# **Circular Façade Design for various End-of-Life scenarios**

Name

: Gargi Gokhale

Student number

First Mentor

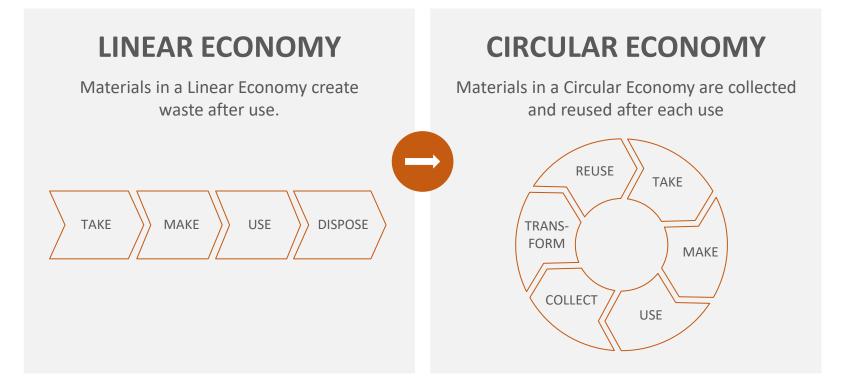
: 5745292

: Thaleia Konstantinou

Second Mentor : Sultan Cetin Third Mentor

: Magdalena Zabek

Delegate Examiner : René van der Velde


### Contents





### Introduction

## **Circular Economy**



# **Building & Construction Industry**



35%

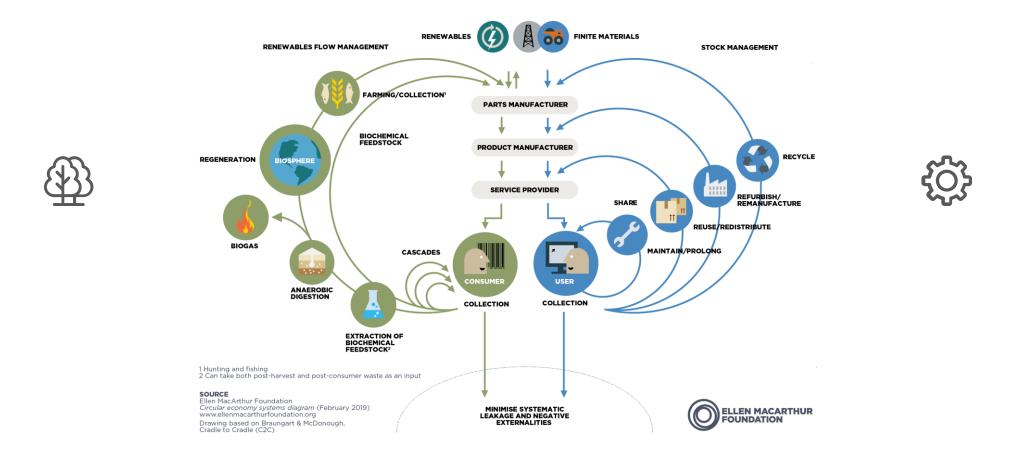
Waste produced globally

### Façade System



**Construction Cost** 

ക്


10-20%

Embodied Carbon

# **Complex system**

With Multiple layers Multiple functions Multiple materials Multiple connections

## **Butterfly Diagram**



Butterfly Diagram by Ellen MacArthur Foundation

# Life Cycle Stages

| Life cycle<br>stage                    | Pro                  | duct s    | tage          | Constr<br>proces | uction<br>s stage                      |                           |                   | U      | se sta      | ge            |                    |                       | End-of-Life stage   |                  | Beyond End-of-<br>Life stage |                                            |
|----------------------------------------|----------------------|-----------|---------------|------------------|----------------------------------------|---------------------------|-------------------|--------|-------------|---------------|--------------------|-----------------------|---------------------|------------------|------------------------------|--------------------------------------------|
| Processes                              | Raw material supply  | Transport | Manufacturing | Transport        | Construction -<br>Installation Process | Use                       | Maintenance       | Repair | Replacement | Refurbishment | Operational energy | Operational Water Use | Transport           | Waste processing | Disposal                     | Reuse, Recovery and<br>Recycling Potential |
| Broader<br>classification<br>of stages | ication Design stage |           |               |                  |                                        | Opera<br><mark>S</mark> t | itional<br>tage B | -      |             |               |                    |                       | -of-Life<br>age C & | J                |                              |                                            |

Life cycle stages in construction works from BSEN15978

## **Objective**

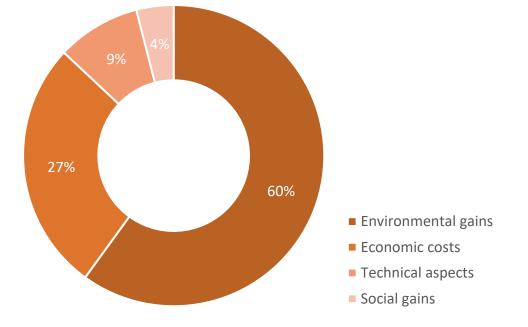
| Life cycle<br>stage                    | Pro                 | duct s    | tage          |                              | nstruction Use stage cess stage        |     |             | End-of-Life stage                |             |               | Beyond End-of-<br>Life stage |                       |           |                  |          |                                            |
|----------------------------------------|---------------------|-----------|---------------|------------------------------|----------------------------------------|-----|-------------|----------------------------------|-------------|---------------|------------------------------|-----------------------|-----------|------------------|----------|--------------------------------------------|
| Processes                              | Raw material supply | Transport | Manufacturing | Transport                    | Construction -<br>Installation Process | Use | Maintenance | Repair                           | Replacement | Refurbishment | Operational energy           | Operational Water Use | Transport | Waste processing | Disposal | Reuse, Recovery and<br>Recycling Potential |
| Broader<br>classification<br>of stages | tion Design stage   |           |               | Operational stage<br>Stage B |                                        |     |             | End-of-Life stage<br>Stage C & D |             |               |                              |                       |           |                  |          |                                            |
|                                        |                     |           |               |                              |                                        |     |             |                                  |             |               |                              |                       |           |                  |          |                                            |

### **EoL stage**

# **EoL decision making**

01

Extending the life leads to energy savings and less environmental impacts.


02

Constructive management at EoL enables recovery, recycling and reuse of materials and components.

03

Reduces waste sent to landfill or incineration and minimizes environmental pollution.

(European Commission, 2020), (Frosch and Gallopoulos, 1998), (Ellen MacArthur Foundation, 2013).



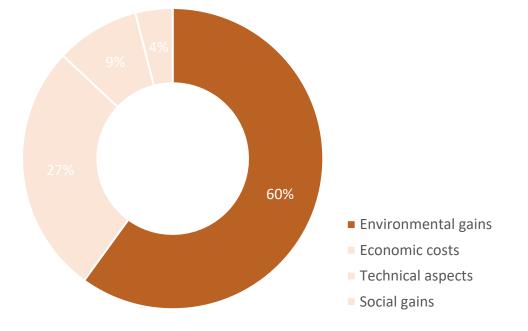
van den Berg et al. (2023)

### **EoL stage**

# **EoL decision making**

01

Extending the life leads to energy savings and less environmental impacts.


02

Constructive management at EoL enables recovery, recycling and reuse of materials and components.

03

Reduces waste sent to landfill or incineration and minimizes environmental pollution.

(European Commission, 2020), (Frosch and Gallopoulos, 1998), (Ellen MacArthur Foundation, 2013).



van den Berg et al. (2023)

## **Current situation and Problems**



### **Generative Design Aids**

Guidelines

Thumb Rules Checklists Archetypes

**Evaluative Design Aids** MFA LCA MCI MCI

Generative Design aids assist in creating a circular design but do not tell which design is more circular.

Evaluative Design aids are time consuming.



### **Problem statement**

There are a very few **design guidelines** for the façade designers that take into account the various **End-of-Life scenarios** of a façade system and the **information** that needs to be considered to follow the guidelines.

### **Research question**

What **design guidelines** can help the **façade designers** integrate the considerations for a **circular End-of-Life (EoL)** of a façade system during the design phase and what is the **information** that needs to considered while following these design guidelines?

### **Research Sub-questions**

What are the different assessment methods for circularity? What are the design guidelines to integrate a circular EoL during the design stage? What information impacts the circularity of the EoL stage based on the design guidelines?



Literature study



Research through Design

| မြ | A |
|----|---|
|    | A |
|    | U |

Research through Design

## **Research Sub-questions**

What are the different assessment methods for circularity? What are the design guidelines to integrate a circular EoL during the design stage? What information impacts the circularity of the EoL stage based on the design guidelines?



| Li | ite | ra | tu | re | st | ud | ly |
|----|-----|----|----|----|----|----|----|
|    |     |    |    |    |    |    |    |



Research through Design

| Γ | G | A |
|---|---|---|
| L |   | H |

Research through Design



### **Literature Review**

## **Circularity Assessment Methods**

| No. | Assessment<br>method | Advantages                                                                                                                                                                                                                                                       | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reason for not<br>considering                                 |
|-----|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 1   | MCI                  | <ol> <li>Takes into account material inputs and outputs.</li> <li>Focused on evaluating specific products and systems.</li> </ol>                                                                                                                                | <ol> <li>Does not take into account the complexity of the circularity since<br/>it does not take into account the aspects like biodiversity, toxicity<br/>and human health impacts</li> <li>Does not take into account the CO2 emissions thus the results<br/>showcase a high score for the materials with a high recycled<br/>content.</li> <li>Only focused on calculating the quantity of the input and output<br/>of materials in a system.</li> </ol> | Only calculates input<br>and output materials<br>in a system. |
| 2   | MFA                  | 1. MFA is a detailed analysis of flow of all the materials within a system boundary.                                                                                                                                                                             | 1. Does not calculate the environmental impacts but calculates only<br>the input and output flows as quantities in a system.                                                                                                                                                                                                                                                                                                                               | Does not calculate<br>the environmental<br>impacts.           |
| 3   | BCI                  | 1. Offers information about the building detachability along with the input and output of materials in the system.                                                                                                                                               | <ol> <li>Only takes into account a cradle-to-grave approach and not<br/>cradle-to-cradle approach.</li> <li>It does not consider benefits beyond system boundaries.</li> </ol>                                                                                                                                                                                                                                                                             | Has a cradle-to-grave approach.                               |
| 4   | LCA                  | <ol> <li>Takes into account the entire life cycle of the building.</li> <li>Calculates the environmental impacts based on<br/>different indicators.</li> <li>Includes stages regarding EoL processing impacts and<br/>benefits beyond the EoL stages.</li> </ol> | <ol> <li>Complex and time consuming.</li> <li>Requires an extensive database to obtain accurate results.</li> </ol>                                                                                                                                                                                                                                                                                                                                        |                                                               |

## **Research Sub-questions**

What are the different assessment methods for circularity? What are the design guidelines to integrate a circular EoL during the design stage? What information impacts the circularity of the EoL stage based on the design guidelines?



| 1110 | era | tur | ρς. | tuc | ١V |
|------|-----|-----|-----|-----|----|
|      | ciu | cui |     | cuc | ۰y |



Research through Design

| Г  |            | Δ  |
|----|------------|----|
| L  | <b>9</b> 1 | П  |
| Ŀ  | <u> </u>   |    |
| ۰. |            | U. |

Research through Design



**Design case** 

## **AEGiR case**

DigitAl and physical incremestal renovation packaGes/ systems enhancing envIronmental and energetic behaviour and use of Resources

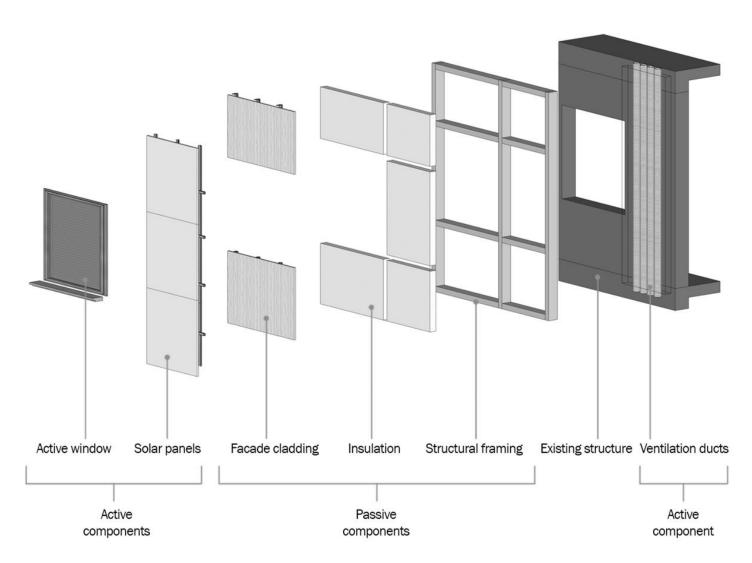
### Bigger aim

Net zero economy by 2050

#### Renovation

Less energy efficient buildings – more energy bills, affects indoor comfort.

European Commission,2015


### **Current Building Stock**

85% building stock built before 2001 and will be still standing in 2050.

### **New construction**

Fall in the number of newly constructed buildings

### **AEGiR case**



### Wrap-it

The new envelop is wrapped around the existing building.

#### **Circular construction**

The new envelop system aims to achieve a circular construction.

### Pre-fab and modular

Pre-fabricated and industrialised modular envelop system.

### Components

The components of AEGiR will help to meet the energy demands.

### **Case Development**

01

**Dutch Housing** 

It is an important part of the

Dutch building stock

# 02

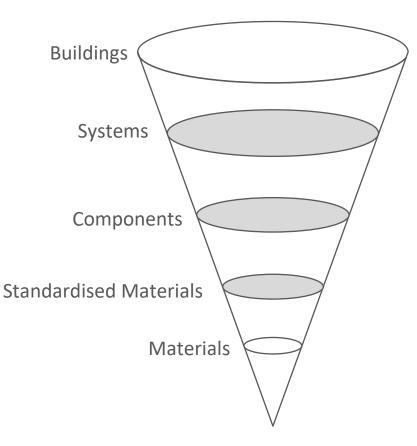
### World War II

1946 – 1969 Tackle the housing crises

### 03

### Lifespan

The lifespan of these houses is more than 50 years


04

**Energy demand** Satisfying the operational energy demand 05

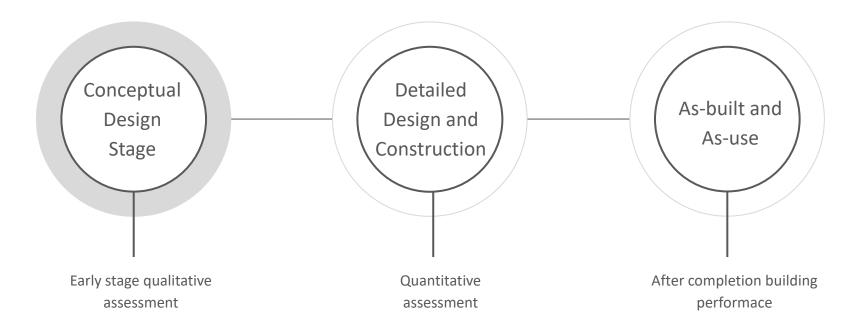
**Construction type** RCC framed, prefab, industrialised construction 06

**Rc value** 2.53 m<sup>2</sup> K/W

## **Preliminary Design Development**



#### **Constant criteria**


Thermal comfort Acoustics performance Energy performance Daylight conditions Rc value of the insulation

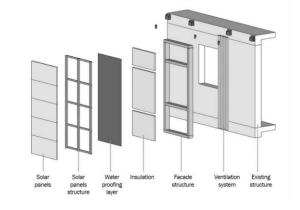
#### **Constant Components**

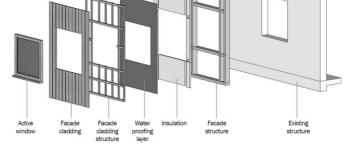
Solar panels Ventilation system

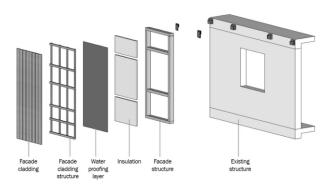
### Variable components

Façade cladding
Insulation
Façade cladding
Façade cladding support
Solar panel support
Window frame




Design stages as described in the level(s) indicators


# **Preliminary Design**


Panel A

Panel B

Panel C

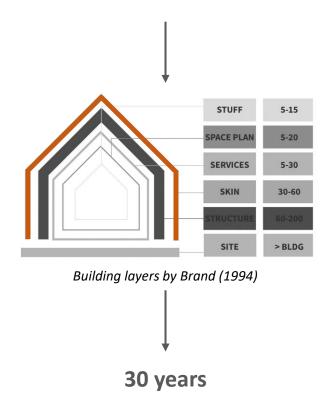


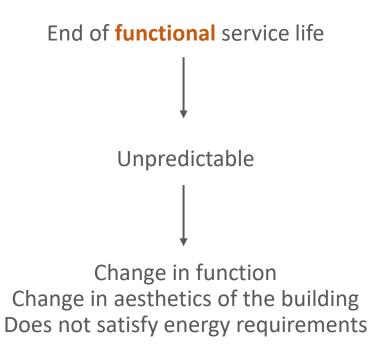




Insulation Façade Structure Solar Panels Ventilation ducts

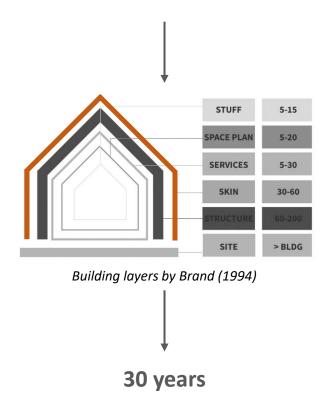
Façade Cladding Insulation Façade Structure Window

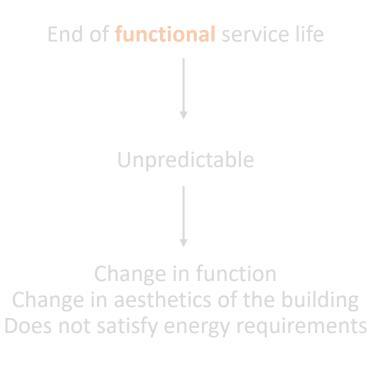

Façade Cladding Insulation Façade Structure




### **Design variants**

# End-of-Life?


End of **technical** service life






# End-of-Life?

### End of **technical** service life





## **Design scenarios**

**Technical lifespan** Technical service life of

standardised materials.



Possible EoL

All the possible EoL scenarios based on the available technology.



**Circular material strategies** Material choices play a fundamental role in designing for a circular economy.



#### Long lifespan materials

#### >60 years

Using materials and materials with a long lifespan.



#### Short lifespan materials

#### <60 years

Components with materials that have a shorter lifespan.



#### Bio based materials

Components made from biobased materials

## **R-ladder**

**Technical lifespan** Technical service life of standardised materials



### Possible & Circular EoL

All the possible EoL scenarios based on the available technology and circular EoL scenarios were identified.



**Circular material strategies** Material choices play a fundamental role in designing for a circular economy

| $\wedge$    | Objectives                                                                    | Re-life Options               | Description                                                                        |  |  |
|-------------|-------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------|--|--|
|             | • Design phase<br>• Most sustainable                                          | RO Refuse                     | Prevent the use of products and raw mate-<br>rials in the creation.                |  |  |
|             | Adds value     Responsible use and     manufacturing                          | R1 Rethink                    | Reconsider ownership, use, and mainte-<br>nance of products.                       |  |  |
|             |                                                                               | R2 Reduce                     | Decrease the use of raw materials in prod-<br>ucts and services.                   |  |  |
| RITY -      | Consumption phase     Optimal Use                                             | R3 Reuse                      | Secondary use of products by another own-<br>er for the same intended purpose.     |  |  |
| CIRCULARITY | • Preserve and Extend the<br>life of the product                              | R4 Repair                     | Maintain and repair existing products for<br>extended use.                         |  |  |
|             |                                                                               | R5 Refurbish                  | Restore and improve products to a satisfac-<br>tory condition for extended use.    |  |  |
| INCREASE IN |                                                                               | R6 Remanufacture              | Make more products with the same pur-<br>pose with discarded products or parts.    |  |  |
|             |                                                                               | R7 Repurpose                  | Make new products with a different pur-<br>pose using discarded products or parts. |  |  |
|             | • End-of-Life or return phase                                                 | R8 Recycle                    | Process waste into new products or materials that can be used for new products.    |  |  |
|             | <ul> <li>Capture and retain value</li> <li>Use waste as a resource</li> </ul> | R9 Recover                    | Process waste to recover energy.                                                   |  |  |
|             | Loss of resources     Value lost     Environmental pollution                  | Landfill or Incinera-<br>tion | Not utilising end-of-life materials in any way                                     |  |  |

The 10R framework by Potting et al. (2017, p.5)

# **Design variants**

**Technical lifespan** Technical service life of standardised materials



### Possible EoL

All the possible EoL scenarios based on the available technology.



### **Circular material strategies**

Material choices play a fundamental role in designing for a circular economy



#### **Traditional materials**

This is important towards EoL because it is easier to repair or refurbish these materials since the raw material and the construction technique are easily available.



#### Low-cost materials

These materials have a reduced material cost, processing and manufacturing cost, less resource consumption.



#### Low material production energy

They refer to the application of materials in the system in their natural form.

## **Design variants**

### S1

Long lifespan materials

1. Traditional

2. Low cost

3. Low production energy

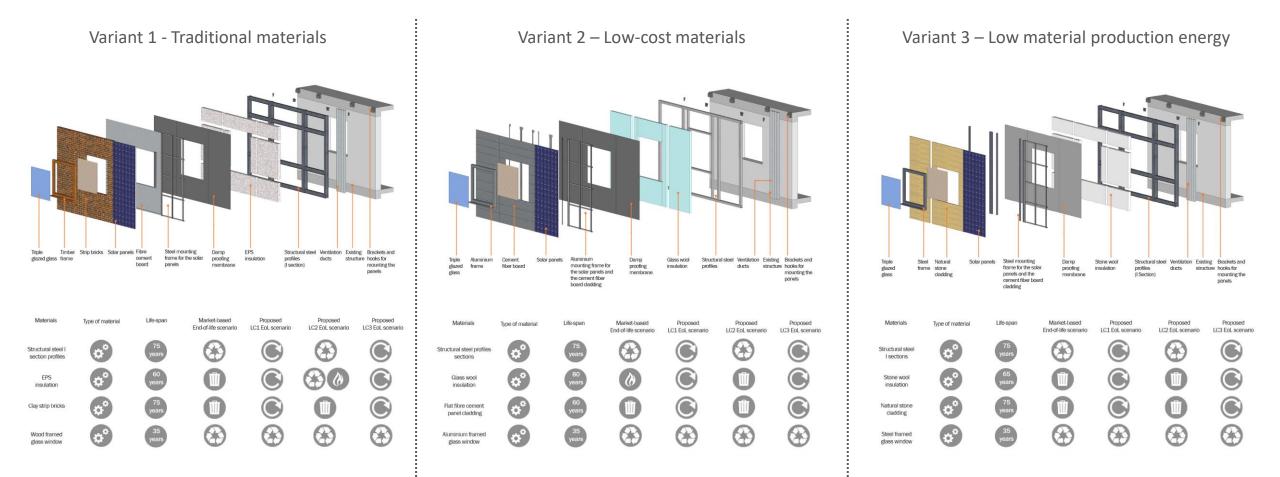
### S2

### Short lifespan materials

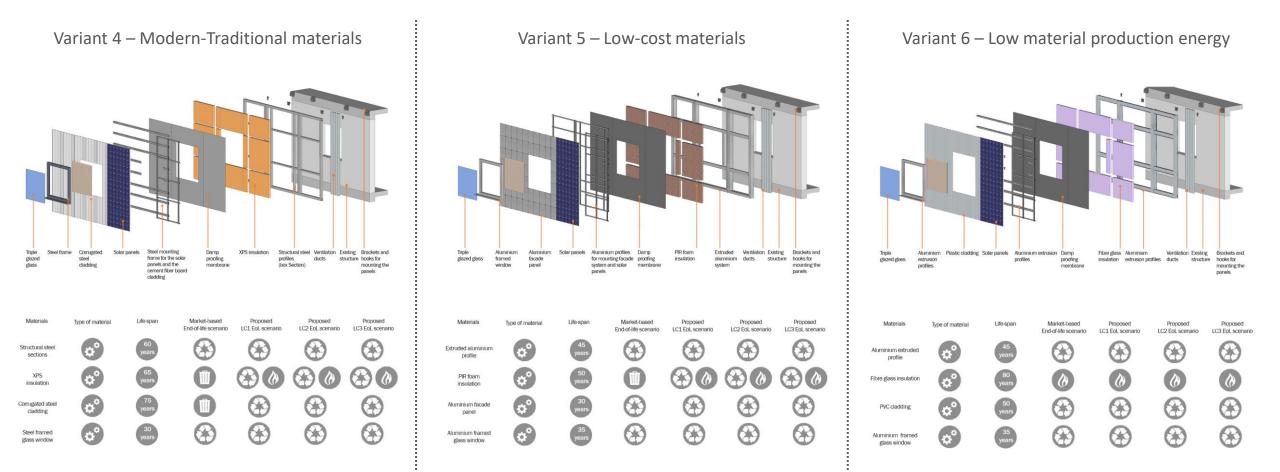
4. Traditional

5. Low cost

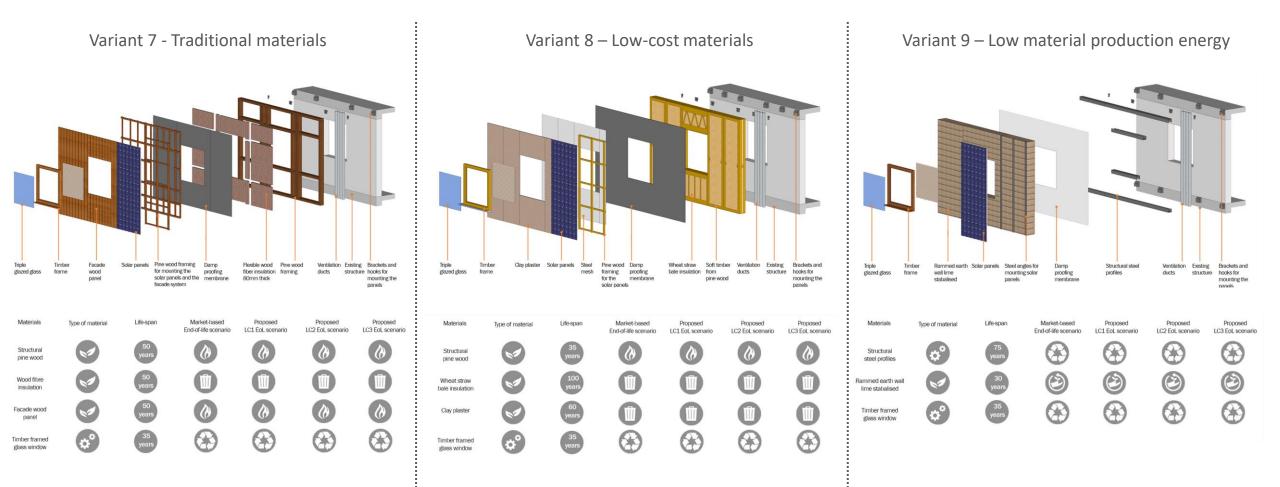
6. Low production energy


S3 Biobased materials

7. Traditional


8. Low cost

9. Low production energy


### S1: Long lifespan materials



### S2: Short lifespan materials



### **S3: Biobased materials**





### **Evaluation & Results**

## **Evaluation**



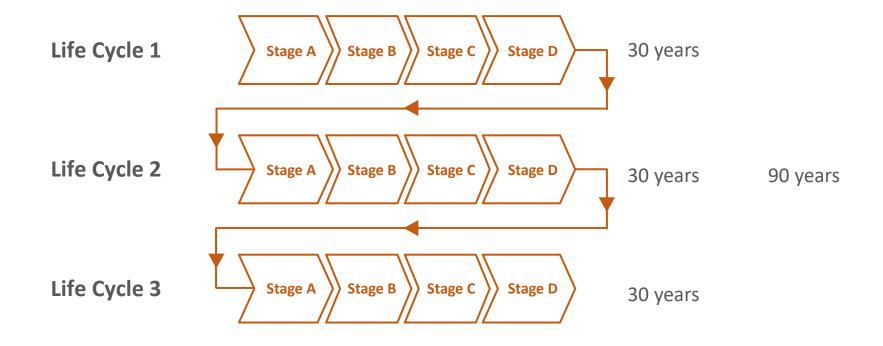
# *,*?

#### Quantities

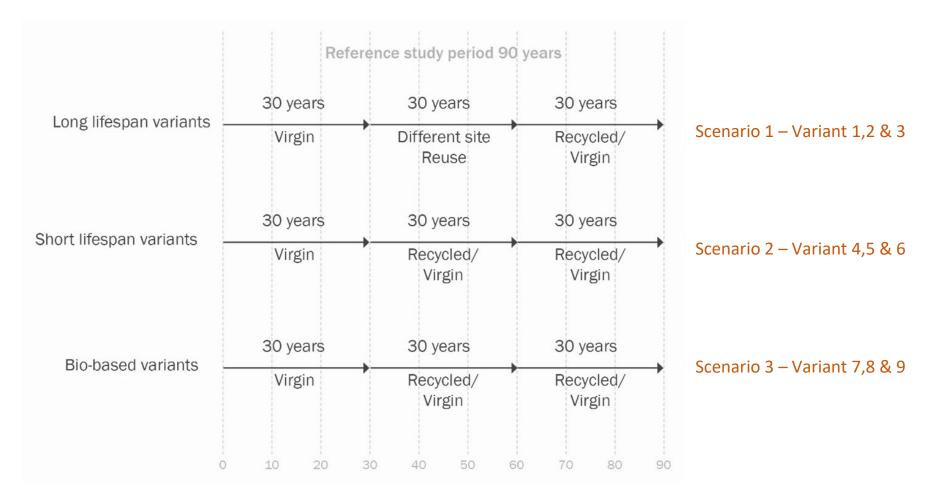
Calculate the quantities of all the materials in the designed variants 0

**Evaluation method** Life Cycle Assessment




### **OneClick LCA** Module A,C and D

3D model


OneClick LCA

ĹĊÀ

### **Inputs to OneClick LCA**



## **Evaluation**



## **KPIs**

| No. | KPI                                                       | Unit of     | Description                                                                                                                                                   |
|-----|-----------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                           | measurement |                                                                                                                                                               |
|     | Environmental impact indicators                           | 5           |                                                                                                                                                               |
| 1   | Global Warming Potential                                  | CO2eq       | Global warming potential is a relative measure of how much heat a greenhouse gas traps in the atmosphere.                                                     |
| 2   | Biogenic Carbon Storage                                   | CO2eq bio   | Biogenic Carbon Storage is the process of capturing and storing atmospheric carbon in living organisms and biomass.                                           |
| 3   | Ozone Depletion Potential                                 | kg CFC11eq  | Describes the potential damage caused to the stratospheric ozone layer. Chemical refrigerants used in older air conditioning systems often have a higher ODP. |
| 4   | Acidification Potential                                   | kg SO2eq    | Acidifying emissions that result in a lower pH-value of water and soil, decreasing the nutrient availability and intake of plants.                            |
| 5   | Eutrophication Potential                                  | kg PO4eq    | Nutrient emissions (nitrogen and phosphorus) that increase the flow of nutrients to ecosystems, causing algae growth in waters.                               |
| 6   | Formation of Ozone of lower atmosphere                    | kg Ethenee  | Formation of Ozone of lower atmosphere occurs when pollutants like nitrogen oxides and volatile organic compounds react with sunlight.                        |
| 7   | Abiotic Depletion Potential for non-fossil fuel resources | kg Sbe      | Abiotic depletion refers to the global reduction of non-living, or abiotic, natural re-<br>sources, such as mineral, metal and fossil resources.              |
| 8   | Abiotic Depletion Potential for<br>fossil fuel resources  | MJ          |                                                                                                                                                               |
|     | Material costs                                            | -           | ·                                                                                                                                                             |
| 1   | Material market price                                     | Euros       | This is the regional market based cost of the standardised materials.                                                                                         |
| 2   | Typical labour cost for installing the material           | Euros       | This is the regional cost considered for installing a standardised material.                                                                                  |

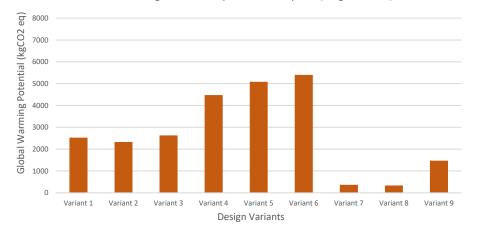
### Environmental impacts (kg CO2 eq/m2) & Building Circularity

| Variants           | Variant name | Environmental impact | <b>Building Circularity</b> |  |
|--------------------|--------------|----------------------|-----------------------------|--|
|                    |              | (kg CO2 eq/ m2)      |                             |  |
| Long lifespan      | Variant 1    | 92                   | 67%                         |  |
| variants           | Variant 2    | 82                   | 63%                         |  |
|                    | Variant 3    | 92                   | 60%                         |  |
| Short lifespan     | Variant 4    | 140                  | 76%                         |  |
| variants           | Variant 5    | 116                  | 73%                         |  |
|                    | Variant 6    | 135                  | 72%                         |  |
| Bio-based variants | Variant 7    | 34                   | 75%                         |  |
|                    | Variant 8    | 29                   | 53%                         |  |
|                    | Variant 9    | 83                   | 12%                         |  |

## **Environmental KPI results**

Stage A and Stage C combined impacts

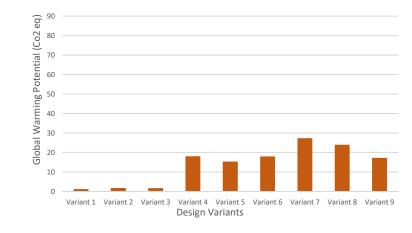
Stage C impacts


Stage D benefits

**Most** Short lifespan materials **Most** Short lifespan materials Except GWP bio-based materials Most

Long lifespan materials

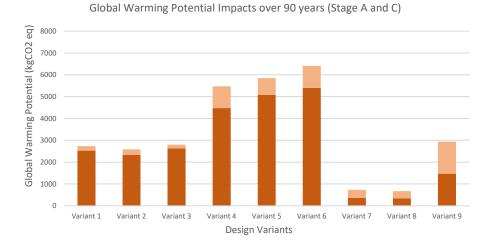
**Least** Bio-based materials **Least** Bio-based materials Except GWP – long lifespan materials **Least** Bio-based materials


#### Stage A and Stage C combined impacts



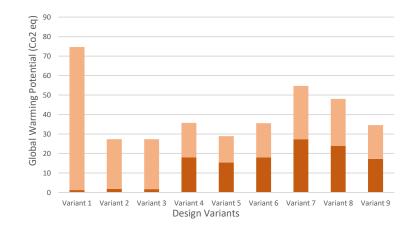
Global Warming Potential Impacts over 90 years (Stage A and C)

Life Cycle 1 Life Cycle 2 Life Cycle 3


#### Stage C impacts



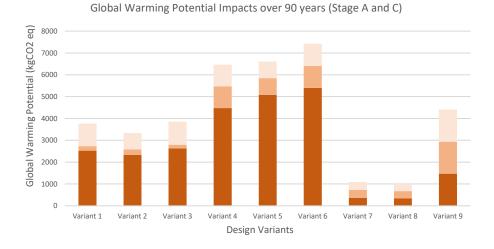
End-of-life (stage C) Global Warming Potential Impacts


Life Cycle 1 Life Cycle 2 Life Cycle 3

#### Stage A and Stage C combined impacts

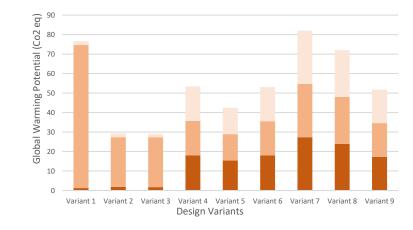


■ Life Cycle 1 ■ Life Cycle 2 Life Cycle 3


Stage C impacts



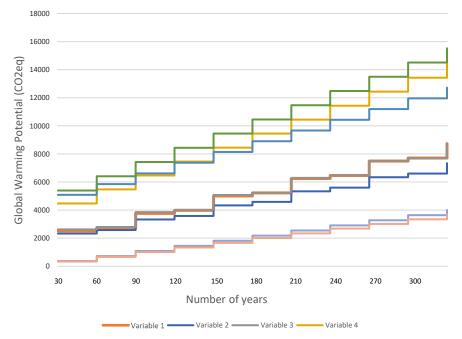
End-of-life (stage C) Global Warming Potential Impacts


Life Cycle 1 Life Cycle 2 Life Cycle 3

#### Stage A and Stage C combined impacts



Life Cycle 1 Life Cycle 2 Life Cycle 3

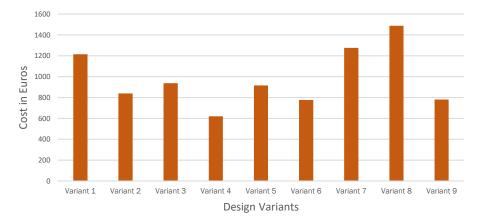

#### Stage C impacts



#### End-of-life (stage C) Global Warming Potential Impacts

Life Cycle 1 Life Cycle 2 Life Cycle 3

#### GWP over a span of 300 years




Global Warming Potential over 330 years

Variable 5 — Variable 6 — Variable 7 — Variable 8

#### Cost of the designed variables over LC1





LC1

## **Conclusions**

- In circularity, to accurately assess the impacts, it is necessary to take into account a **multiple lifespan approach** rather than a single lifespan approach.
- Use of **more reused and recycled content** in the system created less environmental impacts.
- Thus, **lifespan and EoL** play an important role in deciding the circularity of the system. They also affect the environmental impacts that are created.
- If the **recyclability percentage and biodegradability percentage** in a system is high, the circularity is high and the GWP impacts are low.
- The materials used in the system should have a **low GWP** processing energy and a **low GWP of EoL processing**.



**Design guidelines and information considerations** 

# **Design Guidelines & Information Considerations**

#### **Material source**

Local materials

#### **Recycled/ Reused content**

Maximise the content of reused and recycled Materials in the system

#### **GWP of the EoL process**

Use materials that have possible EoL which is more circular

#### Recyclability

Use technical materials that have a higher percentage of recyclable materials in the system.

#### **Biodegradability**

Use biological materials that have a higher percentage of biodegradable materials in the system.

#### Select a material

Select a material that satisfies the criteria mentioned in Material Selection Guidelines

#### Lifespan

В

С

D

D

Life Cycle Planning

Select standardised materials with a long lifespan to enable their repeated reuse.

#### **EoL** scenarios

All possible EoL scenarios should be known.

#### **Circular EoL**

Combine the strategies for extending and closing the loop.

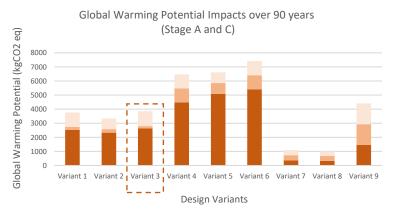
#### Multiple use cycles

Consider multiple lifecycles and not just one lifecycle and Plan for the future cycles.

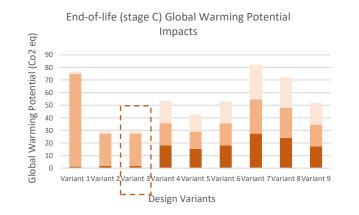
В

С

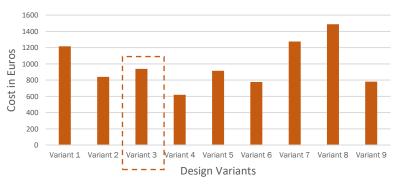
D




### Validation & Final Design


#### Stage A and Stage C combined impacts

#### Stage C impacts


#### Cost of the designed variables over LC1



Life Cycle 1 Life Cycle 2 Life Cycle 3



#### Market based costs of the standardised materials



Life Cycle 1 Life Cycle 2 Life Cycle 3

LC1

# **Final Design Considerations**

| A | B | С | D | D |
|---|---|---|---|---|
|   |   |   |   |   |

D

D

В

Material sources

| Component               | Standardised material            | Material source |
|-------------------------|----------------------------------|-----------------|
| Façade structure        | Structural steel profile section | Netherlands     |
| Insulation              | Stone wool insulation            | Netherlands     |
| Façade cladding         | Natural stone cladding           | Netherlands     |
| Façade cladding support | Structural steel profile section | Netherlands     |
| Solar panel support     | Structural steel profile section | Netherlands     |

#### Recycled/ Reused content

| Component               | Standardised material            | Recycled<br>content (LC1) | Reused content<br>(LC1) |
|-------------------------|----------------------------------|---------------------------|-------------------------|
| Façade structure        | Structural steel profile section | 100%                      | -                       |
| Insulation              | Stone wool insulation            | 90% slag                  | -                       |
| Façade cladding         | Natural stone cladding           | 0%                        | -                       |
| Façade cladding support | Structural steel profile section | 100%                      | -                       |
| Solar panel support     | Structural steel profile section | 100%                      | -                       |

Use local materials to facilitate easy minor and major repair as well as to reduce the emissions caused due to transportation of the materials.

Maximise the amount of reused and recycled content in the system.

## **Final Design Considerations**

GWP of EoL processing

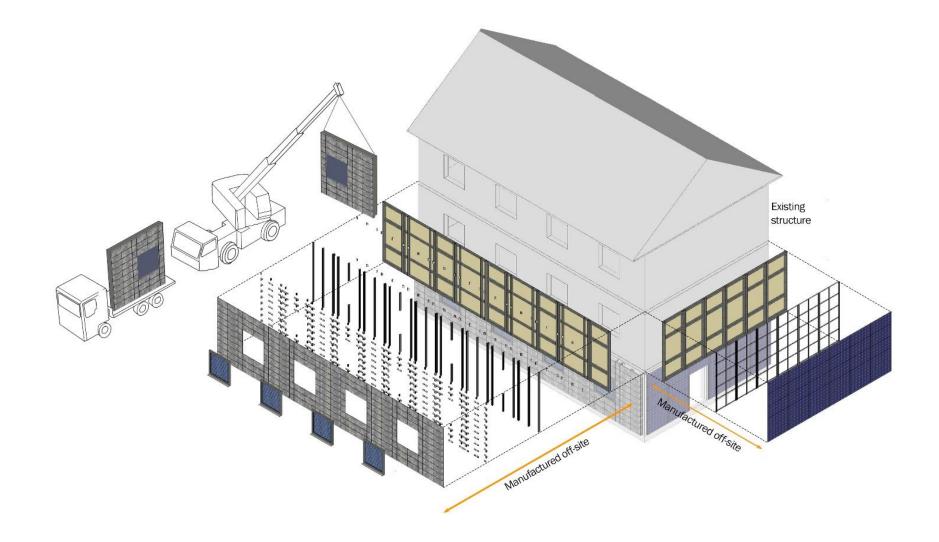
Reuse and Recycle

| A | В        | С | D   | D |
|---|----------|---|-----|---|
| - | <u> </u> |   | · · |   |

С

D

D


В

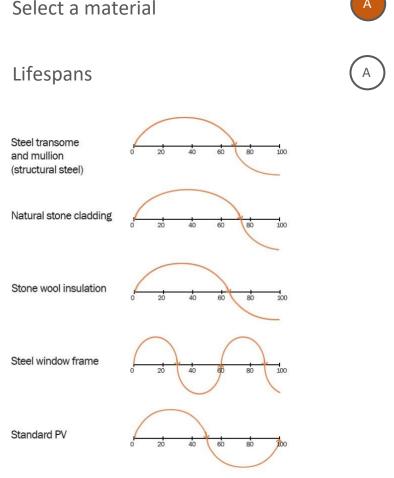
| Component               | Standardised material            | Recyclability | Biodegradability |
|-------------------------|----------------------------------|---------------|------------------|
| Façade structure        | Structural steel profile section | 100%          | -                |
| Insulation              | Stone wool insulation            | 0%            | -                |
| Façade cladding         | Natural stone cladding           | 92.6%         | -                |
| Façade cladding support | Structural steel profile section | 100%          | -                |
| Solar panel support     | Structural steel profile section | 100%          | -                |


Choose materials which have a low GWP for EoL processing.

Use standardized materials with high biodegradability and recyclability

# **Final Design**




## **Final Design**



Solar Solar panel Insulation Facade structure Ventilation Existing 100% recycled panels support Stone wool ducts structure 100% recycled insulation with steel content steel content 90% slag structural steel steel profiles profile

## **Final Design Considerations**

Select a material

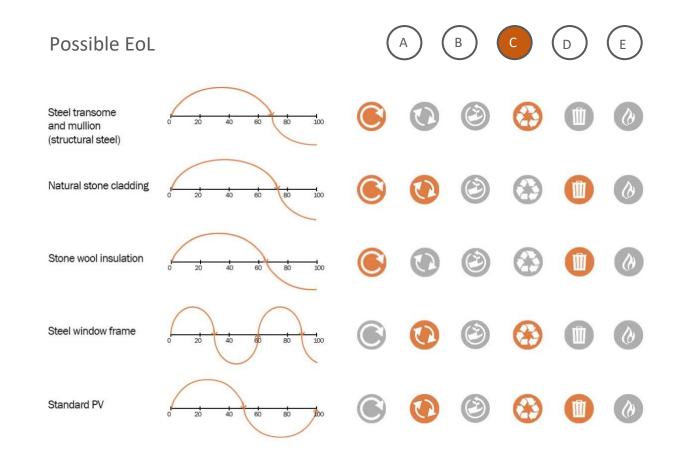


Select a material that satisfies the criteria mentioned in material selection guidelines.

(Е)

E

С


С

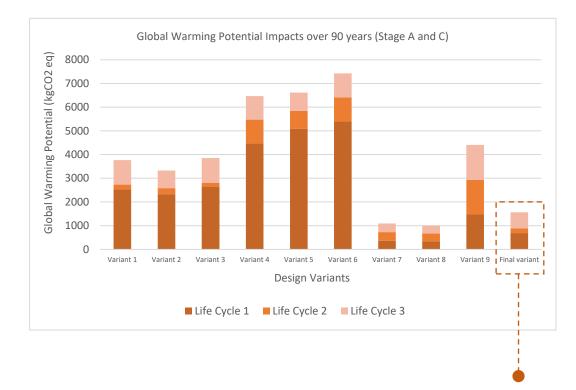
D

D

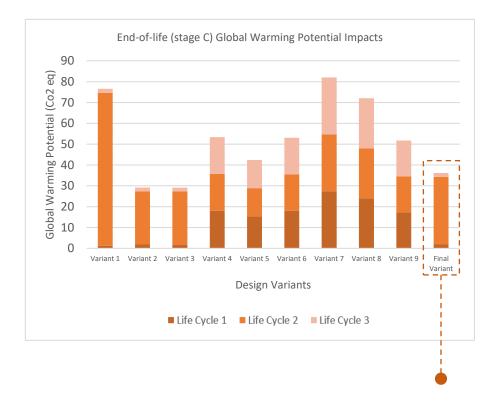
В

Select standardised materials/ components longer lifespans to facilitate their with repeated reuse.

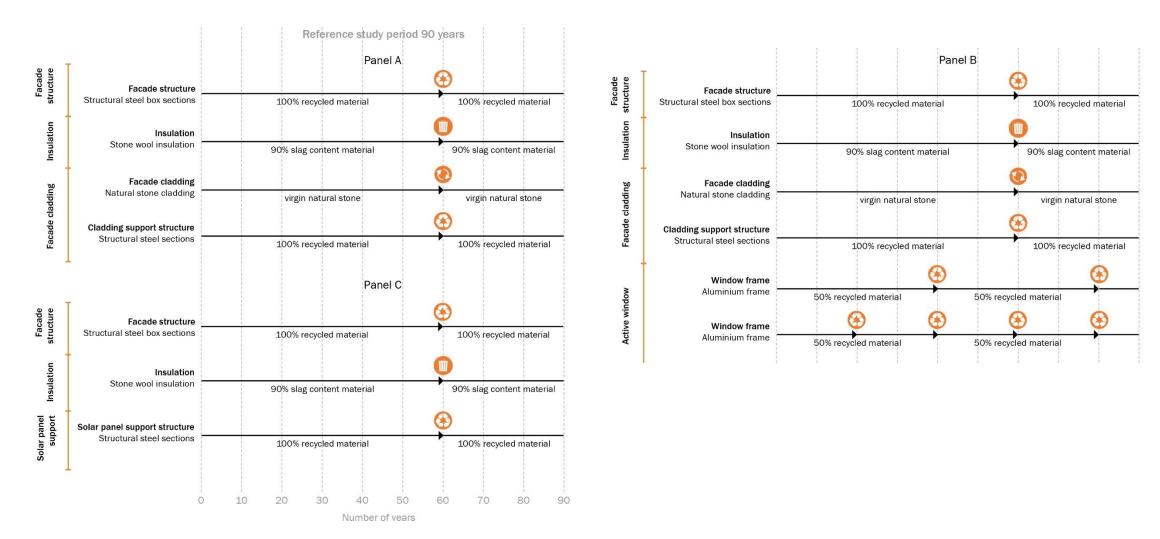



| Circular EoL                                        | A | ) ( | B ( | C            | D | E |
|-----------------------------------------------------|---|-----|-----|--------------|---|---|
| Steel transome<br>and mullion<br>(structural steel) |   |     | ٨   | <b>③</b>     |   | 0 |
| Natural stone cladding                              |   |     | ٨   |              |   | 0 |
| Stone wool insulation                               |   |     | ۸   | $\bigotimes$ |   |   |
| Steel window frame                                  |   |     | ٨   |              |   | 0 |
| Standard PV                                         |   |     | ٨   | <b>③</b>     |   |   |

For technical materials, combine the strategies for reuse (extending the loop) and recycle (closing the loop). For bio-based materials use the strategy for closing the loop if reuse is not possible.




Consider multiple lifecycles and not just the first technical cycle for the evaluation process. Always plan for future life cycles.


#### Stage A and Stage C combined impacts



#### Stage C impacts



## **Recommended circular EoL scenarios**





### Discussions

## **Discussions**



Trade-offs between cost and environmental impacts and circularity Walter Stahel's inertia principle states that, "Do not repair what is not broken, do not remanufacture something that can be repaired, do not recycle a product that can be remanufactured".

In other words Do not repair what is not broken, do not manufacture something that is in the market, do not recycle a product that can still be reused.

## Thankyou

| Name           | : Gargi Gokhale        | Second Mentor     | : Sultan Cetin       |
|----------------|------------------------|-------------------|----------------------|
| Student number | : 5745292              | Third Mentor      | : Magdalena Zabek    |
| First Mentor   | : Thaleia Konstantinou | Delegate Examiner | : René van der Velde |