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ABSTRACT 
 
This paper presents a comparison between blind 
predictions of field tests of atmospheric drying of 
mature fine tailings (MFT) presented in IOSTC 
2014 and field results. The numerical simulation of 
the consolidation and atmospheric drying of self-
weight consolidating fine material is challenging 
and requires significant knowledge of the material, 
climate and the interaction between the two. This 
paper presents the outcome of a study which 
developed a numerical model, undertook material 
characterization and predicted the behaviour of full 
scale field tests undertaken in Shell Canada’s 
Muskeg River Mine near Fort McMurray, Alberta.  
The blind predictions were published in IOSTC 
2014. A comparison between the observed and 
simulated behaviour in terms of settlement and 
void ratio yields a number of conclusions regarding 
the model: (i) all of the major observed features 
can be predicted by the numerical model; (ii) the 
quantification of the behaviour is well represented; 
(iii) due to the fast initial consolidation, the amount 
of material recorded as being deposited was 
underestimated; (iv) significant shear strength 
development requires a void ratio reduction which 
either requires a significant overburden or 
atmospheric drying. 
 
INTRODUCTION 
 
Mature fine tailings (MFT) are the fine tailings that 
arise from initial disposal of the tailings in settling 
ponds, where the dense solids with a large particle 
size (i.e. sands) settle to the bottom, water without 
solids remains at the top and can be recycled.  The 
remaining middle layer is composed of the fine 
particles and a high water content, known as MFT. 
These tailings suffer from high volume, extremely 
low shear strength and extremely long settling 
times. 
 
A number of techniques have been developed to 
deal with such tailings, one of which is flocculation, 
via addition of a chemical flocculent, and 
atmospheric drying in layers. 
 

Shell Canada have investigated this possibility 
resulting in a proposed flocculent and a series of 
field scale tests at the Muskeg River Mine near 
Fort McMurray, Alberta. Delft University of 
Technology has supported this work via an 
experimental and numerical project, with a 
summary of the experimental work presented in 
this conference (Yao et al., 2016) and previously 
(Yao et al., 2012, 2014). The numerical model was 
originally presented by van der Meulen et al. 
(2012) and further developed and validated by 
Vardon et al. (2014), including blind predictions of 
the behaviour of the field tests. Some further 
theoretical analyses were undertaken looking at 
the most efficient method of layering, to yield the 
most reduction in volume and even density 
(Vardon et al., 2015).  
 
This paper presents the results of a comparison 
between the blind predictions presented by Vardon 
et al. (2014) and the results of the field tests.  
Additional simulations were undertaken where 
deviations were found to investigate the causes of 
the deviations. The numerical model and the field 
tests are initially briefly outlined as background to 
the results. 
 
 
NUMERICAL MODEL  
 
Governing equations 
 
While consolidation is typically, and generally, 
solved using two coupled equations (e.g. Biot 
1941), the self-weight consolidation of deposited 
liquid material is mostly driven by shrinkage and is 
typically stored in deposits which are much wider 
than deep and therefore can be considered 1D.  
Therefore, in this work, a 1D model where the 
hydraulic behaviour is primarily solved is 
appropriate. The deformation is then calculated in 
a second step, based on the results of the 
hydraulic model. 
 
The governing equation is therefore based upon 
the conservation of water mass and utilizes 



  
 

Darcy’s Law to calculate the water flow.  The water 
potential includes the following components: 
 

 Elevation 
 Overburden 
 Suction/pressure. 

 
The equation solved (after Kim et al., 1992) is: 
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where Θ is the volumetric water content (Vw/Vt), t is 
time, z is the elevation, K is the hydraulic 
conductivity, φ is the water potential, i.e. the 
suction or the pressure, and Ω is the overburden 
component. 
By expanding the spatial differential of the water 
potential, i.e. the part inside the square bracket of 
eq. (1) and ignoring any surcharge, yields: 
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where ߠ is the water ratio (Vw/Vs), ݁ is the void ratio 
(Vv/Vs) and ߛ is the volumetric weight of the 
material. The water content is related to the water 
ratio as ߆ ൌ ሺ1/ߠ  ݁ሻ. 
 
Two sets of coordinates have been defined: 
Cartesian coordinates, where z is the vertical 
coordinate in real space, and Lagrangian 
coordinates, where the same solid material always 
has the same position, and m is the vertical 
coordinate, defined as d݉ ൌ dݖ/ሺ1  eሻ. This is 
useful to understand how the material evolves. 
 
At each position in the soil column and in time 
߲φ/	߲ߠ can be calculated from the Soil Water 
Retention Curve, and ߲e/	߲ߠ and ߲ଶ݁/	߲ߠଶ can be 
calculated from the shrinkage curve.	ܭ changes as 
the void ratio changes, so must also be updated. 
 
Boundary conditions 
 
To simulate both consolidation behaviour and 
evaporation (and precipitation) a competitive 
boundary condition has been incorporated at the 
top surface. 
 
Potential evaporation, rainfall, permeability 
restricted flow and consolidation driven flow are all 

calculated and the dominant mechanism used as a 
flux boundary condition. 
 
 
FIELD TESTS 
 
Three field tests were undertaken, the first termed 
the ‘Deep stack’, where only a single layer was 
deposited, the second termed ‘Thick multi-lift’ 
where three thick layers (lifts) were deposited and 
the third termed ‘Thin multi-lift’ where seven thin 
layers were deposited. Approximately the same 
amount of material was deposited in each test. 
Table 1 gives the layer thicknesses for each test 
and layer. 
 
Table 1. Field test layer thicknesses for the 

three field tests.  

Test Lift 
Days 
from 
start 

Reported 
layer 

thicknesses 
(cm) 

Post-analysis 
layer 

thicknesses 
(cm) 

     
Deep 
stack 

1 0 450.0 480.0 

 

Thick 
multi-lift 

1 0 100.0 130.0 
2 257 180.0 230.0 
3 346 130.0 150.0 

 

Thin 
multi-lift 

1 0 90.0 100.0 
2 37 50.0 80.0 
3 257 50.0 60.0 
4 290 50.0 50.0 
5 317 60.0 60.0 
6 346 110.0 130.0 
7 365 40.0 50.0 

 
 
RESULTS 
 
The analyses were undertaken with the material 
parameters as reported in Vardon et al. (2014), 
determined based upon the experimental work 
presented in Yao et al. (2012, 2014).  
 
The atmospheric drying is the critical forcing 
parameter, so has been reproduced here in Figure 
1. Via an initial sensitivity analysis it was found that 
averaging the precipitation and evaporation 
potential monthly gave good results and allowed 
the numerical model to run efficiently. The model 
run time was between 30 secs and 5 minutes, and 
was variable on the non-linearity of the fluxes and 
the steepness of the gradients in the system. 
 



 
 

Figure 1
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Figure 3. Comparison of the results of the 

Deep stack numerical simulation 
against the experimental results in 
material level (Lagrangian) 
coordinates.  

 

Updated results with additional material 
 
Following the conclusions that in general the 
trends and material behaviour seemed to be well 
represented, but that there was additional material 
deposited, a series of additional simulations were 
undertaken. 
 
The simulations were identical (material 
parameters and boundary conditions) with the 
exception of addition material. The amount of 
additional material was calculated from the void 
ratio measurements, as the layering was clear 
(e.g. see Figure A1(b)). The updated layer 
thicknesses are shown in the last column of Table 
1. 
 
The results are presented below. In Figure 4 for 
the Deep Stack, in Figures 5 and 6 for the Thick 
multi-stack and in Figure 7 for the Thin multi-stack. 
 
In Figure 4(a), it is seen that the additional material 
only affects slightly the match of the results initially, 
and it matches excellently later in the analysis. In 
Figure 4(b) the void ratio matches well in the entire 
thickness of the stack, although there is a slight 
underestimation of the reduction of void ratio at the 
base of the stack until the evaporative ‘crust’.  
 
In Figure 5 substantial qualitative and quantitative 
agreement are observed.  In particular, the overall 
depth reduction is well matched in each layer, the 
void ratio is well represented throughout. Note that 
in the top layer the final numerical results are late 
than the experimentally recorded result, and the 
switch between consolidation and evaporative 
behaviour is well represented.   

 

 
(a) Temporal evolution of the depth. 
 

 
(b) Void ratio profiles, with 374 day 
experimental profile (squares). Final numerical 
result (thick dotted line) is 450 days. 
 
Figure 4. Comparison of the results of the 

Deep stack updated numerical 
simulation against the experimental 
results.  

 
 
It is noticed that the void ratio at the top of the top 
of the second layer is under-predicted.  It is 
hypothesized that the reason for this difference is 
that this crust starts to develop just at the end of 
the period where the second layer is exposed to 
the atmosphere, due to elevated evaporative 
fluxes and reduced consolidation fluxes. During 
this time, there is a competition between the 
evaporative and consolidation boundary condition 
and the model is then sensitive to small changes in 
these values. This is shown in Figure 6, where the 
water fluxes are shown. The black box highlights 
the time where the crust in the second layer is 
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(a) Temporal evolution of the depth. 
 

 
(b) Void ratio profiles, with 276 day 
experimental profile (diamonds) and 412 day 
experimental profile (squares). Final numerical 
result (thick dotted line) is 450 days. 
 
Figure 7. Comparison of the results of the 

Thin multi-stack updated numerical 
simulation against the experimental 
results.  

 
 
In particular, it can be seen that: 
 
 The general settlement rates and amounts are 

in good agreement.   
 The rates of settlement in time are very 

closely matching.  Specifically, both the typical 
consolidation curve at the beginning of each 
layer, and the times where high evaporation 
are expected, are well represented. 

 The void ratio (therefore material density) 
distribution is well predicted.  Both the general 

trend of denser material at the base and the 
denser layers due to evaporation are well 
predicted. 

 
It was expected to have deviation of the results 
from the experiments in the periods where 
significant snow cover was seen.  However, based 
on the settlement gradients, while some evidence 
is apparent, significant deviation is not seen.  
Possible reasons include: limited frost depth due to 
the isolating snow cover, or excess pore pressures 
building up near the surface which can quickly 
dissipate when ice and snow melts or warmer 
water flowing out of the soil (from depths where the 
soil is unfrozen) due to consolidation. 
 
Where the model has the most layers, especially 
within a relatively short period of time the model 
results deviates most from the experimental 
results. This coincides with the initial deposition 
and the surface boundary having the most 
uncertainties, e.g. the settlement behaviour prior to 
consolidation, the impact of snow and ice cover, 
cracks, runoff and the impact of using monthly 
averaged weather data. 
 
 
DESPOSITION REQUIREMENTS 
 
The ability to numerically simulate the behaviour of 
atmospheric drying of MFT gives the ability to test 
various strategies numerically (e.g. Vardon et al., 
2015). However, the objective should be clear. The 
problems of volume reduction, can mostly be 
solved via flocculation and consolidation 
processes, with the majority of the reduction in 
stack height coming from this process, see Figure 
5 in combination with Figure 6. Evaporation allows 
additional reductions of water content, and more 
limited reductions in void ratios, however it is this 
final reduction in void ratio which gives significant 
strength gain. Therefore, timing the layer 
deposition, so that consolidation processes 
dominate in times of low evaporation potential and 
evaporation processes are dominant when there 
are high evaporation potentials, allows both 
volume reduction and strength gain to be 
maximized. 
 
The currently withdrawn directive on how tailings 
should be disposed of, known as D074 (ERCB, 
2009), however, had strength based requirements. 
A methodology to translate results here into 
strength-based requirements is proposed. This can 
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be tuned either based on the consolidation 
behaviour or the drying behaviour (or a 
combination).   
 
CONCLUSIONS 
 
The results of the predictive numerical modelling 
investigation of field tests presented in Vardon et 
al. (2014) were compared to the experimental 
results. The model has been shown to be able to 
predict both qualitatively and quantitatively the 
behaviour of MFT under AFD field tests.   
 
Initial modelling, based on information received 
prior to modelling, suggested that more (solid) 
material was deposited than indicated.  
Subsequent simulations with additional material 
yielded improved results, which were able to 
reproduce almost all features in both a quantitative 
and qualitative manner.  Therefore the model is 
considered validated in this case.   
 
In addition, a method to predict the strength 
behaviour based on the void ratio has been initially 
examined, indicating a method to assess 
compliance with future regulations or to assess the 
ongoing changes in stability. 
 
Timing the layer deposition so that consolidation 
processes dominate first, and volume reduction is 
maximized, and then afterwards evaporation 
processes dominate to increase strength (and 
further reduce volumes) provides an optimal 
solution. This model allows the numerical 
investigation of such scenarios to provide optimal 
solutions which also satisfy regulations. 
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APPENDIX I 
 
Original numerical predictions against the 
experimentally recorded results. 
 
 

 
 
(a) Temporal evolution of the depth. (Numerical 
results from Figure 17, Vardon et al., 2014). 
 

 
 
(b) Void ratio profiles in material level 
(Lagrangian) coordinates with 412 day 
experimental profile (squares). Final numerical 
result (thick dotted line) is 450 days. 
(Numerical results from Figure 19, Vardon et 
al., 2014) 
 
Figure A1. Comparison of the results of the 

Thick Multi-stack numerical 
simulation against the experimental 
results  

 
 
 

 
 
 
 
 
 

 
 
(a) Temporal evolution of the depth. 
 
 

 
 
(b) Void ratio profiles in material level 
(Lagrangian) coordinates with 276 day 
experimental results (diamonds) and 412 day 
experimental profile (squares). Final numerical 
result (thick dotted line) is 450 days. 
(Numerical results from Figure 21, Vardon et 
al., 2014). 
 
 
Figure A2. Comparison of the results of the 

Thin Multi-stack numerical 
simulation against the experimental 
results  

 

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

S
lu

rr
y

 d
e

p
th

 [
c

m
]

Time [days]

1 1.5 2 2.5 3 3.5

10

20

30

40

50

60

70

80

90

100

110

Void ratio [-]

V
e

rt
ic

a
l L

a
g

ra
n

g
ia

n
 c

o
o

rd
in

a
te

 [
c

m
]

0 100 200 300 400
0

50

100

150

200

250

300

350

400

S
lu

rr
y

 d
e

p
th

 [
cm

]

Time [days]

1 1.5 2 2.5 3 3.5

10

20

30

40

50

60

70

80

90

100

110

120

Void ratio [-]

V
e

rt
ic

a
l L

a
g

ra
n

g
ia

n
 c

o
o

rd
in

a
te

 [
c

m
]


