresponding to the LIFULL homes. Some decisions in 

the sequence are binary yes/no responses, while others are 

multi-class prediction-type responses. In either case, 

decisions are of a discrete number of choices and proceed 

by the model calculating a prediction for the logits of each 

response type. This is a numerical value where a highly 

positive value represents high confidence in that 

prediction value being the correct one, while a low or 

highly negative value indicates low confidence in that 

option.  

We then convert these predicted logits to probability mass 

values (or likelihoods) via the sigmoid (binary) or softmax 

(multi-class) equations. Finally, our loss accumulated at 

each decision is equal to the negative log of the predicted 

likelihood for the correct response. Minimizing this value 

then seeks to maximize the likelihood of the correct 

response. The corresponding loss function is illustrated in 

(1): 

loss=−log(softmax(predicted−logits))|correct−res
ponse                                                                                  (1)  

During training, the model will make a predicted answer, 

and loss will be accumulated if the answers are wrong. 

After each batch, the loss is backpropagated through the 

various network layers, and the model parameters are 

updated to minimize this loss. The loss and generated 

graphs can be found in Figure A1 and A2. 

To train the floorplan generation model, we iterate 

through the dataset in batches, following a typical training 

process of GAN models by iteratively training the 

discriminator, and then the generator, each per batch. 

Training the discriminator involves generating a set of 

room masks, and passing these into the discriminator to 

get a “fake validity” score (binary response, real or fake), 

then passing in the corresponding real masks to get a “real 

validity score”. These are summed with fake scores 

negated, along with a gradient penalty term. This loss is 

then used to backpropagate and update weights. Training 

the generator then proceeds by the generator producing 

masks, the discriminator scoring them, and any predicted 

as fake are counted up as the loss. Additionally, to train 

the generator to not change the conditioned masks, an L1 

loss between the conditioned and generated masks is 

added to the discriminator loss. The detailed description 

of the loss function can be found in (Nauata et al., 2021, 

2020). This loss is then backpropagated over the generator 

and weights are updated (Figure A3).  

Evaluation 

In this section, the evaluation methods are discussed at 

different points in the pipeline. 

The validity of the generated layout graph is evaluated 

based on compliance with user input and basic design 

rules. It should be noted that the quality of the generated 

layout should be evaluated from a more comprehensive 

architectural design perspective and with potential human 

expert evaluation for benchmarking against other models, 

which will be future works and will be discussed in the 

next chapter. The validity evaluation criteria for the 

current research are as follows: 

 R1. the user input constraints are all fully met. 



 R2. all rooms have at least one door. 

 R3. exterior walls connect to two other walls and 

one room, which ensures no solitary walls exist. 

 R4. each room connects to at least one other room 

(or wall), which ensures no solitary rooms exist. 

R5. each room has outgoing room adjacencies that 
cover at least two cardinal directions. This attempts 
to ensure that a room is bounded in all directions. 
Ground truth homes show that 99.97% of homes 
meet this criteria. 

 
Table 1: Evaluation Validity Results for DGMG, 10x100 

Graph Runs 

R1 R2 R3 R4 R5 

Mean 0.13 0 0.061 0.091 0.337 

STD 0.126 0 0.167 0.201 0.192 

 

Table 1 shows the ratio of generated home layout graphs 

that fail each of the validity criteria. These results come 

from generating 100 layout graphs each from ten different 

user-input files, with results averaged over the ten runs. 

Finally, of the 1000 total graphs generated, they are valid 

54.1% of the time with a standard deviation of 25.5% 

between the ten runs. It should be noted that the failure 

rate to meet R5 is significantly higher, which implies that 

the graph-representative model finds it more challenging 

to capture the directional relationships among rooms. It 

will be discussed in the next section. 

The floorplan generation model is evaluated using the 

Fre´chet Inception Distance (FID). FID is a metric for 

image generators that evaluates the realism of the 

generated images by comparing them to a set of real, 

given images (Heusel et al., 2017). In our evaluation, the 

FID is used to assess the quality of the floorplans 

generated by the model using the floorplans in the 

LIFULL database. 

 

 
Figure 5 FID Score for HHGPP 

Our FID score, Figure 5, is calculated after roughly every 

50000 training steps. As the model learned, the floorplan 

generation model decreased the FID score from 504.2 to 

a final score of 98.1, indicating more realistic generated 

images. The score of 98.1 indicates a high similarity 

between the two distributions of real and generated 

images. Given enough computing power and training 

steps, the results could be further improved. 

Discussion 

We set out to show that housing design assisted by 

interactive AI based on graph representation is possible. 

Through the design of the envisioned user interface, 

review of the workflow, and evaluation of the supporting 

AI models, we have shown that architects have a new tool 

at their disposal to generate both home layout graphs and 

corresponding floorplans pertaining to their needs at 

higher efficiency. Currently, only a text-based interface is 

available for users. More advanced graphical interfaces 

could be developed and embedded into domain 

applications (e.g., CAD and BIM) based on the graph-

based approach. 

Both our augmented DGMG framework is a sufficiently 

capable architecture to learn to generate valid layout 

graphs that respect the user’s input constraints, and the 

graph-constraint RaGAN architecture present in our 

HHGPP model is sufficient to learn to translate layout 

graphs into floorplans that maintain the constraints. This 

is important because it shows that the user input is not too 

complex to be learned by generative models in general. 

However, the prediction of edge direction in the layout 

generation model is still imperfect. When the model adds 

a new node and a new edge from that node, it must then 

decide in what direction the connection will point. It is 

important to avoid contradictory constraints. The graph 

generation model still finds it hard to capture and fulfill 

all the hard constraints through learning. The reasons for 

the imperfection can be representation-related, model-

related, or training-related. We believe the training 

process is adequately done considering the loss has 

dropped to a reasonably low level in different training 

parameters. The graph representation of the floorplan is 

quite complex in our current approach, which contains 

different types of edges and nodes with different attributes 

and semantic meanings. The tradeoff here is that more 

expressive graph representation of the housing designs 

would leave us more possibilities in the interactive design 

process and in combining computational design 

approaches. But it could also be more challenging for the 

models to capture the complex semantic information in 

the representation of housing designs since the generative 

models are mostly developed for applications with simple 

representations and big data (e.g., predictions of proteins 

or monocular structures). 

To tackle this challenge, we will test different graph 

generation models (e.g., GraphRNN) to potentially 

identify the one with more expressive power. We would 

also try other graph representations for the layout to help 

the model better capture the embedded semantic and 

spatial relationships. In the meantime, the graph 

representation enables us to fix the generated layout 

through hardcoded rules. Also, different computational 

design methods can be implemented as complementary 

approach to the generative design by optimizing the 

results.  



Another interesting finding is that small errors in 

generated layout graphs could result in noticeable 

contradictions in the corresponding generated floorplans. 

Even though the graph-based generative housing design 

pipelines allow more user interaction and control in every 

intermediate step, it could result in higher propagated 

error compared with end-to-end models. 

Due to time and resource limitations, we only validate our 

models regarding compliance with user input and basic 

design rules, and the realism of floorplans. To bring our 

approach forward, we would scale up the testing and 

evaluation in two ways, including developing the 

qualitative matrices to evaluate the architectural quality of 

the generative housing design through a computational 

approach and developing a graphical user interface for 

larger-scale user evaluation. We would also benchmark 

the performance of our model against other state-of-the-

art models in future research.  

Since the graph representation is parametric, our graph-

based approach could be compatible with various design 

tasks such as building equipment arrangement (Wang et 

al., 2019) and structural design (Zhao et al., 2024). It 

would be a promising direction to investigate how to 

integrate our graph-based method into a more generic 

design approach so as to ensure a more realistic and 

functional design solution. 

Conclusions 

In this paper, we presented an interactive AI framework 

for generative housing design, leveraging Graph Neural 

Networks (GNNs) and Deep Generative Models. Our 

approach, exemplified by the augmented DGMG 

framework for layout graph generation and Hetero-

HouseGAN++ (HHGPP) for floorplan generation, 

demonstrates the viability of incorporating user 

constraints and requirements into the generative design 

process. Through an interactive interface, architects and 

stakeholders could actively participate in the design 

workflow, ensuring the production of feasible and user-

centered housing design alternatives.  

Moving forward, several avenues for improvement and 

exploration emerge. Firstly, the model is still insufficient 

in predicting the edge features and meeting all hard 

constraints in layout graph generation. We will test 

different models and representations for more expressive 

power in the learning for generative design. Future 

research could also look into computational methods as a 

complementary approach to fix and optimize the 

generated design alternatives based on graph 

representation. Moreover, user feedback and architectural 

quality metrics will be integrated into the evaluation 

process, providing a more comprehensive assessment of 

the generated designs.  

This research would facilitate the housing design process 

through a collaborative and user-centered approach. The 

graph-based approach can also be integrated into more 

advanced design tasks (e.g., generative design of modular 

buildings based on BIM components library) due to its 

interoperability with the parametric data (e.g., IFC and 

IFCOWL), which would greatly facilitate the complex 

design process by harnessing the power of learning-based 

models and computational design approach. Despite only 

text-based interface is available for users currently, more 

advanced graphical interface could be further developed 

and easily embedded into domain applications (e.g., CAD 

and BIM) to facilitate the real-world design process. 
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Appendix 

 

Figure A1: Training of layout graph generation model 

Figure A2: Sample of generated layout graphs 

Figure A3: Training of floorplan generation model 



 

Figure A4: Envisioned graphical user interface  

 

 

(a) Drawing outline of building using mouse. At each step we 
can use the buttons in the bottom to navigate through the user 
input steps. 

 

(c) Add facade features like doors and windows. In our case we 
only allow for the placement of doors as our model does not 
include window information. 

 

(e) Adding edges (connections) between rooms. We can define 
wether or not the connection is an adjacency or door connection. 

(b) Add length and angular constraints to each wall and corner. 
The interface could allow for natural angles but currently our 
model is only trained on angles of 90 degrees. 

 

(d ) W e ca n  n o w  ad d  ro om s, n o tice  th a t th e  p o s itio n  o f th e  n o d es  
does not represent the spatial location. Our model only con- 
strains the amount of baths, beds and living rooms but can be 
expanded. 

 

(f) We can also add an adjacency/door between rooms with a 
constrained relative direction. In the example, we say the bath- 
room should be south (S) of the bedroom without a door. 


