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Abstract 

Traffic conflicts are heavily correlated with traffic collisions and may provide insightful 

information on the failure mechanism and factors that contribute more towards a collision. 

Although proactive traffic management systems have been supported heavily in the research 

community, and autonomous vehicles (AVs) are soon to become a reality, analyses are 

concentrated on very specific environments using aggregated data. This study aims at investigating 

–for the first time- rear-end conflict frequency in an urban network level using vehicle-to-vehicle 

interactions and at correlating frequency with the corresponding network traffic state. The Time-

To-Collision (TTC) and Deceleration Rate to Avoid Crash (DRAC) metrics are utilized to estimate 

conflict frequency on the current network situation, as well as on scenarios including AV 

characteristics. Three critical conflict points are defined, according to TTC and DRAC thresholds. 

After extracting conflicts, data are fitted into Zero-inflated and also traditional Negative Binomial 

models, as well as quasi-Poisson models, while controlling for endogeneity, in order to investigate 

contributory factors of conflict frequency. Results demonstrate that conflict counts are 

significantly higher in congested traffic and that high variations in speed increase conflicts. 

Nevertheless, a comparison with simulated AV traffic and the use of more surrogate safety 

indicators could provide more insight into the relationship between traffic state and traffic conflicts 

in the near future. 

 

Keywords: Traffic Conflicts, Safety, Surrogate Safety Measures, Count Data Modelling,   
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1. Introduction 

The safety performance of a transportation network is directly expressed by the number of occurred 

collisions. In order to evaluate safety performance, researchers and practitioners usually correlate 

crashes with macroscopic traffic characteristics (e.g. Average Annual Daily Traffic; AADT) and 

geometrical or environmental attributes in order to predict an estimate of collision frequency and 

identify collision contributory factors on a link, an intersection or more generally an entire 

transportation network (Abdel-Aty and Pande, 2007). As it can be understood, data for such 

analyses are aggregated and therefore information on the failure mechanism that leads to collisions 

might be lost in the aggregation. Furthermore, as proactive traffic management systems gain 

attention in the research and practitioners community (Hossain et al., 2019), collisions can be 

efficiently predicted for a short-time window in real-time using microscopic data. Nevertheless, 

even in real-time safety modelling, aggregation of data causes problems in efficiently 

understanding conditions that lead to collisions (Roshandel et al., 2015).  

 

To overcome the issue of data aggregation, and the lack of high-quality microscopic data, recent 

studies (Dimitriou et al., 2018; Katrakazas et al., 2018; Stylianou and Dimitriou, 2018) have been 

oriented towards investigating the relationship between traffic conflicts and collisions for 

microscopic collision modelling. Traffic conflicts are scenarios of dangerous vehicle interactions, 

which will evolve into collisions if no action is taken and the motion of vehicles remains 

uninterrupted (Hyden, 1987). As traffic conflicts are a popular technique for exploiting traffic 

microsimulation in safety analyses (Young et al., 2014), they have also become one of the most 

cost-effective tools for investigating the safety effect of Autonomous Vehicles (AVs) (Papadoulis 

et al., 2019).  

 

The state-of-the-art in conflict frequency prediction is limited in corridor-level analyses 

(Papadoulis et al., 2019), simulation-based traffic data (Katrakazas et al., 2018; Papadoulis et al., 

2019) or does not take effects of autonomous vehicles into account (Dimitriou et al., 2018; 

Stylianou and Dimitriou, 2018). This paper aims to add to current knowledge, by attempting to 

correlate traffic conflicts on a transportation network-level with the traffic state of network links 

and develop conflict prediction models according to the characteristics of the network. To that 

aim, detailed Vehicle-by-Vehicle (VbV) data from 16 inductive loop detectors in the urban 

network of Nicosia, Cyprus are used in order to extract rear-end conflicts using the Time-To-

Collision (TTC) and Deceleration Rate to Avoid a Crash (DRAC) metrics. Following the 

estimation of all conflicts, traffic and network attribute variables become input to Zero inflated 

Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB) models, in order to predict conflict 

frequency. Furthermore, a discussion on the potential impact on conflicts if traffic was fully 

automated (i.e. SAE Level 5; SAE International, 2016) is attempted. 

 

The paper is structured as follows: initially the literature with regard to conflicts, frequency 

modelling and autonomous vehicles is reviewed, and the methodology of the current work is 

presented. This is followed by a detailed description of the data used and the way the conflicts 

were extracted for all scenarios. Finally, conflict frequency models are developed and the results 

are discussed in order to draw conclusions for researchers and practitioners. 
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2. Literature Review 

Traffic conflicts have been used in numerous safety studies aiming to evaluate the association of 

traffic characteristics and vehicle trajectory data on collision risk (Dimitriou et al., 2018; Oh et al., 

2006; Weng and Meng, 2011) usually focusing on longitudinal data to assess rear-end collisions. 

Numerous simulator studies also use Surrogate Safety Measures (SSMs) such as TTC for collision 

avoidance or incident reaction time studies (e.g. Payre et al., 2016). Traffic conflicts have recently 

become a tool to study various human factors involved in automation. For instance, a traffic 

conflicts study (de Winter et al., 2019) showed that in a car-following field experiment (test vehicle 

following a robot-controlled lead vehicle), participants who had a collision event had mis-aligned 

high levels of trust to the automated car. As AVs aim to bring dramatic safety improvements by 

minimising the role of human drivers and thus eliminating human error, safety is the main “banner 

value” to promote AVs technology. Nevertheless, existing evidence is insufficient and the positive 

safety impacts of AVs remain to be proved (Calvert et al., 2017; Crist and Voege, 2018; Kalra and 

Paddock, 2016).  

 

Given the unavailability of actual collision data and the need for ex-ante evaluation of the expected 

safety impacts new technologies, traffic conflicts techniques and SSMs come with advantages due 

to their higher event frequency and observability and a robust conceptual and actual correlation 

with collisions (El-Basyouny and Sayed, 2013; Minderhoud and Bovy, 2001). SSMs allow to 

estimate collision risk on the basis of information on vehicles’ basic kinematics (e.g. position, 

velocity, acceleration; Dimitriou et al., 2018). Indicators typically used are TTC, Time Exposed 

Time to Collision (TET), Time Integrated Time to Collision (Kuang et al., 2015), deceleration 

rates, as well as probabilistic indicators, such as the Crash Potential Index (CPI) (Mullakkal-Babu 

et al., 2017)– which are however restricted to specific driving regimes (Oh and Kim, 2010). 

 

The majority of studies concerned with traffic conflicts are aiming at the estimation of traffic 

conflicts and the development of Safety Performance Functions (SPFs) based on these estimations 

(Charly and Mathew, 2019; Essa and Sayed, 2019, 2018). Another group of traffic conflict studies 

are looking into the crash potential of a site based on the number of conflicts(Rahman et al., 2019; 

Xing et al., 2019). Fewer studies utilize the extracted conflicts for real-time safety assessment 

(Dimitriou et al., 2018; Katrakazas et al., 2018; Papadoulis et al., 2019). Nevertheless, a common 

characteristic of all these studies is that their study area is limited to the site of an intersection (Essa 

and Sayed, 2019, 2018; Ulak et al., 2019), toll facilities (Xing et al., 2019), work zones (Weng and 

Meng, 2011), tunnels (Meng and Qu, 2012) or restricted freeway segments (Katrakazas et al., 

2018; Kuang et al., 2015). The only study that overviewed a network-wide effect was the one of 

(Dimitriou et al., 2018), but their focus was mostly on crash-potential, rather than the frequency 

of conflicts and the correlation with the traffic states of the network. Hence, it was demonstrated 

that a study that predicts conflict frequency with regards to the traffic state of an entire urban 

network is yet to be realized. 

 

Methodologically, modelling of the frequency of traffic conflicts follows the rationale of collision 

frequency modelling. Traditionally, this is carried out on the basis of Safety Performance 

Functions relating collision counts to traffic risk exposure, expressed on the basis of AADT or 

similar traffic information (Hauer, 1995). Road collisions are modelled as Poisson-family-

distributed rare events, however in recent years considerable research is carried out to identify 

techniques that are pertinent for handling specific properties of collision counts. Negative 
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Binomial Models to handle over-dispersion in collision counts are the most common specifications 

(Lord et al., 2005), with several extensions allowing to handle zero-inflated counts (Lord et al., 

2007) or heterogeneity (Karlaftis and Tarko, 1998; Quddus, 2008), often in a Bayesian context 

(Aguero-Valverde, 2013). Latent variables representations are also proposed (Castro et al., 2012). 

An important amount of recent work lies on hierarchical or multilevel modelling approaches 

(Dupont et al., 2013; Huang and Abdel-Aty, 2010) allowing to handle spatial, temporal or other 

unobserved dependences in collision counts.  

 

3. Data Description and Conflict Extraction 

The available VbV data were obtained from a large-scale urban network, located in Nicosia, 

Cyprus. The data were collected from 16 Inductive Loop Detectors (ILD), which cover either one, 

two or three lanes in each direction (depending on the carriageway design). The locations of the 

ILDs within the city of Nicosia is depicted in Figure 1.  Data were available for a two-month period 

(18/09/2015 to 18/11/2015), totalling more than 21 million observations. Due to the large size of 

the raw observations, traffic data were aggregated over 5 minute intervals, as this is usually the 

aggregation level used in microscopic safety analyses (Roshandel et al., 2015). From the database, 

the flow, speed, headway, gap and vehicle composition information were extracted and aggregated 

into the 5-minute intervals.  

 

 
Figure 1: The location of the ILDs within the city of Nicosia, Cyprus 

 

The next step of the processing procedure included the extraction of additional variables to be used 

for rear-end conflict estimation according to (Dimitriou et al., 2018) and conflict frequency 

modelling. These variables included: 

 Traffic Density (calculated through 
𝐹𝑙𝑜𝑤

𝑆𝑝𝑒𝑒𝑑
),  
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 Traffic state (Free Flow, Unstable flow, Congestion) using the fundamental diagram of 

flow and density and the following thresholds  

o Free Flow, when Density < 20veh/km and Flow < 80 vehicles 

o Transitional Flow, when 20< Density < 45 veh/km and Flow >80 vehicles 

o Congestion, when Density is > 45 veh/km and Flow>80 vehicles 

It should be noted here that the roads’ crossections have similar characteristics, the thresholds are 

data-driven and were obtained after plotting the fundamental diagram for each of the detectors as 

shown in Figure 2. 

 

Free flow

Transition 
phase

Congestion

 
Figure 2: Example of defining traffic state based on the flow-density diagram 

Furthermore, for extracting conflicts, the measures of TTC and DRAC were calculated. TTC was 

chosen, because it is one of the most popular surrogate safety measures for detecting rear-end 

conflicts and DRAC was chosen due to its explicit recognition as a safety performance metric 

(Cunto and Saccomanno, 2008), which considers speed differentials and deceleration profiles 

during dangerous vehicle encounters (Archer, 2005). DRAC reflects the necessary deceleration 

profile needed to make a timely stop and hence avoid a rear-end collision.  The two metrics are 

calculated as follows:  

o TTC= 
𝑋𝑖

𝑡−𝑋𝑖−1
𝑡 −𝐿𝑖−1

𝑉𝑖
𝑡−𝑉𝑖−1

𝑡 , where 𝑋𝑖
𝑡 is the position of the following vehicle i in time t, 

𝑉𝑖
𝑡is its speed at time t and 𝐿𝑖 is the length of a vehicle. The corresponding variables 

with the notation i-1 (i.e. 𝑋𝑖−1
𝑡  and𝑉𝑖−1

𝑡 ) denote the position and speed of the leading 

vehicle passing from the same detector.   

o DRAC= 
(𝑉𝑖

𝑡−𝑉𝑖−1
𝑡 )

2

2[(𝑋𝑖
𝑡−𝑋𝑖−1

𝑡 )−𝐿𝑖−1]
 

As the provided data were VbV, the lengths, distances and speeds of consecutive vehicles could 

easily be obtained. TTC and DRAC were chosen as the most representative indicators because 

they are heavily used in conflict-based safety analyses including potential automated vehicle traffic 

scenarios (e.g. Dijkstra, 2013; El-Basyouny and Sayed, 2013; Essa and Sayed, 2019; Papadoulis 

et al., 2019; Rahman and Abdel-aty, 2018). 

 

Table 1 summarizes the descriptive statistics of the variables recorded and estimated from the 

available dataset.  
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Table 1: Descriptive Statistics of Traffic Variables  

Variable Description Mean Std. Dev 

Flow Number of vehicles aggregated in 5 min interval per cross section 41.120 17.294 

Spot Speed Individual vehicle speed (km/h) 51.930 12.708 

Headway Temporal headway between two consecutive vehicles (in seconds) 12.729 28.934 

Gap Distance between two consecutive vehicles (in meters) 57.045 36.713 

DRAC Deceleration rate to avoid a crash (in m/s2) 1.060 26.308 

TTC Time to Collision (in seconds) 2.311 82.272 

  Percentage 

Vehicle 
Composition (%) 

Cars and small vans 96.642 

HGVs and Buses 1.890 

Motorcycles 1.444 

Unclassified vehicles 0.024 

Traffic State Cases 
(%) 

Congestion 1.83 

Free Flow 88.78 

Unstable 9.39 

Total Observations 21,714,292 

 

In order to extract rear-end conflicts, for every vehicle interaction near the location of the detectors, 

appropriate thresholds were applied to the TTC and DRAC in order to get the most “dangerous” 

scenarios of interactions between vehicles. These thresholds were chosen in order to estimate 

conflicts in typical scenarios, as well as scenarios that “emulate” a fully and highly automated 

traffic, i.e. they are harsher thresholds for typical traffic. These stricter thresholds were applied, as 

it is envisioned that critical scenarios for automated vehicles will be the ones dealing with very 

small headways with preceding vehicles as well as rapid evasive manoeuvres leading to harshest 

decelerations to avoid a collision (Papadoulis et al., 2019; Rahman et al., 2019).  

 

Therefore, three critical points were defined in order to be used for the analysis: 

o Conflict point A: TTC<1.5 seconds and DRAC>3 m/s2, taken from Deligianni et 

al., (2017); Dimitriou et al., (2018); Li et al., (2017) 

o Conflict point B: TTC<1 second and DRAC>6 m/ s2
, obtained from fitting a 

gaussian distribution to the data, and taking values for TTC and DRAC that did not 

belong to the 90% confidence interval 

o Conflict point C: TTC < 0.5 seconds and DRAC>10 m/sec2, taken from extreme 

values used in Asljung et al., (2017); Deligianni et al., (2018); Mahmassani, (2016); 

Rummelhard et al., (2016), which investigated the safety impacts of automated 

driving.  

The conflict cases for each critical point, were summarized per 5-minute interval in order to 

correspond to the 5-minute interval of the traffic variables captured. 
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4. Methods of analysis 

 

4.1 Count data modelling  

 

As observed from the literature review, in order to model the frequency of conflicts in the urban 

network, collision frequency modelling deems as the most appropriate, since conflicts and 

collisions share similar failure mechanisms. Since collision frequency data, belong to the count 

data category, and more specifically to non-negative count data, linear regression modelling is 

inappropriate, and other approaches such as Poisson regression, negative binomial, zero-inflated 

Poisson regression and zero-inflated negative binomial regression have become the state-of-the-

art in modelling such data (Washington et al., 2010).  

 

A notable characteristic of crash frequency data that is that the variance usually exceeds the mean 

of the crash counts (Lord and Mannering, 2010). When overdispersed data are present, the negative 

binomial as well as the quasi-Poisson model can be used to overcome this issue. The variance of 

a quasi-Poisson model is a linear function of the mean while the variance of a negative binomial 

model is a quadratic function of the mean. However, when the mean equals variance, the Poisson 

model is used.  

 

Due to the serious prevalence of zeros in such crash databases, zero-inflated models have emerged 

in modelling collision frequency, as they address the excessive zero density by leading the 

modelling procedure into a normal-operations vs collision prone propensity condition for every 

road segment.  In zero-inflated negative binomial models, each observation is assumed to have 

two possible states; State 1 which if true denotes that collision counts are zero, and State 2, which 

when true, initiates the generation of traffic counts according to the negative binomial distribution. 

If π denotes the probability of occurrence for State 1, and hence the probability of State 2 

occurrence is 1-π, the probability distribution of a zero-inflated negative binomial random variable 

yi can be estimated as:  

 

Pr(𝑦𝑖 = 𝑗) = { 
𝜋𝑖 + (1 + 𝜋𝑖) ∗ 𝑔(𝑦𝑖 = 0) 𝑖𝑓 𝑗 = 0
(1 + 𝜋𝑖) ∗ 𝑔(𝑦𝑖)                   𝑖𝑓 𝑗 > 0

    (6) 

 

where πi is the logistic link function defined below and g(yi) is the negative binomial 

distribution given by: 

 

𝑔(𝑦𝑖) = Pr(𝑌 = 𝑦𝑖|𝜇𝑖, 𝑎) =
𝛤(𝑦𝑖+𝛼−1)

𝛤(𝛼−1)𝛤(𝑦𝑖+1)
(

1

1+𝛼𝜇𝑖
)𝑎−1

(
𝛼𝜇𝑖

1+𝛼𝜇𝑖
)𝑦𝑖   (7) 

 

After defining the probability distribution of the zero-inflated negative binomial variable, the 

probability of a roadway segment or entity to be in zero or non-zero state can be determined by a 

binary logit or probit model (Lambert, 1992; Washington et al., 2010).  

 

However, it is not always obvious that the zero-inflated models are appropriate. As a consequence, 

statistical tests, such as the Vuong test (Vuong, 1989) provide more insight on the selection of the 

most appropriate model when dealing with excessive zeros in crash counts (Chen et al., 2016; 

Jiang et al., 2011) 
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Summing up, this study explores a series of Negative Binomial (NB), quasi-Poisson as well as and 

zero inflated Negative Binomial (ZINB) models after testing the datasets using the Vuong test. 

Model estimations were carried out by using the R-package pscl (Jackman, 2017). The Vuong test 

in our study is conducted by using the R-package nonnest2 (Merkle and You, 2018). 

 

4.2 Controlling for endogeneity  

 

Lord and Mannering, (2010) critically discuss endogeneity issues in crash data modelling, stating 

that when endogenous explanatory variables are included in models their values may depend on 

the frequency of crashes. Similar issues are likely to arise when analyzing traffic conflicts. 

Although it is relatively straightforward to account endogeneity in ordinary least-squares models 

(Lord and Mannering, 2010), considerable complexity is added to count-data models when 

attempting to address endogeneity (Kim and Washington, 2006). To the best of our knowledge, 

the present research paper is one of the few studies attempting to address this issue when dealing 

with crash counts. 

 

One popular way to deal with unmeasured confounding is to use Instrumental Variable (IV) 

methods. The following methodological process is adopted from Sjolander and Martinussen, 

(2019). First, let us assume that Z and X are the IV and the exposure respectively, whilst L is a set 

of covariates that will be controlled for the analysis. 𝑌0 is the potential outcome, when the exposure 

is set to 0 (Pearl, 2009). Afterwards, the following causal model is considered:  

 

{𝐸(𝑌|𝐿, 𝑍, 𝑋)} − {(𝑌0|𝐿, 𝑍, 𝑋)} = 𝑚𝑇 (𝐿)      (8) 

 

where η is either the identity, log or logit link, and the vector function m(L) allows for interactions 

between X and L. The vector parameter ψ measures the causal effect of a particular exposure level 

conditionally on (L, Z).  

 

In this paper, a two-step process is followed in order to apply IV analysis for traffic conflict 

modelling. According to Sjolander and Martinussen (2019), in the first stage, a regression model 

is fitted for the exposure, using L and Z as regressors. This regression model is used to formulate 

a prediction 𝑋 ̂ =𝐸̂(𝑋|𝑍, 𝐿) for each subject. In the second stage, another regression model is fitted 

for the outcome, using L and (𝐿)̂ as regressors.  

 

Moreover, in order to account for potential biases arising from this method (Greenland et al., 

1999), a control function 𝑅 = 𝑋 −𝐸̂(𝑋|𝑍, 𝐿) is added in the second stage model (Tchetgen Tchetgen 

et al., 2015; Vansteelandt et al., 2011). 

 

The two-stage method is computationally feasible and can be extended to generalized linear 

models, such as negative binomial and zero-inflated models. IV models were estimated by using 

the ivtools package (Sjolander and Martinussen, 2019) in R software. 

 

5. Results 

 

5.1 Preliminary analysis 
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Firstly, a preliminary analysis and visual inspection of the dependent variables was carried out. 

More specifically, the distributions of conflicts were plotted. Figure 3 illustrates the distribution 

of all three conflict points (i.e. A, B and C). In both figures, it is observed that there are excessive 

zeros in conflicts. Hence, the zero inflated specification is appropriate for modelling the number 

of conflicts. The mean and variance for the conflict point A conflicts were 0.319 and 0.452, whilst 

the respective numbers for conflict point B were 0.169 and 0.225 and for conflict point C were 

0.059 and 0.074. Because the means and variances do not differ in a great extent, both Poisson and 

Negative Binomial specifications will be tested. 

 

Figure 3: Probability Distribution of conflict cases for conflict points A (left), B (center) 

and C (right) 

As a second step, all candidate independent variables must be tested for potential correlations. 

The results of the correlation matrix for the continuous variables are illustrated in Figure 4 and 

assisted in selecting the variables which had no correlation between each other. In order to test 

the correlation of discrete and continuous variables, the Kruskal-Wallis test which is a relevant 

non-parametric method was utilized. The Kruskal-Wallis test showed no correlation among the 

Traffic state variable and the continuous variables. 

 

 
 

Figure 4: Correlation Matrix for Continuous Independent Variables 

(Avg: Average, Std: Standard deviation, CVS: Coefficient of variation of Speed, HGV: 

Heavy Goods Vehicles) 
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5.2 Conflict prediction modelling 

 

The following tables provide a summary of the best fitting models for conflict points A, B and C 

respectively. As stated earlier, both Negative Binomial, quasi-Poisson and Poisson models were 

considered; models having the best fit were ultimately retained. Various random effects model 

specifications were also tested, however, the variance of the random effects (intercepts and slopes) 

were not significant in any of the three models. Hence, only fixed effect models were included. In 

addition to AIC and BIC test, the Vuong test was also used to provide insight on the selection of 

the most appropriate structure (typical or the Zero Inflated structure). The low VIF values in all 

six models showed that no multicollinearity issues were present in our analyses. 

 

5.2.1 Conflict point A 

 

For conflict point A, the alternative hypothesis that the Zero Inflated model is better, was accepted 

(Z-value = 15.209, p-value < 0.001). Hence, for conflict point A the ZINB was the best-fitting 

model. Table 2 summarizes the ZINB model for rear-end conflict point A cases (i.e. TTC<3.0 sec). 

VIF tests indicated low collinearity, as the values were lower than five. It is noted that in the 

conditional part of the model, VIF test is not applicable because there is only one predictor. 

 

The likelihood ratio test was significant at 95% level, indicating an adequate fit. The conditional 

model (count model) suggests that free flows are associated with fewer conflicts, whilst unstable 

flow state cause an increase to conflict likelihood. In other words, congested and unstable flows 

increase conflict numbers. Although there is not much research on the impact of congested 

conditions (on a real-time basis) on collision frequency, our findings can be considered in line with 

a few past studies regarding real-time collision risk and congested conditions such as high 

occupancy (Xu et al., 2013; Yu and Abdel-Aty, 2013). Moreover, a non-linear impact of flow on 

collision numbers have been recently suggested by Yu et al., (2019). However, Yu et al., (2019), 

found that moderate levels of traffic volume have higher crash probabilities. Regarding unstable 

flow state, this finding is consistent with past literature in the field of real-time collision risk as 

traffic variations are considered as a very common risk factor (Ahmed et al., 2012; Theofilatos, 

2017; Xu et al., 2013; Yu and Abdel-Aty, 2013).  

 

When considering the zero state, several interesting remarks can be observed. The positive sign of 

the beta coefficient of average speed implies a negative correlation with increased rear-end conflict 

numbers. In other words, as average speeds rise, rear-end conflict numbers are more probable to 

be lower. This is in-line with previous research findings on the relationship between speed and 

traffic conflicts(Tarko, 2020; Xing et al., 2019). 

 

Table 2: Summary of the ZINB model for conflict point A cases frequency 

  Variable Beta coefficient Standard error p-value VIF 

Conditional model Constant term -1.766 0.018 <0.001*** - 

  Traffic_state (Free flow) -0.197 0.016 <0.001*** 

1.14   Traffic_state (Unstable flow) 0.132 0.017 <0.001*** 

  Traffic_state (Congested flow) ref.cat ref.cat ref.cat 

  Flow 0.029 1.17E-04 <0.001*** 1.14 
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Zero-inflation model Constant term -3.130 0.038 <0.001*** - 

  AvgSpeed 0.032 4.10E-04 <0.001*** - 

            

Dispersion parameter Log(theta) 1.449048 0.029522 <0.001*** - 

            

Log-likelihood at zero -575922.90       

Log-likelihood of the 

model -521200.00       

***: Significant at 99%, **: Significant at 95%, *: Significant at 90%, n.s.: non-significant  
 

When controlling for potential endogeneity, a few notable differences are observed (see Table 3). 

As mentioned in the methodological framework, a two-step process was followed. In the first 

stage, the Flow variable was regressed on ttc, indicating a significant positive relationship (beta 

coefficient = -0.002, p-value = <0.001). Traffic state was not found to be influenced by ttc. In the 

second stage, a count data model was estimated to control for the existing endogenous 

relationships. The quasi-Poisson model had the best fit and the respective estimation results are 

illustrated in Table 3. The control function R which was used to reduce potential bias of the two-

step process was significant, hence it is retained in the estimation process. 

A few notable differences are identified in the IV analysis model. Traffic state variable is not found 

to statistically influence conflicts as observed in the zero-inflated model and was not retained in 

the final model. Secondly, the logarithm of flow is significant in the IV model, indicating that as 

flow decreases, more conflicts are expected to occur. Thirdly, a negative correlation between 

percentage of heavy vehicles and conflicts was identified when endogeneity was accounted for, 

possibly due to risk compensation by drivers when heavy vehicles are present in traffic. Although 

this factor is seldom explored in proactive safety evaluation, Theofilatos et al., (2018) found no 

influence of truck proportions in collision risk. 

 

Table 3: Summary of the quasi-Poisson model with IVs for conflict point A cases frequency  

  Variable 
Beta 

coefficient 

Standard 

error 
p-value 

VIF 

IV model Constant term 11.724 3.040 <0.001*** - 

  avgCVS 3.293 0.094 <0.001*** 1.23 

  log(Flow) -6.214 1.302 0.001*** 1.00 

  HGVspercentage -0.011 0.002 <0.001*** 1.23 

  R (control function) 0.047 3.41E-04 <0.001*** - 

Log-likelihood at zero -336000.00       

Log-likelihood of the model -263000.00       

***: Significant at 99%, **: Significant at 95%, *: Significant at 90%, n.s.: non-significant 
 

5.2.1 Conflict point B 

In order to explore conflict point B cases frequency, the Vuong test and the AIC/BIC tests indicated 

that despite excessive zeros the traditional NB model had better goodness of fit, as both AIC and 

BIC values were lower than the Zero Inflated model. Moreover, according to the Vuong test, the 

alternative hypothesis that the traditional Negative Binomial model is better the Zero Inflated 

model was accepted (Z-value = -36.294, p-value < 0.001). The findings are very similar to the 
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previous model for conflict point A, however the model structure is different, as the zero-state part 

does not exist in this case. Overall, it is suggested that congested flows, low speeds as well as 

variations in speed are associated with increased numbers of rear-end conflicts described by 

conflict point B. The impact of speed variation for conflict point B (which was not significant for 

conflict point A frequency model without accounting for endogeneity) is in accordance with past 

studies in the field (Theofilatos et al., 2017; Yu and Abdel-Aty, 2013). Interestingly, unstable flows 

are associated with fewer conflicts than congested flows. However, this finding should be 

interpreted with care, because the unstable flow is category is compared to the congested flow 

category, due to the categorical nature of traffic state variable. 

 

Table 4: Summary of the NB model for conflict point B cases frequency 

  Variable 
Beta 

coefficient 

Standard 

error 
p-value 

VIF 

Conditional model Constant term -1.558 0.023 <0.001*** - 

  Traffic_state (Free flow) -0.585 0.021 <0.001*** 

1.43 
  Traffic_state (Unstable flow) -0.074 0.021 <0.001*** 

  
Traffic_state (Congested 

flow) 
ref.cat ref.cat ref.cat 

  log(avgCVS) 3.820 0.019 <0.001*** 1.52 

  AvgSpeed -0.011 2.39E-04 <0.001*** 1.78 

            

Dispersion parameter Theta 1.3728 0.0166 <0.001*** - 

Log-likelihood at zero -225401.50       

Log-likelihood of the model -187715.00       

***: Significant at 99%, **: Significant at 95%, *: Significant at 90%, n.s.: non-significant 

When controlling for potential endogeneity, there are some differences compared to the NB model 

(see Table 5). The two-step process was followed, having traffic flow as endogenous variable 

regressed on TTC (p-value <0.001). The quasi-Poisson model had the best fit and the respective 

estimation results are illustrated in Table 5. When compared with the NB model without 

endogeneity, a few additional variables were found to significantly influence conflict counts. For 

example, the standard deviation of flow is positively correlated with conflict occurrence. On the 

other hand, this model suggests that high percentages of heavy vehicles are associated with fewer 

conflicts. Moreover, the logarithm of flow was found to decrease traffic conflicts. This finding 

might be considered contradictory with the impact of the traffic state variable; however, the traffic 

state variable is significant only at 90% level. Generally, more research is needed towards that 

direction. 

Table 5: Summary of the quasi-Poisson model with IVs for conflict point B cases frequency 

  Variable 
Beta 

coefficient 

Standard 

error 
p-value 

VIF 

IV model Constant term 7.670 3.259 0.019** - 

  Traffic_state (Free flow) -0.556 0.320 0.082* 

1.13 
  Traffic_state (Unstable flow) -0.549 0.331 0.097* 

  
Traffic_state (Congested 

flow) 
ref.cat ref.cat ref.cat 

  stdFlow 0.057 0.003 <0.001*** 2.82 

  log(avgCVS) 2.186 0.105 <0.001*** 2.81 
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  log(Flow) -4.785 1.391 <0.001*** 1.13 

  HGVspercentage -0.003 0.002 0.081* 1.22 

  R (control function) 0.055 4.83E-04 <0.001*** - 

Log-likelihood at zero -53600.00       

Log-likelihood of the model -42055.00       

***: Significant at 99%, **: Significant at 95%, *: Significant at 90%, n.s.: non-significant 

 

5.2.1 Conflict point C 

 

The last model is concerned with the frequency of rear-end conflicts obtained by conflict point C 

(AVs conditions). The best fit was achieved by the traditional Negative Binomial specification. 

The most significant variables are the traffic state and percentage of heavy goods vehicles (HGV), 

average speed and the logarithm of the average coefficient of variation of speed. The findings are 

in line with the previous models, suggesting that free flows, high percentage of HGVs as well as 

increased speeds are associated with reduced numbers of point C rear-end conflicts. Similarly, 

increased variations in speed (as expressed by the coefficient variation of speed) increase traffic 

conflicts. 

Table 4: Summary of the NB model for conflict point C cases 

 

  Variable 
Beta 

coefficient 

Standard 

error 
p-value 

VIF 

Conditional model Constant term -2.304 0.033 <0.001*** - 

  Traffic_state (Free flow) -0.709 0.030 <0.001*** 

1.57 
  Traffic_state (Unstable flow) -0.122 0.030 <0.001*** 

  
Traffic_state (Congested 

flow) 
ref.cat ref.cat ref.cat 

  HGVspercentage -0.003 0.001 <0.001*** 1.22 

  AvgSpeed -0.017 4.29E-04 <0.001*** 2.05 

  log(avgCVS) 4.020 0.027 <0.001*** 1.77 

            

Dispersion parameter Theta 0.9182 0.0171 <0.001*** - 

            

Log-likelihood at zero -117383.5       

Log-likelihood of the model -93231.00       

***: Significant at 99%, **: Significant at 95%, *: Significant at 90%, n.s.: non-significant   

  

When attempting to control for potential endogeneity by regressing flow on TTC (as in conflict 

point A and B processes), the quasi-Poisson model had the best fit and the respective estimation 

results are illustrated in Table 7. Firstly, traffic state was not significant. Moreover, the beta 

coefficient of heavy vehicle percentage was found to have a positive sign, contrary to the previous 

models. However, it is noted that flow (which is an endogenous variable) was not found to be 

significant, hence, endogeneity for conflict C cases might not be the case. 
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Table 7: Summary of the quasi-Poisson model with IVs for conflict point C cases frequency 

when controlling for endogeneity 

  Variable 
Beta 

coefficient 

Standard 

error 
p-value 

VIF 

IV model Constant term -0.218 4.444 0.961 n.s. - 

  avgCVS 3.505 0.091 <0.001*** 1.27 

  HGVspercentage 0.005 0.002 0.024** 1.26 

  log(Flow) -1.959 1.902 0.303 n.s. 1.01 

  R 0.050 0.001 <0.001*** - 

Log-likelihood at zero -23940       

Log-likelihood of the model -19990       

***: Significant at 99%, **: Significant at 95%, *: Significant at 90%, n.s.: non-significant 

 

  

6. Conclusions 

Collision frequency is the traditional indicator of the safety level of a transportation network. 

However, to-date, collision frequency prediction models fail in utilizing highly disaggregated 

vehicle-by-vehicle data and are usually concerned with restricted areas (e.g. limited sections of a 

highway, weaving sections or intersections). This paper aimed at extending the state-of-the-art- in 

frequency modelling, by predicting traffic conflict frequency in an urban network-wide area 

according the prevailing traffic state and including scenarios that imitate fully automated traffic. 

The novelty of the work lies in the utilization of highly disaggregated Vehicle-by-Vehicle (VbV) 

traffic data obtained from 16 inductive loop detectors in Nicosia, Cyprus and containing more than 

2 million observations. Using the widely utilized TTC and DRAC metrics, conflicts were extracted 

an afterwards Zero-Inflated Negative Binomial (ZINB), traditional Negative Binomial (NB) as 

well as quasi-Poisson models, were applied in order to predict conflict frequency in three 

scenarios; two for current vehicle settings and one that could be applied in a potential automated 

traffic scenario.  

 

The model results demonstrated that VbV data can be effectively utilized for conflict frequency 

prediction and provided insight on the variables that influence conflict occurrence. More 

specifically, conflict numbers are increased especially during congested traffic conditions and are 

more likely to be fewer during free flow traffic. Furthermore, for two out of three types of conflicts 

(Points A and B), increased speeds led to fewer conflicts, while high variations of speeds in conflict 

point B and C led to more frequent conflicts. However, when attempting to address endogeneity, 

the results show a few notable differences exist. For instance, the impact of traffic flow is not clear 

as mixed findings occur. Secondly, unstable flow as expressed by traffic state was only important 

for conflicts described by conflict point B. Since it is the first study addressing the issue of 

endogeneity when modelling traffic conflicts, additional research is needed. 

 

In the hypothetical scenario of fully automated traffic (conflict point C), high percentage of heavy 

vehicles was an additional parameter found to increase traffic conflicts. In this case, it seems that 

endogeneity is not occurring. It is noted that this scenario is developed on the basis of certain 

assumptions and threshold values, and since research in this field is evolving, it is possible that 

some of these assumptions are imperfect. However, the main purpose of this research is to 

demonstrate the potential for comparison of results between conventional traffic and traffic 
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moving with greater decelerations and shorter headways, as it would be if traffic was fully 

automated. Of course, as the data utilized did not come from actual automated vehicles, results 

should be interpreted with care with regards to conflict point C. This type of analysis may 

eventually lead to the estimation of safety benefits of AVs compared to current traffic conditions. 

In this context, the microscopic analysis allowed by traffic conflicts estimation is clearly 

advantageous, as there is need for proactive estimation of the safety impacts of a level of automated 

traffic, before actual crashes happen.  

 

Nevertheless, the current study is not without limitations. The data utilized came explicitly from 

loop detectors. Such data are usually discontinuous both spatially and temporally and are less 

informative that actual vehicle trajectories(Roshandel et al., 2015). In order to perform an actual 

comparison with simulated AV traffic to be validated along with the corresponding conflicts, 

conflicts extracted from microsimulation need to be obtained. Moreover, the scope of the present 

study is focused to rear-end collisions, and further research should explore other critical conflict 

types in urban road networks e.g. intersections – provided that appropriate relevant data could be 

available. It would be also very interesting to examine intermediate penetration levels of AVs i.e. 

mixed traffic conditions and this will be pursued in future research. As only microscopic surrogate 

safety indicators were used (i.e. TTC and DRAC), driving behaviour could not be directly 

captured. Indicators corresponding to fatigue, impairment and distraction could enhance the 

connection between predicted conflicts and actual collisions. Furthermore, the utilization of other 

surrogate safety indicators such as modified TTC and DRAC (Charly and Mathew, 2019; Zheng 

et al., 2019) as well as controlling for either TTC or DRAC similar to the work of (Wang and 

Stamatiadis, 2016, 2014) would further validate the results of modelling and will be considered in 

future work. 

 

This study utilized fixed effects models, because the random effects terms were not statistically 

significant. However, future studies should utilize more network information in order to account 

for potential spatial heterogeneity and autocorrelation. Lastly, Machine Learning and Deep 

Learning could also be utilized and provide further insights. 
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