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Abstract

For modelling microstructures of materials the Voronoi diagram is one of the most commonly
used models. In this thesis we study a generalization of Voronoi diagrams known as the Laguerre-
Voronoi diagram. In particular, we consider the stereological problem of estimating the 3D cell
volume distribution of such a diagram from one of its 2D planar sections. This problem is not
in general solvable for all Laguerre-Voronoi diagrams. We consider a specific class of Laguerre-
Voronoi diagrams generated using an algorithm which allows to control the volume distribution
of its cells. Inspired by related stereological problems, an estimator for the distribution of areas
observed in a planar section is proposed. This estimator can be used for estimating the cell
volume distribution from a sample of observed areas in a planar section of a 3D Laguerre-Voronoi
diagram. Given that the problem is motivated by a materials science application we consider
Laguerre-Voronoi diagrams with a lognormal cell volume distribution, which is commonly used
in this field. The simulations show that the proposed method works well in the sense that
on average the estimated parameters of the lognormal cell volume distribution are close to the
actual parameter values. While the focus is on the lognormal distribution, generalization of the
estimator considering other parametric distributions is briefly discussed. The thesis is concluded
with a case study: the 3D grain volume distribution of a real steel microstructure is estimated
from observed areas obtained from 2D image data.

Keywords: stereology, Laguerre-Voronoi, tessellation, inverse problem, microstructure.
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1

Introduction

Suppose you are provided with all the machinery you could dream of to produce metals in all
sorts of shapes and sizes. If you would like to sell the metals you produce, it is important that you
are able to provide some guarantees of the mechanical properties of these metals. After all, say
that some car manufacturer uses your metals, then they would like to know whether these metals
are up to the task. Especially during times that the structure of a car would have to endure
extreme stresses or even a collision, it becomes important to know what forces these materials
can handle. Not for all components the strength of the material is the most important property;
other components could have as a requirement other properties such as flexibility. We can see
that as a manufacturer of metals, it is desirable to be able to produce them with predetermined
mechanical properties.

When observing a metal under a microscope or using other observational techniques, we may
see something similar such as the images in Figure 1.1. Important elements of the so-called
microstructure of the metal can be distinguished. One of the most important elements in metal
microstructures are the grains, also called cells. In Figure 1.1 (a)-(b) it is possible to see that the
grains can be described as polygonal shapes delimited by some lines called grain boundaries. In
Figure 1.1 (c) grains are instead distinguished by colors that represent their orientation, which
is another important feature of a grain.

(a) (b) (c)

Figure 1.1: Images of metal microstructures, taken using various imaging techniques. Pictures
taken by (a) Javier Hidalgo, (b) Wei Li, (c) Carola Celada-Casero.
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From the microstructure of a metal, we wish to get insights about the mechanical properties
of the materials. Among all the possible grain features, in this thesis the focus is on the grain
size. The size of the grains influences mechanical properties of the material, such as its behaviour
under external stress [1, 2]. Now we arrive at the problem at hand, while we are interested in the
3D volume distribution of the grains in the material, in practice we only observe 2D information
in a cross section of the material (such as in Figure 1.1). In materials science it is common to
only consider the average 2D grain size. Besides considering 2D grain size instead of 3D grain
size it is common that the distributional property of grain sizes is not taken into consideration.
As shown in [3] multiple features of the grain size distribution, besides average grain volume,
affect the hardness of a particular kind of steel known as Interstitial Free (IF). Therefore, we
are interested in deriving or estimating the 3D volume distribution of the grains from the 2D
sectional areas of the grains we observe.

The problem of estimating the 3D volume distribution from a 2D material’s slice is definitely
not trivial. For getting insights we use a mathematical model to represent a metal microstructure,
the model which we consider is called Laguerre-Voronoi diagram. The Laguerre-Voronoi diagram
is a generalization of the Voronoi diagram. The review paper [4] provides an overview of methods
for modelling microstructures in materials and Voronoi diagrams are described as the state of
the art geometrical method for generating so-called polycrystalline microstructures. In the next
chapter the definition of a Laguerre-Voronoi diagram and its relation with the Voronoi diagram
are given. As in the case of the microstructure of a metal, Voronoi diagrams and Laguerre-
Voronoi diagrams consist of cells. The problem we would like to solve is estimating the volume
distribution of the cells in a Laguerre-Voronoi diagram from the areas we observe in a cross
section. There are several reasons why the resolution of this problem is of interest:

• It allows for a better understanding of the effect of the grain volume distribution on the
mechanical behaviour. For example, a tensile test can be performed on a material to record
its ability to resist to stress. In order to relate the results of this test to the grain volume
distribution we first need to know this distribution. If a relationship is found between the
grain volume distribution and some mechanical property then this information can be used
in the production of metals. Since the size of the grains can be modified with mechanical
processes, loosely speaking, it is possible to tune their size to obtain a material with the
desired mechanical properties.

• An accurate representation of materials microstructures is useful for mechanical behaviour
simulations. Laguerre-Voronoi diagrams and other mathematical models serve as so-called
Representative Volume Elements (RVEs), used as virtual samples of virtual mechanical
experiments. Such RVEs acts as ”digital twins” of the real material in such a virtual
experiment. Therefore, it is useful if we can construct a Laguerre-Voronoi diagram which
accurately describes the microstructure of a material using just the 2D data obtained from
a cross section of this material.

• The resolution of this problem may yield a general method which can be used for other
models of materials microstructures. The use of Laguerre-Voronoi diagrams might not be
appropriate for representing some metal microstructures, instead another model is used.
In those cases we still want to be able to determine the grain volume distribution from 2D
data.

In order to properly approach the problem we first need to define Laguerre-Voronoi diagrams
and discuss their properties. Once we know how to use these diagrams we provide a more
mathematically precise statement of the problem. We perform various simulations in the search
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of a relationship between cell volumes and cross section areas. Finally, we propose a solution to
the problem and test it on 2D data of a cross section of a real material to verify that it works
well enough for practical use.

In the remaining sections of this chapter we provide a motivation for the use of the Laguerre-
Voronoi diagram as a model for materials microstructures. We conclude this chapter with an
overview of the contents in this thesis.

1.1 Motivating the use of Laguerre-Voronoi diagrams

In this section we briefly mention some relevant literature to further motivate the choice of the
Laguerre-Voronoi diagram. For a general overview of the statistical analysis of microstructures
in materials we refer to [5]. While it does not discuss Laguerre-Voronoi diagrams specifically,
it does cover the Voronoi diagram in the context of microstructure modelling. Previously, we
mentioned that Voronoi diagrams may be considered the state of the art geometrical method for
generating so-called polycrystalline microstructures. This may raise the question why we con-
sider Laguerre-Voronoi diagrams instead of Voronoi diagrams. Compared to Voronoi diagrams,
Laguerre-Voronoi diagrams are more flexible models, as they give control over the volume dis-
tribution of the cells.

In [6] a 3D Laguerre-Voronoi diagram is fitted to tomographic data of a foam. What is
especially interesting is that a comparison is made with the Voronoi diagram. In this particu-
lar study it was found that the geometrical properties of cells of the Laguerre-Voronoi diagram
corresponded better with the tomographic data in comparison to the cells of the Voronoi dia-
gram. Another paper which similarly concluded that the Laguerre-Voronoi diagrams they con-
sidered provided a more accurate description of geometrical features in real materials compared
to Voronoi diagrams is [7]. This suggests that the additional freedom which the Laguerre-Voronoi
diagram provides over the Voronoi diagram may also result in a model that is a more accurate
representation of real materials.

As mentioned in the introduction, the Laguerre-Voronoi diagram is of interest from the point
of view of materials science as it can be used in simulations for the estimation of mechanical
properties. When using a Laguerre-Voronoi diagram to represent the microstructure of some
material it is useful to know that finite element methods may be applied on these diagrams to
estimate mechanical properties of the material. Finite element methods may for example be
used to perform a plasticity test on a virtual material by solving a partial differential equation
which describes the forces exerted on this virtual material. In [4] the authors describe how finite
element methods may be used for various models of materials (RVEs). In [8] it is shown how a
Laguerre-Voronoi diagram may yield a mesh which is appropriate for finite element methods. In
the same paper an algorithm is discussed for fitting a Laguerre-Voronoi diagram to a material
when 3D information of the material is available, e.g. grain volumes and their centers of mass.

1.2 Overview of the thesis

In this section a brief overview of the thesis is given. We begin with introducing the Laguerre-
Voronoi diagram and their properties in chapter 2. In chapter 3 we provide a more precise
description of the problem statement and we highlight difficulties associated with the problem.
Of particular importance is that we show that we need to restrict the problem to a particular class

10



of Laguerre-Voronoi diagrams. In chapter 4 we investigate the use of an algorithm for generating
Laguerre-Voronoi diagrams. The chapter is concluded with a precise description of how 3D
Laguerre-Voronoi diagrams and planar sections are computed in all further simulations. In
chapter 5 one particular aspect of a Laguerre-Voronoi diagram is investigated, namely its weights.
In particular the relationship between weights and a close packing of spheres is considered. In
chapter 6 we discuss properties of planar sections of 3D Laguerre diagrams, and we investigate
whether these properties are useful for the problem at hand. In chapter 7 an estimator is
proposed for the distribution of areas in cross sections of the Laguerre-Voronoi diagrams we
consider, which also depends on the cell volume distribution. In the following chapter, chapter
8, the use of the estimator is further motivated by comparing it to analytical solutions of related
problems. Motivated by their use in materials science we consider 3D Laguerre-Voronoi diagrams
with a lognormal cell volume distribution in chapter 9. We use the estimator proposed in chapter
7 for estimating a lognormal cell volume distribution from areas observed in a planar section.
Finally, in chapter 10 the proposed estimator is applied to real-world data. The grain volume
distribution is estimated from 2D image data of a sample of steel. In the appendices additional
derivations may be found as well as some details of code implementations.
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2

Preliminaries

In this chapter we provide some necessary definitions and notation which is used throughout
this thesis. We begin with an introduction to the Laguerre-Voronoi diagram and its properties.
Since we are interested in estimating the volume distribution of a Laguerre-Voronoi diagram from
a planar section we also discuss the main features of planar sections. This chapter is concluded
with an overview of well-known parametric probability distributions used for representing the
grain volume distribution in metal microstructures.

2.1 Laguerre-Voronoi diagrams

In this section we introduce the Laguerre-Voronoi diagram which can be seen as a generalization
of the well-known Voronoi diagram. If the reader is not familiar with the Voronoi diagram this
will not pose an issue, as we will see how these diagrams are related. The Laguerre-Voronoi
diagram is known by many names, including but not limited to: Laguerre tessellation, Laguerre
diagram, radical Voronoi diagram and power diagram. We usually refer to it simply as a Laguerre
diagram. Similar to the Voronoi diagram, a Laguerre diagram provides a method to partition
a domain into convex cells. Let us now simply start by providing the definition of a Laguerre
diagram:

Definition 1 (Laguerre-Voronoi diagram). [9, p. 128]. Given a convex domain Ω ⊂ Rd, n
distinct generator points: x1, . . . ,xn ∈ Ω and corresponding weights: w1, . . . , wn ∈ R. The
Laguerre-Voronoi diagram {Li}ni=1 generated by (x1, w1), . . . , (xn, wn) is defined by:

Li = {x ∈ Ω : ||x− xi||2 − wi ≤ ||x− xj ||2 − wj ∀j ∈ {1, . . . , n}}.

Given that we choose a domain Ω, the Laguerre diagram is fully defined by its generator points
and their weights. The classical Voronoi diagram can be retrieved by simply setting all weights
to be equal: w1 = w2 = · · · = wn. Compared to Voronoi diagrams, Laguerre diagrams provide
additional flexibility by associating a weight with each generator point. These weights provide
control over the size of the cells. While the definition is valid for arbitrary dimensions d we will
focus only on two-dimensional and three-dimensional Laguerre diagrams (d = 2 or d = 3).

In order to better understand the construction and properties of a Laguerre diagram a simple
example is shown. Ten generator points are placed in a unit square. Equal weight is assigned to
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xj

(a)

xj

(b)

xj

(c)

Figure 2.1: (a): Classical Voronoi diagram, all weights are equal. (b): A Laguerre diagram
obtained by increasing the weight wj corresponding to the generator point xj . (c) A Laguerre
diagram obtained by further increasing the weight wj . Red generator points belong to empty
cells. Green generator points are not contained within their cell, they correspond to cells with
green areas.

each generator point, leading to the classical Voronoi diagram shown in Figure 2.1 (a). Then, we
increase the weight wj which corresponds to the generator point labelled with xj . This causes
the associated cell Lj to become larger as can be seen in Figure 2.1 (b). Finally, the weight wj is
further increased such that Lj becomes larger which causes some cells to vanish, which is shown
in Figure 2.1 (c). Besides the vanishing cells we also observe that some generator points are not
located within their cell.

In the previous example some properties of Laguerre diagrams can be observed. We now
provide a more elaborate list of properties of Laguerre diagrams, see reference [9, p. 129-131] and
[10, p. 81, 82]:

L.1 Cells of a Laguerre diagram may be empty.

L.2 Given n distinct generator points: x1, . . . ,xn ∈ Ω and corresponding weights: w1, . . . , wn ∈
R, the Laguerre diagram generated by (x1, w1), . . . , (xn, wn) is the same as the Laguerre
diagram generated by (x1, w1 + c), . . . , (xn, wn + c) for any c ∈ R.

L.3 The generator point of a cell is not necessarily contained within its cell.

L.4 The cells are space-filling: ∪ni=1Li = Ω, and cells only overlap at their boundaries with
neighboring cells. We may say that a Laguerre diagram tessellates Ω.

L.5 The cells are convex polyhedra if d = 3 and convex polygons if d = 2.

Properties L.1 and L.3 do not hold for the Voronoi diagram, which has no empty cells and all
generator points are contained within their cells.

Coming back to the materials science application we we may start thinking of how a Laguerre
diagram could provide an accurate model for a microstructure. Laguerre diagrams can be used
to describe a metal at the microscopic level, where the cells represent the grains in the metal.
One thing that may seem problematic is the shape of the boundary cells. To some extent this
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can also be seen in Figure 2.1. The cells which intersect with the boundary of the domain have
a somewhat different shape compared to cells in the center of the domain, in fact their shape is
highly influenced by the shape of the domain. To deal with artificial boundary effects Laguerre
diagrams with periodic boundary conditions are used. We define the periodic distance and the
Laguerre diagram with periodic boundary conditions for box shaped domains. We provide the
definition of 2D Laguerre diagrams with periodic boundary conditions; the definition for the 3D
case is analogous.

Definition 2 (Laguerre diagram with periodic boundary conditions). [11]. Given l1 > 0, l2 > 0
we consider the box-shaped domain:

Ω = [0, l1]× [0, l2].

Given x,y ∈ Ω the periodic distance between these points is defined as:

||x− y||per = min{||x− y + (il1, jl2)|| : i, j ∈ Z}.

Given n distinct generator points: x1, . . . ,xn ∈ Ω and corresponding weights: w1, . . . , wn ∈ R.
The Laguerre diagram {Li}ni=1 with periodic boundary conditions, generated by (x1, w1), . . . , (xn, wn)
is defined by:

Li = {x ∈ Ω : ||x− xi||2per − wi ≤ ||x− xj ||2per − wj ∀j ∈ {1, . . . , n}}.

In Figure 2.2 we visualize the difference between a 2D Laguerre diagram with periodic bound-
ary conditions and a Laguerre diagram without periodic boundary conditions. It is important
to realize that when using periodic boundary conditions we may observe different fragments of
a cell in different locations. Take for example the dark green cell in Figure 2.2 (b), it consists
of four different fragments. In a (brick-shaped) 3D Laguerre diagram with periodic boundary
conditions a cell could consist of at most eight fragments (one fragment in each of the eight
corners).

(a) (b)

Figure 2.2: A comparison of a 2D Laguerre diagram with or without periodic boundary con-
ditions. Both diagrams have the same generator points and weights. Colors indicate unique
different cells. (a): without periodic boundary conditions. (b): with periodic boundary condi-
tions.
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Finally, we need to discuss planar sections of 3D Laguerre diagrams, usually just referred to
as cross sections. The cross section of a 3D Laguerre diagram is a 2D Laguerre diagram [10,
p. 86]. This is not the case for Voronoi diagrams, in the sense that the cross section of a 3D
Voronoi diagram is not a 2D Voronoi diagram but a 2D Laguerre diagram [9, p. 131, 132]. In
chapter 6 we investigate whether the properties of these 2D Laguerre diagrams are useful for
solving our problem.

As mentioned before we use 3D Laguerre diagrams with periodic boundary conditions. It
is important to realize that because of the periodic boundary conditions, a cell may consist
of multiple fragments. When studying 2D cross sections, we need to keep in mind that the
periodicity refers to the 3D structure. Suppose a cell Li intersects with the cross section plane
P , then we observe the area of Li ∩ P . Mathematically, area(Li ∩ P ) represents the total area,
hence if multiple fragments of Li appear in P the total section area of this cell is the sum of all
the areas of its fragments in the plane P .

The direction of cross section planes also plays a very important role. It seems that considering
arbitrary cross section planes could in some sense be problematic. If we allow inclined planes
for the cross section we may in some sense observe artificial boundary effects. For clarifying the
concept, let’s consider an example shown in Figure 2.3. We visualize a 3D Laguerre diagram,
with transparent cells such that we can clearly see the cross section plane. One particular cell
is highlighted in red, it consists of two fragments and only one of the fragments appears in the
cross section. If we combine the two fragments of the cell, we get a clearer visualization of the
shape of the cell, Figure 2.3 (b). We see that in some sense a piece is missing in the cross section

(a) (b)

Figure 2.3: Image to highlight that periodic boundary conditions can still lead to artificial
boundary effects when taking cross sections with inclined planes. (a): A 3D Laguerre diagram
with an inclined cross section plane, a single cell in the plane is highlighted in red. (b): The
same cell that is highlighted in red, the two fragments which can be seen in (a) are combined to
visualize the actual shape of the cell. The black fragment does not appear in the cross section.
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of this cell, which we obtain by extending the cross section plane through this combined cell and
which is highlighted in black. We could say that the cross section we observe for this cell is too
small given the size of the cell. Such missing pieces will not be observed for cells which are not
located at the boundary of the domain.

While periodic boundary conditions resolve artificial boundary effects, its definition suggests
that planes of the form x = c, y = c or z = c with c ∈ R are a better choice. By using these
types of cross sections we do not have this missing pieces problem, this is a direct consequence
of the definition of the periodic distance. Suppose we take a cross section of the form z = c. If
we re-create the image in Figure 2.3 (b) for each cell then there would be nothing to highlight in
black. As all fragments of cells in the cross section appear at the same z-height, combining the
fragments of the cells would show that there are no missing pieces.

2.2 List of commonly used parametric distributions

In this section we introduce some notation and probability distributions which are used through-
out this thesis. In particular we mention distributions which are considered for the cell volume
distribution in metal microstructures and in Laguerre diagrams. The lognormal distribution and
(generalized) gamma distribution are often considered in materials science for describing the
grain size distribution. These are also useful for describing the cell volume distribution of the
Poisson-Voronoi diagram [12]. We frequently abbreviate probability density function as pdf but
it may also simply be referred to as density. The cumulative distribution function is often abbre-
viated as cdf. Because we consider distributions of volumes and areas we are almost exclusively
dealing with distributions which are supported on [0,∞) or a subset thereof.

The density of the lognormal distribution with parameters µ ∈ R and σ > 0 is given by:

f(x|µ, σ) =
1

xσ
√

2π
exp

(
− (log(x)− µ)

2

2σ2

)
, x > 0. (2.1)

We write X ∼ Lognormal(µ, σ2) to signify that X is a random variable with a lognormal distri-
bution with parameters µ and σ. Let X ∼ Lognormal(µ, σ2), then the following holds:

E(Xα) = exp

(
αµ+

1

2
α2σ2

)
, for α ∈ R. (2.2)

Xα ∼ Lognormal(αµ, α2σ2), for α 6= 0. (2.3)

While the generalized gamma distribution will only sporadically be referred to, we do mention
its pdf and its moments. The pdf of the generalized gamma distribution with parameters α > 0,
β > 0, c > 0 is given by:

f(x|α, β, c) =
cxcα−1

βcαΓ(α)
exp

(
−
(
x

β

)c)
, x > 0.

Where Γ denotes the gamma function. We write X ∼ GG(α, β, c) to signify that X is a random
variable with a generalized gamma distribution with parameters α, β and c. We obtain the
gamma distribution by setting c = 1. Let X ∼ GG(α, β, c), then:

E(Xr) = βr
Γ(α+ r

c )

Γ(α)
, for r ∈ R. (2.4)
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In a few cases we consider an exponential distribution for the cell volume distribution. While
this is not necessarily realistic for real materials, mathematically it is a convenient distribution
as it only depends on a single parameter. The pdf of the exponential distribution with rate
parameter λ > 0 is given by:

f(x|λ) = λe−λx, x ≥ 0.

We write X ∼ Exp(λ) to signify that X is a random variable with an exponential distribution
with parameter λ.

Next, we consider the uniform distribution. This distribution is not used for cell volume
distributions in this thesis. Instead, we consider using it for the locations of the generator points
of a Laguerre diagram. The pdf of the uniform distribution over the interval [a, b] with a < b is
given by:

f(x) =

{
1
b−a if x ∈ [a, b]

0 otherwise
.

We write X ∼ U([a, b]) to signify that X is a uniformly distributed random variable on the
interval [a, b]. The pdf of the uniform distribution over the d-dimensional domain Ω = [a1, b1]×
[a2, b2]× · · · × [ad, bd] with ai < bi is given by:

f(x1, x2, . . . , xd) =

{
1∏d

i=1(bi−ai) if (x1, x2, . . . , xd) ∈ Ω

0 otherwise
.

We write X ∼ U(Ω) to signify that X is a uniformly distributed random variable over the
domain Ω.
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3

Problem statement

In the previous chapter we introduced the Laguerre diagram and described some of its prop-
erties. In this chapter we state the main problem faced in this thesis. As mentioned before we
would like to estimate the 3D volume distribution of cells of a Laguerre diagram from a sample
of observed areas in a 2D cross section. First, the necessary notation is introduced.

While the cell volume distribution was mentioned before, we now also introduce the cross
sectional area distribution. Given a cross section of a Laguerre diagram, the distribution of areas
of cells which appear in the section is referred to as the cross sectional area distribution. A more
precise description of how cross sections are taken is given in the next chapter.

• Let FV , fV be the cdf and pdf respectively, of the cell volume distribution of a 3D Laguerre
diagram.

• Let FA, fA be the cdf and pdf respectively, of the cross sectional area distribution of a 3D
Laguerre diagram.

Ideally, we would like to solve the following two problems:

1. Direct problem: Suppose that we have a Laguerre diagram with a known cell volume
distribution FV . What is the cross sectional area distribution FA?

2. Inverse problem: Suppose we know that the sectional area distribution FA describes the
distribution of areas in a cross section of a Laguerre diagram. What is the cell volume
distribution FV of this Laguerre diagram?

It is important to see that for the direct problem we need to determine 2D information given 3D
information and for the inverse problem we need to determine 3D information given 2D informa-
tion. The field which deals with the problem of estimating 3D quantities based on 2D information
and measurements is known as stereology. In [13] the practical purpose of stereology is described
as the extraction of 3D quantitative information from 2D microscope images. Stereology does not
concern itself with reconstructing the 3D geometry of the material, but only with the estimation
of certain parameters, such as average grain volume in a material. Stereological techniques are
for example used in neuroscience, pathology, geology, materials science and clinical medicine.

In the next section we discuss what an inverse problem is. We also consider some challenges
that come with inverse problems and in particular in our inverse problem. We argue that we
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cannot consider arbitrary Laguerre diagrams and we need to restrict ourselves to a particular
class of Laguerre diagrams. In the final section of this chapter we briefly go over some related
inverse problems, as well as proposed solutions to these problems.

3.1 Inverse problems

Let’s begin with an intuitive explanation of an inverse problem. As in [14], the following could be
a description of an inverse problem. Suppose we are interested in some probability distribution
P , the problem is that we cannot observe samples from P , we can only observe samples from
Q which is related to P via some relation. If we assume the distribution P to be known, and
we try to determine the distribution Q then that is the corresponding direct problem. Examples
of inverse problems in [14] are a deconvolution problem and the famous Wicksell’s corpuscle
problem which is also a stereological problem.

Essentially, Wicksell’s corpuscle problem considers the case where some body is filled with
spheres of various sizes and we would like to determine the size distribution of the spheres from
a cross section. Let us simply recall the original statement of Wicksell’s corpuscle problem as
stated in the original paper [15, p. 86, 87]:

In an opaque body there are suspended a large number of spherical corpuscles of
different sizes, the density of the centres and the distribution of the sizes being the
same in all parts of the body. This body is split in two by a plane section. To express
the distribution of the diameters of the corpuscles in terms of the distribution of the
diameters of the circular contours found in the plane section.

While Wicksell considers the problem in terms of the diameters of spheres, we consider it in
terms of the radii of the spheres. Let f be the probability density function associated with the
radii of the 3D spheres. Let φ be the probability density function of the radii of the apparent
2D circles (the circles we observe in the plane section). Wicksell gives the following relationship:

φ(x) =
x

E(R)

∫ ∞
x

f(r)√
r2 − x2

dr. (3.1)

Here, E(R) is the average radius of the 3D spheres:

E(R) =

∫ ∞
0

rf(r)dr.

In terms of the notation in the introduction of this section this means that we can identify φ
with the distribution Q and we can identify f with the distribution P . Wicksell [15] shows that
(3.1) can be solved for f(r):

f(r) = −2E(R)r

π

∫ ∞
r

(
d

dx

φ(x)

x

)
1√

x2 − r2
dx.

This shows that φ has to have some level of smoothness for this solution to exist. This suggests
that we cannot just take an arbitrary probability density function φ and expect that there exists
a pdf f which corresponds to φ as in (3.1). While the inverse problem we consider is not quite
the same as the Wicksell problem, some comparisons can be made. In the Wicksell problem all
particles are shaped as spheres and in our problem the particles are shaped as convex polyhedra.
As in the case of the Wicksell problem we should also expect that fA cannot be an arbitrary pdf,
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via a similar reasoning as to why this is the case for φ. The statement of the Wicksell problem
also highlights an important condition. Given a Laguerre diagram with a known cell volume
distribution, as in the Wicksell case we would like the distribution of the volumes of the cells
throughout the diagram to be roughly the same in all parts of the diagram. A Laguerre diagram
does not satisfy this property if cells of similar volumes are grouped together. A consequence
of this would be that a cross section of such a Laguerre diagram could reveal very different
information depending on the location of the cross section. If the volumes of the cells are
randomly distributed throughout the diagram then the location of the cross section should not
matter.

We want to stress that the provided description of the direct and inverse problem is insufficient
in its current form. First of all, we indicated earlier that we need to be precise in describing
how cross sections are taken. In the next chapter another issue is highlighted, we observe via
examples that it is possible for a Laguerre diagram to have cells of similar size clustered together.
In the same chapter we investigate the use of an algorithm for generating Laguerre diagrams and
how it should be used to prevent such clusters. We conclude the chapter by precisely describing
how we compute Laguerre diagrams and cross sections for all further analyses. Hence, we restrict
ourselves to a particular class of Laguerre diagrams.

For inverse problems an important issue is identifiability, does the inverse problem have a
unique solution? For our problem specifically we would like to know whether the cell volume
distribution FV can be uniquely determined from the cross sectional area distribution FA. In
other words, we would like to know whether two different volume distributions could give rise
to the same cross sectional area distribution. While we cannot give a statement regarding the
identifiability when considering general volume distributions FV we will see in chapter 9 that
when considering a lognormal volume distribution we have an identifiable problem, for the class
of Laguerre diagrams we consider.

3.2 Related problems and algorithms

While we have decided to look at Laguerre diagrams, and the relationship between the cell vol-
ume distribution and the cross sectional area distribution a similar problem has been solved for
the Poisson-Voronoi diagram. The Poisson-Voronoi diagram is a Voronoi diagram for which the
generator points are a realization of a homogeneous Poisson point process with intensity param-
eter λ. A scaling argument is derived in [12], using this argument and via simulations it is shown
that the volume distribution of cells in a Poisson-Voronoi diagram can be estimated accurately
for λ. This can be used to solve the inverse problem of estimating the volume distribution of
cells in a Poisson-Voronoi diagram from a cross section. See for example [16] for an estimator
of λ which only depends on the average observed area of cells in the cross section. As a result,
it is possible to estimate the volume distribution of a Poisson-Voronoi diagram by estimating λ
using the observed areas in a cross section. The Poisson-Voronoi case requires the estimation of
only a single parameter, we clearly have much more parameters to deal with.

In [17] a similar problem is considered. The Laguerre diagrams are generated via a random
close packing of spheres. A random close packing of spheres is obtained via an algorithm which
efficiently positions non-overlapping spheres in some domain, filling as much space with spheres
as possible. The algorithm used in their simulations iteratively pours hard spheres into a box,
gravity is simulated such that the spheres fall down and the algorithm continues until the box is
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considered full. The volumes of the spheres follow a chosen lognormal distribution. A Laguerre
diagram is then constructed as follows. The generator points of the cells were taken to be the
centers of the spheres and the weights were chosen as wi = r2

i where ri is the radius of the sphere
with center xi. This particular choice means that each sphere is contained within the associated
cell. The authors then use the fact that the volumes of spheres follow a lognormal distribution
if and only if their radii follow a lognormal distribution. The proposed method is empirical
and it consists of multiple steps. Regression methods are used to link a fitted distribution of
cross sectional areas to parameters describing the lognormal distribution of the radii of the
hard spheres. While this approach seems to work quite well in the performed simulations, it is
not necessarily generalizable to other cell volume distributions and it does not provide a clear
relationship between the cell volumes and the cross sectional areas. This approach does raise the
question whether the Laguerre diagrams we consider can also be related to a packing of spheres,
we investigate this in chapter 5.

Another method which is used to determine a particle volume distribution from cross sectional
areas is the Saltikov method [18, 19]. This method assumes particles to be spherical. It estimates
the distribution of the 3D spheres radii as a discrete distribution, which is sometimes referred
to as a finite histogram. Applying this method to Laguerre diagrams seem inappropriate given
that cells of a Laguerre diagram are polyhedra. In [20] an extension to the Saltikov method is
proposed which fits a lognormal distribution to the finite histogram.

Inspired by some of the solutions proposed in the above mentioned problems, in this thesis
an alternative approach is proposed for the case of Laguerre diagrams. An alternative approach
appears necessary because of properties of the Laguerre diagram.
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4

Computing Laguerre diagrams with a
prescribed volume distribution

Now that the Laguerre diagram has been introduced properly and we discussed the difficulties
associated with the direct and inverse problem, we need to make some choices. We have men-
tioned that the weights of a Laguerre diagram provide more flexibility over Voronoi diagrams,
but this flexibility comes with a cost. As we are interested in estimating the volume distribution
of the cells in a Laguerre diagram from areas of cells which appear in cross sections, finding
results for arbitrary Laguerre diagrams is too ambitious. We need to decide how exactly we
choose the generator points and weights and we need to investigate whether the distribution of
the volumes of the cells throughout the diagram is roughly the same in all parts of the Laguerre
diagram. At the very least, we would like a Laguerre diagram such that the location of the cross
section plane does not matter too much. If different cross sections of the same Laguerre diagram
would reveal completely different information it may not be possible to estimate the cell volume
distribution. In this chapter we attempt to find a method for generating a Laguerre diagram
which satisfies these conditions.

Recalling the problem statement we are interested in the relationship between two distribu-
tions, the cell volume distribution and the cross sectional area distribution. The algorithm which
we discuss in this chapter is therefore particularly appealing since it effectively allows to control
one side of the equation. In fact, this algorithm proposed in [11] generates a Laguerre diagram
with a cell volume distribution of choice. Both in 3D and in 2D, the algorithm allows to generate
Laguerre diagrams with a predefined volume and area distribution, respectively. This algorithm
is clearly a precious tool in simulations. When attempting to estimate the 3D cell volume distri-
bution from a cross section we can verify our estimate as the true volume distribution is known.
There are various parameters in this algorithm that have influence on the resulting Laguerre
diagram. Besides providing control over the volume distribution of cells, the algorithm is used
to produce Laguerre diagrams which are regularized in the sense that they are centroidal. The
centroid of a cell in a Laguerre diagram is also known as its center of mass and is defined for a
non-empty cell Li as:

ci :=
1

|Li|

∫
Li

xdx. (4.1)
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Where |Li| denotes the volume of Li:

|Li| =
∫
Li

dx. (4.2)

Given a Laguerre diagram {Li}ni=1 generated by (x1, w1), . . . , (xn, wn), which is assumed to only
have non-empty cells. This Laguerre diagram is called centroidal when each generator point is
equal to its centroid:

xi =
1

|Li|

∫
Li

xdx for all i ∈ {1, . . . , n}.

When we generate a centroidal Laguerre diagram for a chosen volume distribution with the afore-
mentioned algorithm we will end up with a Laguerre diagram which does not have empty cells
and (when numerical tolerances are chosen appropriately) will have the property that each cell
contains its generator. The fact that each cell contains its generator is not particularly important
for our purposes, we just mention it to give some sense of the locations of the generators. It is
clear that the algorithm is useful because it provides control over the volume distribution, it is
not obvious why we would want this regularization in the form of centroidality. The reason we
consider centroidal Laguerre diagrams is that upon visual inspection of Laguerre diagrams we
consider centroidal Laguerre diagrams to provide a better representation of the grain structure
found in materials. The difference between a Laguerre diagram with and without regularization
can be seen in Figure 4.1.

(a) (b)

Figure 4.1: Comparison of a 2D Laguerre diagram without regularization (a) to a regularized
(centroidal) Laguerre diagram (b). These diagrams have periodic boundary conditions and both
have the same area distribution.

Throughout this chapter we discuss several aspects regarding this algorithm for centroidal
Laguerre diagrams. We conclude this chapter by precisely describing how we generate Laguerre
diagrams in further analyses. For Laguerre diagrams generated by this particular procedure we
want to estimate their volume distribution from a cross section.
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4.1 Bourne et al.’s algorithm for a centroidal Laguerre di-
agram with a prescribed volume distribution

Before stating the algorithm some important results need to be discussed. Suppose that we take
any set of distinct points x1, . . . ,xn in a domain Ω. If we would like to have a Laguerre diagram
with volumes m1, . . . ,mn it turns out that we can obtain the weights w1, . . . , wn such that these
volumes are achieved by solving a smooth and unconstrained convex optimization problem. This
is the case because the solution to this convex optimization are weights w1, . . . , wn such that for
the resulting Laguerre diagram {Li}ni=1 we have |Li| = mi for all i ∈ {1, . . . , n}. This is made
precise in Theorem 3. Recall that |Li| denotes the volume of Li, as in (4.2), and similarly |Ω| is
the volume of Ω. Theorem 3 is stated for general convex domains Ω but in our simulations we
only consider brick-shaped domains:

Ω = [0, l1]× [0, l2]× [0, l3]. (4.3)

Theorem 3. [21, 22, 11]. Let x1, . . . ,xn ∈ Ω be distinct points. Let m1, . . . ,mn be positive real
numbers such that |Ω| = ∑n

i=1mi. Define the function g : Rn → R by:

g(w) =
n∑
i=1

(mi − |Li(w)|)wi +

n∑
i=1

∫
Li(w)

||x− xi||2dx, (4.4)

where w = (w1, . . . , wn). Let {Li}ni=1 be the Laguerre diagram generated by (x1, w1), . . . , (xn, wn).
This function g has the following properties:

1. g is concave.

2. The gradient of g is given by:

∂g(w)

∂wi
= mi − |Li(w)|.

3. If w is a critical point of g, that is: ∇g(w) = 0, then the Laguerre diagram {Li}ni=1

generated by (x1, w1), . . . , (xn, wn) has cells with volumes m1, . . . ,mn.

|Li(w)| = mi for all i ∈ {1, . . . , n}.

4. g is twice differentiable.

Remark. Note that in Theorem 3 we write Li(w) instead of Li to highlight that Li depends
on w and that the properties of g are not trivial as it may seem at first glance. Hereinafter we
write Li(w) whenever we would like to highlight the dependence on the weights and otherwise we
simply write Li.

Remark. Theorem 3 holds for Laguerre diagrams with or without periodic boundary conditions.
Suppose we have a domain of the form (4.3). In the periodic case we consider {L̃i}ni=1 to be cells
of a periodic Laguerre diagram (recall Definition 2). The function g is then defined as:

g(w) =

n∑
i=1

(mi − |L̃i(w)|)wi +

n∑
i=1

∫
L̃i(w)

||x− xi||2perdx.
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We can turn the process of maximizing the concave function g into a convex minimization
problem by defining f := −g and then we may simply employ existing algorithms on the convex
function f . The algorithm by Bourne et al. [11] iteratively maximizes g which is followed by
updating the generator points for the next iteration. Specifically, by maximizing g we obtain a
Laguerre diagram, then the centroids of its cells are computed and these are used as the generator
points in the next iteration. The algorithm continues until we end up with a Laguerre diagram
which has generator points which we consider to be close enough to the centroids of the Laguerre
diagram while also having the desired cell volume distribution. In [11] the algorithm is also
proven to converge via a monotonicity argument. The algorithm is described in Algorithm 1.

Algorithm 1 Lloyd-type centering algorithm by Bourne et al. [11]

Input: Initial (distinct) generator points x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
n ∈ Ω, target volumes m1, . . . ,mn > 0

such that |Ω| = ∑n
i=1mi.

Output: A Laguerre diagram with cells with volumes m1, . . . ,mn up to relative error εf , the
diagram is centroidal up to tolerance ε.

1: w(0) ← 0
2: k ← 1
3: residual ←∞
4: while k < maxit and residual > ε do
5: w(k) ← Use a convex optimization algorithm (such as Algorithm 2 or 3) with initial weights

w(k−1) and generator points (x
(k)
1 ,x

(k)
2 , . . . ,x

(k)
n ) to find w(k) such that mi = |L(k)

i |.
6: Compute centroids (c

(k)
1 , c

(k)
2 , . . . , c

(k)
n ) of current Laguerre diagram {L(k)

i }ni=1 via (4.1).

7: (x
(k+1)
1 ,x

(k+1)
2 , . . . ,x

(k+1)
n )← (c

(k)
1 , c

(k)
2 , . . . , c

(k)
n )

8: residual ←
√∑n

i=1mi

∣∣∣∣∣∣c(k)
i −x

(k)
i

∣∣∣∣∣∣2
|Ω|maxj lj

9: k ← k + 1
10: end while
11: return (x

(k−1)
1 ,x

(k−1)
2 , . . . ,x

(k−1)
n ), w(k−1)

We now clarify some of the notation and parameters in this algorithm. In Algorithm 1 the

Laguerre diagram {L(k)
i }ni=1 is the diagram generated by (x

(k)
1 , w

(k)
1 ), (x

(k)
2 , w

(k)
2 ), . . . , (x

(k)
n , w

(k)
n ).

The lj ’s in line 8 are as in equation (4.3). The choice of the residual was taken as in [23], with error
tolerance ε = 0.001 and with maxit = 200. Using a smaller value of ε often meant that Algorithm
1 only performed 1 or 2 iterations. Using only 1 iteration means there is no regularization, leading
to Laguerre diagrams such as seen in Figure 4.1 (a). Therefore, we chose a smaller ε to ensure
we end up with a regularized Laguerre diagram which we consider to be a better representation
of the grain structure found in materials microstructures. Note that ε is related to the distance

Parameter Value
ε 0.001
εf 0.01
maxit 200
lj as in (4.3)

x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
n Is discussed in section 4.2

Table 4.1: Parameters as used in Algorithm 1.
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between the generator points and centroids while εf is related to how close the cell volumes are to
the mi’s. Another remark regarding the residual is that in the periodic case we may replace the
Euclidean norm in the residual with the periodic norm. The only parameters we do not discuss

in this section are the initial generator points x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
n , this is covered in section 4.2.

The parameters used in Algorithm 1 are summarized in Table 4.1.

In line 5 of Algorithm 1 we solve the convex optimization problem of minimizing f = −g. We
note that this means that in practice we only find weights w(k) such that we obtain cells with
the desired volumes up to relative error εf :∣∣∣mi −

∣∣∣L(k)
i

∣∣∣∣∣∣
mi

< εf for all i ∈ {1, . . . , n}. (4.5)

This is the result of choosing the tolerance tolf for the gradient algorithm that is used for the
convex minimization. The gradient methods we employ and this tolerance tolf will be introduced
in a moment. Similarly, we can only guarantee that the resulting Laguerre diagram is centroidal
up to the chosen tolerance ε.

In [23] an extensive analysis of the performance of various minimization algorithms is given,
as well as a method to reduce the amount of Lloyd-type centering steps in Algorithm 1 via
Anderson-acceleration. Anderson-acceleration is a general-purpose scheme for accelerating fixed-
point methods. In their simulations, this acceleration scheme could in most cases slightly reduce
the amount of iterations of Algorithm 1. As its impact was subtle we do not use this technique, as
it adds to the complexity of the algorithm. The aforementioned Lloyd-type centering steps refer
to setting the generator points for the next iteration to the centroids of the Laguerre diagram
that was computed in the current iteration (line 7 of Algorithm 1). The Lloyd algorithm is a
well-known algorithm which produces a centroidal Voronoi diagram.

The results in [23] showed that for Laguerre diagrams with a large number of cells (large n) the
Barzilai-Borwein method [24] as described in Algorithm 2 tended to be the fastest minimization
algorithm. In the case of diagrams with fewer cells the Newton method was often a better choice
while the Malitsky-Mishchenko method [25] (Algorithm 3) was usually also a competitive option.
In these algorithms ||.||∞ denotes the usual supremum norm in Rn. An important remark is that

Algorithm 2 Barzilai-Borwein method (BB1) [24]

Input: Initial weights: w0 ∈ Rn, initial step size: α0 > 0 and a smooth convex function:
f : Rn → R.

Output: w ∈ Rn such that ||∇f(w)||∞ < tolf
1: residual ← ||∇f(w0)||∞
2: j ← 0
3: while j < maxitf and residual > tolf do
4: wj+1 ← wj − αj∇f(wj)

5: αj+1 ← ||wj+1−wj ||2
(∇f(wj+1)−∇f(wj))

T (wj+1−wj)

6: residual ← ||∇f(wj+1)||∞
7: j ← j + 1
8: end while
9: return wj
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Algorithm 3 Malitsky-Mishchenko method [25]

Input: Initial weights: w0 ∈ Rn, initial step size: α0 > 0 and a smooth convex function:
f : Rn → R.

Output: w ∈ Rn such that ||∇f(w)||∞ < tolf
1: residual ← ||∇f(w0)||∞
2: θ0 ← +∞
3: j ← 0
4: while j < maxitf and residual > tolf do
5: wj+1 ← wj − αj∇f(wj)

6: αj+1 ← min
{√

1 + θjαj ,
||wj+1−wj ||

2||∇f(wj+1)−∇f(wj)||

}
7: θj+1 ← αj+1

αj

8: residual ← ||∇f(wj+1)||∞
9: j ← j + 1

10: end while
11: return wj

the Barzilai-Borwein method as described in Algorithm 2 is not in general globally convergent.
Globalization techniques do exist to address this issue but in the simulations performed by [23] the
algorithm always converged. In our simulations there were in fact instances where the algorithm
did not converge (within the chosen amount of maximum iterations), fortunately this was a rare
occurrence. Specifically, it seemed that the higher the variance in the volume distribution, the
more likely it was not to converge in a reasonable amount of iterations. Therefore, we also
describe the Malitsky-Mishchenko method which is globally convergent for differentiable convex
functions. We can benefit from the performance of the Barzilai-Borwein method in most cases,
and when convergence is not achieved we use the Malitsky-Mishchenko method as a back-up.

In step 5 of Algorithm 1 we use Algorithm 2 or 3 to minimize the function fk in iteration

k which depends on the generator points x
(k)
1 , . . . ,x

(k)
n . Let {L(k)

i }ni=1 be the Laguerre diagram

generated by (x
(k)
1 , w1), . . . , (x

(k)
n , wn). The function fk : Rn → R is defined by:

fk(w) := −
n∑
i=1

(mi − |L(k)
i (w)|)wi −

n∑
i=1

∫
L

(k)
i (w)

||x− x(k)
i ||2dx. (4.6)

And therefore:

∇fk(w) = (|L(k)
1 (w)| −m1, |L(k)

2 (w)| −m2, . . . , |L(k)
n (w)| −mn).

By Theorem 3 we have that fk is convex and twice differentiable. For the algorithms we need
to make a choice regarding some parameters. The parameters for both algorithms are shown in
Table 4.2.

The choice of tolf is motivated by the fact that the following inequality implies (4.5):

||∇fk(w)||∞ = max
i∈{1,...,n}

∣∣∣mi −
∣∣∣L(k)
i (w)

∣∣∣∣∣∣ < εf min
i∈{1,...,n}

mi = tolf . (4.7)

The parameter maxitf is chosen rather large. Technically we only need this parameter for the rare
case that Algorithm 2 does not converge, it ensures that the algorithm terminates. Regarding
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Parameter Value

w0 w(k−1), as stated in Algorithm 1
εf 0.01, as in [11]
tolf εf minimi, as in [11]
maxitf 10n

α0 0.1 · (l1l2l3)−
1
3 , as in [23]

Table 4.2: Parameters as used in Algorithm 2 and 3.

the implementation of either of the gradient algorithms it is interesting to note that both only
require evaluations of the gradient of fk, we never actually have to compute fk. More details
on the implementation of all algorithms can be found in Appendix A. These algorithms are now
implemented and available in the repository https://github.com/thomasvdj/vorostereology.

4.2 Choosing the initial generator points for Algorithm 1

The algorithm as introduced in the previous section still requires us to choose the initial generator

points x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
n . As mentioned at the start of this chapter, we are interested in Laguerre

diagrams with the volumes of the cells being randomly distributed throughout the diagram. If
we have a Laguerre diagram which has cells of similar volumes grouped together this diagram
does not satisfy the requirement. In this section we highlight that we need to make sure that the
initial generator points and the cell volumes are chosen independently from one another, and we
will also see that even when we do this there are bad choices for the initial generator points. We
remind that all Laguerre diagrams in this section have periodic boundary conditions.

In [11] some examples are shown that highlight the impact of some choices of the initial
generator points on the resulting Laguerre diagram. They also show how to generate a Laguerre
diagram with clusters of cells with a similar size, which is useful for representing microstructures
of some materials. An important remark is that these clusters were achieved when choosing the
initial generator points dependent on the chosen volumes. We now look at a similar example in
2D, consider the following discrete distribution:

P(V = 1) = 0.8 and P(V = 10) = 0.2 (4.8)

This distribution is taken as the area distribution, which means we expect to see a large amount
of small cells (with area 1) and a small amount of large cells (with area 10). Let us now describe
the chosen parameters. Set n = 200, and let m1, . . . ,mn be a an independent and identically
distributed sample from the distribution (4.8). As a domain we take the square: Ω = [0, l]2 with
l =

√∑n
i=1mi. Before using Algorithm 1 we need to choose the locations of the initial generator

points. Inside this square domain we draw an invisible circle; its area is equal to the number
of mi’s which are equal to 1. If i is such that mi = 1 we put its generator inside this circle, if
mi = 10 instead, then we put its generator outside this circle. The result of this procedure is
shown in Figure 4.2 (a), with the Laguerre diagram produced by Algorithm 1 in Figure 4.2 (b).
This highlights that when the initial generator points are chosen dependent on the cell area (or
volume in the 3D case) we may create a cluster of cells with the same size.

Now we keep the same generator points as before, but randomly shuffle the assigned areas (the
mi’s) which is shown in Figure 4.2 (c). The resulting Laguerre diagram produced by Algorithm
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Figure 4.2: Example of choosing the initial generator points for Algorithm 1 dependent or inde-
pendent of the cell areas. Purple cells have area 1 (mi = 1), with corresponding purple generator
points. Yellow cells have area 10 (mi = 10), with corresponding yellow generator points. (a):
Purple points are located inside a circle, yellow points are located outside this circle. (b): The
resulting Laguerre diagram of the initial points in (a). (c): The same generator points as in (a)
but the colors (and therefore the assigned areas) are now randomly shuffled. (d): The resulting
Laguerre diagram of the initial points in (c).
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1 is visualized in Figure 4.2 (d). This shows that if the initial generator points and cell volumes
are chosen independently we do not necessarily see a cluster. As clusters are undesirable for our
purposes we will from now take the initial generator points independently from the cell sizes.
Cell size meaning its area for 2D Laguerre diagrams and its volume in the 3D case. We do remark
that some materials may have clusters or bands of similarly sized grains, materials with multiple
phases for example. For such materials it is useful to know that Laguerre diagrams with clusters
can be generated with Algorithm 1.

Remark. We usually define l = 3
√∑n

i=1mi, where the mi’s are sampled from a volume distri-
bution (3D case). Then, as a domain the cube with side length l: Ω = [0, l]3 = [0, l]× [0, l]× [0, l]
is taken. As a result there is a dependence between Ω and the cell volumes. Therefore, we may
choose the initial generator points independent from the cell volumes, conditional on the domain.

While a single example does not reveal all the properties of Algorithm 1, in this particular
case we see that the algorithm does not necessarily move the generator points a lot. If this is in
fact a property of the algorithm then it seems reasonable to spread the initial generator points
fairly evenly over the domain, and to randomly assign a volume mi to each point. In the next
subsection we explore a few possible choices for the initial generator points.

4.2.1 Analyzing the influence of the initial generator points via hy-
pothesis testing

In this subsection we investigate how the choice of the initial generator points affects the result-
ing Laguerre diagram as well as cross sections of these diagrams. Specifically, we look at the
distribution of areas we observe in a cross section for these Laguerre diagrams. We refer to this
distribution as the cross sectional area distribution. Via hypothesis testing we assess whether
two samples of cross sectional areas, each corresponding to a different cross section, may be
assumed to originate from the same (unknown) distribution. Besides the hypothesis testing we
use visualizations of these Laguerre diagrams and cross sections to assess whether a particular
choice of initial generator points is useful for our purposes.

Consider the following simulation setting. The discrete distribution in (4.8) is used as the vol-
ume distribution of the (3D) Laguerre diagram. We take n = 4000 cells, and sample m1, . . . ,mn

from the aforementioned volume distribution. Define l = 3
√∑n

i=1mi and take as a domain the
cube with side length l: Ω = [0, l]3. Then, the same sample of the mi’s is used in combination
with the following different choices for the initial generator points:

P.1 As a baseline we consider sampling the initial points from the uniform distribution over

the domain: x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
n

iid∼ U([0, l]3).

P.2 The uniform distribution over a thin slice in the domain:
x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
n

iid∼ U([0, l]× [0, l]× [ 12
25 l,

13
25 l]).

P.3 The uniform distribution over a small cube within the domain:
x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
n

iid∼ U([ 9
20 l,

11
20 l]

3).

P.4 The uniform distribution over a plane in the domain, we take:

(x1, y1), (x2, y2), . . . , (xn, yn)
iid∼ U([0, l]2) and define x

(0)
j = (xj , yj ,

l
2 ) for j ∈ {1, . . . , n}.

A visualization of these choices for the initial points can be seen in Figure 4.3. The next step is
to generate the Laguerre diagrams for each choice of the initial generator points with Algorithm
1. A visualization of the resulting diagrams is shown in Figure 4.4.

30



(a) P.1 (b) P.2

(c) P.3 (d) P.4

Figure 4.3: A visualization of different choices for the initial generator points of the Laguerre
diagram. (a): The uniform distribution over the domain. (b): The uniform distribution over a
thin slice. (c): The uniform distribution over a small cube within the domain. (d): The uniform
distribution over a plane in the domain.
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(a) P.1 (b) P.2

(c) P.3 (d) P.4

Figure 4.4: A visualization of Laguerre diagrams generated using Algorithm 1 for different choices
of the initial generator points. Below each figure the chosen initial points are displayed, either
P.1, P.2, P.3 or P.4.
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(a) P.1, z = l
3

(b) P.1, z = 2l
3

(c) P.1, z = l

(d) P.2, z = l
3

(e) P.2, z = 2l
3

(f) P.2, z = l

(g) P.3, z = l
3

(h) P.3, z = 2l
3

(i) P.3, z = l

Figure 4.5: A visualization of cross sections taken of the Laguerre diagrams shown in Figure 4.4,
taken at different z-levels. Below each figure the chosen initial points are displayed, either P.1,
P.2 or P.3. Below each figure we also provide the chosen height of the horizontal cross section:
z ∈ { l3 , 2l

3 , l}.
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Of the computed Laguerre diagrams three cross sections are taken. Specifically, cross sections
of the form z = c with c ∈ { l3 , 2l

3 , l}. Note that due to periodic boundary conditions, taking the
cross section z = l is the same as taking the cross section z = 0. The resulting cross sections for
the diagrams corresponding to initial points P.1, P.2 and P.3 are shown in Figure 4.5.

For the Laguerre diagram with initial points P.4 the height of the cross section does not
matter, each of these sections are the same. Such a section is shown in Figure 4.6. From Figure
4.4 we observe that P.4 is not the kind of Laguerre diagram we are looking for. If a cross
section of the form x = c was taken instead, this would result in a very different looking cross
section. This diagram has a somewhat artificial looking structure which only has elongated cells.
This result can be explained, by putting all the initial generator points in the plane z = l

2 the
algorithm will first find the right weights such that all cells have the desired volume. The result
of this is that the boundary between neighboring cells, which are associated with points xi, xj is
perpendicular to the line which connects xi and xj . The next step of the algorithm is to compute
the centroids and because the cells all have this elongated shape the centroids have z-component
l
2 . As this persists throughout all iterations of the algorithm, the generator points never move
in the z-direction. Such a diagram may be useful for modelling materials with elongated grains,
but it does not suit our purposes.

Figure 4.6: A visualization of a horizontal cross section of the Laguerre diagram which is visu-
alized in Figure 4.4 with initial points P.4.

Another observation we can make from Figure 4.4 is that P.2 seems to have resulted in a
Laguerre diagram which has very few large grains near the top of the diagram, especially when
compared to P.1. Table 4.3 shows the number of cells which were observed in each of the
computed cross sections. This table also reflects that P.2 might lead to a Laguerre diagram with
clusters of similarly sized cells, as the cross section at z = l seems to contain disproportionately
many (small) cells, compared to the cross sections at other heights of the same diagram. As
expected, Table 4.3 shows that when using initial points P.4 we always observe all n = 4000
cells.
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Initial points z = l
3 z = 2l

3 z = l
P.1 316 346 304
P.2 340 319 488
P.3 304 319 358
P.4 4000 4000 4000

Table 4.3: Number of observed cells in each cross section when considering the Laguerre diagrams
shown in Figure 4.4. The number of observed cells is given for every combination of the options
for the initial generator points and cross section heights.

While the images of the Laguerre diagrams and cross sections are useful we now take a
more quantitative approach. As samples of areas in cross sections do not seem to follow known
parametric distributions, we consider nonparametric tests. These tests also allow the comparison
of differently sized samples, which is important since the number of cells we observe in cross
sections is also random. Let us consider the k-sample Anderson-Darling test, as described in
[26]. Suppose we have k samples of independent observations. Let Xij be the jth observation in
the ith sample (j ∈ {1, . . . , ni} and i ∈ {1, . . . , k}). The ith sample is a sample of the distribution
F i. We consider the following hypotheses:

H0 : F 1 = F 2 = · · · = F k

H1 : F r 6= F s for some r, s ∈ {1, . . . , k} with r 6= s.

Let F ini(x) denote the empirical distribution function of the ith sample. Let HN (x) be the
empirical distribution of the combined (pooled) samples, hence N = n1 + n2 + · · · + nk. The
k-sample Anderson-Darling test statistic is then defined as:

A2
kN =

k∑
i=1

ni

∫
BN

(
F ini(x)−HN (x)

)2
HN (x)(1−HN (x))

dHN (x).

Here BN = {x ∈ R : HN (x) < 1}. The statistic A2
kN is then normalized to yield the following

test statistic:

TkN =
A2
kN − (k − 1)√

Var(A2
kN )

.

For a computational formula of the test statistic, as well as the computation of p-values we refer
to [26]. In all hypothesis tests, the confidence level α = 0.05 is used. Consider the Laguerre
diagrams computed with initial generator point P.1, P.2 and P.3. For each of these diagrams, we
have three samples of cross section areas, each sample corresponding to a distinct cross section.
This test is used to determine whether these three samples of areas may be assumed to originate
from the same distribution. If this may be assumed according to the test, for a particular set of
initial generator points, then this is evidence that this choice of generators leads to a Laguerre
diagram which fits our purposes. The results of the test are in Table 4.4. The reason for omitting
P.4 in this test is that the corresponding samples of cross sections are clearly not independent,
there is in fact full dependence. For the other choices of initial points the cross sections are
spaced far enough that we do not observe the same cell in multiple cross sections. Therefore, it
does seem reasonable to assume independence in these cases.
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Initial points AD statistic AD p-value
P.1 1.68 0.53
P.2 7.57 0.0015
P.3 2.05 0.38

Table 4.4: The results of the k-sample Anderson-Darling test, using the three cross section
samples as computed for each Laguerre diagram. The Laguerre diagrams considered are the
ones with the initial generator points P.1,P.2 and P.3 as shown in Figure 4.4.

Table 4.4 suggests that for P.2, the samples of the cross sections should not be assumed to
come from the same distribution as p < 0.05. This is not the case for P.1 and P.3, here we do
not reject the null hypothesis. Therefore, the options P.1 and P.3 both seem to be reasonable
choices as initial generator points.

Another interesting test, is whether the resulting Laguerre diagrams may be considered ”the
same”. Given two Laguerre diagrams, each generated with different initial points, we compare
the cross sections of these diagrams which were taken at the same height. Besides the k-sample
Anderson-Darling test with k = 2 we use the two-sample Kolmogorov-Smirnov test. This test
uses the following test statistic (using the same notation as for the Anderson-Darling test):

Dn1n2
= max

x∈R
|F 1
n1

(x)− F 2
n2

(x)|. (4.9)

The choice of initial points P.1 is taken as the baseline. Hence, for the other three Laguerre
diagrams we take the sample of areas in the cross section z = c and compare this sample to the
sample of areas in the cross section z = c of the Laguerre diagram with initial points P.1. The
results of this test are in Table 4.5.

As expected, comparing a cross section of the Laguerre diagram with initial points P.4 to any
of the cross sections of the diagram with initial points P.1 leads to rejection of H0. Hence, these
distributions of cross section areas should not be assumed to originate from the same distribution.
Other than that there is only one sample which lead to rejection of the null hypothesis. The
sample of areas in section z = l of Laguerre diagram with initial points P.2 should not be

Cross section height Initial points KS statistic KS p-value AD statistic AD p-value

z = l
3

P.2 0.06 0.66 0.86 0.44
P.3 0.06 0.59 0.62 0.63
P.4 0.82 0 480.44 3.9e-264

z = 2l
3

P.2 0.05 0.89 0.30 0.94
P.3 0.07 0.36 0.71 0.55
P.4 0.83 0 535.97 1.2e-294

z = l
P.2 0.13 0.0036 6.16 0.00077
P.3 0.07 0.32 1.32 0.23
P.4 0.81 0 484.18 3.4e-266

Table 4.5: The results of testing whether cross section area distributions come from the same
distribution when comparing cross sections of the Laguerre diagrams in Figure 4.4. We compare
one of the choices of the initial generator points P.2, P.3 or P.4 against choosing P.1. Both the
two-sample Kolmogorov-Smirnov (KS) test and the two-sample Anderson-Darling (AD) test are
used.
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assumed to come from the same distribution as the sample of areas in the section z = l of
the diagram with initial points P.1. This was also to be expected, this particular cross section
appears very different from all other sections which are shown in Figure 4.5. From the tests
which were performed it seems that for the cell volume distribution (4.8), both P.1 and P.3 are
reasonable choices.

We now consider a more interesting volume distribution for the cells of the Laguerre diagrams.

We sample m1, . . . ,mn
iid∼ FV with FV being the lognormal distribution, with σ = 0.8, µ = −σ2

2 .
As we have seen that P.4 does not result in a Laguerre diagram which is fit for our purposes we
no longer consider this option. Otherwise, we proceed exactly as before. This means that the
same sample of the mi’s is used to generate Laguerre diagrams in combination with the different
choices of initial points P.1, P.2 and P.3. Then, cross sections are taken at the same heights as
before, and we perform the same hypothesis tests as before.

The resulting Laguerre diagrams are shown in Figure 4.7, and the cross sections can be seen
in Figure 4.8. Judging from the images in these figures, most Laguerre diagrams appear quite
similar to one another, the same can be said for the cross sections. The only cross section which
looks slightly different is the section z = l of the Laguerre diagram with initial points P.2. Table
4.6 shows similar results as in Table 4.3, it seems that the aforementioned cross section contains
noticeably more (small) cells compared to the other sections. As before, for each diagram we
test whether the three samples of cross section areas, each sample corresponding to a specific
section, may be assumed to originate from the same distribution. The results of this test are
shown in Table 4.7.

Initial points z = l
3 z = 2l

3 z = l
P.1 339 343 335
P.2 312 325 465
P.3 299 340 359

Table 4.6: Number of observed cells in each cross section when considering Laguerre diagrams
shown in Figure 4.7. The number of observed cells is given for every combination of the options
for the initial generator points (except for P.4) and cross section heights.

Initial points AD statistic AD p-value
P.1 0.90 0.92
P.2 23.24 4.4e-12
P.3 5.59 0.011

Table 4.7: The results of the k-sample Anderson-Darling test, using the three cross section
samples as computed for each Laguerre diagram. The Laguerre diagrams considered are the
ones with the initial generator points P.1,P.2 and P.3 as shown in Figure 4.7.

In Table 4.7 we observe that this lognormal cell volume distribution gives a slightly different
result. In this case we see that the cross sections associated with P.2 and P.3 both result
in rejecting the null hypothesis. In the other distribution we considered P.3 did not lead to
rejection. On the other hand, these results provide evidence that P.1 is a reasonable choice.
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(a) P.1 (b) P.2

(c) P.3

10−1 100 101

Cell volume

Figure 4.7: A visualization of Laguerre diagrams with a lognormal cell volume distribution

(σ = 0.8, µ = −σ2

2 ), generated using Algorithm 1 for different choices of the initial generator
points. Below each figure the chosen initial points are displayed, either P.1, P.2 or P.3.
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(a) P.1, z = l
3

(b) P.1, z = 2l
3

(c) P.1, z = l

(d) P.2, z = l
3

(e) P.2, z = 2l
3

(f) P.2, z = l

(g) P.3, z = l
3

(h) P.3, z = 2l
3

(i) P.3, z = l

Figure 4.8: A visualization of cross sections taken of the Laguerre diagrams shown in Figure 4.7,
taken at different z-levels. Below each figure the chosen initial points are displayed, either P.1,
P.2 or P.3. Below each figure we also provide the chosen height of the horizontal cross section:
z ∈ { l3 , 2l

3 , l}.
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Cross section height Initial points KS statistic KS p-value AD statistic AD p-value

z = l
3

P.2 0.08 0.27 1.38 0.21
P.3 0.09 0.15 2.19 0.072

z = 2l
3

P.2 0.07 0.36 0.97 0.37
P.3 0.05 0.83 0.53 0.72

z = l
P.2 0.16 0.00011 11.54 1.4e-06
P.3 0.07 0.37 1.23 0.26

Table 4.8: The results of testing whether cross section area distributions come from the same
distribution when comparing cross sections of the Laguerre diagrams in Figure 4.7. We compare
one of the choices of the initial generator points P.2 or P.3 against choosing P.1. Both the
two-sample Kolmogorov-Smirnov (KS) test and the two-sample Anderson-Darling (AD) test are
used.

We repeat another test for this lognormal volume distribution. For two Laguerre diagrams,
one using initial points P.1 and the other with another set of initial points, we compare the cross
sections of these diagrams which were taken at the same height. The two-sample Kolmogorov-
Smirnov test and two-sample Anderson-Darling test are used again, the results are displayed
in Table 4.8. While the values of the test statistics and p-values are not the same, given the
confidence level α = 0.05 results in the same conclusion as before. The only sample of cross
sectional areas which is quite different from the others is z = l of the Laguerre diagram with
initial points P.2.

In this section we assessed a few possible choices of initial generator points, both visually and
via hypothesis tests. The choice P.1 seems to be appropriate for our purposes. The Laguerre
diagrams computed with this choice for the initial points satisfy the conditions that the volumes
of the cells are randomly distributed throughout the diagram. Specifically, for these diagrams
the location of the cross section is not relevant. Different cross sections yielded samples of areas
which may be assumed to originate from the same unknown distribution. [26] also suggests
that the k-sample Anderson-Darling test may be used to argue that multiple samples may be
pooled together to obtain a larger sample. In some later chapters this is used, particularly in
cases where a large sample of cross section areas is desired. In those cases, to minimize the
possibility of dependency between samples, we do not take multiple cross sections of the same
Laguerre diagram. Instead, multiple Laguerre diagrams will be generated, taking only a single
cross section of each diagram. This approach is made more precise in the final section of this
chapter. The tests also suggest that P.3 could be a reasonable choice. We do remark that P.1
is a more practical choice, the gradient methods in Algorithm 2 and 3 tend to converge quicker
for this choice of initial generator points in comparison to the other choices we consider.

4.3 Accelerating gradient methods via a permutation step

In this section we briefly discuss a method which accelerate gradient methods such as Algorithm
2 and 3 in some specific cases. First, the intuition behind the method is given, and then we
precisely describe how the method works. Via simulations its strengths and weaknesses are
highlighted.

The idea of the permutation step we propose is as follows. In practice, the location of a
cell with a particular volume within the diagram is not that important. What is important, is
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that the cell volumes in the Laguerre diagram follow a predetermined distribution. In Algorithm
1 we prescribe the volumes m1, . . . ,mn which results in a Laguerre diagram such that cell Li
has volume mi. Recall that we use a gradient method which iteratively updates the weights,
eventually resulting in weights such that the cells have the desired volumes. The permutation
step we propose rearranges the mi’s after each iteration of the gradient method, such that this
rearrangement minimizes the Euclidean norm of the gradient. When implemented in a gradient
method this means that the resulting Laguerre diagram still has cells with volumes m1, . . . ,mn,
but cell Li does not necessarily have volume mi.

Consider the fixed set of generator points x1, . . . ,xn. Let {Li}ni=1 be the Laguerre diagram
generated by (x1, w1), . . . , (xn, wn). The function f : Rn → R is defined by:

f(w) := −
n∑
i=1

(mi − |Li(w)|)wi −
n∑
i=1

∫
Li(w)

||x− xi||2dx. (4.10)

As we have seen before, its gradient is given by:

∇f(w) = (|L1(w)| −m1, |L2(w)| −m2, . . . , |Ln(w)| −mn).

Let P be the set of all permutations on {1, . . . , n}. Each iteration of the gradient algorithm we
permute the targeted volumes m1, . . . ,mn such that the norm of the gradient is smaller then it
would have been had we not done this:

min
π∈P

√√√√ n∑
i=1

(
mπ(i) − |Li(w)|

)2 ≤
√√√√ n∑

i=1

(mi − |Li(w)|)2
= ||∇f(w)||.

When implementing this in the Barzilai-Borwein method (Algorithm 2) we obtain Algorithm 4.
The reason that the computation of the permutation which minimizes the norm of the gradient
is tractable is that it can be found via sorting. Specifically, given x = (x1, . . . , xn) ∈ Rn and
y = (y1, . . . , yn) ∈ Rn consider:

min
π,τ∈P

n∑
i=1

(
xπ(i) − yτ(i)

)2
. (4.11)

It can easily be shown that this is minimized by permutations π and τ which sort the vectors x
and y respectively. Meaning that: xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n) and yτ(1) ≤ yτ(2) ≤ · · · ≤ yτ(n).
When instead looking at:

min
σ∈P

n∑
i=1

(
xσ(i) − yi

)2
. (4.12)

We may take permutations π and τ which minimize (4.11) and we obtain that (4.12) is minimized
by the permutation σ which is defined as:

σ(π(i)) = τ(i) for i ∈ {1, . . . , n}.
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Algorithm 4 Barzilai-Borwein method with permutation step

Input: Initial weights: w0 ∈ Rn, initial step size: α0 > 0, The function f as in (4.10).
Output: w ∈ Rn such that ||∇f(w)||∞ < tolf
1: residual ← ||∇f(w0)||∞
2: j ← 0
3: while j < maxitf and residual > tolf do
4: wj+1 ← wj − αj∇f(wj)

5: π ← arg minπ∈P

√∑n
i=1

(
mπ(i) − |Li(wj+1)|

)2
6: (m1,m2, . . . ,mn)← (mπ(1),mπ(2), . . . ,mπ(n))

7: αj+1 ← ||wj+1−wj ||2
(∇f(wj+1)−∇f(wj))

T (wj+1−wj)

8: residual ← ||∇f(wj+1)||∞
9: j ← j + 1

10: end while
11: return wj

Let us first consider a case in which the permutation step does indeed provide a speed-up.
For the cell volume distribution FV we take a lognormal volume distribution with σ = 0.6

and µ = −σ2

2 . For the initial generator points we stick to the choice P.1. Given a sample

m1, . . . ,mn
iid∼ FV , we take the domain Ω = [0, l]3 with l = 3

√∑n
i=1mi. The same sample of

initial generator points and the same sample of volumes is used both with Algorithm 2 and with
Algorithm 4. Essentially, we run Algorithm 1 for just one iteration, such that we only measure
the performance of the gradient methods. The iteration counts and run-times for the Barzilai-
Borwein method with and without the permutation step are displayed in Table 4.9 for different
values of n.

BB BB with permutation
n Iterations Time (s) Iterations Time (s)
1000 126 0.375 39 0.126
2000 229 1.45 18 0.201
4000 533 8.20 27 0.479
8000 736 29.0 16 0.734
16000 1978 214.0 21 2.52

Table 4.9: A comparison of the Barzilai-Borwein method (BB) with and without the permu-
tation step (Algorithm 2 and 4 respectively). Laguerre diagrams with a lognormal cell volume

distribution are generated, with σ = 0.6 and µ = −σ2

2 for different amounts of cells n.

It can clearly be seen that the permutation step provides a significant reduction in both the
amount of iterations as well as the run-time of the algorithm. We also observe that when using
this permutation step the amount of iterations does not necessarily scale with n, which is the
case when omitting the permutation step. It should be stressed that each number presented in
Table 4.9 is the result of only a single run, they are not averages over multiple runs. Let us now
consider a simulation setting which shows when the permutation step should not be used. Now
the amount of cells is fixed as n = 4000. Different values of σ are considered for the lognormal

volume distribution while keeping µ = −σ2

2 . Other than that the simulation setting is the same
as before. The results are presented in Table 4.10. We observe that for large values of σ the
permutation step slows down the Barzilai-Borwein method a lot. It is clear that for large σ we
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do not want to use the permutation step. For small values of σ the permutation step significantly
speeds up the gradient method.

BB BB with permutation
σ Iterations Time (s) Iterations Time (s)
0.3 299 4.55 7 0.144
0.6 559 8.68 17 0.311
0.9 968 15.3 125 2.08
1.2 572 9.29 2293 40.5
1.5 2931 54.5 20763 376.0

Table 4.10: A comparison of the Barzilai-Borwein method (BB) with and without the permu-
tation step (Algorithm 2 and 4 respectively). Laguerre diagrams with a lognormal cell volume

distribution are generated, with different values of σ and µ = −σ2

2 with n = 4000 cells.

We do not perform an extensive analysis of the influence of the initial generator points when
Algorithm 1 is used in combination with Algorithm 4 as before. We do visualize the resulting
Laguerre diagrams when repeating the simulation with a lognormal volume distribution in section
4.2.1, but now with the inclusion of the permutation step. Recall that for this simulation the
same sample of volumes m1, . . . ,mn is used in combination with the different choices for the
initial generator points P.1, P.2 and P.3. The resulting diagrams are shown in Figure 4.9. This
highlights that the permutation step makes the gradient method much more sensitive for the
choice of initial generator points. It could be useful when Laguerre diagrams with very specific

10−1 100

Cell volume

(a) P.1 (b) P.2 (c) P.3

Figure 4.9: A visualization of Laguerre diagrams with a lognormal cell volume distribution

(σ = 0.6, µ = −σ2

2 ), generated using Algorithm 1 with gradient method Algorithm 4. Below
each figure the chosen initial points are displayed, either P.1, P.2 or P.3.
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structure is desirable. Using P.1 appears to result in a somewhat homogeneous distribution of
the cell volumes. Of course, further tests are necessary in order to conclude this. In the case of
P.2 we especially observe that both cells with either a small volume or a large volume appear
near the top and the bottom, while medium-sized cells appear in the center. The choice of initial
points P.3 seems to result in quite a curious looking Laguerre diagram indeed.

In this section we proposed a method for accelerating the gradient method which is used
by Algorithm 1. Via some simulations we observed its strengths and its weaknesses. It seems
particularly useful when one would like to generate a large Laguerre diagram with a low variance
in the volume distribution, in the case of a lognormal volume distribution this means a small
value of σ. As we cannot provide guarantees for its performance, or even its convergence for
arbitrary volume distributions it will not be used for other simulations in this thesis. Further
analysis of the method is out of the scope of this thesis. Nonetheless, the idea seems promising,
perhaps other choices of permutations provide even better results. It could also be the case that
it is more beneficial to not use the permutation step in every iteration of a gradient method,
only under certain conditions.
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4.4 Choosing methods for computing Laguerre diagrams
and cross sections

As we approach the problem of estimating the cell volume distribution in a 3D Laguerre diagram
from a cross section we have made clear that we need to precisely define how the Laguerre
diagrams that we analyze are generated. In the previous sections we discussed how Algorithm
1 may be used to generate a specific class of Laguerre diagrams. As the choice of the initial
generator points in this algorithm impacts the resulting Laguerre diagram we tested multiple
options and concluded that sampling the initial points from a uniform distribution over the
domain is a reasonable choice. In this section we provide a list of steps which states how we
generate Laguerre diagrams in all further simulations in this thesis. As there are also multiple
options for how a cross sections can be taken of a Laguerre diagram, we also describe how cross
sections are taken in all further simulations.

4.4.1 Defining the class of Laguerre diagrams of interest

In section 4.1 we provided the parameters that are used in Algorithm 1, typically those parameters
are indeed used, but in very specific cases we prefer using tighter tolerances for ε and εf . In
those cases the chosen tolerances are of course mentioned. Let us now describe how Laguerre
diagrams are generated in all simulations. Whenever we generate a Laguerre diagram we use
periodic boundary conditions and we follow these three steps:

1. Choosing volumes and defining the domain: We choose a value for n, the number of cells
or grains in the Laguerre diagram. When the true volume distribution is known, let
m1, . . . ,mn denote the known volumes. However, we usually consider some probability
distribution for the volume distribution and we denote the volume distribution function
as FV . Then, a sample is taken from this distribution: m1, . . . ,mn

iid∼ FV for the volumes
of the cells. We define l = 3

√∑n
i=1mi and take as a domain the cube with side length l:

Ω = [0, l]3 = [0, l]× [0, l]× [0, l]. Then, by construction the volume of the domain is equal
to the sum of the volumes: |Ω| = ∑n

i=1mi.

2. Choosing initial generator points: As Algorithm 1 requires locations for the initial generator
points we need to make a choice. We observed that sampling the initial generator points
from the uniform distribution over the domain seems to be a good choice. Therefore,

we sample: x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
n

iid∼ U([0, l]3). As mentioned before, the initial weights for
Algorithm 1 are all initialized with zero.

3. Generating the Laguerre diagram: All parameters that are required by Algorithm 1 are
now defined, so we may use the algorithm to produce the Laguerre diagram {Li}ni=1 with
periodic boundary conditions. For the gradient method we use Algorithm 2, if it does not
converge within the prescribed number of maximum iterations we use Algorithm 3. The
volumes of the cells are equal to the provided volumes m1, . . . ,mn up to relative error
εf = 0.01. How close the diagram is to a centroidal Laguerre diagram is determined by
the tolerance ε = 0.001.

This class of Laguerre diagrams that are generated by these steps may be described as (ap-
proximately) centroidal Laguerre diagrams.
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4.4.2 Defining the cross sectional area distribution

Now that we have a Laguerre diagram {Li}ni=1 we give a precise description of the cross sectional
area distribution of this diagram. Given the following plane:

P = {(x, y, z) ∈ R3 : a(x− x0) + b(y − y0) + c(z − z0) = 0},

where a, a0, b, b0, c, c0 ∈ R. We may compute the intersection of each cell with the plane:

Si := Li ∩ P for i ∈ {1, . . . , n}.

Let us now define the following index set:

I = {i ∈ {1, . . . , n} : Si 6= ∅}.

Then, we observe the following areas:

Ai = area(Si) for i ∈ I.

Therefore we consider the cross sectional area distribution to be the distribution of the Ai’s
conditional on i ∈ I. Hence the random variable Ai|i ∈ I has as distribution the cross sectional
area distribution. While we could consider arbitrary planes we focus on horizontal planes z = c for
some c ∈ R. Whenever we take K cross sections of a Laguerre diagram with volume distribution
FV we use the following procedure:

For k = 1, . . . ,K:

1. Generate the Laguerre diagram {Li}ni=1 with volume distribution FV as described in section
4.4.1.

2. Sample zk ∼ U(0, l).

3. Compute intersection of the cells with the plane z = zk:
Si = Li ∩ {(x, y, z) ∈ R3 : z = zk} for i ∈ {1, . . . , n}.

4. Define the index set: Ik = {i ∈ {1, . . . , n} : Si 6= ∅}.

5. Define the sample of areas of this cross section Ãk = {Ai : i ∈ Ik}, where Ai = area(Si).

We then consider the sample of the cross section area distribution to be the result of combining all
samples Ãk for k ∈ {1, . . . ,K} into a single sample. It does not seem to be a problem to combine
these samples, in section 4.2 we observed that Laguerre diagrams generated as described in 4.4.1
with the same volume distribution yield samples of sectional areas which may be assumed to
come from the same (unknown) underlying distribution. The main reason for combining samples
is that it is still quite computationally expensive to compute very large Laguerre diagrams. If we
want to have a large sample of cross sectional areas we either need to compute a large Laguerre
diagram, or we compute multiple smaller diagrams and we combine the samples of cross sectional
areas as described.
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4.5 Conclusion

In this chapter we discussed an algorithm for generating Laguerre diagrams with a cell volume
distribution of choice. It is especially useful for our problem since we are looking for a relation-
ship between the cell volume distribution and the cross sectional area distribution. Thanks to
the algorithm the cell volume distribution can be fixed beforehand. We made choices for the
parameters that are required by the algorithm, and in particular we investigated the influence
of the choice of the initial generator points. We concluded the chapter by precisely describing
how Laguerre diagrams are computed and how cross sections are taken in all further simulations.
This means that for the direct and inverse problem we restrict ourselves to this particular class
of Laguerre diagrams. We also proposed a permutation method that proved to speed up the gra-
dient method used by Algorithm 1 for Laguerre diagrams with moderate variance in the volume
distribution.
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5

The role of the weights of a Laguerre
diagram

Given that we have taken an elaborate look at the generator points of Laguerre diagrams it
seems appropriate to consider the weights of a Laguerre diagram and investigate whether they
have a simple interpretation. In section 4.2 we analyzed the influence of the choice of the initial
generator points for Algorithm 1. Because this algorithm finds weights which maximize the
function g (with g as in (4.4)) we do not have control over the weights. Via the initial choice
of the weights, we checked if different choices for the initial weights have any impact on the
final weights that are generated by Algorithm 1 but this turned out not to be the case. To be
more specific, given a sample of volumes from a volume distribution and a chosen set of initial
generator points the Laguerre diagram produced by Algorithm 1 did not seem to be affected
by different choices of the chosen initial weights. As mentioned before we set all initial weights
equal to zero, but another possible choice is:

wi =

(
4mi

3π

) 2
3

,

as was suggested in [11]. The interpretation of this choice is that the weight wi is initialized as
the squared radius of a sphere of volume mi. We may wonder whether the weights as produced
by the algorithm have an interpretation which may be useful when considering the direct problem
and the inverse problem, and that is what we investigate in this section.

First, we will simply investigate whether there is clear relationship between cell volumes,
weights and sectional areas when fixing some parametric distribution for the cell volumes. Then,
we consider interpreting the square root of the weights as the radii of spheres, as this is a
frequently used approach when generating a Laguerre diagram via a packing of spheres. Consider
for example the references [7, 6, 27, 17].

Remark. Keep in mind that all Laguerre diagrams and cross sectional area distributions in the
simulations in this chapter are computed as described in section 4.4.

In this section we fix a parametric distribution for the cell volumes and then we investigate
whether we observe any relationship between the distributions of the cell volumes, the weights
and the sectional areas. To this end we consider three distributions:
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1. A lognormal distribution with σ = 0.6, µ = −σ2

2 .

2. An exponential distribution with λ = 1.

3. A point mass: all cells have volume 1.

Whenever we generate a Laguerre diagram with one of these cell volume distributions we generate
a Laguerre diagram with n = 1000 cells. For the cross sectional area distribution we take K = 10
horizontal cross sections. In Figure 5.1 we observe the resulting volume distributions and weights
distributions of a single run, while the sectional area distribution was obtained via 10 runs (as
described in section 4.4.2).

When studying the distribution of the weights of a Laguerre diagram there is something very
important we need to keep in mind, namely that the weights of a Laguerre diagram are not
unique. Recall property L.2 of Laguerre diagrams:

L.2 Given n distinct generator points: x1, . . . ,xn ∈ Ω and corresponding weights: w1, . . . , wn ∈
R, the Laguerre diagram generated by (x1, w1), . . . , (xn, wn) is the same as the Laguerre
diagram generated by (x1, w1 + c), . . . , (xn, wn + c) for any c ∈ R.

This property somewhat complicates fitting some parametric distribution to the weights. To
standardize the weights of the generated Laguerre diagrams, we add the constant c = −mini wi
to all weights such that all weights are non-negative. In Figure 5.1 we observe the result of fitting
a three-parameter lognormal distribution to these standardized weights. We note that we cannot
provide a physical reason why this distribution would provide a good fit. We cannot fit the
ordinary lognormal distribution as this distribution is supported on (0,∞) and because of the
standardization there is at least one weight equal to zero. We could try to find a better constant
than c to add to all weights, but at that point we are effectively looking for the location parameter
of a three-parameter lognormal distribution. The three-parameter lognormal distribution has an
additional parameter γ which signifies the location shift. The usual lognormal distribution and
the three-parameter variant satisfy the following property:

X ∼ Lognormal(µ, σ2, γ) ⇐⇒ X − γ ∼ Lognormal(µ, σ2).

As can be observed in Figure 5.1, it seems that for the volume distributions we considered the
distribution of the weights seems to be described reasonably well by a three-parameter lognormal
distribution. The best current guess of why this provides a good fit is that this is a property
of Algorithm 1. This distribution is then somehow caused by maximizing the function g and
relocating the generator points to the centroids.

Another observation we can make is that the cross sectional area distribution is not in general
the same as the distribution of the volumes or weights. When considering an exponential cell
volume distribution it seems that we could approximate the sectional area distribution by an
exponential distribution as well. When considering the sectional area distribution in the cases of
a lognormal cell volume distribution, or the Laguerre diagram with cells of volume 1 we do not
immediately recognize a known parametric distribution.
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Figure 5.1: Distribution of the cell volumes, weights and cross sectional areas for Laguerre diagrams with
different volume distributions. On the left: distribution of the cell volumes. In the middle: distribution
of the weights. On the right: distribution of the cross sectional areas. (a), (b) and (c): Lognormal

distribution (σ = 0.6, µ = −σ2

2 ). (d), (e) and (f): Exponential distribution (λ = 1). (g), (h) and (i): Cells
with volume 1.
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5.1 Interpreting the weights as sphere radii

Let us now give another parameterization of the Laguerre diagram which is also frequently used,
as this helps us with one possible way to interpret the weights.

Definition 4 (Alternative parameterization of a Laguerre diagram). Given a convex domain
Ω ⊂ Rd, n distinct generator points: x1, . . . ,xn ∈ Ω and corresponding radii: r1, . . . , rn ≥ 0.
The Laguerre-Voronoi diagram {Li}ni=1 generated by (x1, r1), . . . , (xn, rn) is defined by:

Li = {x ∈ Ω : ||x− xi||2per − r2
i ≤ ||x− xj ||2per − r2

j ∀j ∈ {1, . . . , n}}.

We can easily see that this is indeed another parameterization of a Laguerre diagram. After
all, when using Definition 1 we can take a suitably large constant and add this constant to
all weights to make them non-negative because of property L.2. In this section we therefore
transform the computed weights of the Laguerre diagrams to the radii as in Definition 4 via the
following transformation:

ri(α) =

√
wi −

(
min

j∈{1,...,n}
wj

)
+ α for some fixed α ≥ 0. (5.1)

A reason to consider this alternative parameterization is that the ri’s may be considered
as radii of spheres. We may generate a Laguerre diagram via a hard packing of spheres, this
approach is for example taken in [7, 6, 27, 17]. Recall that a random close packing of spheres is
obtained via an algorithm which efficiently positions non-overlapping spheres in some domain,
filling as much space with spheres as possible. Suppose we have a Laguerre diagram {Li}ni=1

as in Definition 4, which is generated by (x1, r1), . . . , (xn, rn). Consider balls of the form Bi =
{x ∈ R3 : ||xi − x||per < ri} with generator point xi and radius ri. In the case of a hard sphere
packing we have that Bi ∩ Bj = ∅ if i 6= j. What is interesting is that in case of a sphere
packing, the ball Bi is contained within Li for all i ∈ {1, . . . , n}. This means that if the packing
density of the sphere packing is high (the packing density is the volume fraction of the domain
which is filled with spheres) then the volume of each sphere is a reasonable approximation of the
corresponding cell volume.

A fairly natural question is to ask whether Algorithm 1 also gives rise to a hard sphere
packing. Running the algorithm for many iterations seems to make cells more round, or at the
very least makes cells look more like regular polyhedrons. We can verify this via a simulation
experiment, we simply generate a Laguerre diagram using a lognormal distribution for the cell
volumes and then we apply the transformation as in equation (5.1) with α = 0. The reason for
picking α = 0 is that this yields the smallest possible radii that we can obtain via transformation
(5.1), and therefore these are also the smallest radii that we can obtain directly via Algorithm 1.
If the smallest possible radii we can obtain does not yield a sphere packing we also do not have
a sphere packing for any α > 0. We generate a Laguerre diagram as usual and then we verify
whether we have a sphere packing by checking whether ||xi − xj ||per ≥ ri(0) + rj(0) whenever
i 6= j. Unfortunately, we never actually observed a sphere packing by following this procedure.
In all cases there were overlapping spheres regardless of whether periodic boundary conditions
were used or not. Trying to make the cells more round by using a smaller ε in Algorithm 1 also
did not make a difference.

If one would want to use Algorithm 1 to produce a sphere packing this is still possible, but
only indirectly. Finding the largest inscribed sphere in a cell (which is a polyhedron) is a linear
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programming problem which is described in appendix B. We can therefore use Algorithm 1 to
generate a sphere packing. An example of what the inscribed spheres inside cells of a Laguerre
diagram look like is provided in Figure 5.2. In some sense the relationship between Laguerre
diagrams and sphere packings always seems to be approximate. When generating a sphere
packing with prescribed volumes for the spheres we may then generate a Laguerre diagram from
this sphere packing using the centers and radii as generator points and ri’s respectively. Then,
the volume of each sphere is an approximation of the volume of the corresponding cell, but it
always underestimates the cell volume. When going in the other direction, we can generate a
Laguerre diagram via Algorithm 1 with a prescribed volume distribution for the cells, and we
obtain a sphere packing by inscribing a sphere in each cell. In that case each cell volume is
an approximation of the volume of its inscribed sphere, but it always overestimates the sphere
volume.

(a) (b)

Figure 5.2: (a): A Laguerre diagram with a lognormal cell volume distribution and periodic
boundary conditions. (b): The largest inscribed (periodic) spheres in each cell of the Laguerre
diagram as shown in (a).

We now investigate whether we find any relationship between the radius of the largest in-
scribed sphere within each cell and the corresponding ri belonging to that cell. Let rsi be the
radius of the largest sphere that is inscribed in cell Li. As the ri’s of the Laguerre diagram are
not unique we compare the rsi ’s to ri(α̂) where α̂ is defined as:

α̂ = arg min
α≥0

1

n

n∑
i=1

(rsi − ri(α))2. (5.2)

In words this means that we compare the radius of the inscribed spheres to the ri’s of the Laguerre
diagram of the form (5.1), which minimize the mean squared error. We consider the same three
volume distributions as in the previous section, and we compute: ri(α̂) for i ∈ {1, . . . , n} which
we call the fitted radii. The results are shown in Figure 5.3.
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Figure 5.3: On the left: scatter plots of the fitted radii of the Laguerre diagram against the
radii of the inscribed spheres, for Laguerre diagrams with various cell volume distributions. The
red line indicates the line y = x. On the right: histograms which visualizes the distribution of

the fitted radii. (a), (b): Lognormal distribution (σ = 0.6, µ = −σ2

2 ). (c), (d): Exponential
distribution (λ = 1). (e), (f): All cells have volume 1.
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As seen in Figure 5.3 it does not usually seem that reasonable to interpret the square root of
the weights of a Laguerre diagram as the radius of its largest inscribed sphere. In the case of the
lognormal distribution and the exponential distribution we observe that the radii of the largest
inscribed spheres compare very poorly to the fitted radii. In those two cases we happened to
observe that α̂ = 0. A better fit could be possible if we allow α < 0 but then we also need to
allow ri(α)2 < 0 and then we can no longer interpret the fitted radii as actual radii of spheres. In
the case of a Laguerre diagram with cells of volume 1 we observe a better fit, but it still does not
seem very convincing to interpret the square root of the weights as radii of the inscribed spheres.
In some cases it does appear be reasonable to say that the relationship between the fitted radii
and the radii of the inscribed spheres is approximately linear. In particular, in Figure 5.3 (a),
(b) a straight line could be fitted to the data.

5.2 Conclusion

To summarize, using the simulations presented in this chapter we did not directly find a prac-
tical way to interpret the weights. These simulations could also simply be considered as some
exploratory simulations. There were however some important observations which we need to
keep in mind if we want to solve the direct problem and the inverse problem. Suppose we assume
that the cell volumes of a Laguerre diagram are distributed according to a parametric family of
distributions (e.g. the family of lognormal distributions), then we conclude that:

• The distribution of the weights does not necessarily belong to the same family of distribu-
tions.

• The distribution of the cross sectional areas does not necessarily belong to the same family
of distributions.

• We may hypothesize that the distribution of the weights can be described quite well by a
(three-parameter) lognormal distribution, regardless of the cell volume distribution. More
simulations are necessary to show this, and there may be parametric distributions which
provide an even better fit.

• The square root of the weights of a Laguerre diagram cannot in general be interpreted as
the radius of its largest inscribed sphere.

In the case of generating a Laguerre diagram via a close packing of spheres there is a clear
interpretation of the weights being the square root of the sphere radii. For the Laguerre diagrams
we consider this interpretation cannot be used and does not add knowledge for our problem. As
such, we conclude that for our problem we do not have to worry about the interpretation or the
distribution of the weights.
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6

2D sectional Laguerre diagrams

After having thoroughly presented the 3D counterpart of the problem, in this section the
2D sectional Laguerre diagrams are presented. As previously mentioned, a 2D section of a
3D Laguerre diagram is also a Laguerre diagram. In this chapter we investigate whether this
sectional Laguerre diagram has properties that may help solve the inverse problem.

Let us first consider the following problem, given a 3D Laguerre diagram and a cross section
plane we would like to know the weights and generator points of the resulting 2D diagram.
As it turns out the generator points can be found by orthogonally projecting the points of the
3D diagram onto the cross section plane (for cells that intersect with the cross section plane).
The resulting 2D diagram also has different weights which are related to the weights of the 3D
Laguerre diagram. Lemma 1 provides a precise description of the 2D diagram. We could not
find this particular result in the literature, but in [9, p. 131, 132] it is shown in a similar manner
that the cross section of a Voronoi diagram is a Laguerre diagram.

Lemma 1. 1 Given a convex domain Ω ⊂ R3, n distinct generator points: x1, . . . ,xn ∈ Ω
and corresponding weights: w1, . . . , wn ∈ R. Let {Li}ni=1 be the Laguerre diagram generated by
{(xi, wi)}ni=1 with domain Ω. Let a,x0 ∈ R3, then we consider the cross section plane:

P := {x ∈ R3 : aT (x− x0) = 0}.

Let I be the index set of cells which appear in the cross section plane P :

I := {i ∈ {1, . . . , n} : P ∩ Li 6= ∅}.

For i ∈ I define:

xPi := xi −
aT (xi − x0)

aTa
a (6.1)

wPi := wi −
(
aT (xi − x0)

)2
aTa

. (6.2)

Let {LPi }i∈I be the Laguerre diagram generated by
{

(xPi , w
P
i )
}
i∈I with domain Ω ∩ P . The

following holds:
Li ∩ P = LPi for all i ∈ I.

1Laguerre diagrams in this lemma are non-periodic.
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Proof. The proof can be found in appendix C.

A technical remark is that Lemma 1 only holds for non-periodic Laguerre diagrams in its
current form. As the weight wPi in some sense depends on the distance of the generator xi to the
plane P we have to keep in mind that the periodic distance does not always coincide with the
Euclidean distance. Throughout this chapter we assume that we have a non-periodic Laguerre
diagram {Li}ni=1 which we intersect with a cross section plane P and we use the same notation as
in Lemma 1. If we consider our inverse problem from the point of view of materials science, then
we have some material of shape Ω which we cut with a known cross section plane P . Therefore
let us assume that we know a and x0. If we also know xPi , wPi for i ∈ I then we could attempt
to solve for xi and wi in equations (6.1) and (6.2). Unfortunately (6.1) cannot be solved for xi
since x̃i = xi + tia solves the equation for every ti ∈ R. As we only have one more equation,
namely (6.2) we cannot solve for both ti and wi.

This means that if we know the 2D diagram which describes the cross section, then we only
know on which line each of the original generator points of the 3D diagram is located. Another
problem is that it does not seem reasonable to assume that the xPi ’s and wPi ’s are known. We
assume the 3D Laguerre diagram to be opaque, hence intersecting it with a plane will only reveal
the resulting cross section which shows us the polygonal shapes of the intersected cells. Now
we may wonder whether we can determine the generator points and weights, xPi , wPi for i ∈ I
from the observed polygons. This is in fact another inverse problem, given a tessellation of a
2D plane of polygons we want to find the generator points and weights of a Laguerre diagram
which describes this tessellation. The direct problem would be to determine the 2D Laguerre
diagram (i.e. the shapes of the polygonal cells) for given weights and generator points. This
inverse problem is addressed in [28] for 2D Laguerre diagrams. They refer to this problem as
the inversion of a Laguerre diagram. The authors show that this problem does not have a
unique solution, it turns out that completely different sets of weights and generator points may

1434 Q. Duan et al.

FIGURE 3. One Laguerre tessellation generated by two completely
different sets of circles.

Section 3. Property 2.2 has been mentioned in the literature
(see [3, 20]). However, in our view, it has received surprisingly
little attention. In particular, it has not been stressed that two
entirely different (in both location and radii) sets of circles can
generate the same tessellation.

3. PROBLEM DESCRIPTION

The problem of efficiently generating tessellations has been
extensively studied in computer science and computational
geometry. In this problem, the generators of the tessellation
are given, but the tessellation itself is unknown. A less-studied
problem, but one with extensive applications, is the inverse
problem. In this problem, the tessellation is given, but the
generators are unknown.

In the case of Voronoi tessellations, the inverse problem has
a number of elegant solutions. See, for example, [11, 13–16].
Unfortunately, these approaches do not easily extend to the
Laguerre case. One reason for this is that the inverse Voronoi
problem has more structure than the inverse Laguerre problem.
Another reason is that the inverse Voronoi problem has a unique
solution, whereas the inverse Laguerre problem in general has
an infinite number of solutions.

Finding a set of weighted generating points that generate
a given Laguerre tessellation is not too difficult; see
Algorithm 1. However, finding pertinent solutions—that is,
more suitable, meaningful solutions—is considerably harder.
Pertinent solutions possess extra structure that is imposed
by the modeler. Typical requirements arising in materials

FIGURE 4. Two generators determine the third.

science (see, e.g. [8, 17]), geometry (e.g. sphere packing [21]),
molecular biology and biochemistry (see, e.g. [22]) include the
following:

(i) The weights of the generating points should be non-
negative, so that the weighted points can be interpreted
as circles.

(ii) The generating points should ideally lie within the cells
they generate and, if they do not, they should not be too
far away.

(iii) The maximum radius should be as small as possible.
(iv) The average radius should correspond to a circle whose

average volume equals the average volume of a cell.
(v) The generating points should be close to the centers of

mass of the cells.

3.1. Weighted points that generate a given Laguerre
tessellation

We begin by describing how, for a given (normal) tessellation,
a set of weighted generator points can be determined by
specifying only the coordinates and weight of one weighted
generator point and one coordinate of the weighted generator
point of a neighboring cell.

Theorem 3.1. The weighted generator points of a given
normal 2D Laguerre tessellation can be entirely determined
from the weighted generator point of one interior cell, and one
coordinate of the weighted generator point of an adjacent cell.

Proof. For simplicity, we assume that the weights of the
generator points are positive, although the proof does not use

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, Vol. 57 No. 9, 2014

Figure 6.1: An example of a non-periodic 2D Laguerre diagram which can be represented by two
different sets of generator points and weights. The two sets of generator points are the black
dots and the red dots. The circles visualize the weights, the radii being the ri’s as in Definition
4. Image taken from [28].
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still yield the same Laguerre diagram. One of the examples given in their paper is shown in
Figure 6.1. In the same paper an algorithm is proposed which determines weights and generator
points, providing as input the locations of vertices and edges for each polygon. As the solution
is not unique the algorithm can be adapted to compute solutions satisfying some condition,
we may for example require the solution to be a centroidal Laguerre diagram. Given that we
consider (approximately) centroidal 3D Laguerre diagrams we could be tempted to think that
the resulting sectional Laguerre diagram which we compute via Lemma 1 is also centroidal. In
Figure 6.2 we have performed a simulation to assess this. We observe that the 2D diagram does
seem approximately centroidal, but there are however various cells which do not contain their
own generator point.

(a) (b)

Figure 6.2: (a): A 3D Laguerre diagram with a cross section plane. (b): A 2D Laguerre diagram
which is equal to the cross section as in (a), computed via Lemma 1.

As a result of the non-uniqueness of the generator points and weights we can only expect
to find estimates of xPi and wPi for i ∈ I, there is no direct approach to recovering the true
values. This means that there is no obvious method to find a reasonable estimate of xi and
wi for i ∈ I. We should also not forget that for cells Li with i ∈ {1, . . . , n} but with i /∈ I
we have no information at all. Suppose that we find a reasonable estimate of the 2D Laguerre
diagram as described in Lemma 1. Given the information we have at present it seems that
directly estimating the generator points and weights of all the cells using this estimated diagram
is out of reach. We conclude this chapter by noting that the sectional Laguerre diagrams do not
seem to have properties which may help in solving the direct and inverse problem.

57



7

Linking the volume distribution to the
sectional area distribution

In this chapter a model is proposed which links the cell volume distribution of a regularized
Laguerre diagram as generated by the procedure described in section 4.4.1 to its distribution of
cross sectional cell areas which are computed as described in section 4.4.2. In the derivation of
the model a scaling argument is used and an assumption about the shape of the cell is needed.
Before stating this assumption we need to introduce the notion of similarity.

Definition 5 (similarity in R3). [29, p. 177]. Let A,B ⊂ R3 be non-empty. We call A λ-similar
to B if there exists a bijection f : A→ B and a λ > 0 such that:

||f(x)− f(y)|| = λ||x− y||,

for all x,y ∈ A. The function f is also referred to as a similarity. λ is known as the ratio of
similitude.

Let us provide some more intuition for this definition. Suppose we have some set A ⊂ R3

which is λ-similar to the set B ⊂ R3. This essentially means that A and B have the exact same
shape. By uniformly scaling B, or more precisely, by scaling the distances between the points in
B with λ, the resulting set will not only have the same shape but also the same size as A.

A similarity with λ = 1 is usually called an isometry instead of a similarity. It is well-known
that translations, rotations, reflections and combinations thereof are isometries. It can be seen
that the composition of similarities is again a similarity. Hence, operations that can (consecu-
tively) be performed on a set while preserving similarity are: scaling, translations, rotations and
reflections (these are also known as similarity transformations). A similarity is also an affine
transformation. For more details on isometries and similarities in Euclidean space we refer to
[30, p. 96-104].

The concept of similarity formalizes the following well-known facts:

• For any area, scaling the distance between all points with a factor λ scales the area by a
factor λ2.
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• For any volume, scaling the distance between all points with a factor λ scales the volume
by a factor λ3.

This also means that given A,B ⊂ R3, with A λ-similar to B, then their volumes are related as
follows: |A| = λ3|B|. Let us now introduce how similarity is used in the derivation of a model.

Suppose we have a regularized Laguerre diagram, generated as per the procedure described
in section 4.4.1. Let us now consider a single cell L(1) which has volume 1: |L(1)| = 1. Assume
there exists another cell Li with volume |Li| which is similar to L(1). This means that Li is
λ-similar to L(1), with λ = 3

√
|Li|. If we now take a cross section of cell L(1) and consider its

area indicated by A(1) and if we take the same cross section of Li with area Ai then we find that:

Ai = λ2A(1) = 3
√
|Li|

2
A(1) = |Li|

2
3A(1). (7.1)

While the above derivation holds when cells have the exact same shape, if we assume that all
cells approximately have the same shape we hope this is still a reasonable starting point for a
model. Hence, we now state the assumption that is used in our model:

Assumption 1 (shape of cells). Given a Laguerre diagram {Li}ni=1 which is generated as per the
procedure described in section 4.4.1. Assume that there exists a convex set L(1) ⊂ R3 of volume
1 such that for all i ∈ {1, . . . , n} the cell Li is approximately similar to L(1).

Let us now immediately state the description of the model, which we discuss later.

Model 1. Consider a regularized Laguerre diagram as generated by the procedure described in
section 4.4.1.

• Let FV , fV be the cdf and pdf respectively, of the cell volume distribution, and let V ∼ FV .

• Let FA, fA be the cdf and pdf respectively, of the cross sectional area distribution, and let
A ∼ FA.

• Let FA(1) , fA(1) be the cdf and pdf respectively, of the cross sectional area distribution of a
Laguerre diagram which only has cells of volume 1. Let A(1) ∼ FA(1) .

• Let FV |I , fV |I be the cdf and pdf respectively, of the volume distribution of the cells that
appear in cross sections. Specifically, we define fV |I in terms of fV :

fV |I(v) =
v

1
3 fV (v)

E
(
V

1
3

) . (7.2)

Let VI ∼ FV |I .

Then, we assume the relationship between the aforementioned random variables is as follows:

A
d
= V

2
3

I A
(1). (7.3)

Where
d
= denotes equality in distribution, and where VI and A(1) are independent.

This model description likely raises the following questions:
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1. Why do we need the distribution FV |I , and what is the justification of its definition? Given
our earlier derivation of (7.1) one would naively think that we could take the following
relationship instead of (7.3):

A
d
= V

2
3A(1).

The reason we do not do this is that there is still something to account for. One can imagine
that when taking a cross section of a Laguerre diagram that larger cells are more likely to
appear in cross sections. The distribution FV |I represents the volume distribution of the
cells that appear in cross sections, its definition (7.2) is motivated in the next section.

2. Why are VI and A(1) assumed to be independent? Throughout this chapter we simply
assume this. In chapter 8 some related stereological problems are discussed, namely the
famous Wicksell’s corpuscle problem and a generalization thereof. We then see that for
these problems we can analogously define the random variables VI and A(1) and show that
they are independent in those settings.

3. What is the interpretation of the distribution FA(1)? One way to interpret this distribution
function is the cross sectional area distribution function of the convex set L(1) which is
mentioned in assumption 1. We could consider L(1) to be the average cell of a Laguerre
diagram of volume 1.

Let us provide an overview of the structure of the remaining sections in this chapter. In the
next section an estimator for fA is derived and in this derivation we further address question 1
as stated above. After its derivation we take a look at the distribution FA(1) in order to provide
a more elaborate answer to question 3. Finally, some useful properties of the proposed estimator
for fA are discussed. Question 2 is addressed in chapter 8.

7.1 Deriving an estimator for the sectional area distribu-
tion

In this section model 1 is used to derive an estimator for the sectional area distribution. In
model 1 the area distribution is described as the product of the two random variables A(1) and

V
2
3

I (with pdf’s fA(1) and f
V

2
3 |I respectively) which are assumed to be independent. Note that

in general, for independent and non-negative random variables X and Y the probability density
function of Z = XY is given by [31]:

fZ(z) =

∫ ∞
0

fX(x)fY

( z
x

) 1

x
dx. (7.4)

Where fX , fY , fZ denote the probability density functions of X, Y and Z respectively. Let us for
now assume that the random variable A(1) is bounded, therefore suppose that fA(1) is supported
on (0, amax] for some amax > 0. Using the aforementioned formula we find the following expression
for fA:

fA(a) =

∫ amax

0

fA(1)(x)f
V

2
3 |I

(a
x

) 1

x
dx. (7.5)

The next step is to find an expression for f
V

2
3 |I and for this purpose we take some inspiration

from Wicksell’s corpuscle problem. Recall that Wicksell’s problem was introduced in section 3.1.
Therefore, assume we have a box that is filled with spheres which follow some volume distribution.
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If we were to take a cross section of this box, we would observe that the volume distribution of
the spheres that appear in the cross section is not the same as the sphere volume distribution.
This is caused by the fact that it is more likely that the cross section plane passes through a
large sphere than through a small sphere. Let us introduce some notation. Assume that we have
a domain Ω = [0, l]3 for some l > 0 which contains non-overlapping spheres B1, . . . , Bn. Let

Vi := |Bi| denote the volume of sphere Bi, then we assume that V1, . . . , Vn
iid∼ FV . Let I be the

index set of spheres that appear in the random cross section plane P :

I = {i ∈ {1, . . . , n} : P ∩Bi 6= ∅}.
We now show that the distributions of Vi and Vi|i ∈ I are related, in terms of their respective
densities fV and fV |I .

Assume that a sphere of radius R is placed at random inside Ω. If we perform a horizontal
cross section (at a random height) on this box, the probability of observing the sphere is 2R

l .
This is simply the fraction of the height of box which is covered by the sphere, which is equal to
the diameter of the sphere divided by the height of the box. If the volume of a sphere is given
by Vi then its radius is given by:

Vi =
4

3
πR3 ⇐⇒ R =

(
3Vi
4π

) 1
3

,

and the probability of observing the sphere is therefore given by
(

3Vi
4π

) 1
3 2
l . We may therefore

state that:

P (i ∈ I|Vi = v) =

(
3v

4π

) 1
3 2

l
.

By applying Bayes’ rule we find the following relationship:

fV |I(v) =
P(i ∈ I|Vi = v)fV (v)∫
P(i ∈ I|Vi = x)fV (x)dx

=

(
3v
4π

) 1
3 2
l fV (v)∫ (

3x
4π

) 1
3 2
l fV (x)dx

=
v

1
3 fV (v)∫

x
1
3 fV (x)dx

=
v

1
3 fV (v)

E
(
V

1
3

) . (7.6)

Note that:

P(i ∈ I) =

∫
P(i ∈ I|Vi = x)fV (x)dx.

Recall that if X and Y are random variables with corresponding density functions fX and fY ,
and if Y = g(X) where g is a monotone function we may apply the well-known formula:

fY (y) = fX(g−1(y))

∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ . (7.7)

Now we use (7.7) to compute the density function of V
2
3
i |i ∈ I which we denote by f

V
2
3 |I :

f
V

2
3 |I(v) = fV |I

(
v

3
2

) 3

2

√
v

(7.6)
=

√
vfV

(
v

3
2

)
E(V

1
3 )

3

2

√
v =

3

2

vfV

(
v

3
2

)
E(V

1
3 )

. (7.8)

Now we simply plug (7.8) into (7.5) and we obtain:

fA(a) =
3a

2E(V
1
3 )

∫ amax

0

fA(1)(x)fV

((a
x

) 3
2

)
1

x2
dx (7.9)

=
3a

2E(V
1
3 )

∫ amax

0

fV

((a
x

) 3
2

)
1

x2
dFA(1)(x).
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The drawback of the approach is that we assume fA(1) and FA(1) to be known while we do not
have an expression for this distribution. Thanks to simulation, an accurate approximation can

be provided. Let a
(1)
1 , . . . , a

(1)
N

iid∼ FA(1) be a sample and let F ∗ denote its Empirical Cumulative
Distribution Function (ECDF). Because F ∗ approximates FA(1) we now define our estimator for
the cross sectional area distribution as:

f̂A(a) :=
3a

2E(V
1
3 )

∫ amax

0

fV

((a
x

) 3
2

)
1

x2
dF ∗(x)

=
3a

2E(V
1
3 )

1

N

N∑
i=1

fV

( a

a
(1)
i

) 3
2

 1(
a

(1)
i

)2 . (7.10)

For some parametric distributions it turns out that f
V

2
3 |I(v) is easy to compute. It is important

to state that the following expression for the estimator is equivalent, which is a direct consequence
of the definition of f

V
2
3 |I as in (7.8):

f̂A(a) =
1

N

N∑
i=1

f
V

2
3 |I

(
a

a
(1)
i

)
1

a
(1)
i

. (7.11)

Because the sample a
(1)
1 , . . . , a

(1)
N has such an important role in the estimator we briefly take a

look at the distribution FA(1) in the next section.

7.2 The sectional area distribution of unit cells

In this section the distribution of the sectional areas of cells of volume 1 (unit cells) is visualized
and its interpretation is discussed. Recall that this distribution is denoted by FA(1) , and that we
have the tools to take samples from this distribution. The reason to study this distribution is
that it plays an important role in the estimator (7.10) derived in the previous section. We also
consider some related distributions which help understand the shape of the distribution FA(1) . In
particular, we consider distributions of cross sectional areas, obtained by performing a random
cross section of a known geometrical shape.

As it turns out the distribution FA(1) depends on the parameter ε as in Algorithm 1. Recall
that we stated that we fixed ε = 0.001 for all simulations. For the sake of completeness the

dependence of F
(1)
A on ε is shown, to highlight that a different choice impacts the results. As

before, using the procedures described in sections 4.4.1 and 4.4.2, the Laguerre diagrams and the
cross section area distribution respectively are generated. We compute a Laguerre diagram with
n = 1000 cells and then K = 1000 horizontal cross sections are taken (more precisely, we compute
1000 Laguerre diagrams and take a single cross section for each diagram). Because the argument
revolves around the cells having volume 1 we take a tighter tolerance than usual: εf = 10−10.
This entire process is then repeated for different values of the tolerance ε, which controls the
number of Lloyd centering steps of Algorithm 1 and therefore the regularity of the cells. The
sample of cross sectional areas we obtain is visualized with a histogram in Figure 7.1. In this
figure we also make a comparison with the sectional area distribution of a sphere of volume 1
(red line). In section 8.1.1 the sectional area distribution for spheres is derived analytically.

We can clearly see in these results, that for smaller ε the right tail of the cross section
area distribution moves to the left. This can be explained because less regular cells (larger
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Figure 7.1: Histograms of the simulated cross section area distribution of a Laguerre diagram
with cells of volume 1 (unit cells) with different tolerances ε for Algorithm 1. The red line
indicates the pdf of the sectional area distribution of a sphere of volume 1 along with its vertical
asymptote which is indicated by the dashed line.

ε) may occasionally be ”elongated”, which may result in observing some slightly larger cross
section areas. Meanwhile, more regular cells (smaller ε) results in cells which become a sort of
approximation of a regular polyhedron and as a consequence we tend to observe slightly smaller
cross section areas by comparison. It can also be seen that for a smaller value of ε the area
distribution starts to look more similar to the sectional area distribution of a sphere, which
again hints at the cells becoming more regular or rounder for smaller ε.

Remark. As ε ↓ 0 Algorithm 1 will produce a truly centroidal Laguerre diagram, hence we also
expect the cross sectional area to converge to some distribution as ε ↓ 0.

Now the first five moments of the distribution FA(1) are computed, these are needed when
applying the method of moments to our estimator of the sectional area distribution. We consider
the sample of FA(1) as can be seen in Figure 7.1 (c). This sample contains N = 137300 areas.
The estimates of the first five moments are in Table 7.1.

Moment estimate
1 0.728332
2 0.694634
3 0.718036
4 0.773846
5 0.856534

Table 7.1: Estimates of the first five moments of the distribution FA(1) . These estimates are

obtained by computing 1
N

∑N
i=1

(
a

(1)
i

)j
for j ∈ {1, 2, . . . , 5}.

Remark. One way we could interpret FA(1) is as the cross sectional area distribution of the
average cell which has volume 1.

Because cells of a Laguerre diagram are convex polyhedra it is interesting to look at the
cross sectional area distribution of some known convex polyhedra. Previous studies [33, 32]
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Figure 7.2: Cross sectional area distribution of a regular convex dodecahedron (1); lines (2) and
(3) represent perturbed dodecahedra. Each of the twelve sides of a regular convex dodecahedron
is a plane, namely a pentagon. The sides of the perturbed dodecahedra were perturbed by
perturbing the angle of the normal vectors of these planes by some angle. For (2) the standard
deviation for the perturbation was chosen to be 10 degrees, for (3) it was chosen to be 30 degrees.
These results and this figure is taken from [32].

investigated the sectional area distribution of some (regular) convex polyhedra, and the shape
of some of these distributions appear similar to the distribution FA(1) . In [33] the sectional area
distribution of various convex regular polyhedra is considered such as the cube, the dodecahedron
and the tetrakaidecahedron. In this study a particularly creative approach was taken, all results
were obtained by measuring the sectional areas of metal wireframe models of the aforementioned
shapes. In this paper there are various visualizations of sectional area distributions which are
similar in appearance to FA(1) . In [32] results were instead obtained via computer simulations.
Among the distributions of convex polyhedra investigated in this paper the one that resembles
best FA(1) are the dodecahedron and the truncated octahedron. The sectional area distribution
of the dodecahedron is shown in Figure 7.2.

We have observed that the sectional area distribution of some convex regular polyhedra such
as the regular convex dodecahedron appear very similar to FA(1) . Moreover, we have seen that
for smaller values of ε (as in Algorithm 1) the cells do indeed become more round since the area
distribution starts to look more similar to the sectional area distribution of a sphere.

7.3 Properties of the estimator for the sectional area dis-
tribution

Now that an estimator for the sectional area distribution f̂A (7.10) is derived, its properties are

discussed. For now, let us simply assume that the estimator f̂A provides an accurate description
of the sectional area distribution. It is important to study as the estimator f̂A links the sectional
area distribution to the volume distribution.
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Assume that the cell volume distribution follows some known parametric distribution with
parameter θ = (θ1, . . . , θp) and density fV (x|θ). In that case f̂A is given by:

f̂A(a|θ) =
3a

2E(V
1
3 )

1

N

N∑
i=1

fV

( a

a
(1)
i

) 3
2 ∣∣∣∣θ

 1(
a

(1)
i

)2 . (7.12)

Also note that:

E(V
1
3 ) =

∫ ∞
0

x
1
3 fV (x|θ)dx.

Hence, given a sample of observed areas we may employ methods such as the method of moments
or maximum likelihood estimation to estimate θ. These methods allow directly estimating the
cell volume distribution.

Let us first consider the approach via the method of moments. Suppose that Â ∼ f̂A and let
k ∈ N, the k-th moment of Ã is given by:

E
(
Âk
)

=

∫ ∞
0

xkf̂A(x)dx

=

∫ ∞
0

xk
3x

2E(V
1
3 )

1

N

N∑
i=1

fV

( x

a
(1)
i

) 3
2

 1(
a

(1)
i

)2 dx

=
3

2E(V
1
3 )

1

N

N∑
i=1

∫ ∞
0

xk+1fV

( x

a
(1)
i

) 3
2

 1(
a

(1)
i

)2 dx

=
1

E(V
1
3 )

1

N

N∑
i=1

∫ ∞
0

(
u

2
3 a

(1)
i

)k+ 1
2

fV (u)
1√
a

(1)
i

du substitute u =

(
x

a
(1)
i

) 3
2

=
1

E(V
1
3 )

1

N

N∑
i=1

(
a

(1)
i

)k ∫ ∞
0

u
2
3k+ 1

3 fV (u)du

=
E
(
V

2
3k+ 1

3

)
E
(
V

1
3

) 1

N

N∑
i=1

(
a

(1)
i

)k
.

A downside of the estimator (7.10) is that it depends on data, without access to a sample of
FA(1) one cannot use it. However, if the parameters of the underlying volume distribution are
estimated via the method of moments we only need to know some moments of FA(1) instead of
a sample. In this case we can simply rely on Table 7.1 with estimates of the first five moments
which can easily be used in applications. Let a1, . . . , am be a sample of areas, when using the
method of moments we deal with equations of the form:

1

m

m∑
j=1

akj = E
(
Âk
)

=
E
(
V

2
3k+ 1

3

)
E
(
V

1
3

) 1

N

N∑
i=1

(
a

(1)
i

)k
for k = 1, 2, . . . . (7.13)

Once again, if the cell volume distribution is a parametric distribution with parameter θ and
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density fV (x|θ), then we may define:

gk(θ) :=
E
(
V

2
3k+ 1

3

)
E
(
V

1
3

) .

Note that when V is lognormally distributed there is a simple closed-form expression for arbitrary
moments of V as in (2.2), hence gk is easy to compute. When V is distributed as a (generalized)
gamma distribution then arbitrary moments can be expressed in terms of the gamma function
as in (2.4). By the method of moments we may attempt to solve for θ in the following (possibly
nonlinear) system of equations:

1
m

∑m
j=1 a

k
j

1
N

∑N
i=1

(
a

(1)
i

)k = gk(θ) for k ∈ {1, . . . , p}. (7.14)

If it is not possible solve for θ analytically we may resort to numerical methods. As for maximum
likelihood estimation it is likely necessary to resort to use numerical methods for maximizing the
(log)-likelihood. The method of moments estimate is a good option for the initial guess to the
maximization algorithm that is used.

7.4 Conclusion

In this chapter we derived an estimator for the pdf of the sectional area distribution. The estima-
tor provides a clear relationship between the distribution of sectional areas and the distribution
of the cell volumes. A downside of the estimator is that it depends on data, namely on a sample
of the distribution FA(1) . When assuming a specific parametric distribution for the cell volume
distribution we showed how to use the estimator for estimating the parameters of the cell vol-
ume distribution. In the case of estimating these parameters via the method of moments we
note that a sample of FA(1) is no longer needed, it suffices to know estimates of the first few
moments of this distribution which are provided in Table 7.1. In the derivation of the estimator
some assumptions have been made which still require justification, this is addressed in the next
chapter.
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8

Applying the estimator to related
stereological problems

In the previous chapter an estimator for the sectional area distribution was derived, un-
der some assumptions. In this chapter we consider two related stereological problems. In these
settings we show that the estimator can be defined analogously and we show that these aforemen-
tioned assumptions hold. We begin with studying its relation to Wicksell’s corpuscle problem:
in this case the pdf of the sectional area distribution can be derived analytically. We show that
when applied to Wicksell’s corpuscle problem the estimator of the sectional area distribution
corresponds to the sectional area pdf. Then, a generalization of Wicksell’s corpuscle problem is
discussed, which considers similar convex particles instead of spheres. In this case there is still an
analytical expression for pdf of the sectional area distribution. We also show that our estimator
for the sectional distribution corresponds to this sectional area pdf. The stereological problem
of similar convex particles also provides an explanation for assumption 1.

Recall that the estimator of for the sectional area distribution (7.10) depends on a sample
of FA(1) . Throughout this chapter we consider the estimator in the form (7.9) where we assume
fA(1) to be known. This means that fA is given by:

fA(a) =
3a

2E(V
1
3 )

∫ amax

0

fA(1)(x)fV

((a
x

) 3
2

)
1

x2
dx.

This is equivalent to:

fA(a) =

∫ amax

0

fA(1)(x)f
V

2
3 |I

(a
x

) 1

x
dx,

with f
V

2
3 |I defined as in (7.8). As a result, if A ∼ fA then A can be decomposed as the product

of two independent random variables. So, let A be a random variable distributed as the sectional
area distribution in Wicksell’s corpuscle problem (or in the generalization we consider). If we
want to show that A can be decomposed as the product of the two independent random variables
as in model 1 it is sufficient to show that fA is indeed the density of A.
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8.1 Wicksell’s corpuscle problem

It is interesting to compare cutting a Laguerre diagram with a plane to cutting a box filled with
spheres with a plane, also known as Wicksell’s corpuscle problem [15]. Recall that this problem
was introduced in section 3.1. The main purpose of this section is to show that the sectional
area distribution in this problem setting corresponds with our estimator (7.9). In the derivation
of our estimator very little use is made of properties of Laguerre diagrams, this section also
highlights that the estimator may be applied to shapes other than cells of a Laguerre diagram
such as spheres.

If we consider Wicksell’s original statement of the problem, as stated in section 3.1 we see
that Wicksell considers the problem in terms of the diameters of spheres. We consider it in terms
of the radii of the spheres. Let f be the probability density function associated with the radius
of the 3D spheres. Let φ be the probability density function of the radii of the apparent 2D
circles (the circles that are observed in the plane section). Recall equation (3.1):

φ(x) =
x

E(R)

∫ ∞
x

f(r)√
r2 − x2

dr.

Here, E(R) is the average radius of the 3D spheres:

E(R) =

∫ ∞
0

rf(r)dr.

Let us now express (3.1) in terms of the observed areas instead of the observed radii. As the
apparent radius r of a circle has density φ, then the observed area is given by A = πr2 with
density f̃A:

f̃A(a) = φ

(√
a

π

)
1

2
√
aπ

=

√
a
π

E(R)

(∫ ∞
√

a
π

f(r)√
r2 − a

π

dr

)
1

2
√
aπ

=
1

2πE(R)

∫ ∞
√

a
π

f(r)√
r2 − a

π

dr,

(8.1)

which we obtain via (7.7). Via a change of variables we express f(r) in (8.1) in terms of fV . This
density fV is defined as the probability density function which describes the volume distribution
of the spheres. Hence, we substitute:

r =

(
3v

4π

) 1
3

⇐⇒ v =
4

3
πr3.

Once again, we use the change of variables formula (7.7) and obtain:

f(r) = fV

(
4

3
πr3

)
4πr2.

Let us also define the following constant:

amax :=
π(

4
3π
) 2

3

=
3

√
9π

16
. (8.2)

This constant amax is the largest possible cross section area of a sphere of volume 1. Then, it
can be shown that:

f̃A(a) =
3

4amaxE(V
1
3 )

∫ ∞
a

amax

fV

(
x

3
2

)
√

1− a
xamax

dx. (8.3)
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See appendix E for more details on the computation). The original equation of Wicksell contained
the average radius, after the change of variables (8.3) the sectional area pdf instead depends on
the expected value of a random variable V ∼ fV . The reason (3.1) is rewritten such that it is
expressed in terms of probability densities of the observed sectional area distribution and the
sphere volume distribution is that it allows for easier comparison to model 1 and the estimator
(7.9). As in model 1, a similar notation is used:

• Let fA be the probability density function of the observed areas of the spheres (cross
sectional areas), and let A ∼ fA.

• Let fV |I be the probability density function of the volumes of the spheres that appear in
the cross section (the observed volume distribution), and let VI ∼ fV |I .

• Let fV be the probability density function of the volumes of the spheres.

• Let fA(1) be the probability density function of the area resulting of taking a random cross
section of a sphere of volume 1, and let A(1) ∼ fA(1) .

In the following sections we show that:

A
d
= V

2
3

I A
(1), (8.4)

where
d
= denotes equality in distribution, and where VI and A(1) are independent. Recall that

the relationship between the densities fV and fV |I was defined in (7.6) as:

fV |I(v) =
v

1
3 fV (v)

E
(
V

1
3

) ,
where V ∼ fV .

8.1.1 The sectional area distribution of a sphere of volume 1

Assume that we have a domain Ω = [0, l]3 for some l > 0 which contains non-overlapping spheres
B1, . . . , Bn. Let Vi := |Bi| denote the volume of sphere Bi.

As with the Laguerre diagrams a random horizontal cross section is taken at some height
zk ∼ U(0, l). We compute the intersection of each sphere with the plane:

Si := Bi ∩ {(x, y, z) ∈ R3 : z = zk} for i ∈ {1, . . . , n}.

We define the following index set:

I = {i ∈ {1, . . . , n} : Si 6= ∅}. (8.5)

Then, the following areas are observed:

Ai = area(Si) for i ∈ I.

Trivially, we have that:

Ai =

(
Ai

V
2
3
i

)
︸ ︷︷ ︸
:=A(1)

V
2
3
i for i ∈ I.
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Remark. While we define A(1) as the fraction Ai

V
2
3
i

we show that it is equivalent to define it as

the area of a random cross section of a sphere of volume 1.

Assume we have a sphere of radius R, and in a cross section we observe a circle of radius r.
The volume, cross section area and A(1) are respectively given by:

V =
4

3
πR3, A = πr2, A(1) =

A

V
2
3

=
πr2(

4
3πR

3
) 2

3

= amax
r2

R2
, (8.6)

with amax as in (8.2). We now use that the probability of observing a circle of radius r with
r1 ≤ r ≤ r2. When cutting a sphere with radius R at an arbitrary height this probability is
given by:

P(r1 ≤ r ≤ r2) =
1

R

(√
R2 − r2

1 −
√
R2 − r2

2

)
.

This probability is used to determine the distribution function FA(1)(a). Clearly, the expression
in (8.6) shows that 0 ≤ A(1) ≤ amax. Consider 0 ≤ a ≤ amax, the distribution function FA(1)(a)
for a sphere with radius R does not depend on R (as a result it also does not depend on the
volume of the sphere):

FA(1)(a) = P
(
amax

r2

R2
≤ a

)
= P

(
r ≤

√
a

amax
R

)
= 1− 1

R

√
R2 −R2

a

amax
= 1−

√
1− a

amax
.

Let us now show that this is also the sectional area distribution of a sphere of volume 1. Let R1

be the radius of a sphere of volume 1, then:

4

3
πR3

1 = 1 ⇐⇒ R1 =

(
3

4π

) 1
3

.

It follows that the largest cross section area of a sphere of volume 1 is given by amax:

πR2
1 = π

(
3

4π

) 2
3

=
3

√
9π

16
= amax.

With amax as in (8.2). Assume that in a cross section of a sphere with radius R1 a circle of
radius r ≤ R1 is observed. The sectional area distribution of this sphere is given by:

FA(1)(a) = P
(
πr2 ≤ a

)
= P

(
r ≤

√
a

π

)
= 1− 1

R1

√
R2

1 −
a

π
= 1−

√
1− a

πR2
1

= 1−
√

1− a

amax
.

As announced, the same distribution function is obtained. Taking the derivative of this distri-
bution function yields the density fA(1) :

fA(1)(a) =
d

da
FA(1)(a) =

1

2amax

√
1− a

amax

for 0 ≤ a < amax. (8.7)

8.1.2 Computing the probability density function of the sectional area
distribution

In previous section we have shown that indeed

A
d
= V

2
3

I A
(1).
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Because it was shown that A(1) does not depend on the volume of a sphere this implies that

A(1) and V
2
3

I are independent. Moreover, the probability density functions of A(1) was derived
in (8.7). Let us now plug the density of fA(1) (8.7) into the estimator (7.9):

fA(a) =
3a

2E(V
1
3 )

∫ amax

0

fA(1)(y)fV

((
a

y

) 3
2

)
1

y2
dy

=
3a

2E(V
1
3 )

∫ amax

0

1

2amax

√
1− y

amax

fV

((
a

y

) 3
2

)
1

y2
dy

=
3

4amaxE(V
1
3 )

∫ ∞
a

amax

fV

(
x

3
2

)
√

1− a
xamax

dx substitute x =
a

y

= f̃A(a).

We may now conclude that indeed fA ≡ f̃A and therefore when applied to Wicksell’s corpuscle
problem the estimator (7.9) corresponds to the analytical solution.

8.2 The corpuscle problem for similar convex particles

We have shown that the estimator for the sectional area distribution corresponds to the integral
relationship that describes Wicksell’s corpuscle problem (3.1). However, with this knowledge it
may still seem a bit ambitious to then simply apply the estimator to Laguerre diagrams. In this
section we show that the estimator also corresponds to the sectional area distribution pdf in a
generalization of Wicksell’s problem. Say we take some convex particle of our choice. Assume
that a domain is filled with instances of this particular convex particle, in random sizes and
orientations. More precisely, we assume all the convex particles in the domain to be similar
(recall Definition 5). Such a convex particle is also referred to as a convex body, a convex body
is a compact convex set with a non-empty interior.

The analytical derivation of the pdf associated with the sectional area distribution in this
problem can be found in Santaló’s works on integral geometry [34, p. 286, 287]. Let us introduce
the necessary notation and the pdf as described in [34].

Suppose we have some convex body Q which contains a certain number of convex and non
overlapping particles distributed at random. Assume that all particles are similar to some convex
body K. Let λ be the ratio of similitude. We denote Kλ to be the convex body which is similar
to K with ratio λ. Note that this means that K1 = K. Let H(λ) be the pdf which describes
the distribution of the ratios of similarity of the convex particles. We intersect Q with a random
plane E and let h(σ) be the pdf which describes the distribution of the observed sectional areas.
Finally, let φ(σ) be the pdf of the area σ of E ∩K and denote by σm the maximal value of σ
(this means that φ is supported on (0, σm]). Then, Santaló [34] derives the following equation:∫ ∞

√
σ
σm

φ
( σ
λ2

) H(λ)

λ
dλ = αh(σ), (8.8)

where α is a constant related to the normalization constant of the density h. Now we need to
know the relation between H(λ) and the volume distribution in order to show that this expression
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is equivalent to our area estimator. This is fairly straightforward. Note that the volumes of Kλ

and K are related as follows:
|Kλ| = λ3 |K| .

Now we simply assume that K has volume 1. Hence, by setting V = λ3 = |Kλ| we get:

fV (λ3) =
H(λ)

3λ2
⇐⇒ H(λ) = 3λ2fV (λ3).

As before, fV indicates the pdf of the volume distribution of the particles. Plugging this into
(8.8) yields:

h(σ) =
1

α

∫ ∞
√

σ
σm

φ
( σ
λ2

) 3λ2fV (λ3)

λ
dλ

=
1

α

3σ

2

∫ σm

0

φ (x) fV

((σ
x

) 3
2

)
1

x2
dx substitute x =

σ

λ2
. (8.9)

Now we rewrite (8.9) in terms of the notation that was introduced earlier. This means that
h ≡ fA and φ ≡ fA(1) . Then we observe that the pdfs in (8.9) and (7.9) are equal up to the
multiplication of a constant, as the constant α has not yet been computed. Because both are
proper density functions they must therefore be equal and we have:

1

α
=

1

E
(
V

1
3

) ⇐⇒ α = E
(
V

1
3

)
.

When assumption 1 holds exactly, meaning that all cells in the Laguerre diagrams we consider
are similar, our estimator corresponds to the analytical solution (8.9). This justifies assumption
1.

Remark. In the previous chapter we state that FA(1) may be interpreted as the sectional area
distribution of the average cell which has volume 1. We could say that we interpret K as this
average cell, and cells of the Laguerre diagram are assumed to be approximately similar to this
average cell.

8.2.1 Solution of the corpuscle problem for similar convex particles

Recall that for Wicksell’s corpuscle problem, the analytical solution was presented in chapter
3. In Wicksell’s problem f is the unknown the probability density function associated with the
radii of the 3D spheres. φ is the known probability density function of the radii of the apparent
2D circles. In chapter 3 we remarked that f can be expressed in terms of φ, which solves the
problem. A solution of Santaló’s integral equation, (8.8) has only recently been discovered in
[35]. By a solution of this equation we refer to solving it for H(λ). In this paper this solution is
derived by first assuming it has a particular form, the solution is eventually derived and then the
authors provide some technical conditions for its existence and uniqueness. Due to the way we
derived our estimator we can provide a direct way of arriving at this solution. This is a result of
the decomposition of the sectional area distribution into the product of two independent random
variables. Let us now derive this result.

Let Λ ∼ H and define:

HI(λ) =
λH(λ)

E(Λ)
for λ > 0.
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Clearly, HI(λ) is a proper probability density function. Let ΛI ∼ HI , A ∼ h and B ∼ φ. We
now show that the following relationship holds:

A
d
= BΛ2

I .

with B and Λ2
I independent, and

d
= denoting equality in distribution. The density of Λ2

I denoted
by fΛ2

I
is given by:

fΛ2
I
(λ) = HI(

√
λ)

1

2
√
λ

=

√
λH(
√
λ)

E(Λ)

1

2
√
λ

=
1

2

H(
√
λ)

E(Λ)
. (8.10)

Via (7.4) we compute the density function of the random variable A := BΛ2
I which we denote

by h̃, assuming B and Λ2
I are independent:

h̃(σ) =

∫ σm

0

φ(x)fΛ2
I

(σ
x

) 1

x
dx

=
1

E(Λ)

∫ σm

0

φ(x)
1

2x
H

((σ
x

) 1
2

)
dx

=
1

E(Λ)

∫ ∞
√

σ
σm

φ
( σ
λ2

) H(λ)

λ
dλ substitute λ =

(σ
x

) 1
2

. (8.11)

As before, the functions h̃ as in (8.11) and h as in (8.8) are equal up to the multiplication of a
constant. As both are proper density functions we obtain that h̃ ≡ h and:

α = E(Λ).

The solution of the problem can be expressed in terms of (inverse) Mellin transforms [35]. There
are various technical conditions for the existence of (inverse) Mellin transforms, in the remaining
derivation we simply assume that these transforms exist. For an overview of the Mellin transform
we refer to chapter 12 of [36]. For technicalities related to the Mellin transform in this problem
we refer to [35]. Let us now consider the definition of the Mellin transform.

Definition 6 (Mellin transform). [36]. The Mellin transform is defined for a function f :
(0,∞)→ R as:

M(f(x))(s) = f∗(s) =

∫ ∞
0

xs−1f(x)dx,

whenever this integral converges absolutely. In this setting we consider s ∈ C, meaning that it
is a complex integral.

These integrals do not typically converge for all s ∈ C. In the case that f is a pdf on (0,∞)
the integral converges at least for s ∈ C such that Re(s) = 1. Re(s) indicates the real part of s.
There exists also an inverse Mellin transform M−1 with an explicit formula which under some
technical assumptions satisfies: M−1(f∗(s))(x) = f(x). There is a clear relationship between
Mellin transforms and expected values of random variables. Given a density f and a random
variable X ∼ f we have f∗(s) = E(Xs−1). If we consider the Mellin transform of the density
associated with the product of two independent random variables then this is computed as the
product of the Mellin transforms of their densities. This is similar as to how the expectation
of the product of two independent random variables is the product of their expectations, and is
referred to as the Mellin convolution theorem. Applying this theorem yields:

h∗(s) = φ∗(s)f∗Λ2
I
(s). (8.12)
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The Mellin transform of fΛ2
I

(8.10) may be written as:

f∗Λ2
I
(s) =

∫ ∞
0

xs−1 1

2

H(
√
x)

E(Λ)
dx

(λ=
√
x)

=

∫ ∞
0

λ2s−1H(λ)

E(Λ)
dλ =

M (H(λ)) (2s)

E(Λ)
=
H∗(2s)
E(Λ)

.

Plugging this back into (8.12) yields:

h∗(s) = φ∗(s)
H∗(2s)
E(Λ)

⇐⇒ H∗(s) = E(Λ)
h∗( s2 )

φ∗( s2 )
.

Note that the above equivalence holds when assuming φ∗( s2 ) 6= 0. Taking the inverse Mellin
transform on both sides yields the solution as found in [35]:

H(λ) =M−1 (H∗(s)) (λ) =M−1

(
E(Λ)

h∗( s2 )

φ∗( s2 )

)
(λ) = E(Λ)M−1

(
h∗( s2 )

φ∗( s2 )

)
(λ). (8.13)

A property of the inverse Mellin transform is that constants may be pulled out, hence we may
pull E(Λ) out of the inverse transform.

It is interesting to note that this problem may also be interpreted as a multiplicative deconvo-
lution problem. In a more general setting the problem may be described as follows, let Y ∼ fY ,
X ∼ fX and ε ∼ fε then we consider:

Y = Xε,

With X and ε independent. The densities fε and fY are assumed to be known and we need
to solve for the density fX . Effectively the variable of interest is distorted by multiplicative
noise, and only this noisy data is observed. In [37] it is shown that a sufficient condition for the
determination of fX to be an identifiable problem is that at least one of the variables X or ε to
be non-negative. In practice we have data, samples of fY , and we may attempt to estimate fX .
Estimators for fX have been proposed in for example [37], in [38] another estimator is considered
in the case that both X and ε are non-negative. These estimators use a non-parametric estimator
of the Mellin transform of fY and they assume that the Mellin transform of fε is known. One
reason we do not attempt to use these is that in our case even fε or in the notation we tend to
use: fA(1) ≡ φ is not a known function. The estimators in the aforementioned paper do assume
this density to be known and further analysis is required to determine their performance when
only an approximation of this density is provided. Finally, we need to stress that in our case
(8.8) is merely an approximation to the problem we consider. For now it seems more sensible
to investigate whether we can use our estimator in the case of parametric volume distributions,
which is much more tractable. Nonetheless, if the proposed estimator perform well enough in
the parametric case, it may provide a good starting point for estimating volume distributions in
a non-parametric setting.

8.3 Conclusion

In this chapter we considered two stereological problems, Wicksell’s corpuscle problem and one
of its possible generalizations. In both problems an analytical expression for the sectional area
distribution is available and it corresponds to the estimator for the sectional area distribution
proposed in this thesis. This provides support on the use of the estimator for Laguerre diagrams.
We should keep in mind that using this estimator means that we assume cells in a Laguerre
diagram to be approximately similar (assumption 1).
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9

A lognormal cell volume distribution

An estimator for the cross sectional area distribution was derived in chapter 7 and in chapter
8 we provided theoretical support for its use. Throughout this chapter we assume that that
the volume distribution of the cells follows a lognormal distribution. As mentioned before, in
materials science the lognormal distribution is a well-known parametric distribution used for
approximating the grain size distribution both in 3D and in 2D. This motivates us to consider
this particular instance. We obtain the estimator for the cross sectional area distribution (7.10)
in the lognormal case, and examine two possible approaches for estimating the parameters µ
and σ of the cell volume distribution. Finally, we perform simulations to verify the reasonability
of this approach for estimating the parameters of the underlying lognormal distribution from a
sample of observed areas.

Recall the estimator in its general form:

f̂A(a) =
3a

2E(V
1
3 )

1

N

N∑
i=1

fV

( a

a
(1)
i

) 3
2

 1(
a

(1)
i

)2

=
1

N

N∑
i=1

f
V

2
3 |I

(
a

a
(1)
i

)
1

a
(1)
i

.

with f
V

2
3 |I defined as in (7.8). As it turns out, when fV is the density of a lognormal distribution

then f
V

2
3 |I also corresponds to a lognormal distribution but with different parameters. More

details on the derivation are presented in appendix F. For a lognormal volume distribution with
parameters µ and σ2 we show that f

V
2
3 |I is the pdf of a lognormal distribution with parameters

µ̄ = 2
3µ+ 2

9σ
2 and σ̄2 = 4

9σ
2. As a result the estimator for the area distribution (7.10) becomes

a mixture of lognormal distributions and its density function and distribution function are given
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by:

f̂A(a|µ, σ) =
1

N

N∑
i=1

1

a
√

2π 4
9σ

2
exp

−
(

log(a)− 2
3µ− 2

9σ
2 − log

(
a

(1)
i

))2

8
9σ

2

 (9.1)

F̂A(a|µ, σ) =
1

N

N∑
i=1

Φ

 log(a)− 2
3µ− 2

9σ
2 − log

(
a

(1)
i

)
2
3σ

 . (9.2)

Here, we let Φ denote the distribution function of a standard normal distribution. Given that
we observe areas a1, . . . , am, we would like to fit the proposed estimator of the sectional area
distribution. This can be done by estimating the parameters µ and σ. We can then assess
whether the distribution as in (9.1) and (9.2) provides a good fit and whether we retrieve the
original µ and σ of the volume distribution. We derive two estimators: the first one based on the
method of moments, the second based on numerically computing maximum likelihood estimates
of µ and σ.

9.1 Parameter estimation

We may obtain estimators for µ and σ via the method of moments, by (7.14). This implies
solving the following system of equations:

1

m

m∑
j=1

aj =
1

N

N∑
i=1

(
a

(1)
i

)
exp

(
2

3
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4

9
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)
(9.3)

1
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1

N

N∑
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(
a

(1)
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)2

exp
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4

3
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4

3
σ2

)
. (9.4)

Solving for µ and σ yields the following moment estimators:

µ̂MM =
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 (9.5)
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While µ̂MM is always well-defined, this is not in general true for σ̂. Due to Jensen’s inequality
we have:

1
m

∑m
j=1 a

2
j(

1
m

∑m
j=1 aj

)2 ≥ 1 and

(
1
N

∑N
i=1 a

(1)
i

)2

1
N

∑N
i=1

(
a

(1)
i

)2 ≤ 1.

This means that the term within the square root may be negative. If the estimator tends to
provide reasonable estimate of σ for most values of σ, then we expect to only run into trouble
when the true value of σ is close to zero. To ensure that the estimator is always well-defined, we
use a corrected method of moments estimator for σ:

σ̂MM =
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It is useful to remark that 1
N

∑N
i=1 a

(1)
i and 1

N

∑N
i=1

(
a

(1)
i

)2

were computed before (see Table

7.1). Hence, these values may be plugged into (9.5) and (9.6) to obtain simple formulas for the
estimators:
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Now that method of moment estimators for µ and σ are derived, we consider the maximum
likelihood method. The log-likelihood is given by:
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The maximum likelihood estimator is then defined as:

(µ̂MLE, σ̂MLE) = arg max
µ,σ

l(µ, σ). (9.10)

Let us define:

bij := log(aj)−
2

3
µ− 2

9
σ2 − log

(
a

(1)
i

)
and β :=

1
8
9σ

2
.
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Via straightforward computation we find the partial derivatives of the log-likelihood. For more
details of the computation see appendix D.

∂
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4
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) (9.11)

∂

∂σ
l(µ, σ) = −mβ 8

9
σ +

m∑
j=1

∑N
i=1 exp

(
−b2ijβ

) (
4
9σ
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16
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i=1 exp

(
−b2ijβ

) . (9.12)

We first run preliminary simulations. We generate a Laguerre diagram with n = 1000 cells
with a lognormal volume distribution, then we take K = 1000 horizontal cross sections (hence we
compute 1000 Laguerre diagrams and take a single cross section of each diagram). The samples of
cross section areas are then combined into a single large sample for each lognormal distribution
considered. In simulations in the next section we do not combine samples: we estimate the

parameters from just one cross section. We take σ ∈ {0.3, 0.6, 0.9} and either µ = −σ2

2 such

that E(V ) = 1 or µ = log(10) − σ2

2 such that E(V ) = 10. Then µ and σ are estimated from
the observed sectional areas both via the method of moments (9.5), (9.6) and via maximum
likelihood estimation (9.10). The maximum likelihood estimates of µ and σ are obtained by
numerically maximizing the log-likelihood (9.9) using the Broyden–Fletcher–Goldfarb–Shanno
algorithm (BFGS), via the implementation that is provided in the open-source Python package
SciPy. As initial value, the estimates of µ and σ obtained with the method of moments are
used. Because it is not obvious that the log-likelihood is a concave function contour plots of the
log-likelihood are shown in Figure 9.1. It can clearly be seen that in these cases there is indeed
a unique maximum. For further simulations we will assume that the log-likelihood has a unique
maximum

In Table 9.1 the results of these simulations are shown. In Table 9.1 we observe the actual
values of µ and σ, which describe the lognormal cell volume distribution as well as the result
of estimating the parameters from the cross sectional areas. It is important to stress that this
table only contains point estimates. Each pair of estimates of µ and σ is estimated from a large
sample of areas, which is obtained by combining 1000 cross sections. In Figure 9.2 we show the
result of plugging the true values of µ and σ as well as the estimates (as presented in Table
9.1) into the estimator of the sectional area distribution (9.1). From a graphical inspection, we

can conlude that the estimator f̂A describes the observed distributions quite accurately. The
three densities, namely f̂A with (µ, σ), (µ̂MM, σ̂MM) and (µ̂MLE, σ̂MLE) are quite close in all the
considered instances.
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Figure 9.1: Contour plots of the log-likelihood for samples of cross sectional areas from Laguerre
diagrams with a lognormal cell volume distribution. We consider σ ∈ {0.3, 0.6, 0.9} and either

µ = −σ2

2 such that E(V ) = 1 or µ = log(10) − σ2

2 such that E(V ) = 10 (where E(V ) is the
expected cell volume).
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Figure 9.2: The cross sectional area distribution when considering Laguerre diagrams with a

lognormal cell volume distribution. We consider σ ∈ {0.3, 0.6, 0.9} and either µ = −σ2

2 such that

E(V ) = 1 or µ = log(10) − σ2

2 such that E(V ) = 10 (where E(V ) is the expected cell volume).

We plot f̂A with the true values of µ and σ, along with f̂A where µ, σ are estimated via the
Method of Moments (MM), or Maximum Likelihood Estimation (MLE).
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σ σ̂MM σ̂MLE µ µ̂MM µ̂MLE

0.3 0.305 0.309 −0.0450 −0.0485 −0.0504
0.3 0.307 0.305 2.26 2.25 2.25
0.6 0.614 0.611 −0.180 −0.200 −0.191
0.6 0.617 0.615 2.12 2.10 2.10
0.9 0.929 0.930 −0.405 −0.458 −0.449
0.9 0.933 0.934 1.90 1.83 1.84

Table 9.1: Simulation results. µ and σ are the true values chosen for the volume distribution
for the Laguerre diagram; µ̂MM and σ̂MM are the method of moments estimates computed from
the observed cross sectional areas (9.5), (9.6). µ̂MLE and σ̂MLE are the maximum likelihood
estimates computed from the observed cross sectional areas (9.10).

9.2 Simulation study

In this section a more extensive approach to simulations is considered. We are particularly
interested in the performance of the estimators when estimating the parameters µ and σ from
a single cross section. By repeating simulations multiple times we investigate how close the
parameter estimates are to the actual parameter values.

In this section we use the following simulation procedure. First, the number of cells n along
with parameters µ and σ of the lognormal volume distribution are chosen. Then, we:

1. Generate a Laguerre diagram with n cells, and a lognormal cell volume distribution with
parameters µ and σ as per the procedure in section 4.4.1.

2. Take a single cross section as per the procedure in section 4.4.2. This yields a sample
a1, . . . , am of cross sectional areas.

3. Compute the estimates µ̂MM, σ̂MM as in (9.5), (9.6) and µ̂MLE, σ̂MLE as in (9.10) given the
sample a1, . . . , am.

4. Steps 1,2 and 3 are repeated K times such that we have estimates:
(µ̂MM,1, σ̂MM,1), (µ̂MM,2, σ̂MM,2), . . . , (µ̂MM,K , σ̂MM,K), and:
(µ̂MLE,1, σ̂MLE,1), (µ̂MLE,2, σ̂MLE,2), . . . , (µ̂MLE,K , σ̂MLE,K).

First, we consider n = 4000 and n = 16000 cells with various combinations of µ and σ. We
repeat steps 1,2 and 3 forK = 100 times. Following the outlined steps yields a sample of estimates
of µ and σ. For these samples we compute the average of µ̂MM,1, µ̂MM,2, . . . , µ̂MM,K and the
average of σ̂MM,1, σ̂MM,2, . . . , σ̂MM,K ; the same is done for the MLE estimates. For these averages
a 95% confidence interval is computed via bootstrapping. Specifically the Basic bootstrap, also
known as the bootstrap pivotal confidence interval [39] via B = 10000 bootstrapped samples.
Next, point estimates of the standard deviation are computed for each sample of parameter
estimates. Finally, we also compute the average number of observed areas in the samples of cross
sectional areas. The results for MM are given in Table 9.2 and the results for MLE are in Table
9.3.

Let us first discuss the results in Table 9.2. It seems reasonable to say that on average the
estimates tend to be quite accurate, since the average estimates are close to the actual values.
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What is peculiar is that in some cases the average estimates are better for n = 4000 cells compared
to n = 16000 cells. We do not expect a smaller sample of sectional areas to lead to a better
estimate. What is expected is that the sample standard deviation of the estimated parameters
is smaller in every case, when comparing n = 16000 to n = 4000. Something which is of concern
is that the confidence intervals of the average estimates does not always contain the true value
of the parameter. This suggests that the estimator may be biased.

n = 4000 cells

σ µ

actual
value

average
estimate

95% CI sd actual
value

average
estimate

95% CI sd NA

0.3 0.291 [0.283, 0.306] 0.073 −0.0450 −0.0456 [−0.0515,−0.0355] 0.052 343
0.3 0.290 [0.282, 0.303] 0.066 2.26 2.26 [ 2.26 , 2.27 ] 0.054 342
0.6 0.606 [0.600, 0.617] 0.053 −0.180 −0.194 [−0.201 ,−0.182 ] 0.061 335
0.6 0.612 [0.606, 0.622] 0.052 2.12 2.10 [ 2.09 , 2.11 ] 0.062 335
0.9 0.907 [0.899, 0.921] 0.071 −0.405 −0.422 [−0.433 ,−0.405 ] 0.091 318
0.9 0.905 [0.893, 0.924] 0.10 1.90 1.87 [ 1.86 , 1.90 ] 0.13 320
1.2 1.19 [1.17 , 1.21 ] 0.13 −0.720 −0.734 [−0.756 ,−0.695 ] 0.19 299
1.2 1.21 [1.19 , 1.23 ] 0.12 1.58 1.54 [ 1.51 , 1.58 ] 0.20 300
1.5 1.48 [1.46 , 1.51 ] 0.16 −1.13 −1.13 [−1.16 ,−1.06 ] 0.32 274
1.5 1.44 [1.42 , 1.47 ] 0.17 1.18 1.25 [ 1.21 , 1.30 ] 0.29 279

n = 16000 cells

σ µ

actual
value

average
estimate

95% CI sd actual
value

average
estimate

95% CI sd NA

0.3 0.280 [0.275, 0.288] 0.042 −0.0450 −0.0272 [−0.0308,−0.0210] 0.031 857
0.3 0.282 [0.278, 0.291] 0.042 2.26 2.27 [ 2.27 , 2.28 ] 0.031 857
0.6 0.603 [0.600, 0.610] 0.033 −0.180 −0.178 [−0.182 ,−0.169 ] 0.042 835
0.6 0.603 [0.600, 0.610] 0.033 2.12 2.12 [ 2.12 , 2.13 ] 0.042 835
0.9 0.908 [0.902, 0.917] 0.050 −0.405 −0.419 [−0.426 ,−0.407 ] 0.061 799
0.9 0.909 [0.903, 0.920] 0.055 1.90 1.88 [ 1.87 , 1.89 ] 0.064 803
1.2 1.23 [1.22 , 1.24 ] 0.087 −0.720 −0.786 [−0.801 ,−0.759 ] 0.13 752
1.2 1.21 [1.20 , 1.23 ] 0.089 1.58 1.54 [ 1.53 , 1.57 ] 0.13 752
1.5 1.51 [1.49 , 1.53 ] 0.14 −1.13 −1.19 [−1.22 ,−1.14 ] 0.25 695
1.5 1.51 [1.49 , 1.53 ] 0.13 1.18 1.11 [ 1.09 , 1.16 ] 0.24 697

Table 9.2: Simulation results for the estimated parameters µ and σ of the lognormal cell volume
distribution of a Laguerre diagram. Results are shown for diagrams with 4000 and 16000 cells,
parameters are estimated via MM: (9.5), (9.6). For each µ, σ pair 100 Laguerre diagrams are
computed, each time estimating µ and σ from a single cross section of each diagram. sd: standard
deviation of the sample of estimated parameters. NA: mean number of observed cells.
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n = 4000 cells

σ µ

actual
value

average
estimate

95% CI sd actual
value

average
estimate

95% CI sd NA

0.3 0.291 [0.287, 0.297] 0.031 −0.0450 −0.0386 [−0.0423,−0.0324] 0.032 343
0.3 0.291 [0.287, 0.297] 0.034 2.26 2.27 [ 2.26 , 2.27 ] 0.037 342
0.6 0.603 [0.597, 0.612] 0.047 −0.180 −0.183 [−0.189 ,−0.173 ] 0.053 335
0.6 0.609 [0.604, 0.618] 0.045 2.12 2.11 [ 2.10 , 2.12 ] 0.063 335
0.9 0.921 [0.913, 0.934] 0.068 −0.405 −0.428 [−0.438 ,−0.411 ] 0.087 318
0.9 0.916 [0.908, 0.931] 0.073 1.90 1.87 [ 1.86 , 1.88 ] 0.094 320
1.2 1.23 [1.22 , 1.25 ] 0.096 −0.720 −0.784 [−0.801 ,−0.755 ] 0.15 299
1.2 1.24 [1.23 , 1.26 ] 0.094 1.58 1.50 [ 1.48 , 1.53 ] 0.15 300
1.5 1.59 [1.58 , 1.62 ] 0.11 −1.13 −1.32 [−1.34 ,−1.28 ] 0.19 274
1.5 1.57 [1.56 , 1.60 ] 0.12 1.18 1.02 [ 0.997 , 1.06 ] 0.21 279

n = 16000 cells

σ µ

actual
value

average
estimate

95% CI sd actual
value

average
estimate

95% CI sd NA

0.3 0.296 [0.293, 0.300] 0.020 −0.0450 −0.0373 [−0.0398,−0.0330] 0.022 857
0.3 0.296 [0.293, 0.299] 0.020 2.26 2.27 [ 2.26 , 2.27 ] 0.022 857
0.6 0.601 [0.598, 0.607] 0.028 −0.180 −0.172 [−0.177 ,−0.164 ] 0.040 835
0.6 0.603 [0.599, 0.609] 0.031 2.12 2.13 [ 2.12 , 2.14 ] 0.043 835
0.9 0.910 [0.905, 0.917] 0.039 −0.405 −0.410 [−0.415 ,−0.400 ] 0.049 799
0.9 0.906 [0.901, 0.913] 0.039 1.90 1.89 [ 1.88 , 1.90 ] 0.053 803
1.2 1.25 [1.25 , 1.26 ] 0.057 −0.720 −0.812 [−0.822 ,−0.796 ] 0.085 752
1.2 1.24 [1.24 , 1.25 ] 0.057 1.58 1.51 [ 1.50 , 1.53 ] 0.083 752
1.5 1.60 [1.59 , 1.62 ] 0.079 −1.13 −1.34 [−1.36 ,−1.31 ] 0.13 695
1.5 1.58 [1.57 , 1.59 ] 0.073 1.18 1.01 [ 0.991 , 1.03 ] 0.12 697

Table 9.3: Simulation results for the estimated parameters µ and σ of the lognormal cell volume
distribution of a Laguerre diagram. Results are shown for diagrams with 4000 and 16000 cells,
parameters are estimated via MLE: (9.10). For each µ, σ pair 100 Laguerre diagrams are com-
puted, each time estimating µ and σ from a single cross section of each diagram. sd: standard
deviation of the sample of estimated parameters. NA: mean number of observed cells.

Comparing these numbers to the results in Table 9.3 we observe that some things have
changed slightly. For one, it seems that in the case of MLE the average estimate is slightly worse
for large values of σ compared to MM. Compared to MM, the standard deviation of the sample
of parameters for MLE is smaller for each combination of µ and σ. Once again, in multiple cases
the confidence intervals do not contain the true value of the parameter, indicating that there is
a bias. Luckily, on average MLE still yields quite accurate estimates.

Because we consider K = 100 to be a relatively small sample of parameter estimates we now
repeat the simulations with K = 1000 repetitions. This does mean that we have to use fewer
cells in the Laguerre diagrams, in order to obtain the results in a reasonable amount of time.
Therefore, we now consider diagrams with n = 1000 cells. The results of these simulations are

83



in Table 9.4. These results are mostly in line with the previous simulations. On average the
estimates are again quite accurate, but the confidence intervals do not always contain the actual
parameter value.

MM

σ µ

actual
value

average
estimate

95% CI sd actual
value

average
estimate

95% CI sd NA

0.3 0.283 [0.279, 0.289] 0.11 −0.0450 −0.0419 [−0.0451,−0.0364] 0.085 136
0.3 0.288 [0.285, 0.295] 0.10 2.26 2.26 [ 2.26 , 2.27 ] 0.085 136
0.6 0.600 [0.596, 0.605] 0.088 −0.180 −0.185 [−0.189 ,−0.179 ] 0.10 132
0.6 0.602 [0.599, 0.607] 0.087 2.12 2.11 [ 2.11 , 2.12 ] 0.11 132
0.9 0.903 [0.899, 0.911] 0.12 −0.405 −0.431 [−0.437 ,−0.420 ] 0.17 127
0.9 0.895 [0.891, 0.902] 0.11 1.90 1.88 [ 1.88 , 1.89 ] 0.16 127
1.2 1.17 [1.17 , 1.18 ] 0.17 −0.720 −0.723 [−0.732 ,−0.706 ] 0.26 120
1.2 1.18 [1.17 , 1.19 ] 0.17 1.58 1.56 [ 1.55 , 1.58 ] 0.27 120
1.5 1.41 [1.41 , 1.43 ] 0.20 −1.13 −1.04 [−1.05 ,−1.02 ] 0.34 111
1.5 1.41 [1.41 , 1.43 ] 0.21 1.18 1.26 [ 1.24 , 1.28 ] 0.35 111

MLE

σ µ

actual
value

average
estimate

95% CI sd actual
value

average
estimate

95% CI sd NA

0.3 0.293 [0.291, 0.296] 0.050 −0.0450 −0.0442 [−0.0463,−0.0405] 0.058 136
0.3 0.290 [0.288, 0.294] 0.055 2.26 2.26 [ 2.26 , 2.27 ] 0.059 136
0.6 0.599 [0.596, 0.604] 0.079 −0.180 −0.178 [−0.181 ,−0.171 ] 0.10 132
0.6 0.599 [0.596, 0.604] 0.080 2.12 2.12 [ 2.12 , 2.13 ] 0.10 132
0.9 0.919 [0.914, 0.926] 0.12 −0.405 −0.436 [−0.442 ,−0.426 ] 0.16 127
0.9 0.913 [0.909, 0.920] 0.11 1.90 1.88 [ 1.87 , 1.89 ] 0.16 127
1.2 1.25 [1.24 , 1.25 ] 0.16 −0.720 −0.812 [−0.821 ,−0.798 ] 0.23 120
1.2 1.24 [1.23 , 1.25 ] 0.15 1.58 1.49 [ 1.48 , 1.50 ] 0.23 120
1.5 1.57 [1.56 , 1.58 ] 0.19 −1.13 −1.31 [−1.32 ,−1.29 ] 0.32 111
1.5 1.58 [1.57 , 1.59 ] 0.19 1.18 0.974 [ 0.962 , 0.994 ] 0.32 111

Table 9.4: Simulation results for the estimated parameters µ and σ of the lognormal cell volume
distribution of a Laguerre diagram. Results are shown for diagrams with 1000 cells, parameters
are estimated via MM: (9.5), (9.6) and MLE: (9.10). For each µ, σ pair 1000 Laguerre diagrams
are computed, each time estimating µ and σ from a single cross section of each diagram. sd:
standard deviation of the sample of estimated parameters. NA: mean number of observed cells.
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For better understanding the behaviour of the bias we make a visualization of the estimated
bias. Given parameter estimates µ̂1, µ̂2, . . . , µ̂K of a known µ the bias may be estimated as:

B̂ias(µ̂, µ) =
1

K

K∑
i=1

µ̂i − µ.

The estimated bias is analogously computed for σ. Similar to how confidence intervals were
computed for the average estimate of a parameter a confidence interval may be computed for
the estimated bias. The estimated bias along with a 95% confidence interval is computed for the
parameter estimates which were obtained for Laguerre diagrams with n = 1000 and n = 16000

cells. The lognormal distributions we consider are σ ∈ {0.3, 0.6, 0.9, 1.2, 1.5} and µ = log(10)− σ2

2
such that E(V ) = 10. The results are shown in Figure 9.3. In this figure we observe that the
MM estimator appears more dependent on the size of the Laguerre diagram (n) compared to
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Figure 9.3: Estimated bias with 95% confidence intervals for some of the parameter estimates
which are summarized in Tables 9.2, 9.3 and 9.4. We only consider Laguerre diagrams with n =
1000 and n = 16000 cells. The lognormal distributions we consider are σ ∈ {0.3, 0.6, 0.9, 1.2, 1.5}
and µ = log(10)− σ2

2 such that E(V ) = 10.
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MLE and therefore is more dependent on the cross sectional areas sample size. Depending on
the actual value of µ or σ in some cases MLE yields a smaller bias and in other cases MM
results in a smaller bias. For large values of σ it appears that the method of moments estimator
is preferred when a large sample is used (n = 16000). It may not immediately be clear why
the bias for estimates of µ is smaller when µ is large. This can be explained by the fact that

a large µ corresponds to a small σ, since µ = log(10) − σ2

2 . In most cases the estimated bias
does not behave linearly. It may be possible to use the estimated bias to find bias-corrected
estimators, however, in the next section we highlight how the bias may be the result of model
misspecification. We also show how these issues may be overcome.

9.3 Addressing bias and model misspecification

In the simulations in the previous section we observed that when using the estimator (9.1) for
estimating the parameters µ and σ via MM or MLE works quite well. The resulting estimates are
on average close to the true values of µ and σ. There does appear to be a bias in the estimates.
While it may be possible to correct the estimates by estimating the bias and proposing correction
coefficients some other approaches are highlighted. It is important to stress that the estimator
for the sectional area distribution (7.10) approximately describes the sectional area distribution.
One of the conditions for the estimator to precisely describe the sectional area distribution is
that assumption 1 is satisfied. Hence, if this assumption is violated we cannot expect accurate
results. The bias can then also be explained as model misspecification. Up till this point we have
not quantified what it means for two sets or cells to be approximately similar. We now discuss
two possible approaches of quantifying this similarity.

One possible approach in the case of Laguerre diagrams is to investigate whether cells are
equally centroidal. How centroidal a cell Li is depends on how close its generator point xi is to
its centroid ci. It appears that in hindsight, the residual which was used in Algorithm 1 seems
inappropriate. Recall that this residual is used to determine the number of required iterations
in the algorithm, it terminates when the Laguerre diagram is considered sufficiently centroidal.
During simulations it was noticeable that depending on the chosen cell volume distribution and
the number of cells the algorithm used vastly different amounts of iterations. On one end a
Laguerre diagram with n = 1000 cells, each cell having volume 1 could be computed in 10
iterations. On the other end, a Laguerre diagram with n = 16000 cells which follow a lognormal
volume distribution with σ = 1.5 could require well over 100 iterations. This could explain that
the estimates of µ and σ were in some cases worse for diagrams with more cells.

Let us now show that the algorithm does not necessarily generate Laguerre diagrams with cells
which are equally centroidal. Given a Laguerre diagram {Li}ni=1 generated by (x1, w1), . . . , (x1, w1)
on the domain Ω = [0, 1]3. It was computed by Algorithm 1, hence mi = |Li| for all i ∈ {1, . . . , n}.
Each cell Li has centroid ci. Now suppose we uniformly scale all distances in this diagram with
some λ > 0. We obtain a Laguerre diagram {Lλi }ni=1 generated by (xλ1 , w

λ
1 ), . . . , (xλ1 , w

λ
1 ) on the

domain Ωλ = [0, λ]3. This could be computed by Algorithm 1 with mλ
i ’s such that mλ

i = |Lλi |
for all i ∈ {1, . . . , n}. Each cell Lλi has centroid cλi .

Because of the uniform scaling Lλi is λ-similar to Li. Using the properties of similarities we
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obtain:

|Li|λ3 = |Lλi |
miλ

3 = mλ
i

||xi − ci||λ = ||xλi − cλi ||.

It seems sensible to consider both diagrams to be equally centroidal, after all, the distance of
each generator point to the corresponding centroid is unchanged relative to the size of each
cell. It turns out that the residual which was used does not consider these diagrams equally
centroidal. Letting R denote the residual associated with {Li}ni=1 and Rλ the residual associated
with {Lλi }ni=1 we find:

Rλ =

√∑n
i=1m

λ
i ||xλi − cλi ||2
|Ωλ|λ

=

√∑n
i=1miλ3λ2||xi − ci||2

λ3|Ω|λ

=
√
λ

√∑n
i=1mi||xi − ci||2

|Ω|
=
√
λR.

This means for example that for λ > 1 that Rλ > R. A consequence of this is that Algorithm
1 cannot produce {Lλi }ni=1, instead it uses comparatively more iterations, resulting in cells that
appear more round. It is possible to define a residual which do not suffer the from the problem
illustrated above. Via a similar computation as above it can be shown that the following choices
do not have this problem:

1

n

n∑
i=1

||xi − ci||
m

1
3
i

and max
i∈{1,...,n}

||xi − ci||
m

1
3
i

.

We do stress that further simulations are necessary to investigate whether this is indeed a better
choice for generating Laguerre diagrams. This potential issue with the residual highlights that
better parameter estimates cannot only be obtained by adjusting the estimators it can also be
achieved by considering a slightly different class of Laguerre diagrams. Because the proposed
estimators work well on average we are looking for subtle changes that can be made which yield
better results. Using a different stopping criterion in Algorithm 1 is a step that can be taken for
subtly changing the way Laguerre diagrams are computed.

Another approach to quantifying similarity is to consider the distribution of the number
cell faces. After all, sets are similar when they have the exact same shape. For a polyhedron
one way of characterizing its shape is the number of faces. We know that Laguerre diagrams
generated by Algorithm 1 do not have cells which all have the same number of faces. When
assuming cells to be approximately similar this could for example mean that the distribution
of the number of cell faces does not depend on the cell volume distribution. Let us therefore
consider a simple simulation setting, comparing the distribution of the number of cell faces in
two Laguerre diagrams with different cell volume distributions. We use n = 16000 cells and a

lognormal cell volume distribution with σ = 0.3 and σ = 1.5. In both cases we use µ = −σ2

2 .
The results are in Figure 9.4. Clearly these distributions are very different. The average number
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Figure 9.4: Distribution of the number of cell faces for two Laguerre diagrams with a lognormal
cell volume distribution. The diagrams have n = 16000 cells. The lognormal distributions have

parameters σ = 0.3 and σ = 1.5, and in both cases µ = −σ2

2 .

of faces in the two Laguerre diagrams are still reasonable close to each other, for σ = 0.3 the
average is 14.2 and for σ = 1.5 the average is 12.6.

Hence, the shape of the cells is affected by the choice of the cell volume distribution. Because
the estimator does work well on average this raises the question in what sense the cells may still
be considered approximately similar. At present we cannot provide a satisfactory answer to this
question, this point will be further addressed in the discussion.

The only aspect of the estimator which is related to the shape of the cells is the distribution
FA(1) . Note that we fixed this distribution beforehand. Especially in the case of the method of
moments estimator it may be worthwhile to instead initially consider this distribution unknown.
Recall that the method of moments estimators are obtained via equations (9.3), (9.4). This
estimator only depends on estimates of E(A(1)) and E((A(1))2). Let α1 = E(A(1)) and α2 =
E((A(1))2). During simulations the volume distribution is chosen and is therefore known. The
sectional area distribution is observed and this allows for computing 1

m

∑m
j=1 aj and 1

m

∑m
j=1 a

2
j

from a sample of areas denoted by a1, . . . , am. By performing many simulations with different
lognormal volume distributions it is possible to estimate which values of α1, α2 yields the most
accurate method of moments estimator for all the considered volume distributions. In the worst-
case scenario this procedure yields the same method of moments estimator as derived before,
but it may result in an estimator which is more accurate. For maximum likelihood estimation
such an approach is much more complicated. Estimating which distribution for FA(1) performs
the best over a range of volume distribution when using maximum likelihood estimation appears
more difficult then estimating two constants.
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9.4 Conclusion

In this chapter we considered the general estimator (7.10) of the cross sectional area distribution
and derived its form in the case of a lognormal cell volume distribution. We also showed how
this estimator may be used to estimate the parameters µ and σ of the lognormal cell volume
distribution from a sample of cross sectional areas. Two approaches are presented, the method of
moments and maximum likelihood estimation. In simulations we observed that both approaches
work well on average, the average estimates of µ and σ are close to the actual values. The
proposed estimators are biased, we provided some suggestions of how this bias may be addressed
in future research.
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10

Estimating the 3D grain volume
distribution from real 2D EBSD data

Now that we have a way to estimate the cell volume distribution of a specific class of Laguerre
diagrams from cross section areas we would like to know whether we may apply this method
on real-world data. After all, while the proposed methods work quite well for the Laguerre
diagrams we investigated, we would like to know whether we may apply these methods to real
metals. Specifically, given measurements of the observed areas of grains in a metal we attempt to
estimate µ and σ of the grain volume distribution of the metal microstructure which is assumed
to follow a lognormal distribution. We remark that this chapter presents a single case study, as
we consider data corresponding to a single sample of metal.

In this chapter we apply the derived estimators to real-world data. The data we use is known
as Electron Backscatter Diffraction (EBSD) data. This is a technique based on Scanning Electron
Microscope (SEM). This technique is used to extract various information from the surface of the
material. EBSD data are obtained by directing a beam of electrons onto the material and by
collecting the diffracted signal. For more information on EBSD we refer to [40]. EBSD is for
example used for phase identification in materials and grain boundary characterisation. For
our purposes it is especially useful that EBSD allows for the determination of the areas of the
observed grains in a (2D) cross section. There also exist a 3D counterpart for EBSD known as
3D EBSD. By performing many parallel 2D sections of a material it is possible to acquire 3D
information of the material, such as the grain volumes. This means that whenever 3D EBSD
data is available of a material there is also 2D EBSD data because the 3D data is obtained via
2D EBSD data. It is important to stress that in practice 3D EBSD data are not always available.
It is both expensive and time-consuming to obtain 3D EBSD data. This highlights that it is still
relevant to estimate the grain volume distribution from 2D EBSD data. We would like to be
able to use the proposed methodology to estimate the grain volume distribution when 3D EBSD
data are not available.

Let us now discuss the specifics of the data. The data and relevant information about these
data are kindly provided by Carola Celada-Casero, principal researcher at Tata steel. The
data are relative to a single-phase steel called Interstitial Free (IF). This steel has a ferritic
microstructure, which is soft and ductile. In terms of applications of such a steel its mechanical
properties make it useful for forming applications, such as outer car panels. The 2D EBSD data
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are obtained via a single section and they contain information relative to 1691 observed grains.
For materials there is a commonly used frame of reference to indicate the direction of the cross
section, also known as the sample reference frame. In the case of Laguerre diagrams we could
simply say that we consider cross sections parallel to the xy-plane. In the sample reference frame
the three axes are known as the rolling direction (RD), transverse direction (TD) and normal
direction (ND). The 2D EBSD data originates from the surface of the steel which in this frame
of reference is parallel to the ND-TD plane. It contains information of 1691 observed grains.
From the 2D data the only variable we use are the areas of the observed grains. Let a1, . . . , am
denote this sample of areas from the 2D EBSD. In this specific example, we also have access to
3D EBSD data, which contains information of 9211 observed grains. From the 3D data we only
take the volumes of these grains and we compare this data to the volume distribution that we
estimate from the areas in the 2D EBSD data. Let v1, . . . , vn denote the sample of volumes from
the 3D EBSD.

As before, we also assume that grain volume distribution in the material is approximately
lognormally distributed. We use the estimator of the area distribution f̂A(a|µ, σ) (9.1) and we
employ the Method of Moments estimators (MM) (9.5), (9.6) and the Maximum Likelihood
Estimator (MLE) (9.10) to estimate the µ and σ which describe the (lognormal) grain volume
distribution. Similarly to the simulations performed in chapter 9 the MLE is obtained by nu-
merically maximizing the log-likelihood, and as the initial values for µ and σ we use the MM
estimates. In this chapter we perform the following steps:

1. We compute the MM estimates: µ̂MM, σ̂MM and the MLE: µ̂MLE, σ̂MLE from the 2D EBSD
data. These are estimates of the parameters µ and σ of the grain volume distribution which
we assume to be lognormal.

2. We generate a Laguerre diagram using the procedure described in section 4.4.1 with a
lognormal cell volume distribution with parameters µ̂MLE, σ̂MLE. Then we take a single
cross section using the procedure described in section 4.4.2 and compare the obtained area
distribution to the area distribution in the 2D EBSD data.

3. We also generate a Laguerre diagram using the procedure described in section 4.4.1 with
the volume distribution obtained from the 3D EBSD data. This means that cells in this
diagram have volumes v1, . . . , vn. Then, the cross sectional area distribution of this diagram
is also compared to the area distribution in the 2D EBSD data.

4. Finally, we take the lognormal distribution with the parameters µ̂MM, σ̂MM and the log-
normal distribution with parameters µ̂MLE, σ̂MLE and we compare these to the volume
distribution that is present in the 3D EBSD data.

Let us start with the first step, we fit f̂A to the areas from the 2D EBSD data. The result of
this fitting procedure can be seen in Figure 10.1. We see that the resulting distributions fit the
data quite well, with the MLE providing a slightly better fit than the MM estimate. To verify
that the numerical procedure of maximizing the log-likelihood terminated in a global maximum
we make a contour plot of the log-likelihood shown in Figure 10.2. This picture suggests that
we do indeed find a global maximum. Note that the contour levels in the figure (see colorbar)
follow a highly non-linear scale to make the location of the maximum more clearly visible. The
estimates of µ and σ are shown in Table 10.1.
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Figure 10.1: The result of fitting the distribution with density f̂A(a|µ, σ) (9.1) to the 2D EBSD
data. The parameters µ and σ are estimated via the Method of Moments (MM) and via Maximum
Likelihood Estimation (MLE).
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Figure 10.2: A contour plot of the log-likelihood for the sample of areas obtained from the 2D
EBSD data set. The blue dot indicates the Method of Moments estimate (MM) of µ and σ which
is used as the initial guess for numerically maximizing the log-likelihood. The red dot indicates
the Maximum Likelihood Estimate (MLE).
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Method µ̂ σ̂
MM 6.952 1.236
MLE 6.700 1.409
3D EBSD fit 6.871 1.666

Table 10.1: Estimated parameters of the grain volume distribution, which is assumed to be
lognormal. The parameters in the first two rows are obtained by fitting f̂A to the 2D EBSD
data. These parameters are estimated via MM and MLE. The third row contains the estimates
of µ and σ obtained by fitting a lognormal distribution to the 3D EBSD data.

The next step is to generate a Laguerre diagram with a lognormal distribution with param-
eters µ̂MLE, σ̂MLE. One aspect which is not covered in detail in this thesis is the estimation of
the number of cells n from a cross section. A seemingly reasonable approach is to estimate n by
an estimate of the volume of the Laguerre diagram, divided by an estimate of the average cell
volume. As we considered only cube-shaped Laguerre diagrams and horizontal cross sections we
may take the following approach:

n̂ =

(∑m
j=1 aj

) 3
2

exp
(
µ̂+ σ̂2

2

) . (10.1)

If we assume the data to come from a horizontal cross section of a cube-shaped Laguerre diagram
then the sum of the observed areas is equal to the area of one of the sides of the cube. Hence(∑m

j=1 aj

) 3
2

is equal to the volume of the cube. Then we divide the volume of the cube by the

(estimated) average grain volume to get an estimate of the number of cells. This approach yields
n̂ = 55762 (MM) and n̂ = 57132 (MLE). As both estimates are fairly close it does not matter too
much which one is used in this case. We generate a Laguerre diagram with n = 55762 cells, with
a lognormal cell volume distribution with parameters µ̂MLE, σ̂MLE. Then, we take a single cross
section which happens to contain 1673 cells, which is quite close to the 1691 grains in the 2D
EBSD data. Because we have seen in chapter 9 that f̂A provides a good description of what the
area distribution looks like for a given lognormal volume distribution we expect the resulting area
distribution to be similar to the 2D EBSD data. The results are visualized in Figure 10.3. The
sample of cross sectional areas of this Laguerre diagram with lognormal cell volume distribution
(µ̂MLE, σ̂MLE) is labelled with ”simulated lognormal” in Figure 10.3. We observe that these two
distributions appear quite similar.

Figure 10.3 contains another histogram. We also generate a Laguerre diagram using the
volumes in the 3D EBSD data set as the cell volume distribution. This means that cells in
this diagram have volumes v1, . . . , vn. Recall that the 3D EBSD data set contains information
of 9211 observed grains. As a result this Laguerre diagram is much smaller compared to the
previously discussed diagram with the estimated lognormal distribution. A consequence is that
cross sections of this Laguerre diagram yield much smaller samples of sectional areas. Therefore,
we take three cross sections of the same diagram, which are sufficiently spaced apart. Given the
domain of the diagram Ω = [0, l]3, we take sections at z = l

3 , z = 2l
3 and z = l. This yields

samples of sectional areas of sizes 530, 494 and 507. The combined sample is shown in Figure
10.3 and is labelled with ”simulated 3D EBSD”. This distribution also appears reasonably close
to the 2D EBSD data.

Finally, we take a look at the estimated grain volume distributions. In Figure 10.4 we show
the distribution of the volumes that is taken from the 3D EBSD data set along with the pdfs of
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Figure 10.3: A comparison between the area distribution in the 2D EBSD data to the sectional
area distributions of two Laguerre diagrams. Simulated lognormal: the sectional area distribution
of a Laguerre diagram with a lognormal cell volume distribution with parameters µ̂MLE, σ̂MLE.
Simulated 3D EBSD: the sectional area distribution of a Laguerre diagram with the 3D EBSD
data as volume distribution.
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Figure 10.4: A comparison of the volume distribution in the 3D EBSD data to three lognormal
distributions. These distributions visualize the lognormal distributions with parameters as in
Table 10.1.
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three lognormal distributions. The figure contains the lognormal distribution which was fitted
directly to the 3D EBSD data via MLE. The figure also contains the lognormal distributions
which were estimated from the 2D EBSD data. Recall that the parameters of these lognormal
distributions are shown in Table 10.1.

An important question is whether the estimates are good enough to be used in practice.
We also want to use the methodology when 3D EBSD data is not available. We cannot expect
to estimate a lognormal distribution from the 2D EBSD data which provides a better fit to
the 3D EBSD data than the lognormal distribution which is fitted directly to the 3D EBSD
data. In that sense the estimates using the proposed method are reasonably close, especially
the parameters obtained by MLE. An important note is that the 3D EBSD data is not truly
lognormally distributed. There is a simple observation which shows that care should be taken.
Say we are interested in the average grain volume in the material. Since we have estimates of

µ and σ we may compute an estimate of the average volume via the formula: exp(µ+ σ2

2 ). We
can compare these estimates to the empirical average of the 3D EBSD data: 1

n

∑n
i=1 vi where

v1, . . . , vn are the volumes taken from the 3D EBSD data. The results are in Table 10.2.

Method Average volume estimate [µm3]
MM 2244.2
MLE 2190.4
3D EBSD fit 3860.2
3D EBSD empirical average 2793.1

Table 10.2: Estimates of the average grain volume. The first three rows contain estimates of
the average grain volume by using the estimated parameters of the lognormal distribution as in

Table 10.1. The average is obtained by computing exp(µ̂ + σ̂2

2 ). The fourth row contains the
empirical average of the volumes in the 3D EBSD data set.

We clearly see that if we take the lognormal distribution that is fitted to the 3D EBSD data
as the true volume distribution, we would severely overestimate the average grain volume. This
shows that if we would like to obtain a more accurate estimate of the volume distribution we
either need to use another parametric distribution which provides a better fit, or we need a way
to estimate the volume distribution in a nonparametric fashion.
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11

Discussion

With this chapter we conclude the thesis. We begin with a summary of our findings and
mention the main results. Then, suggestions are made for directions which may be taken in
future research.

11.1 Summary

Motivated by the modelling of metals microstructures the Laguerre diagram was introduced. Af-
ter providing the necessary definitions of this diagram and discussing its properties we described
the problem which we set out to solve in this thesis. We consider the inverse problem of the
determination of the cell volume distribution in a 3D Laguerre diagram from the distribution
of areas in a 2D cross section of such a diagram. We also described the related direct problem
of finding the distribution of cross sectional areas for a Laguerre diagram with a known cell
volume distribution. Via some examples it was shown that in these problems we cannot consider
arbitrary Laguerre diagrams.

In chapter 4 Algorithm 1 was discussed for computing Laguerre diagrams. It is particu-
larly attractive because it allows for computing a Laguerre diagram with a chosen cell volume
distribution. The direct and inverse problem consider the relationship between two distribu-
tions, namely the cell volume distribution and the cross sectional area distribution. Therefore,
this algorithm allows for controlling one side of the equation. After describing the algorithm,
the parameters required by the algorithm were considered. In particular the influence of the
initial generator points, because these have a large impact on the resulting Laguerre diagram.
The eventual choice for the initial generators was motivated using visualizations and hypothesis
tests. We also proposed a permutation method that proved to speed up the gradient method
used by Algorithm 1 for Laguerre diagrams with moderate variance in the volume distribution.
The chapter was concluded with a precise description of how Laguerre diagrams are computed
and how cross sections are taken in all further simulations. This means that for our problem we
restricted ourselves to this specific class of Laguerre diagrams.

In chapter 5 we investigated the role of the weights of a Laguerre diagram. In the case of
generating a Laguerre diagram via a close packing of spheres there is a clear interpretation of the
weights being the square root of the sphere radii. For the Laguerre diagrams we consider this
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interpretation cannot be used and does not add knowledge for our problem. We did determine
another relationship with sphere packings, since we explained how Algorithm 1 may be used to
generate a sphere packing. In chapter 6 we briefly investigated the properties of 2D sectional
Laguerre diagrams which was concluded by noting that these diagrams do not seem to have
properties which may help in solving the inverse problem.

In chapter 7 we derived an estimator for the pdf of the sectional area distribution. The
estimator provides a clear relationship between the distribution of sectional areas and the distri-
bution of the cell volumes. When assuming a specific parametric distribution for the cell volume
distribution we showed how to use the estimator for estimating the parameters of this cell vol-
ume distribution. The use of the estimator was motivated in the following chapter, chapter 8.
We considered two stereological problems, Wicksell’s corpuscle problem and one of its possible
generalizations. In both problems an analytical expression for the sectional area distribution is
available and it corresponds to the proposed estimator for the sectional area distribution. The
estimator does come with an assumption, by using it we assume that cells in a Laguerre diagram
are approximately similar (assumption 1). Given that the problem is motivated by a materials
science application we considered Laguerre-Voronoi diagrams with a lognormal cell volume dis-
tribution, which is commonly used in this field. We described the form of the estimator for the
sectional area distribution in the case of a lognormal cell volume distribution. We also showed
how this estimator may be used to estimate the parameters µ and σ of the lognormal cell volume
distribution from a sample of cross sectional areas. Two approaches are presented, the method of
moments and maximum likelihood estimation. In simulations we observed that both approaches
work well on average, the average estimates of µ and σ are close to the actual values. For small
values of σ the maximum likelihood estimator is preferred. For large values of σ the method of
moments estimator is preferred, provided that the sample of cross sectional areas is sufficiently
large. The proposed estimators for µ and σ are however biased, we provided some suggestions
for how this bias may be addressed in future research.

In the final chapter, chapter 10, the proposed estimator for the sectional area distribution is
applied to real-world data. The grain volume distribution in a steel microstructure is estimated
from 2D image data. Because the grain volume distribution was known in the form of 3D EBSD
data the estimated volume distribution could be compared to the actual volume distribution. A
lognormal distribution was assumed for the grain volume distribution in this steel microstructure,
which was reasonable, but there was some level of misspecification. Keeping this in mind, the
volume distributions estimated from the 2D image data provided a decent description of the
actual volume distribution.

Whether the inverse problem which we set out to solve may be considered solved depends
on the required accuracy of the solution. Of course, we only extensively considered the case
of lognormal volume distributions, hence it cannot be considered solved for arbitrary volume
distributions. In the lognormal case the proposed estimators for µ and σ describing the volume
distribution work quite well, but there is a bias and therefore there is still some room for im-
provement. Depending on the accuracy required in an application of these methods, the provided
simulation results may be used to judge whether these estimators are sufficiently accurate.
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11.2 Future research

Let us start with a direction for future research which we already mentioned. The proposed
estimators for the parameters µ and σ of the lognormal cell volume distribution are biased, in
future research the suggestions which were made for addressing this bias in section 9.3 could be
investigated. We noted that the bias may be caused by the fact that assumption 1 is violated.
The assumption that all cells approximately have the same shape is somewhat inconvenient
given that we know that the cells do in fact have different shapes. The provided suggestions for
addressing bias cannot entirely overcome this difficulty, but they may still improve the accuracy
of the estimators for µ and σ. In future research the development of a method could be pursued
which does not require assumption 1. It is likely that some assumption is still necessary but
ideally this is a much weaker assumption. There is another assumption which was made for the
estimator of the sectional area distribution, namely that cells of a Laguerre diagram are convex.
This assumption was only mentioned when we considered a generalization of Wicksell’s problem.
We did not further discuss this assumption because it is always satisfied for cells of Laguerre
diagrams. There are however materials microstructures with non-convex grains, it is important
to note that the proposed methods may not work well when considering such microstructures.

Because models other than Laguerre diagrams may be considered for the modelling of ma-
terials microstructures with convex grains it may also be investigated how well the proposed
method works for some other models. Especially in the case of a model for which assumption
1 is in fact a reasonable assumption the estimator of the sectional area distribution could be
useful. Another suggestion for future research is the derivation of a method which estimates
the cell volume distribution of a Laguerre diagram in a non-parametric setting. In chapter 8
we mentioned some relevant literature which may provide a starting point when pursuing this
research direction.
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A

Appendix: Implementation details

In this section some details of the implementation in Python are discussed. The code is
available as a Python package on Github: https://github.com/thomasvdj/vorostereology. For
code examples see the Github page. Laguerre diagrams are computed by interfacing with the
C++ library Voro++ [41], this library also provides functions to compute cell-based statistics such
as volumes, centroids or areas of cell faces. In order to be able to use Voro++ in Python it was
interfaced using Cython, and as a starting point the codebase of the Python library pyvoro [42]
was used to achieve this. The features that were required but were not present in pyvoro were
added to the existing codebase and these are discussed in this section.

A.1 Computing Laguerre diagrams

The computation of Laguerre diagrams is mostly handled by Voro++ but in the periodic case
some additional work is required. This is due to the fact that the implementation of Voro++
does not correspond to the mathematical definition a periodic Laguerre diagram. Instead, it
computes each cell in the frame of reference of its generator point as follows:

L̃i = {x ∈ R3 : ||x−xi||2per−wi ≤ ||x−xj ||2per−wj and ||x−xi||per = ||x−xi|| ∀j ∈ {1, . . . , n}}.
(A.1)

Which is slightly different from:

Li = {x ∈ Ω : ||x− xi||2per − wi ≤ ||x− xj ||2per − wj ∀j ∈ {1, . . . , n}}. (A.2)

Recall that for periodic Laguerre diagrams cells may consist of multiple fragments. Since a cell
is computed from the frame of reference of its generator point xi, we may obtain all fragments
by considering multiple frames of reference: xi+(il1, jl2, kl3) for i, j, k ∈ Z (Recall Definition 2).
For 3D Laguerre diagrams at most 8 frames of reference need to be considered for a single cell,
because a single cell may consist of 8 fragments. In some sense Li can be obtained by imposing
the periodic norm on L̃i. Therefore, we obtain the Laguerre diagram as desired by computing
all cells in the required frames of reference. The next step is to intersect these cells L̃i with
Ω, such that the fragments are obtained as desired. The intersection with Ω is achieved via
the function voro::voronoicell neighbor::nplane which allow for intersecting a cell with a
half-space. The resulting Laguerre diagram which satisfies the mathematical definition (A.2) is
shown in Figure A.1 (b).
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(a) (b)

Figure A.1: Comparison of a periodic Laguerre diagram as computed by Voro++ (A.1): (a) and
as per the mathematical definition (A.2): (b).

A.2 Computing a cross section of a Laguerre diagram

When computing a cross section of a Laguerre diagram, we use functionalities that are part of
the Voro++ library. Once a Laguerre diagram is computed we can then iterate over all cells
in the diagram and use the voro::voronoicell neighbor::plane intersects method to find
out whether the cross section plane of choice intersects with the cell. If the plane does intersect
with the cell the voro::voronoicell neighbor::nplane method is used to cut the cell with
the cross section plane. It is important to keep in mind that we can then no longer use these
cells to compute their volume, as part of the cell has been cut off by the cross section plane
(because the cross section plane is interpreted as a half-space). We then use the useful property
of the nplane method that we can keep track of which face of a cell is caused by which cell.
For a Laguerre diagram with n cells this means that each face of a cell is associated with a
number in {1, . . . , n} (called the plane ID) which indicates which cell is adjacent to that face.
By using the nplane method with the plane ID n+ 1 it is possible to identify which faces of the
cells were caused by the cross section plane and therefore are in the cross section plane. Finally,
the voro::voronoicell neighbor::vertices method is used to obtain the vertices of the faces
which are in the cross section and the voro::voronoicell neighbor::face areas method to
compute the areas of these faces.

A.3 Transforming vertices of cross section cells into 2D

Now that the vertices of the cells in the cross section have been computed we would like to
transform the plane that was used for the cross section into 2D, in order to be able to provide
visualizations of the cross sections. Mathematically, given points (x, y, z) in the plane P :

P = {(x, y, z) ∈ R3 : a(x− x0) + b(y − y0) + c(z − z0) = 0}.
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Now we would like to transform the points in this plane into the xy-plane by means of a
translation and a rotation. This can be achieved by computing R(x − x0) for x ∈ P where
x0 = (x0, y0, z0)T . The rotation matrix R that is required is the matrix for a rotation around
an axis ω = (ω1, ω2, ω3)T (which is a unit vector) with angle θ which is given by:

R =

 ω2
1(1− cos θ) + cos θ ω1ω2(1− cos θ)− ω3 sin θ ω1ω3(1− cos θ) + ω2 sin θ

ω1ω2(1− cos θ) + ω3 sin θ ω2
2(1− cos θ) + cos θ ω2ω3(1− cos θ)− ω1 sin θ

ω1ω3(1− cos θ)− ω2 sin θ ω2ω3(1− cos θ) + ω1 sin θ ω2
3(1− cos θ) + cos θ

 .

(A.3)
A derivation of (A.3) using a formula known as Rodrigues’ formula can for example be found in
the proof of Proposition 2.5. in [43]. For every point x in P the point x0 may be subtracted
such that a plane is obtained which passes through the origin. The rotation axis ω can be found
by using the fact that a = (a, b, c)T is a normal vector of P . The rotation axis of interest is a
unit vector which is orthogonal to both a and ez = (0, 0, 1)T , hence we may take:

ω =
a× ez
||a× ez||

=
1√

a2 + b2
(b,−a, 0)T .

This means that:

ω1 =
b√

a2 + b2
, ω2 = − a√

a2 + b2
, ω3 = 0. (A.4)

Since ω3 = 0 equation (A.3) simplifies to:

R =

ω2
1(1− cos θ) + cos θ ω1ω2(1− cos θ) ω2 sin θ
ω1ω2(1− cos θ) ω2

2(1− cos θ) + cos θ −ω1 sin θ
−ω2 sin θ ω1 sin θ cos θ

 . (A.5)

The angle of rotation θ is the angle between the vectors a and ez and it can easily be shown
that cos θ and sin θ may therefore be computed as:

cos θ =
c√

a2 + b2 + c2
, sin θ =

√
a2 + b2

a2 + b2 + c2
. (A.6)

In the implementation the expressions in (A.4) and (A.6) are plugged into the expression for
rotation matrix R as in (A.5). We now conclude that a vertex x of a cross section cell in P
is transformed into the xy-plane by computing: R(x − x0). After this transformation the z-
component of every vertex may be discarded such that the vertices are now in R2. Keep in mind
that throughout these computations we assumed that we are not in the case that P is already
parallel to the xy-plane: a = 0, b = 0, c 6= 0, in that case all points x in P can be transformed
into the xy-plane by the translation: x−x0. An example visualizing the computations discussed
in this section and in A.2 are visualized in Figure A.2.
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(a) (b)

Figure A.2: (a): An example of a cross section visualized in red, in a transparent Laguerre
diagram. This cross section is computed as described in section A.2. (b) The same cross section
after transforming it into R2 using the method as described in section A.3.
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B

Appendix: Algorithm 1 as a sphere
packing algorithm

When using Algorithm 1 with a small value of ε we generate a centroidal Laguerre diagram
which has cells that are quite round, considering they are polyhedrons. We may compute the
largest inscribed sphere for each cell of the Laguerre diagram to generate a sphere packing.
In this section we show how to find the largest inscribed sphere for a single cell via a small
linear programming problem. By solving this problem for each cell we find spheres which are
guaranteed not to overlap. Because algorithm 1 also allows periodic boundary conditions we can
also generate a sphere packing with periodic boundary conditions. During simulations we tended
to observe packing densities between 0.5 and 0.6 (packing density = sum of sphere volumes

volume of domain ). We
now simply state how to compute these spheres, we do not analyze whether this is a good way
to generate a sphere packing as this is out of scope.

Finding the largest inscribed sphere inside of a polyhedron can be described as a linear
programming problem (LP problem). A simple derivation of the LP problem which we state in
a moment can be found in [44, p. 148, 149]. Let P be a polyhedron with m faces which is given
by:

P =
{
x ∈ R3 : aTj x ≤ bj for j = 1, . . . ,m

}
.

Where aj ∈ R3, bj ∈ R for j = 1, . . . ,m. Then, the largest inscribed sphere can be found by
solving the following LP problem:

maximize: r
subject to: aTj (x, y, z)T + r||aj || ≤ bj , j = 1, . . . ,m

. (B.1)

The solution of this problem is a sphere with center (x, y, z) ∈ R3 and radius r, which is inscribed
in P . This is a small LP problem with 4 variables (x, y, z and r) and the number of constraints
is equal to the number of faces of the polyhedron. We now show how we may use this to find
the largest inscribed sphere inside of a cell of a Laguerre diagram.

Suppose we have a (approximately) centroidal Laguerre diagram with domain Ω = [0, l1] ×
[0, l2]× [0, l3], with generator points x1, . . . ,xn ∈ Ω and corresponding weights: w1, . . . , wn ∈ R.
A centroidal Laguerre diagram does not have empty cells, and we need non-empty cells if we
want to be able to inscribe spheres. Let us now consider what (B.1) looks like when considering
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a cell Li (for some i ∈ {1, . . . , n}) of a Laguerre diagram with or without periodic boundary
conditions.

B.1 A Laguerre diagram without periodic boundary con-
ditions

Recall that Li is given by:

Li = {x ∈ Ω : ||x− xi||2 − wi ≤ ||x− xj ||2 − wj ∀j ∈ {1, . . . , n}}.

While we do not know the neighbor information of the cell a priori, once a Laguerre diagram is
computed we do have this information. For a cell Li we define Ni ⊂ {1, . . . , n} as the index set
of neighbors of Li, this means that if j ∈ Ni then Lj is a neighbor of Li. We may then simply
consider:

Li = {x ∈ Ω : ||x− xi||2 − wi ≤ ||x− xj ||2 − wj ∀j ∈ Ni}.
Via straightforward computation we see that:

||x− xi||2 − wi ≤ ||x− xj ||2 − wj ⇐⇒ xTx− 2xTi x+ xTi xi − wi ≤ xTx− 2xTj x+ xTj xj − wj
⇐⇒ 2(xj − xi)Tx ≤ xTj xj − xTi xi + wi − wj .

Hence, we define aj := 2(xj −xi) and bj := xTj xj −xTi xi +wi −wj for j ∈ Ni. Lastly, we need
to add constraints for the case that a face of the cell is not caused by a neighboring cell, but by
the domain. We conclude that we may solve the following LP problem:

maximize: r
subject to: aTj (x, y, z)T + r||aj || ≤ bj , j ∈ Ni

x− r ≥ 0, x+ r ≤ l1
y − r ≥ 0, y + r ≤ l2
z − r ≥ 0, z + r ≤ l3

. (B.2)

In practice, when a cell has faces which are caused by the domain we even know which of the
six sides of our brick-shaped domain caused these faces. Therefore, we do not necessarily need
to add all of the six additional constraints for each side of the domain:

x− r ≥ 0, x+ r ≤ l1
y − r ≥ 0, y + r ≤ l2
z − r ≥ 0, z + r ≤ l3.

We may simply use the constraints which correspond with sides of the domain which are coplanar
with faces of the cell.

B.2 A Laguerre diagram with periodic boundary condi-
tions

When dealing with periodic boundary conditions things change slightly. For one thing, faces
of cells are always caused by neighboring cells and never by the domain. Other than that, for
the cell Li we can no longer just consider the generator points xj with j ∈ Ni, we may need a
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different ”version” of these points. Generator points xi and xj may be close w.r.t. the periodic
norm, but they may be much further away w.r.t. the Euclidean norm.

Let j ∈ Ni, we compute:

(u, v, w) = arg min
(u,v,w)∈Z3

||xi − xj + (ul1, vl2, wl3)||.

Then we define: x̃j = xj − (ul1, vl2, wl3), this particular choice means that: ||xi − xj ||per =
||xi−x̃j ||. We could call x̃j the version of xj that is closest to xi. Now, we define aj := 2(x̃j−xi)
and bj := x̃Tj x̃j − xTi xi + wi − wj for j ∈ Ni. We may then simply solve the LP problem:

maximize: r
subject to: aTj (x, y, z)T + r||aj || ≤ bj , j ∈ Ni . (B.3)

Remark. A demo of this sphere packing algorithm is included in the vorostereology package in
the examples folder.
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C

Appendix: Proof of Lemma 1

Proof. In order to show that Li ∩ P = LPi for all i ∈ I it is sufficient to show:

||xi − x||2 − wi = ||xPi − x||2 − wPi for all i ∈ I, x ∈ P .

Therefore, let i ∈ I and x ∈ P . Write: a = (a, b, c)T , x = (x, y, z)T and xi = (xi, yi, zi)
T . Via

direct computation it follows that:

||xPi − x||2 =

∣∣∣∣∣∣∣∣xi − x− aT (xi − x0)

aTa
a

∣∣∣∣∣∣∣∣2
=

(
xi − x−

aT (xi − x0)

aTa
a

)2

+

(
yi − y −

aT (xi − x0)

aTa
b

)2

+

+

(
zi − z −

aT (xi − x0)

aTa
c

)2

= (xi − x)2 − 2(xi − x)
aT (xi − x0)

aTa
a+

(
aT (xi − x0)

aTa
a

)2

+

+ (yi − y)2 − 2(yi − y)
aT (xi − x0)

aTa
b+

(
aT (xi − x0)

aTa
b

)2

+

+ (zi − z)2 − 2(zi − z)
aT (xi − x0)

aTa
c+

(
aT (xi − x0)

aTa
c

)2

= ||xi − x||2 − 2
aT (xi − x0)

aTa
aT (xi − x) +

(
aT (xi − x0)

aTa

)2

aTa

= ||xi − x||2 − 2
aT (xi − x0)

aTa
aT (xi − x) +

(
aT (xi − x0)

)2
aTa

= ||xi − x||2 − 2
aT (xi − x0)

aTa
aT (xi − x0) +

(
aT (xi − x0)

)2
aTa

(aTx = aTx0)
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= ||xi − x||2 −
(
aT (xi − x0)

)2
aTa

= ||xi − x||2 − wi + wPi .

We used that aTx = aTx0, which holds since x ∈ P . By subtracting wPi on both sides of the
equation we obtain the desired equality.
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D

Appendix: Partial derivatives of the
log-likelihood

Recall that we defined:

bij := log(aj)−
2

3
µ− 2

9
σ2 − log

(
a

(1)
i

)
and β :=

1
8
9σ

2
.

Via straightforward computation we compute the partial derivatives of the log-likelihood:

∂

∂µ
l(µ, σ) =

m∑
j=1

1
N

∑N
i=1 exp

(
−
(

log(aj)− 2
3µ− 2

9σ
2−log

(
a
(1)
i

))2

8
9σ

2

)
log(aj)− 2

3µ− 2
9σ

2−log
(
a
(1)
i

)
8
9σ

2
4
3

1
N

∑N
i=1 exp

(
−
(

log(aj)− 2
3µ− 2

9σ
2−log

(
a
(1)
i

))2

8
9σ

2

) (D.1)

=

m∑
j=1

∑N
i=1 exp

(
−b2ijβ

)
4
3bijβ∑N

i=1 exp
(
−b2ijβ

) (D.2)

∂

∂σ
l(µ, σ) = − m

2

1

2π
(

4
9σ

2
)2π

8

9
σ +

m∑
j=1

1
N

∑N
i=1

{
∂
∂σ exp

(
−
(

log(aj)− 2
3µ− 2

9σ
2−log

(
a
(1)
i

))2

8
9σ

2

)}
1
N

∑N
i=1 exp

(
−
(

log(aj)− 2
3µ− 2

9σ
2−log

(
a
(1)
i

))2

8
9σ

2

)
(D.3)

= −mβ 8

9
σ +

m∑
j=1

∑N
i=1 exp

(
−b2ijβ

) (
4
9σ

2bij + b2ij
)

16
9 σβ

2∑N
i=1 exp

(
−b2ijβ

) . (D.4)
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Note that computing the derivative in the numerator in equation (D.3) yields:

∂

∂σ
exp

−
(

log(aj)− 2
3µ− 2

9σ
2 − log

(
a

(1)
i

))2

8
9σ

2

 =

= exp

−
(

log(aj)− 2
3µ− 2

9σ
2 − log

(
a

(1)
i

))2

8
9σ

2

 ·
·

4
9σ

2
(

log(aj)− 2
3µ− 2

9σ
2 − log

(
a

(1)
i

))
16
9 σ +

(
log(aj)− 2

3µ− 2
9σ

2 − log
(
a

(1)
i

))2
16
9 σ

4
(

4
9σ

2
)2

(D.5)
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E

Appendix: Computations related to
Wicksell’s corpuscle problem

In this section we rewrite the relationship as given by Wicksell [15], as also mentioned in
section 8.1:

φ(x) =
x

E(R)

∫ ∞
x

f(r)√
r2 − x2

dr. (E.1)

Here, E(R) is the average radius of the 3D spheres:

E(R) =

∫ ∞
0

rf(r)dr.

Let us recall equation (8.1), which is the result of transforming r 7→ πr2 in equation (E.1) such
that we have the density of the observed areas instead of the observed radii:

f̃A(a) =
1

2πE(R)

∫ ∞
√

a
π

f(r)√
r2 − a

π

dr. (E.2)

Via a change of variables we will now express f(r) in (E.2) in terms of fV which we define as
the probability density function which describes the volume distribution of the spheres. Hence,
we substitute:

r =

(
3v

4π

) 1
3

⇐⇒ v =
4

3
πr3.

Once again, we use (7.7) and we obtain:

f(r) = fV

(
4

3
πr3

)
4πr2.

Recall the definition of the constant amax:

amax :=
π(

4
3π
) 2

3

=
3

√
9π

16
.
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This means that:

E(R) =

∫ ∞
0

rf(r)dr

=

∫ ∞
0

rfV

(
4

3
πr3

)
4πr2dr

=

∫ ∞
0

(
3v

4π

) 1
3

fV (v)dv substitute v =
4

3
πr3.

=

(
3

4π

) 1
3

E(V
1
3 ) where V ∼ fV .

=

√
amax

π
E(V

1
3 ).

And f̃A(a) becomes:

f̃A(a) =
1

2πE(R)

∫ ∞
√

a
π

f(r)√
r2 − a

π

dr

=
1

2π
√

amax

π E(V
1
3 )

∫ ∞
√

a
π

fV
(

4
3πr

3
)√

r2 − a
π

4πr2dr

=
1

2π
√

amax

π E(V
1
3 )

∫ ∞
a

amax

fV

(
x

3
2

)
√

xamax

π − a
π

2amax

√
xamax

π
dx substitute x =

(
4

3
πr3

) 2
3

=
π

amax
r2.

=
2amax

2π
√

amax

π E(V
1
3 )

∫ ∞
a

amax

fV

(
x

3
2

)
√

1− a
xamax

dx

=
3

4amaxE(V
1
3 )

∫ ∞
a

amax

fV

(
x

3
2

)
√

1− a
xamax

dx. (E.3)
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F

Appendix: A lognormal volume
distribution

Recall the density f
V

2
3 |I which was defined in (7.8). When assuming that fV is the density of

a lognormal volume distribution the density f
V

2
3 |I corresponds to a lognormal distribution but

with different parameters. Recall:

fV |I(v) =
v

1
3 fV (v)

E
(
V

1
3

) .
The density f

V
2
3 |I corresponds to the density of a random variable V

2
3

I with VI ∼ fV |I . First,

we show that fV |I is the density of lognormal distribution when fV is the density of a lognormal
distribution:

v
1
3 fV (v) =

v
1
3

vσ
√

2π
exp

(
− (log(v)− µ)

2

2σ2

)

=
1

vσ
√

2π
exp

(
− (log(v)− µ)

2

2σ2
+

1

3
log(v)

)

=
1

vσ
√

2π
exp

(
− 1

2σ2

(
log2(v)− 2µ log(v) + µ2 − 2

3
σ2 log(v)

))
=

1

vσ
√

2π
exp

(
− 1

2σ2

(
log2(v)− 2

(
µ+

1

3
σ2

)
log(v) +

(
µ+

1

3
σ2

)2

− 2

3
µσ2 − 1

9
σ4

))

=
1

vσ
√

2π
exp

(
− 1

2σ2

((
log(v)−

(
µ+

1

3
σ2

))2
)

+
1

3
µ+

1

18
σ2

)

=
1

vσ
√

2π
exp

(
−
(
log(v)−

(
µ+ 1

3σ
2
))2

2σ2

)
exp

(
1

3
µ+

1

18
σ2

)
.
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And as a result:

fV |I(v) =
v

1
3 fV (v)

E
(
V

1
3

)
=

1

vσ
√

2π
exp

(
−
(
log(v)−

(
µ+ 1

3σ
2
))2

2σ2

)
exp

(
1

3
µ+

1

18
σ2

)
1

exp
(

1
3µ+ 1

18σ
2
)

=
1

vσ
√

2π
exp

(
−
(
log(v)−

(
µ+ 1

3σ
2
))2

2σ2

)
.

For VI ∼ fV |I we conclude that VI ∼ Lognormal(µ + 1
3σ

2, σ2). The expected value E
(
V

1
3

)
was computed via (2.2). Via (2.3) we may conclude that V

2
3

I ∼ Lognormal( 2
3µ + 2

9σ
2, 4

9σ
2).

To summarize: if fV is the density of a lognormal distribution with parameters µ and σ2 we
obtain that f

V
2
3 |I is the density of a lognormal distribution with parameters µ̄ = 2

3µ+ 2
9σ

2 and

σ̄2 = 4
9σ

2.
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