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Abstract  

The design of residential care facilities for individuals with dementia profoundly impacts their 

quality of life and wellbeing. Dementia-friendly architecture, thoroughly reviewed in 

literature, provides guidelines and assessment tools to evaluate residential spaces and 

enhance living conditions. Key to residents' wellbeing is their autonomy and control over 

their environment, which can be facilitated by optimizing wayfinding within indoor spaces. 

Effective spatial layouts, particularly those offering good visual access, not only promote 

autonomy but also improves social integration by enabling residents to see and be seen by 

others.  

 

This MSc thesis investigates the feasibility of artificial intelligence (AI) to support the design 

of dementia-friendly architecture, focusing particularly on wayfinding—a critical element of 

environmental design for individuals with dementia. The study quantitatively assesses the 

relationship between floor plan layouts and wayfinding ease using the isovist method, linking 

floor plan geometry with the navigational experiences of dementia patients. The assessment 

was done in accordance with an established Dementia Design Principles (DDP) 

environmental assessment tool recognized within universal design guidelines.  

 

A computational framework was developed to evaluate wayfinding quality using visual 

access analysis, which were integrated into a machine learning model. This model was 

trained on a dataset of 256 floor plans, employing features derived from two distinct sources: 

spatial metrics such as distances and centrality from the Swiss Dwellings dataset, and 

compactness and distance-based features extracted via Grasshopper, a visual scripting tool 

in Rhino 3D. The model was tested using two supervised machine learning algorithms—

Random Forest (RF) and Artificial Neural Networks (ANN)—and achieved consistent accuracy 

rates between 70-80% using 14 features and 2 multiclass outputs describing the visual 

access quality. This demonstrates AI's potential as a decision-support tool in the early stages 

of architectural design, offering architects insights into the wayfinding quality of their 

designs.  

 

The goal of this research is to develop a digital framework that can be leveraged by 

architects to link early-stage concept design ideation to the specialist validation of final 

designs to help guide the design of layouts towards DDP-compliance and reduce risk of 

design changes, ultimately designs that are easier to navigate by people living with dementia 

and enhance the quality of living. 

 

Keywords: Dementia-friendly architecture, artificial intelligence in design, indoor wayfinding, 

machine learning assessment, dementia care spaces, architectural technology, user-centered 

design, spatial analysis, AI-driven tools in architecture. 

 



        Contents 

Preface 8 

Vision Statement 9 

Glossary of Terms 10 

        1 Introduction 14 
1.1 Background 16 
1.2 Problem Statement 17 
1.3 Research Question 18 

1.3.1 Main question 18 
1.3.2 Research Sub-Questions 18 

1.4 Research Aim and Methodology 19 
1.5 Research Relevance 19 

1.5.1 Scientific Relevance 19 
1.5.2 Societal Relevance 19 

        2 Literature Review 21 
2.1 Understanding Occupant Wellbeing 22 

2.1.1 Clinical Nursing Homes and Residential Care Communities 24 
2.1.2 Unique User Requirements and Dementia Design Principles 25 
2.1.3 Hearing 25 
2.1.4 Spatial Awareness and Wayfinding 26 
2.1.5 Smell 27 
2.1.6 Vision 27 

2.2 Quantifying Dementia Design Principles 27 
2.2.1 Evaluation of Floor Layouts 27 

2.3 AI Enabled Support Tools 30 
2.3.1 Study A: Supervised Learning – Deep Learning Surrogate Model for Spatial and 

Visual Connectivity by Tarabishy et al. 2020 30 
2.3.2 Study B: Supervised Learning – Towards a Machine Learning for Space Syntax by 

Ferrando 2018 32 
2.3.3 Study C: Unsupervised Learning – Deep Learning Spatial Signatures 34 

2.4 Conclusion 35 

        3 Wayfinding Design Criteria 36 
3.1 Principles that Promote Wellbeing 37 
3.2 Design Criteria for Describing Perceived Wellbeing 37 

3.2.1 Personal Autonomy 38 
3.2.2 Sense of Community 38 
3.2.3 Balanced Stimulation 38 
3.2.4 Accessibility 38 

3.3 Selection of Performance Indicators for Indoor Wayfinding Quality 38 
3.4 Adapting the Dementia Design Principles into a Wayfinding Scoring System 41 

3.4.1 Label Assignment Per Room Function 42 
3.4.2 Assessment Indicator Thresholds 43 
3.4.3 Expert Validation of Thresholds and Weights 43 

3.5 Limitation of Scope 45 

        4 Measuring Indoor Wayfinding Quality 48 
4.1 Indoor Wayfinding Performance Assessment Method 49 

4.1.1 Isovist Method 49 



                                  Page 6 

4.1.2 Assessing Wayfinding Quality 50 
4.1.3 Sound Modelling 51 

4.2 Performance Assessment Procedure 53 
4.2.1 Visual Access Analysis 53 
4.2.1 Acoustic Wayfinding Cues 55 
4.3.1 Sound Separation 56 

4.3 Application of Computational Assessment Workflow 58 
4.3.1 Visual Access Script 58 
4.3.2 Sound Modelling Script 59 

4.4 Data Included in Building the Model 59 
4.5 Conclusion 60 

        5 Machine Learning Framework 61 
5.1 Machine Learning Methods 62 

5.1.1 Machine Learning Algorithms 62 
5.1.2 Random Forest Classifier 63 
5.1.3 Artificial Neural Networks (ANN) 64 
5.1.4 Feature Selection Methods 65 
5.1.5 Test Split Method 66 
5.1.6 Evaluation Metrics of Machine Learning Performance 67 
5.1.7 Model Overfitting Mitigation Strategies 68 
5.1.8 Neural Network Model Hyperparameters 69 
5.1.9 Hyperparameters Search Methods 69 
5.1.10 Conclusion on Methods 71 

5.2 Processing the Data for Testing 72 
5.2.1 The Model’s Target Objective 72 
5.2.2 Training Data: Swiss Dwellings 74 
5.2.3 Thresholds for Visual Access Measure 77 
5.2.4 Building Geometry Feature Extraction 78 
5.2.4 Final Training Set 79 

5.3 Exploratory Data Analysis 80 
5.3.1 Building Geometry Features from Grasshopper 80 
5.3.2 Simulation Results from Swiss Dwelling Dataset 81 

5.4 Observations on the Data 82 
5.5 Conclusion 83 

        6 Machine Learning Model Results 84 
6.1 Machine Learning Workflow 85 

6.1.1 Assigning Label Bins 86 
6.1.2 Feature Pool 87 
6.1.3 Multi-Output Evaluation Metrics 88 
6.1.4 Sequential Feature Selector 88 
6.1.5 Hyperparameter Tuning 89 
6.1.5 Evaluation 90 

6.2 Neural Network Model Setup 90 
6.3 Results 91 
6.4 Discussion on the Results 92 

6.4.1 Limitations of the Features 92 
6.4.2 Future Expandability with Neural Networks 93 

        7 Deployment in Architectural Design 94 
7.1 AI-Enabled Design Process 95 

7.1.1 Current Application of AI in the Practice 95 



Machine-Learning Assessment Tool for Evaluating Wayfinding Quality in Dementia Care Spaces            Page 7 

7.1.2 Notable Practitioners that Use AI in the Design Process 95 
7.2 Design Case Scenario 96 

7.2.1 Testing Alternative Design Options 97 
7.3 Potential of AI-Driven Architectural Design in Dementia Care 99 

7.3.1 Sketch Option Validator 99 
7.3.2 Multi-Objective Optimization 99 

7.4 Roadmap for Distributing AI-Enabled Packages 100 
7.4.1 Comprehensive Assessment Model 100 
7.4.2 Expansion of Training Data 100 
7.4.3 Launching an AI Project for Dementia-Friendly Architecture 100 

7.5 Conclusion 100 

        8 Conclusion 102 
8.1 Answers to Research Sub-Questions 103 

8.1.1 What are the essential qualitative spatial design features that promote wellbeing for 

people living with dementia? 103 
8.1.2 How can we implement digital tools for assessing floor plan geometry with respect to 

ease of wayfinding based on dementia design principles? 103 
8.1.3 What are the prerequisite data needed to build a machine learning model that 

predicts the wayfinding quality from floor plan design representation? 103 
8.1.4 To what extent can a machine learning model predict wayfinding quality from floor 

plan information? 103 
8.1.5 In what way can the AI model be deployed in the design process? 104 

8.2 Answer to Main Research Question 104 
8.3 Discussion on Machine Learning Framework 104 
8.4 Conclusion 105 
8.5 Limitations and Challenges 105 

8.5.1 Limited Dataset 105 
8.5.2 Limited Predictive Ability of the Grasshopper Features 106 
8.5.3 Limited Assessment Indicator 106 
8.5.4 Lack of User Testing 106 
8.5.5 Limited Assessment Metrics on the Test Set 106 

8.6 Recommendations for Future Development 107 
8.6.1 Expanding the Dataset 107 
8.6.2 Multisensory Wayfinding 107 
8.6.3 Incorporating 3D Model Information 107 
8.6.4 Long-Term Effects of Layout on Individual Health 107 
8.6.5 User Testing and Validation 107 

        9 Reflection 109 
9.1 Graduation Process 110 

9.1.1 How is it aligned with the field of Building Technology? 110 
9.1.2 Product, Process, Outcome 110 
9.1.3 The Transferability of This Project's Results 111 

9.2 Scientific and Societal Contribution 112 
9.2.1 Scientific Contribution 112 
9.2.2 Societal Contribution 112 

        References 113 

Appendix 121 

  



        Preface 

This report is the result of the graduation project from the Master of Science in Architecture, 

Urbanism, and Building Sciences at the Technical University of Delft following the Building 

Technology program from 2022 to 2024. The thesis project was kicked off on 1 November 

2023 and concluded on 4 July 2024.  

 

I am very grateful for my peers, the support network, and broadly the Building Technology as 

a program to investigate topics in the built environment from a technological lens. The past 

two years have been a very enriching experience, as it was inspirational to be surrounded by 

passionate researchers and scientists in the field working on exciting topics that before 

joining this program, I thought were science fiction. I am inspired by the discussions I had at 

TU Delft on the importance of building performance and the soft human element in our built 

environment which laid the foundation for defining my thesis topic that tackled 

computational challenges by bridging design priorities with social needs.  

 

I would like to extend my sincerest gratitude towards my mentors, Dr. Michela Turrin and Dr. 

Martijn Lugten, for guiding me and pointing me in the right direction. A special thanks to Ir. 

Lisa-Marie Meuller for her exceptional ability to critically reflect on my progress from the very 

beginning of the thesis all the way to the end. I am especially grateful for the enthusiasm of 

external advisors for their interest in my thesis development and providing critical feedback 

and positive reinforcement that helped shape the process and outcome of this thesis project. 

I especially thank Dr. Nadja Gaudillière-Jami for dedicating the time to critically reflect on my 

research, provide references, and guidance throughout the entire thesis project’s timeline on 

all things related to AI. And I especially thank the enthusiasm of experts in universal design 

and elderly care, Dr. AnneMarie Eijkelenboom for sharing references and reflecting on my 

topic. And I am grateful for Dr. Birgit Jurgenhake for contextualizing my topic on dementia 

care environments from an architectural perspective at the early stages of my research which 

helped shape the direction of my focus.  

 

The participation of Tangram in the beginning of my thesis was the most influential part of 

my topic definition. Tangram’s project plan provided critical questions on the applicability of 

AI and the soft human value. I am grateful for the participation of Tangram Architecture and 

for involving me in their exhibition efforts, special thanks to Bart for introducing the topic to 

the Chair of Design Informatics. Thanks to all Tangram staff for making our collaboration 

extremely effortless and smooth, Lejla Duran, Anna Lugard, Bas Weststrate, and the 

exhibition co-contributors for enriching my thesis experience through the planning and 

execution of the exhibition Immeasurably Important ‘Onmetelijk belangrijk’.  

 

 

 

 

  



Machine-Learning Assessment Tool for Evaluating Wayfinding Quality in Dementia Care Spaces            Page 9 

        Vision Statement 

The vision for this project is to leverage the power of artificial intelligence to transform the 

way we design care spaces for people with dementia. artificial intelligence as a design-

support tool has the potential to empower architects and designers to create environments 

that prioritize the unique needs and preferences of individuals living with dementia, fostering 

a sense of autonomy, belonging, and wellbeing. Integrating artificial intelligence into the 

design process can ultimately help with the process of creating inclusive, supportive, and 

human-centered spaces that enhances the quality of life for a vulnerable user group.  

 

I believe the research presented in this thesis is only the first step towards realizing this 

vision, and I am excited to continue exploring the potential of artificial intelligence in the field 

of specialized care environments.  
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        Glossary of Terms 

General Terms 

Acoustic Wayfinding Cues:  

Sounds used to help individuals 

navigate and orient themselves within 

a space, particularly useful for people 

with visual impairments or cognitive 

challenges. 

Behavioral and Psychological 

Symptoms of Dementia 

Symptoms including agitation, 

depression, anxiety, psychosis, 

aggression, and sleep disturbances 

that commonly occur in people with 

dementia. 

Caregiver: 

An individual, often a family member or 

trained professional, who provides care 

and support to someone with 

dementia. 

Clinical Nursing Homes (TNH):  

Facilities providing comprehensive 

care and medical supervision for 

individuals with significant health 

challenges, including dementia. 

Cognitive Decline:  

A reduction in cognitive abilities such 

as memory, decision-making, and 

problem-solving, commonly associated 

with aging and dementia. 

Delirium:  

An acute, often sudden, change in 

mental status marked by confusion, 

disorientation, and difficulty with 

attention and memory, which can 

coexist with dementia. 

Dementia:  

A neurodegenerative disease typically 

associated with memory loss and 

diminished ability to perform daily 

tasks independently. It is progressive 

and largely irreversible but can be 

moderately controlled with medication. 

Dementia Design Principles (DDP):  

Guidelines for designing environments 

that accommodate the cognitive and 

sensory challenges faced by people 

living with dementia. 

 

 

 

Dementia-Friendly Architecture:  

Architectural principles and designs 

specifically created to support the 

needs and enhance the quality of life 

of individuals with dementia. 

Dementia Stages:  

The progression of dementia typically 

categorized into early, middle, and late 

stages, each with distinct symptoms 

and care needs. 

Dependency:  

The state of relying on others for 

assistance with daily activities, often 

increased in individuals with advanced 

dementia. 

End-of-Life Transition:  

The phase in care focusing on comfort 

and quality of life as a person 

approaches the end of life, often 

provided in specialized facilities. 

Environmental Assessment Tool 

(EAT):  

A framework for reviewing and 

improving the built environment based 

on Dementia Design Principles (DDP). 

Functional Abilities:  

The physical and cognitive capabilities 

that allow an individual to perform 

daily activities and tasks. 

Livability:  

The quality of life experienced in a 

living environment, including comfort, 

safety, and accessibility, especially 

significant for those with cognitive 

impairments. 

Long-Term Care:  

A type of care service that supports 

individuals to meet long-term health or 

personal care needs, primarily for 

individuals with chronic illnesses or 

disabilities, including dementia. 

Memory Loss:  

A common symptom of dementia 

characterized by the inability to recall 

information, events, or experiences. 

Navigation:  

The act of moving through a space or 

environment. 
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Neurodegenerative Disease:  

A disorder characterized by the 

progressive loss of nerve cells, which 

can lead to conditions like dementia. 

Psychological Needs:  

The emotional and mental health 

requirements of individuals, crucial in 

designing supportive environments for 

those with dementia. 

Quality of Life:  

The general well-being of individuals, 

encompassing physical, psychological, 

and social aspects of their lives. 

Sensory Challenges:  

Difficulties related to processing 

sensory information, such as vision, 

hearing, and touch, which can affect 

individuals with dementia. 

Sensory Impairment:  

Deficits in the ability to receive and 

process sensory information, including 

vision, hearing, taste, touch, and smell, 

which are common in dementia. 

Social Integration:  

The degree to which individuals feel 

connected and engaged with their 

community, important for the mental 

health of people with dementia. 

Spatial Awareness:  

Understanding and perception of the 

spatial environment, crucial for 

effective wayfinding and navigation. 

Special Care Unit (SPU):  

A dedicated area or facility specifically 

designed to provide care for 

individuals with dementia, focusing on 

creating a supportive and therapeutic 

environment. 

Stimulation Levels:  

The amount of sensory input in an 

environment, which needs to be 

balanced to avoid overstimulation or 

under-stimulation for individuals with 

dementia. 

Universal Design Guidelines:  

Guidelines aimed at creating 

environments accessible and usable by 

all people, including those with 

dementia, their families, and 

caregivers. 

Visual Access:  

The degree to which spaces are visible 

from different points within the 

environment, aiding in navigation and 

wayfinding. 

Wayfinding:  

The process or activity of determining 

and following a path or route between 

an origin and a destination. 

Wellbeing:  

The overall state of health and 

happiness, encompassing physical, 

emotional, and social aspects, and a 

key focus in dementia care design. 

Artificial Intelligence Terminologies 

Activation Function:  

Functions like sigmoid, tanh, rectified 

linear unit (ReLU), and softmax used in 

neural networks to capture non-linear 

features. 

Algorithm:  

A process or set of rules followed by a 

computer in problem-solving 

operations. 

Artificial Intelligence (AI):  

The use or study of computer systems 

that have some of the qualities that the 

human brain has, such as the ability to 

solve problems and learn from data 

supplied to them. 

Artificial Neural Networks (ANN):  

A computing system inspired by the 

biological neural networks that 

constitute animal brains. 

Bin Thresholds:  

Values that define the boundaries for 

binning continuous data into discrete 

intervals. 

Confusion Matrix:  

A table used to describe the 

performance of a classification model 

by comparing predicted and actual 

values. 

Decision Tree Classifier:  

A model used to go from observations 

about an item to conclusions about its 

target value. 

Feature:  

An individual measurable property of a 

phenomenon, usually numeric or 

categorical. 
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Feature Importance:  

A technique used in machine learning 

to determine the importance of 

different features in predicting the 

target variable. 

Feature Importance Ranking:  

Ordering features based on their 

importance scores to understand their 

contribution to the model's 

predictions. 

Feature Selection Method:  

Methods like Wrapper-based Feature 

Selection (WFS) and Filter Feature 

Ranking (FFR) used to select important 

features for the model. 

F1 Score:  

The harmonic mean of precision and 

recall, used to measure a model's 

accuracy. 

GridSearchCV:  

An exhaustive search over specified 

parameter values for an estimator, 

performing cross-validation to find the 

optimal parameters. 

Hamming Loss:  

A metric used to evaluate the 

performance of multi-label 

classification models. 

Histogram Graph:  

A graphical representation of the 

distribution of numerical data. 

Hyperparameter:  

Variables set before training a machine 

learning model that control the 

learning process.. 

Hyperparameter Search Methods:  

Methods such as GridSearch and 

Randomized Search to optimize 

hyperparameters. 

Isovist:  

A visibility measure used in 

architectural and spatial analysis to 

understand the visual accessibility of 

spaces. 

K-folds [or folds]:  

A cross-validation method where the 

data is divided into 'k' subsets, and the 

model is trained and validated 'k' 

times, each time using a different 

subset as the validation set. 

 

 

 

Machine Learning (ML):  

a subset of AI that is concerned with 

the development of statistical 

algorithm that can learn from data and 

generalize to unseen data to perform 

tasks without explicit instructions. 

Multi-Output Classifier:  

A classifier capable of predicting 

multiple output variables for each input 

sample. 

Neural Network Model 

Hyperparameters:  

Variables like learning rate, number of 

epochs, and number of hidden layers, 

tuned to improve model performance. 

Pair Plot Graph:  

A grid of scatter plots used to visualize 

pairwise relationships between 

variables in a dataset. 

Precision:  

The ratio of true positive predictions to 

the total number of positive 

predictions, used to measure the 

accuracy of positive predictions.. 

Random Forest Classifier:  

A machine learning method based on 

constructing multiple decision trees 

during training and outputting the 

mode of the classes for classification 

tasks. 

Sequential Feature Selector:  

A feature selection method that adds 

or removes features sequentially based 

on their performance to find the 

optimal subset. 

Supervised Learning:  

A type of machine learning where the 

model is trained on labeled data, 

meaning each training example is 

paired with an output label. 

Surrogate Model:  

A model used to approximate complex 

real-world processes, often used in 

optimization problems. 

Subset Accuracy:  

The fraction of correctly predicted 

subsets of labels in multi-label 

classification. 

Wrapper-Based Feature Selection:  

A method of selecting features by 

evaluating the model performance with 

different subsets of features. 



Early-Design Soft Design Criteria 

Accessibility: 

The design characteristic that ensures 

important amenities are within easy 

reach and clearly visible, enhancing 

independent wayfinding. 

Balanced Stimulation: 

The design principle involving the 

careful management of acoustic and 

visual stimuli to prevent over- or under-

stimulation in the environment. 

Personal Autonomy: 

The capacity for an individual to act 

intentionally and make decisions about 

their environment and movements 

within it. 

Sense of Community: 

Spaces designed to enable users to 

see and interact with each other, 

fostering social integration.
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        1 Introduction 

 

1.1 Background 

1.2 Problem Statement 

1.3 Research Question 

1.4 Research Aim and Methodology 

1.5 Research Relevance 
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        1.1 Background 

Dementia is a neurodegenerative disease typically associated with memory loss and 

diminished ability to perform daily tasks independently. It is progressive in nature and largely 

irreversible but could be moderately controlled with medication. According to the World’s 

Health Organization, dementia is the leading cause for disability and dependency among 

older demographics globally (the World Health Organization, 2023). At its core, dementia 

challenges the very essence of personal identity and autonomy which results in difficulties 

maintaining normal daily activities required for a high quality of life (Fuchs, 2020). As a result, 

living with dementia will have major implications on a person’s ability to maintain the same 

quality of life due to psychological, physical, sensory, and overall cognitive decline (Söylemez 

et al., 2020), traditionally having to live at a nursing home that serve as end-of-life transition 

in clinical setting with medical supervision and support to mitigate the downsides of 

dementia. Living in traditional nursing home can run the risk of suffering from an unhealthy 

living environment especially when it lacks the adequate infrastructure to engage, stimulate, 

and fulfill their social and psychological needs while also accommodating their new 

cognitive and sensory challenges because the physical environment can significantly 

influence independence and wellbeing for people living with dementia (Quirke et al., 2023). 

Many studies explore the concept of dementia-friendly architecture, most commonly 

referred to as Dementia Design Principle (DDP), acknowledging the critical role that well-

designed environments can help in mitigating the negative effects of living with dementia. 

 

Dementia has become an increasingly bigger phenomenon as the global population tend to 

have greater number of older people who are prone to developing dementia. The Dutch 

National Dementia Strategy 2021-2030 estimates the population of people living with 

dementia in the Netherlands is projected to be over 520,000 individuals by 2050 which is 

nearly double of estimated figure from 2021 at 280,000 individuals. This also translates to 

higher care needs and costs increasing from €6.6 billion a year in 2015 to € 15.6 billion a 

year in 2040 (Ministry of Health, Welfare, and Sport, 2020). In this fifth chapter of the national 

strategy, titled Tailor-made support when living with dementia, it is mentioned that indeed the 

Netherlands enjoys with having the highest quality of dementia care but acknowledging that 

there is always room for improvement and that broadly the practical implementation has 

been lagging, research must find practical application more quickly, effectively, and easily.  

 

“Via the task force, we want to encourage the relevant partners to take into 

account the specific needs of persons with dementia and their families 

and/or loved ones with regard to residential space, care, well-being, and 

livability.” 

-National Dementia Strategy 2021-2030 (Dutch Ministry of Health, 

Welfare, and Sport, 2020)  
 

The built environment plays a significant role in boosting quality of life for people living with 

dementia. It is one of the many contributing factors towards high quality tailor-made support, 

which is often expensive and difficult to change. The design of care spaces should therefore 

be rigorously assessed and examined before proceeding to build more care spaces, 

ensuring the best practices of dementia care standards are validated and followed while 

building designs are still in the early stages of development.  

 

Preliminary literature review showed that there is a research gap for architectural decision-

support tools for dementia care design principles that focuses on qualitative spatial design 

criteria. In the broader context of design research, the AI-enabled tools for decision-making 
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is an active area of research but have limited applications for supporting architects in early 

design stages related to designing dementia-friendly architecture. 

 

        1.2 Problem Statement  

Assessing soft design criteria for dementia-friendly spaces is a complex, multi-variable 

problem with many decision points that can influence the health and wellbeing outcome for 

a very vulnerable user group. There is an ever-greater need to directly respond to the unique 

user requirements through a human-centered design approach that can be measured and 

validated. The design of dementia residential facilities require deep understanding on how 

spatial designs could potentially provide the infrastructure needed to empower its occupants 

to live a fulfilling life. The design process is also multi-disciplinary in nature, and the architect 

is expected to manage a complex team of specialists and orchestrate a building design that 

satisfies all the prerequisites for high-quality living, sometimes without being able to involve 

experts in the field of dementia care design during the conceptual design phase. 

 

During early stages of design, such as RIBA’s Stage 3: Spatial Coordination, the architect is 

expected to test and validate architectural concept designs to make sure they are within 

budget, regulation requirements, client requirements, fire safety, health and safety, and 

sustainability (RIBA 2020 Plan of Work). In general terms, the effectiveness of a decision 

decreases as the project progresses along its timeline (Işeri, 2022). Interdisciplinary design 

teams undertaking conceptual design tasks have been shown to spend the most time in 

early stages generating solutions and evaluation of choice alternatives (Steele et al., 1999). 

 

 
Figure 1: the opportunity for changing decisions decrease overtime while increasing the cost of 

changes (RIBA 2020 Plan of Work) 

 

The architectural design process vary in their timelines and how long an architect spends in 

the early stages before proceeding with a design proposal for detailed development. 

However, it is not always feasible for the architect to extend this phase either to budgetary 

constraints or lack of available consultants to join an interdisciplinary design team to weigh in 

on the spatial design at that early stage.  

 

The already constrained and demanding design process is exacerbated by the need to have 

to quickly build new care facilities in the Netherlands. According to Cushman & Wakefield, 

one of the largest global commercial real estate services firms, there is a mismatch between 

the supply for care facility compared to the demand in the Netherlands that can be met by 

increasing available beds by 35 thousand by 2030, citing the expected increase of 

dependency ratio of elderly as the main culprit. According to an estimate found online on 

Statista.com (Statista, 2023), there are around 4900 nursing home in the Netherlands as of 

2022, and Cushman & Wakefield estimates 94% of them are operated by nonprofits 

composing around 116 thousand available beds, making the average size of a nursing home 

at 24 bed per nursing home. This increase in demand roughly translates to building over 

1450 new nursing homes from 2020 to 2030 to meet the demand forecasted in 2019. They 

conclude by stating nonprofit operators will need to revitalize their existing nursing homes 
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and expand with new properties which foreign investment can fill that gap as traditional ways 

of financing prove to be insufficient. (Cushman & Wakefield, 2020) 

 

   
Figure 2: figures published in the report by Cushman & Wakefield, showing an increasing 

demand for elderly care facilities 

 

With this expected boom in new projects within the Netherlands alone, and considering the 

complexity of the design of high-quality spaces, there is an ever-growing need for better 

methods to improve the design process for developing new dementia care facilities without 

substantially increasing project timelines or cost. It is also worth mentioning that dementia is 

a global phenomenon and the task for increasing the supply of care facilities is ever more 

important considering that in anecdotal evidence such as journalistic reporting of personal 

accounts show that people might be willing to relocate to countries with better care facilities, 

indicating that the need for high quality care facilities might also be a global need rather 

than only specific to the Netherlands (Julian, 2023).  

 

This poses the question of how we can rapidly create living conditions that provide high 

quality of life and encourage a more positive outlook for the health and wellbeing of people 

living with dementia. This thesis will investigate a data-driven design approach that 

computationally evaluates the soft design criteria of wellbeing from floor plan geometry with 

respect to occupant needs living in residential dementia care spaces to support the 

architect’s design decisions during the early stages.  

 

        1.3 Research Question 

Artificial intelligence (AI) has the potential to support the early stages of design to make 

informed decisions backed by data. Dementia-friendly architecture and artificial intelligence 

are both broad terms, we need to ask the right questions on what exactly the aspects of 

dementia-friendly architecture are the most critical to address in early stages of design, and 

how can AI support the decision-making process during the design solution stage and 

evaluating design alternatives.  

 

1.3.1 Main question 

 

❖ How can artificial intelligence support the design of dementia-friendly architecture during 
the early stages? 

 
1.3.2 Research Sub-Questions 

 What are the essential qualitative spatial design features that promote wellbeing for people 

living with dementia?  

A comprehensive literature review on the current state-of-the-art for all things related to the 
design of dementia care spaces. This is to discover the thesis main focal point on specific 
design criteria that are addressed in early stages of design.  

 
 How can digital tools for assessing floor plan geometry be implemented to measure ease of 

wayfinding based on dementia design principles?  
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After determining the main focal point, i.e. wayfinding, we then ask the question of how we 
measure qualitative aspects computationally to better describe the wayfinding quality of 
indoor environments. 

 
 What are the prerequisite data needed to build a machine learning model that predicts the 

wayfinding quality from floor plan design representation?  
This is to answer the question of what we actually need to start building a machine learning 
model that is able to predict the wayfinding quality of indoor environments with respect to 
dementia design principles.  

 
 To what extent can a machine learning model predict wayfinding quality from floor plan 

information?  
Once the prerequisite data is determined, the question then becomes what machine 
learning algorithms, features, and model architectures perform best for predicting the 
wayfinding quality of indoor environments. 

 
 In what way can the AI model be deployed in the design process? 

This question is to investigate how AI can be integrated in the workflow of architects.  
 

        1.4 Research Aim and Methodology 

The aim of the research is to develop an AI-driven methodology for building machine 

learning models that have potential benefits for supporting the architect’s decision-making 

process during the early stages of the design of residential care facilities. Particularly 

investigating the possibility of a tool that can analyze floor plan information and provide 

feedback in the form of qualitative assessment describing the performance of a floor plan 

layout using early stage design criteria based on dementia design principles. The inspiration 

behind this thesis was built upon a project plan document by Tangram Architecture posing 

the question of how AI in architecture can interpret the non-measurable side of design such 

as happiness, wellbeing, social cohesion, and beauty (Appendix 1) to which I gladly accepted 

the challenge without knowing exactly was ahead.  

 

With that in mind, the research has formulated the following objectives:  

1. Investigate the state-of-the-art review of the design of dementia care facilities, and in 

parallel investigate AI-enabled tools that might be relevant to the research question.  

2. Define wellbeing in this thesis by selecting a specific user group and building typology, 

and propose a method for measuring it. 

3. Develop a computational framework for generating and/or obtaining data through 

Grasshopper software package for the purpose of training the AI model.  

4. Develop the code environments on programming language, Python, for handling the 

data and experimenting with different AI models through machine learning libraries such 

as SKLearn and TensorFlow.  

5. Evaluate the performance of the model with validation and test sets.  

 

        1.5 Research Relevance 

1.5.1 Scientific Relevance 

The thesis relevant to the field of building technology by investigating a topic on AI-driven 

methodology for assessing wayfinding quality in dementia care spaces. It bridges a gap in 

architectural decision-support tools focused on qualitative spatial design criteria, particularly 

for dementia care.  

 

1.5.2 Societal Relevance 
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The tool developed has the potential to enhance the quality of life for individuals living with 

dementia by improving the design of care facilities that will be designed and built in the 

future. It addresses a growing need for dementia-friendly environments as the population 

ages, which is crucial for public health and welfare while aligning with the Dutch National 

Dementia Strategy 2021-2030, emphasizing the importance of high-quality, tailored support 

for individuals with dementia. This thesis project underscores the role of well-designed 

environments in supporting the wellbeing of a vulnerable group, and bridging the gap 

between DDP expertise and design process in the early stages through AI. 
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        2 Literature Review 

2.1 Understanding Occupant Wellbeing 
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2.3 AI-Enabled Support Tools 
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The scope of the literature was intended to review state-of-the-art dementia design care 

guidelines while also identifying AI-enabled support tools that are developed for assessment 

of design spaces for dementia-friendly criteria. There was a gap in the AI-support tools that 

address dementia-inclusive design, in particular, no tools were discovered that assessed ease 

of wayfinding of floor layouts with respect to dementia design requirements. However, there 

were research done that implemented AI to identify the visual connectivity of spaces or used 

perception-based analytical methods for training an AI model to classify the function of 

spaces (i.e. private or public).  

 

The most relevant AI tool discovered to have potential in being applied for dementia-

inclusive design was published by Foster + Partners (Tarabishy et al. 2020) with developing a 

surrogate model approach for assessing spatial and visual connectivity to support the design 

process of office space layouts. The model they have developed can produce visual 

connectivity maps by inputting a floor plan layout and outputs the floor plan with a heat map. 

Their model was trained on 6000 floor plans and produced noteworthy results. The discovery 

of this study led to further investigation for AI tools that uses visual connection analysis 

methods as training input, but to specifically classify the quality of spaces with respect to 

dementia-inclusive soft design criteria. There were no AI tools discovered to assess the 

quality of residential or care facilities with respect to wayfinding.  

 

A challenge for planners and architects to designing dementia-sensitive environments is the 

that the multitude of indoor, and outdoor, dementia assessment tools makes it difficult for 

non-researcher to identify exactly which studies are methodologically sound, i.e. in relation 

to simple geometry, to translate research insights into practice (Kuliga et al., 2021). A study 

by Quirke et al. (2021) developed a framework for evaluating floor plans with respect to the 

dementia design principles categories commonly referred to in dementia care literature. 

They demonstrated a methodology for evaluating floor plans using qualitative queries to 

populate a checklist and rank floor plans based on their qualitative performance. The 

discovery of this study led to further examination of the dementia design principles and an 

attempt to bridge the gap between qualitative assessment of dementia-inclusive design and 

AI-enabled performance assessment tools.  

 

Therefore, there was a clear gap for AI-enabled tools that are designed to assess the 

qualitative performance of floor plans with respect to human-centric design criteria such as 

dementia design principles in order to support the architect’s decision-making process 

during the early stages of design.  

 

        2.1 Understanding Occupant Wellbeing 

The definition of Wellbeing in the English language, based on the Oxford English Language 

dictionary, is the state of being healthy, happy, or prosperous. Understanding the physical 

conditions for which an occupant feels in a state of comfort has been researched well which 

addresses the aspects of indoor environmental quality conditions. For example, empirical 

studies established very precise acceptable temperature ranges and recommended daylight 

levels, the most commonly used reference being ASHRAE (The American Society of Heating, 

Refrigerating and Air-Conditioning Engineers) establishing comfortable ranges based on the 

studies done previously, which is published in a manual containing standards for thermal 

environmental conditions for human occupancy where it defines thermal comfort and 

comfort zones (American Society of Heating, Refrigerating and Air-Conditioning Engineers, 

2020) 

 

In building design and engineering, health and comfort have a defined boundary. A healthy 

building reduce the likelihood of disease and infection, for example by reducing the spread 
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of airborne viral infection by increasing ventilation rates through mechanical or passive 

means (Urschel et al., 2022). Comfort Have a slightly fuzzier boundary where what is 

considered comfortable varies from person to person which could include physiological 

traits and personal preferences affecting how the same environment might be perceived 

comfortable for one person but uncomfortable to the other. In this instance, it is useful to use 

comfort ranges, for example, comfortable indoor temperature ranges based on the expected 

level of activity and outdoor climate conditions. In the case of prosperity and wellbeing, it is 

usually defined depending on the type of study and the specific user behavior observed in 

these environments (Zhang et al., 2012).  

 

There are several wellbeing quantification methods for the built environment; for example, 

the WELL Building Standard® is a performance-based system that considers quality indicator 

of physical environment, such as air quality, light, and water, and combines it with lifestyle 

indicators of fitness, nourishment, and mind (International WELL Building Institute, 2020). 

Another wellbeing-oriented scoring system is the Fitwel® Standard which addresses 

wellbeing of occupant for different building types (Rider & Van Bakergem, 2022). Their senior 

housing category has listed multiple criteria such as daylight access, acoustic comfort, and air 

quality; however, it lacks the consideration of potential cognitive decline of occupants and 

how might spatial design can better accommodate its users’ special needs.  

 

A more relevant guideline document specifically made for understanding the needs of users 

living with dementia has been published in 2015 titled the Universal Design Guidelines: 

Dementia Friendly Dwellings for People with Dementia, their Families and Carers by the 

Centre of Excellence in Universal Design (Grey et al., 2015). In this document, it goes further 

to explain the design of the built environment to specifically improve the living conditions for 

all people but especially those who suffer from dementia. In their executive summary, it’s 

stated that these guidelines should enable people living with dementia to have the choice to 

live for as long as possible in their own homes and communities by making dwellings 

friendlier towards them. The literature review conducted in this master thesis confirm that 

these design guidelines, when are sufficiently met, have a high likelihood of increasing the 

quality of life for people with dementia. 

 

Architecture plays a significant role in the health and demeanor of people living with 

dementia. Depending on the severity of dementia, some individuals require care and 

supervision in specialized care facilities. There is a direct correlation between health outcome 

and housing situation, indoor environments in particular (Quirke et al., 2023). 
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Figure 3: The spectrum of categorical design guidelines to create friendlier living environments 

for people with dementia. Source: Universal Design Guidelines Dementia Friendly Dwellings for 

People with Dementia, their Families and Carers (Grey et al., 2015). 

 

2.1.1 Clinical Nursing Homes and Residential Care Communities 

The literature suggests that there are two most common care facilities: traditional nursing 

homes (TNH) and small-scale homelike special care units (SCU). The study showed that 

overall, there was positive effects to living in homelike SCU setting has positive effects on 

behavioral and psychological symptoms of patients with dementia (Kok et al., 2016) although 

the authors of those studies stated that this topic is scarcely investigated and “cautiously” 

suggest that homelike SCU are more favorable in some aspects of cognitive domains but 

urges more research on this subject to provide further evidence. 

 

Another peer-reviewed study suggests that SCU provide more social integration than TNH 

(Abbott et al., 2017). Dementia SCU are designed to facilitate a supportive social 

environment as well as what’s known as a prosthetic environment. A prosthetic environment 

is a space that can compensate for limitations in functional abilities to enable individuals to 

“carry out basic activities associated with daily living safely and independently, participate in 

social roles, and receive personal assistance from caregivers as needed” (Olson, 2010). There 

are more studies revealing benefits of living in SCUs, specifically, it was found to be 

“positively associated with several long-term care quality indicators, including less frequent 

tube feeding, less user of physical restraints, lower risk of pressure ulcers, better continence 

care, fewer behavioral disturbances, and lower risk of hospitalization, and higher quality of 

life" (Cadigan et al., 2013). 

 

While the comparison of TNH and SCU are still being researched, most evidence so far 

suggests that there are merits to SCUs which warrants further investigation within the 

architectural design domain in pursuit of restorative and supportive built environment for 

people living with dementia. 
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2.1.2 Unique User Requirements and Dementia Design Principles 

The designs of SCU for individuals living with dementia necessitate consideration of unique 

user requirements. Dementia introduces distinct challenges, encompassing sensory 

impairments in vision, hearing, sight, smell, and spatial awareness. Thereby, designers should 

pay particular attention to spatial design features that can accommodate the occupant’s 

unique needs. Spatial design criteria are examined in a series of papers looking into how 

layouts can support wayfinding skills for people with dementia. The most recent and detailed 

studies have been selected after searching scientific paper databases such as Google 

Scholar and Scopus.  

 

Van Hoof conducted a literature review and qualitative study on how someone living with 

dementia perceives their environment. The author defined dementia sensory perception as a 

condition characterized by an “impaired identification of incoming stimuli (perceptual 

deficits), resulting in distorted perceptions” (Van Hoof et al., 2010). This study is the 

beginning of standardization of building services and engineering requirements for 

supportive indoor environments specifically for dementia residential spaces. 

 

 
Figure 4: sensory-based design and engineering considerations for occupants with dementia. 

 

2.1.3 Hearing 

People living with dementia are particularly vulnerable to confusion, agitation, and illusions 

caused by unregulated noise. While it is not always the case that people with dementia have 

hearing loss, the ability to interpret what is heard accurately becomes challenging (Hayne & 

Fleming, 2014). One of the studies mention the two most critical engineering requirements 

for sound parameters are sound pressure and reverberation time which are critical for 

creating supportive environments (Van Hoof et al., 2010). The ability to hear normal 

conversations is usually not affected unless there is background noise that is difficult for 

dementia patients to filter out. A recent study found the impairment in the ability to filter out 

white noise from conversation could be a factor that has a strong correlation with dementia 

(University of Oxford, 2021). Van Hoof’s study recommends limiting noise levels and 

reverberation time, especially limiting noise from mechanical ventilation systems in tight 

spaces such as bathrooms that might cause undesired effects on the health of the patient.  
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Beyond engineering requirements, there is a field of study that investigate the perceived 

quality of sound, known as soundscape design. Soundscape studies are exploring the 

domain of acoustic spatial environments and their perception by specific user groups. 

Soundscape studies are showing that the diversity, quality, and prominence of sound played 

a role in the quality of life of occupants in nursing homes (Francesco et al., 2017) (Talebzadeh 

et al., 2023). More research investigate the potential of using sound art as therapy for people 

with Alzheimer’s disease (Sabran et al., 2018). Soundscape environments in nursing homes 

are often suboptimal (Kosters et al., 2022) that can be a barrier for attaining high quality of 

life when simple, so called, “micro-interventions” to the nursing home’s sonic environment 

could reap substantial benefit on the health and wellbeing of the occupants. These findings 

warrant further research into this topic. 

 

The literature review included studies that investigated the role of everyday sounds, 

providing pre-recorded user-specific sound profiles from everyday activities has shown to be 

beneficial for evoking memories and emotional responses in advanced dementia care which 

also revealed that it stimulated “meaningful conversation, playfulness, and connection 

between residents and caregiver” (Houben et al. 2020) which necessitates further 

examination and studies on how everyday sounds from indoors sounds affect user behavior 

in a community residential setting. In particular interest, a vibrant dementia village living 

community for example. The same study mentions everyday sounds help occupants cope 

better, “help to build an understanding of the environment and provide information on how 

we physically and socially negotiate it” (Houben et al. 2020). A systematic review of (Janus et 

al. 2021) showed that apathy might be linked to the environmental stimuli especially related 

to sound intensity exceeding 50 dBA causing issues like annoyance, disturbed sleep, 

delirium, and elevation of blood pressure. Moreover, another study suggest that the 

environmental stimuli that intended to prompt or encourage the participant’s reaction might 

have a negative correlation with apathy among dementia patients, in addition to stimulation 

clarity and strength (Jao et al. 2015). 

 

 

2.1.4 Spatial Awareness and Wayfinding 

The criterion of spatial awareness is explored in many recent studies specifically investigating 

how indoor environments can support independent living and preserve the person’s 

autonomy when living in a dementia care facility, something that has been positively 

correlated with increased quality of life and overall perceived wellbeing. Research on spatial 

wayfinding is abundant and provides a good starting point for architects to develop designs 

of dementia SCUs.  

 

The most comprehensive spatial layout study was conducted by Marquardt investigating the 

relationship between floor plan layout against 14 dementia design criteria noting that spatial 

disorientation is a prime reason for institutionalization (Marquardt & Schmieg, 2009). One 

way to improve spatial orientation is to provide fewer decision moments along path of travel, 

unique and memorable reference points, commonly referred to as landmarks, with clear 

visibility to along the path of travel and from/to important spaces (van Buuren & 

Mohammadi, 2022). Van Buuren highlights that properly designing paths of travel has the 

potential to empower people living with dementia at an SCU in finding their way around, 

thereby reclaiming some of their autonomy, and urges architects to examine the design 

criteria presented in their study, specifically corridor length, width, shape, moment of 

decisions, and daylight access. Moreover, visual access between key spaces mentioned in 

the 14 design criteria (van Buuren & Mohammadi, 2022). 

 

Some examples of relevant criterion to spatial awareness:  

Criteria 4: Visual access between entrance hall and living room 
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Criteria 5: Visual access between living room and corridor  

Criteria 6: Visual access between individual room and sanitary room 

 

 

 

    
     (a)    (b)     (c)      (d) 

 
      (e) 

 
Figure 5: Exploring different spatial organization using different corridor shapes. (a) linear, (b) L-

shape, (c) circular, (d) intermediate element dividing corridor, (d) corridor ending. (Marquardt & 

Schmieg, 2009) Note the use of landmarks to divide corridors are considered desirable, and 

more straightforward corridor shape with fewer turns is also considered more desirable. 

 

Additional wayfinding criteria highlighted in the literature was added in Appendix 2 and 

Appendix 3. 

 

2.1.5 Smell 

The elderly have a more difficult time distinguishing between smells and decreased 

protection from noxious odors caused by age-related losses in olfactory and tastebuds. 

Moreover, van Hoof also adds that familiar homelike smells and fresh air from the outdoors 

can serve as olfactory cues that serve as orientation aid and some studies claim that smells 

help improve wayfinding skills among dementia patients, for example, locating the kitchen 

via cooking smells 

 

2.1.6 Vision 

Van Hoof noted age-related vision deterioration results into impaired ability to adapt to 

changes in light levels, higher sensitivity to glare, reduced visual acuity, restricted field of 

vision and perception, reduced contrast sensitivity, and restricted color recognition.  

 

        2.2 Quantifying Dementia Design Principles 

2.2.1 Evaluation of Floor Layouts 

 

The topic of physical environment and long-term care for people living with dementia has 

been examined around 2010 by Prof. Richard Fleming which set the foundation for one of 

the most common environmental design guidelines (Fleming & Purandare, 2010). This 

evolved later on by Fleming and Bennett (Fleming et al., 2017) to provide design principles 

for dementia care design and Environmental Assessment Tool (EAT) checklist that provides 

the necessary framework to evaluate spatial design based on the DDP they established. A 

dementia design principle (DDP) is a term used in describing a quality within the built 

environment that enhances the wellbeing and quality of life of an individual living with 

dementia. The key DDPs were published in several articles, co-authored by Professor Richard 

Fleming, a psychologist and environmental design expert, and Kristy Bennett, a consulting 

architect specializing in DDPs. The document was later adapted into a user-friendly 
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handbook. According to the official document, the EAT is a systematic framework for 

reviewing the built environment to identify areas for improvement with respect to 

compliance with the DDPs. They go into describing the requirements needed to satisfy each 

DDP. These requirements were a major source of inspiration for developing the assessment 

indicators. One of the key aspects that differentiate this study is that it address the topic of 

cognitive stimulation for people living with dementia, noting that maintaining optimal 

amount of stimulation is required for healthy living, including both auditory and visual stimuli. 

Moreover, it puts emphasis on social cohesion, security, human scale, and provisions for 

wandering, something that was not discussed in the earlier study by Marquardt and Schmieg 

(2009). 

 

A different study applied these principles for the evaluation of floor plan layouts, named 

Plan-EAT (Quirke et al. 2021), “The paper concludes that the Plan-EAT could benefit 

architectural practice by providing an evidence-based means of assessing layout planning 

quality, in both existing cases and emerging residential care facility design proposals”. This 

study has demonstrated a methodology for assessing floor plan layouts based on the EAT 

checklist that can be leveraged by architects to establish a framework to evaluate to what 

extent their floor plan follows the DDPs to be used in the design proposal stage. The strength 

of the methodology is that it comprehensively covers all DDPs from the EAT handbook, 

providing a broad general assessment of a floor plan’s quality with respect to all DDPs. 

 

The checklist for visual access assigns 1 point per criterion, indicating whether it has been 

satisfied. This qualitative assessment step classifies each sightline criterion as either 

satisfactory (1) or insufficient (0). The paper does not elaborate on varying degrees of visual 

access or any quantification measures. However, it suggests that this could be manually 

assessed through human inspection or via software, which is necessary for a data-driven 

assessment of the visual access indicator. 

 

https://dta.com.au/app/uploads/downloads/DTA_Full-Handbook.pdf
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Figure 6: Plan-EAT assessment graph for floor layouts based on the DDP by Fleming & Bennett 

(Quirke et al. 2021) 

 

 

A study titled “Lessons Learned from Three Australian Dementia Support Facilities” (Hing-

wah et al. 2018) analyzed the indoor quality to understand the design impact on quality of 

life and wellbeing of the residents. The three dementia support facilities were assessed for 

visual access using fieldwork observation, design evaluation, and space syntax analysis 

(Univresity College London depthmapX, n.d.) which is the hallmark software package for 

quantifying the visual connectivity of space with one another. The study specifically looked 

into evidence on how the built environment accommodates its residents living with 

dementia.  

 

In their assessment, various isovist-based analysis were conducted to measure spatial and 

social properties of plans to accommodate occupant movement, accessibility, and 

surveillance ability from staff locations. The isovist analysis responded to the design principle 

“orientation: direct lines of sight” by examining the line sight measured from the communal 

kitchen. In their assessment, they concluded facility A performed best due to the sightlines 

extending deep towards the corridors, whereas in the case of facility C it was more confined 

due to the location at the corner of the layout. Thereby concluding centrality of the kitchen 

location has positive correlation with orientation especially considering that the kitchens in 
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these facilities are gathering social spaces. The assessment for orientation had three possible 

outcomes: best (3 points), better (2 points), good (1 point). 

 

 

 
Figure 7: Isovist analysis was conducted to estimate the visibility of kitchen from staff location for 

3 dementia care facilities in Australia. Isovist analysis: Facility A (left), Facility B (middle) & Facility C 

(right) (Hing-wah et al. 2018) 

 

The evaluation of floor plans using DDP has been demonstrated in the literature as a useful 

tool for evidence-based design approach. The visual access category has been shown to be 

assessed computationally using isovist-based analysis to visualize the sightlines and check 

against the DDP conditions to see to what extent they have been met.  

 

        2.3 AI Enabled Support Tools 

The literature review included finding AI-enabled assessment tools that used isovist (visual 

perception measurements) as variables for the training of their model. Some approaches 

included using isovist values to classify whether a space is likely to be public or private while 

others used isovist data to produce visualizations to support the design process.  

 

2.3.1 Study A: Supervised Learning – Deep Learning Surrogate Model for Spatial and Visual 

Connectivity by Tarabishy et al. 2020 

 

A study conducted by Foster + Partners (Tarabishy et al. 2020) investigated the use of 

supervised machine learning techniques to automatically generate spatial and visual 

connectivity of floor plans. Their machine learning model is capable of identifying spatial and 

visual connectivity potential of a space to support the design of workplace layouts. They 

emphasize setting up the required simulation is difficult depending especially when 

considering the resolution of the isovists and the sizes of floor plans.  
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From the perspective of the paper, a surrogate model’s main objective is to speed up the 

analysis process for a specific design task as a replacement for conventional visibility graph 

analysis simulation for complex projects which are used daily within the design workflow 

providing real-time results for visual connectivity. Their main argument is that in the early 

stages of design it is helpful to evaluate floor plan performance for spatial and visual 

connectivity which designers can use to improve wayfinding and space use. The authors 

mention this can inform the design of wall partitions and furniture depending on the location 

of the isovist either at knee level or eye-level [perhaps considering kids and people using 

wheelchairs].  

 

The end product their designers use is the color map visualization on floor plans where each 

cell corresponds to the value of spatial and visual connectivity. For spatial connectivity, the 

colors describes the average shortest distance taken to travel to every other location 

calculating the graph using Dijkstra’s algorithm and shortest path algorithm. For visual 

connectivity, the colors represent how visually connected the spaces are at a given location 

[cell] on the grid to all other locations. To calculate that measure, Dijkstra’s algorithm is used 

again to traverse the graph “while the calculations done according to visibility graph analysis 

as described by Turner et al.’s article.”  

 

The analysis is done using an existing simulation engine to calculate both spatial and visual 

connectivity. The study’s main contribution of the authors of this study is the development of 

“a properly tailored dataset to train a deep learning neural networks and investigations of the 

appropriate architecture of the neural network itself.” They present the parametric creation of 

floor plans and automatic completion of their respective analyses high-performance 

computing system to parallelize the simulation process. Ultimately the task is to make the 

resulting simulation result interpretable by the machine learning algorithm through a 

supervised learning approach. 

 

The authors use a floor plan input image containing black pixels for walls, and the resulting 

output is the analyzed floor plan. The color gradient is representative of the analysis result 

performed is more common for image processing techniques such as style transfer, and 

colorization is opposed to vision problems such as image segmentation. 

  
Figure 8: Visual and spatial connectivity analysis (Tarabishy et al. 2020) 
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Their data acquisition approach through publicly available floor plan images is not the most 

efficient citing that most often than not publicly available floor plan images contain too much 

noise and drawn in different styles, so cleaning and pre-processing the data is laborious and 

time consuming making them unattainable. The authors instead opted to synthetic data 

generation through Rhino and Grasshopper interface capable of automating the production 

of 2D floor plans containing different wall and furniture arrangements, thereby creating a 

plethora of spatial organization. Their test was able to generate 6000 floor plan images of 

100 x 100 pixel where each pixel represents 1 m2.  

 

In addition, the author generated a signed distance function (SDF) for all floor plans, a 

technique commonly used in computer vision for simultaneous localization and mapping 

(SLAM) algorithms [e.g. three-dimensional reconstruction using depth cameras]. “The SDF is 

expected to encode local geometry details along with the global scene structure.” The 

authors also used on-the-fly augmentation to randomly flip some floor plans vertically or 

horizontally to avoid memorization and overfitting. The output (post-analysis dataset) 

contained 100 x 100 pixel images with every pixel remapped to gray scale 0 to 255 based on 

the analysis results.  

 

For the choice of neural network architecture, the intent was to pick an option that is scalable 

and offer good localization and manage to propagate context information throughout the 

whole model. The two choices were between fully convolutional network (FCN) and U-Net 

network. The contracting part is a typical convolutional neural network (CNN) made of 

successive down-sampling operation blocks successively applied on top of each other with 

the first applied to the input image. The author state that the objective is to “ensure that the 

network effectively learns complex structures and features.” Operational blocks consists of 

two 3 x 3 convolutional layer, followed by a 2 x 2 max pooling operation to reduce the 

dimensionality of the input while increasing the number of extracted features. 

 

 
Figure 9: The first row represents the binary dataset as produced by the generative process. The 

second row represents spatial connectivity (0-255), the third row represents visual connectivity 

(0-255) (Tarabishy et al. 2020) 

 

 

2.3.2 Study B: Supervised Learning – Towards a Machine Learning for Space Syntax by 

Ferrando 2018 

A master thesis dissertation from Carnegie Mellon University that explores the idea of a 

machine learning algorithm that learns from a database of vernacular architecture to 
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understand the spatial quality from floor plan layouts. One of the [many] questions posed in 

this research is how can we train a deep neural network for the classification of spaces based 

on their isovists? One of the foundational studies that inspired Ferrando’s work was “Machine 

Perception of Space” by Peng which was a master thesis proposal from MIT that used isovists 

to explore the relationship between geometry and spatial awareness. 

 

Ferrando’s contribution was to apply the methodology to a specific room function 

classification problem by training a neural network to evaluate a floor plan and assign a 

privacy label on rooms where it is appropriate based on the training from a dataset of French 

farmhouses according to their isovists and graphical representation. The data allows for a 

machine learning model to understand the characteristics of a space and predict a suitable 

function for different rooms in a floor plan where the target variable is level of privacy from 0 

and 1.  

 

Their data acquisition approach was to collect floor plan data in raster format, vectorize the 

plan using corner detection algorithm (Harris Corner Detection) to vectorize the walls which 

then allows for running the isovist simulation for all rooms. The isovist sampling was done on 

Python 3.6 environment then extracted the numerical values used for the training. The 

centered isovist calculates the visible floor area from the isovist vantage point. 

 

 

 
 

Figure 10: Dataset sample. Each isovist is taken at the geometric center of each room and 

tabulated into this spread along with the level of privacy expected. (Ferrando 2018) 
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Figure 11: Test results using different algorithms. (Ferrando 2018) 

 

2.3.3 Study C: Unsupervised Learning – Deep Learning Spatial Signatures 

A study using isovist values to train an AI model on extracting spatial patterns from isovist 

analyses which opens up the possibilities for data-driven strategy to measure spatial quality 

using isovists (Johanes & Huang, 2022). Their methodology can be summarized in 4 steps: 

(a) isovist sampling on floor plan dataset, (b) GANs training and inversion, (c) latent space 

interpretation, and (d) architectural decoding shown in the following figures. In this study, 

they use an isovist periodic function, “that characterize a panoramic view of space” to 

compare embedded spatial qualities. The floor plan dataset are in SVG format which is 

processed in Grasshopper to extract the geometry and perform a stochastic isovist sampling 

for each floor plan.  

 

The authors use GAN inversion technique (Xia et al., 2022) is a technique utilized by the 

authors of this study to “recover the latent vector of a given input data” allowing the 

interpretation of GAN’s latent space. The encoder did not yield good results and they 

attribute that to having highly diverse isovist layout. This experiment was done on hundreds 

of thousands of isovist samples collected from housing floor plan using latent space 

representation structure of 1d convolutional progressive growing GAN.  

 

The study presents a method for evaluating potential design option by using its isovist 

signature and compare it to the latent space for regularity [the degree of similarity between 

isovist signatures in the latent space] and uniqueness [the degree of difference to other 

isovist signatures in the latent space]. While this in itself does not address wayfinding score, 

the isovists of floor plan to a typological reading of spatial design by classifying any isovist 

sample given to the model to see where it exists in the latent space which can be combined 

helpful for selecting from design options during the early design phase. 
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Figure 12: isovist sampling and periodic function (Johanes & Huang, 2021) 

 

 
Figure 13: GANs inversion experiment framework (Johanes & Huang, 2022) 

 

        2.4 Conclusion 

In summary, the literature review highlights the critical gap for AI-enabled support tools built 

specifically to support the design processes for dementia-friendly architecture, particularly 

concerning wayfinding. While there has been significant development in AI tools for general 

spatial analysis and classification, such as those developed by Foster + Partners using 

surrogate models or visual connectivity, no existing tool effectively address the specific 

needs of dementia-inclusive design criteria. This gap necessitates the development of 

specialized AI tools that can evaluate the qualitative aspects of spatial design, focusing on 

the ease of wayfinding for individuals with dementia. These tools should integrate various 

design principles, such as visual connectivity, spatial layout configuration, and sensory stimuli 

to support architects in creating environments that enhance the wellbeing of dementia 

patients in residential care settings. Future research should continue to explore and expand 

the capabilities of AI in this domain for dementia-friendly indoor environments, ensuring that 

the tools developed are robust, user-friendly, and capable of providing actionable insights 

during the early stages of design where decisions are critical to ensuring compliance with 

the dementia design principles.  
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        3.1 Principles that Promote Wellbeing 

The literature review conducted in this master thesis to understand the full spectrum of 

influencers for wellbeing has shown that preserving pre-dementia lifestyle is essential for 

high quality of life for people suffering from dementia, ideally staying in their own homes 

unless not feasible then it becomes a question of finding a suitable care facility that feels 

most like home. Moreover, the idea of personal autonomy and being able to exert control 

over their environment has been shown to increase the sense of home in elderly care 

facilities which is an essential ingredient for improve health and psychological wellness 

(Rijnaard et al. 2016) which ensures preservation of occupant’s existing habits and values, 

allowing them to cope better with their condition. Moreover, the same study also emphasizes 

that social interaction is another ingredient for having a sense of home in elderly care 

facilities which is facilitated by quasi-public spaces and allocation for private spaces. The 

studies on care facilities highlight that visual connectivity is among the most important 

factors for improving wayfinding, thus personal autonomy, as well as a sense of community.  

 

The literature review also uncovered the need for appropriate levels of stimulation to 

maintain a healthy mind. This has been experimentally tested using customized soundscapes 

curated for each occupant’s preferences, but more importantly, the everyday sounds have a 

big influence on occupant behavior. The presence or lack of sounds from everyday life 

affects user behavior, including sounds coming from kitchen, boiling kettle on the stove, 

chats in the hallways, and subtle music from the lounge, which is also a sentiment shared by 

practitioners in the field as described by Tangram Architecture’s elderly care home Zuidoever 

which is perceived positively by staff and residents (Robert Muis, 2024). These stimuli have 

the potential to influence the behavior of occupants in a way that promotes their 

engagement in their environment as well as anchoring their sense of directionality aided by 

additional sensory cues such as smell and sound. 

 

Taking into consideration the need to promote personal autonomy, a sense of belonging, 

and engaging surroundings, the soft design criteria for ideal living conditions have been 

defined in the next section reflecting these findings from the literature.  

 

        3.2 Design Criteria for Describing Perceived Wellbeing 

From a design point of view, it is helpful to keep some concepts as goals in the early design 

stages by using evaluation criteria, such as DDP that promote personal wellbeing. It should 

therefore be included in the decision-making process when exploring floor layout options. 

The process of designing floor layout options is often brief, quick, and intuitive which makes 

it prone for selecting sub-optimal options only to realize that in the schematic or design 

development phases that it does not adhere to the DDPs. The (soft) design criteria 

established here is meant to guide the design process in a way to verify whether a design 

option promotes wellbeing. 

 

The entire spectrum of design criteria are all linked to improved wayfinding quality which is 

going to be the basis of the measurement. These four qualitative metrics provide a starting 

point to evaluating design options with user needs in mind. The design criteria were 

established to better guide the quantification method for dementia-friendly architecture and 

is still limited to only providing qualitative guidance based on universal design principles. 

The designer should also consider health and comfort engineering criteria which are as 

important in the early design phase to control thermal comfort and daylight availability.  
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3.2.1 Personal Autonomy 

The definition of Personal Autonomy in this context is spaces that give the capacity for the 

individual to act intentionally, be able to make decisions to move in their environment and 

be able to follow through with them, thereby exerting control over their decision to what 

parts of the building a user wishes to occupy. The underlying benefit here is the occupant 

given the choice to engage in their surroundings, to be able to change their settings, move 

independently from one space to another with minimal chances of confusion or getting lost.  

 

Visual access plays a critical role in giving autonomy to the occupant. However, there are 

many design features that help improve wayfinding such as the amount of decision moments 

along a corridor, the number of doors along a corridor, route length between individual 

bedroom and living, and differentiated corridor using landmarks and niches. All of which 

improve independent navigation in indoor environments.  

 

3.2.2 Sense of Community 

The definition of Sense of Community in this context is spaces that allow the users to be able 

to inspect different spaces in their environment and see others while also being seen by 

others. The key to creating a strong sense of community is excellent visual access between 

spaces. For example, users spending time in the lounge can easily see other adjacent spaces 

of interest such as the garden or dining room. This can also provide subtle environmental 

stimulation to prompt and encourage interaction in a natural way. This also has the added 

benefit of improving wayfinding quality by means of visual access between spaces.  

 

3.2.3 Balanced Stimulation 

The definition of Balanced Stimulation in this context is understanding how acoustic and 

visual stimuli are shaped by the floor layout. The desired level of stimulation present in a 

home varies from person to person, and understanding how spatial stimuli are perceived can 

allow for customization of spaces to fit the needs of an individual or living group. The key to 

having balanced stimuli is to vary the stimulation across floor layout and avoid a 

concentration of spaces with over or under-stimulated environments. For example, the floor 

layout provides sufficient separation between vibrant parts of the building to the quieter and 

more private areas. Acoustic stimulation has been noted in the guidelines and literature to 

provide added benefit for improving wayfinding by anchoring the occupant’s sense of 

directionality to a stimuli in addition to vision. Visual stimulation is important to consider as 

well. For example, artwork and murals can provide visual interest and engagement, but 

should be used thoughtfully to avoid overstimulation. Additionally, the use of color and 

contrast can help to define spaces and make them easier to navigate. 

 

3.2.4 Accessibility 

The definition of Accessibility in this context is important amenities are within reach and 

clearly visible or easy to find. For instance, visibility to toilets from all common areas will 

improve independent wayfinding.  

 

        3.3 Selection of Performance Indicators for Indoor Wayfinding Quality 

To assess how floor layouts comply with the design criteria, a reliable set of performance 

indicators needs to be established in order to provide more consistency and control over the 

assessment. Several performance indicators have been selected based on the EAT that might 

also support wayfinding abilities of users. These assessment indicators are used to determine 

whether a floor layout is compliant with the established four soft design criteria.  
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The majority of indicators are related to visual access. They are conditions to say whether a 

space or an object is visible from another space. This not only help residents to see and be 

seen as described in the DDP, but also aid with wayfinding and helps reduce the chances of 

getting lost while navigating indoor environments. The amount of visual access is intertwined 

with the building layout including allocation of wall dividers and spatial organizations, both 

of which are often, if not always, addressed in the early conceptual phases such as Stage 3 

Spatial Coordination in RIBA Plan of Works. The performance indicators are therefore selected 

as the basis for the assessment to get a better understanding of the navigational quality of 

spaces that also by association improve the likelihood of supporting the occupants with 

better sense of autonomy and community engagement.  

 

The stimulation indicators have been based on reoccurring themes found in the literature. 

More specifically, how everyday sounds contribute to wellbeing and wayfinding cues 

(Houben et al. 2020 and Grey et al., 2015). It is useful to understand how spatial design 

influence the acoustic quality from everyday sounds. It also helps gauge the estimated level 

of stimuli levels so that low or highly stimulated environments can be discovered for the 

purpose of customizing environments to suit the individual needs for ideal level of 

stimulation.   

 

Combining spatial and sound indicators can give us an idea on how likely someone can be 

independent in their environments which ultimately helps with wayfinding and provide them 

with the choice to engage in their environments while remaining aware which spaces they 

wish to occupy, and follow through with their decisions based on the visual and acoustic cues 

presented to them.  

 

The selected DDPs from the EAT checklist are highlighted in the figure below that have 

association with improved wayfinding.  

 

 
Figure 14: out of the 10 dementia design principles, three were highlighted for narrowing down 

the scope of the study (Fleming & Bennett 2017) 

 

The full document of the EAT checklist and Plan-EAT assessment queries are included in 

handbook by following the reference PDF link (Fleming & Bennett, 2017). 

 



3 Wayfinding Design Criteria                                  

Page 40 

 
Figure 15: Soft criteria are defined by a set of measurement to be taken based on floor plan 

geometry 
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Figure 16: Relating performance indicators to dementia design principles and soft design criteria 

(Fleming & Bennett 2017) 

 

        3.4 Adapting the Dementia Design Principles into a Wayfinding Scoring System 

The EAT already has a scoring system where each criterion is a single point which is used as a 

basis to develop a scoring system specific for wayfinding. The wayfinding performance 

indicators have been linked to the established soft design criteria to come up with a simple 

point-base system to determine the degree of compliance for a design criteria. Additionally, 

the scoring system introduces a range of possible outcomes instead of binary yes/no 

response by introducing a third possible outcome of “preferred” in order to identify the most 

suitable design configuration and provide a more granular assessment. The performance 
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indicators can be assessed per room function and by defining the threshold variable for 

insufficient outcomes, sufficient outcomes, and preferred outcomes in terms of visual access.  

 

3.4.1 Label Assignment Per Room Function 

Based on possible scores per design criteria, a label will be given to indicate whether a 

space fulfils the design criteria or not. Each zone can receive a certain number of labels that 

relate to each design criteria. The thresholds for satisfying the design criteria is 

recommended in the scoring schedule in order to give categorical level score that is 

culminated from wayfinding assessment indicator results. The categorical distinction of 

design criteria compliance is intended to give overall quality of a floor plan whereas an 

indicator gives individual assessment of one individual criterion.  

 

                                     

  
 

Figure 17: wayfinding quality checks each of those spaces for visual sightlines to adjacent spaces  

Possible points per room function 
Room function Autonomy Connection Stimulation Accessibility 
Lounge 4 4 - 1 
Dining 0 4 - 1 
Kitchen 0 4 - 0 
Bedroom 4 0 -1 to 1 0 
Garden 2 0 - 0 
Toilet 0 0 - 1 
Staff (or corridor) 0 2 -1 to 1 0 
Possible Points  10 14 -2 to 2 3 
Figure 18: Possible points given per soft design criteria category  
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3.4.2 Assessment Indicator Thresholds  

Each assessment indicator is assigned its own threshold, with each threshold corresponding 

to a point value to adds up to the final assessment of wayfinding quality. These points are 

then aggregated to determine whether a space is likely to promote better wayfinding. The 

scoring process is conducted for each space individually, such as the living room for two of 

the design criteria, and the bedroom for three of the design criteria. The scores for each 

space are then combined to assess the overall quality of the floor plan, providing both an 

overall performance value and detailed performance values per distinct soft design criteria. 

 

In terms of stimulation level, balance is sought, acknowledging the need for some level of 

stimulation while emphasizing the importance of balancing to an acceptable range. The 

thresholds are defined here as general guidelines but might be different from person to 

person which can also be influenced by age-related hearing abilities influencing sensitivity to 

higher frequency or difficulty of speech understanding in noisy environments (Devos et al., 

2019). The stimulation score aims to approach zero, indicating that the stimulation level 

aligns with individual needs, such as maintaining visual stimuli at a human scale and 

minimizing background noise in private areas. However, individual preferences may vary, 

with some individuals preferring more stimulating environments over quieter ones. In this 

scoring system, under-stimulated floor plans receive a negative value, while over-stimulated 

plans receive a positive value. 

 

3.4.3 Expert Validation of Thresholds and Weights 

The wayfinding performance indicators allow us to provide a granular scale system to 

determine the effectiveness of certain DDP being met and to estimate to what degree it is 

fulfilling its condition. This process should be taken with careful consideration to specific care 

facility by identifying the clinical profile of users, acceptable thresholds for visual and 

auditory stimuli. During this thesis, we take the ‘universal’ approach to assessing for DDP 

similar to the Plan-EAT (Quirke et al. 2021) approach, explained in the literature review, 

where each criterion is determined as a point per each DDP category. Therefore, this is a 

recommended area for investigation for further research to determine how DDP 

performance indicators can be determined and weighted based on individual needs and 

abilities.  

 

On an individual criterion, queries from the EAT checklist indicate all visual access items 

addressed are indicated with two possible answers: yes (getting a point) and no (not getting 

a point). In this thesis project, we introduce three possible ways to assess the quality of visual 

sightlines by having three distinct categories: 0 for insufficient, 1 for sufficient, 2 for 

preferred. The preferred distinction is intended to provide feedback on layouts that are ideal 

on an individual criterion level.   

 

The ranking is intended to be granular to distinguish between better performing plans that 

have slight spatial design variations, thereby exploring variable design options during the 

design selection stage of architectural design with the possibility to get performance 

assessment feedback on strengths and weaknesses for a floor layout with respect to 

wayfinding quality. 
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Figure 19: Preliminary scoring system for evaluating design criteria  based on their assessment 

indicators 

 

 
under stimulated = -1; balanced = 0; over-stimulated = 1    

Soft Criteria 
Performance 
Indicator 

Under-
Stimulated Balanced 

Over-
Stimulated Weight 

Balanced 
Stimulation 

3_1 0-20 dBA 20-30 dBA > 30 dBA 1 
3_2 <20 dBA 20-30 dBA >30 dBA 1 

 
   

 
      

Total Score  <0 0 >0  
 

Table 1: Measuring the stimulation level in the floor layout emanating from the common kitchen 

area and received along the corridor 
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not sufficient = 0 sufficient = 1 preferred = 2       

Soft 
Criteria 

Performance 
Indicator 

Not 
Sufficient Sufficient Preferred Weight 

Autonomy 

1_1 ≥0-0.35 >0. 35-0.75 >0.75 1 
1_2 ≥0-0.35 >0. 35-0.75 >0.75 1 
1_3 ≥0-0.35 >0. 35-0.75 >0.75 1 
1_4 ≥0-0.35 >0. 35-0.75 >0.75 1 

      

Total Score  <4 4 >4  
            

Soft 
Criteria 

Performance 
Indicator 

Not 
Sufficient Sufficient Preferred Weight 

Connection 

1_1 ≥0-0.35 >0. 35-0.75 >0.75 1 
1_2 ≥0-0.35 >0. 35-0.75 >0.75 1 
1_3 ≥0-0.35 >0. 35-0.75 >0.75 1 
1_4 ≥0-0.35 >0. 35-0.75 >0.75 1 

      

Total Score  <4 4 >4  
      

            

Soft 
Criteria 

Performance 
Indicator 

Not 
Sufficient Sufficient  Weight 

Accessibility 
4_1 ≥0-0.10 >0.10  1 
4_2 ≥0-0.10 >0.10  1 
4_3 ≥0-0.10 >0.10  1 

      

Total Score  0-2 3   
 

Table 2: Determining the visual access quality based on the percentage of the visual access. 

 

 

        3.5 Limitation of Scope 

In the scope of the thesis, only performance indicators related to supporting wayfinding and 

describing navigational quality are examined, in particular indicators that are taken directly 

from Environmental Assessment Tool (EAT) checklist that is based on the Flemming & 

Bennett Dementia Design Principles published in their handbook (2017), which the literature 

suggest as to being one of the most comprehensive checklists for evaluating existing care 

facilities given how many times it has been observed to be cited in other researchers working 

in this field. Moreover, the indicator selection were chosen on the basis that they can be 

assessed using ray-based methods to perform the assessment (such as isovist analysis, 

explained in the next chapter). The decision has been made to maintain the consistency of 

the assessment process, keeping the data type/format consistent, and specifically explore 

effectiveness of perception-based assessment method such as the isovist in describing the 

wayfinding quality of indoor environments from the point of view of a person with dementia. 

It is recommended therefore to examine other physical indicators influencing wayfinding 

quality that is outside the EAT checklist/handbook that are also important in supporting 

wayfinding, such as articulation of corridors, spatial hierarchy, position of common areas in 
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relation to corridors, number of doors, corridor path length, and so on.  Due to the limitation 

of the timeline for the thesis project, it was not possible to computationally measure all 

performance indicators to provide an assessment on a categorical level, i.e. for autonomy, 

therefore, more work needs to be done to computationally assess the entire list of 

performance indicators, as well as adding non-visual-access-based indicators to support 

autonomy. 

 

The architect works in various levels of abstraction to represent the built environment 

throughout all of project phases. But in the design phases, the most useful way to 

communicate spatial quality is through floor plans which include information such as walls, 

doors, windows, and zones. Floor plan information in the early stages usually consist of 

bubble diagrams of spatial organization, and later on more defined by drawing the spatial 

organization in 2D plan views where each room/function is represented with a perimeter 

outline. In this step, the floor plan plays a critical role in communicating spatial qualities and 

provides assumptions on where walls will be positioned, doors to support optimal 

circulation, window for optimal views and daylight, and sometimes rough zones for furniture 

and fixed appliances. Traditionally the process is done with sketching different floor layouts 

and comparing them with the design brief drafted by the architect to verify if all the area and 

adjacency requirements have been met. It is in that step that some decisions are being made 

that includes wall positions and doors. The scope of this thesis is to propose a floor plan 

assessment tool with respect to soft design criteria that improve wayfinding quality for 

building users living with dementia. It is precisely in this phase that validation on design 

options is valuable in streamlining the design process and improve the likelihood of arriving 

at an optimal solution within in a timely fashion that will indeed improve the quality of living 

of a very vulnerable user group. User preference related to desired level of stimulation can 

also be defined in the client’s design brief and the architect’s program of requirements which 

is also outside the scope of this thesis since that is project-specific, and the spirit of this thesis 

is to develop a universal approach to evaluating wayfinding quality then coupling it with an 

AI model that can be later fine-tuned per project specifications or user 

preferences/conditions. 

 

Anything else that gets decided at a later project phase or does not have a simple way to 

represent that in floor plan are excluded from the scope of this thesis. This is a very difficult 

decision, but this exclusion have been made to narrow the scope of this thesis into 

specifically exploring supportive tools for the early stages of design related to indoor 

wayfinding quality influenced by wall positioning. A single AI model will never be able to fully 

capture all the nuances of the design process which necessitates further investigation on 

how AI can support the design development of dementia care spaces in different stages of a 

project’s life. An inherent limitation with designing in 2D is the missing third dimension. 

Visual access should include all three dimensions which at this stage is acknowledged to be 

a limitation of both the early stage process and the proposed AI framework that does not yet 

include sectional or 3D information in the assessment, simply because 2D format (both floor 

plans and sections) are more common than the 3D representations of physical or digital 

models. The sound modelling also suffer greatly when treating space as a 2D plane by 

excluding the ceiling height.  

 

Providing care for people living with dementia presents a profound task towards the pursuit 

of architecture of wellbeing. The four (soft) design criteria only address qualitative aspects 

found in the built environment based only on one handbook out of several available 

(Margaret P. Calkins et al. 2022) which is inevitable to have excluded DDP criteria and design 

recommendations which did not make it in this study, which warrants a systematic review of 

all available evaluation methods for care facilities to get a better understanding of their 

scope, strengths, and limitations. Moreover, there are many more indicators which are not 
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related to spatial design that influence perceived wellbeing that could not be taken into 

account which includes operational aspects of a care facility, the quality of the care provided, 

the training level of staff, the site location and the neighborhood, the visiting policies of the 

care facilities, the provisions for medication, the provisions for privacy, the security measures, 

quality of personal relationships, community events programming, group activities, access to 

therapy, and so on. It is therefore critical to holistically examine the overall project’s quality, 

not only spatial design criteria, and the responsibility lies on the architect to advocate for 

universal design principles as a high priority and involve experts in the design stage to 

ensure the project’s success.  
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        4 Measuring Indoor Wayfinding Quality 
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        4.1 Indoor Wayfinding Performance Assessment Method 

Floor plans should be able to be measured precisely to describe its indoor wayfinding 

quality with respect to DDPs, a critical step towards evidence-based design. The usefulness 

of the wayfinding quality assessment is that it tests floor layouts using isovist measures to 

determine the exact wayfinding quality described in numeric values whether it is 

ideal/preferred (2), sufficient (1.5) or insufficient (0). The fundamental rationale for the 

assessment is to test whether the DDPs from the EAT have been met by answering the query 

items from the Plan-EAT checklist. Furthermore, the assessment results should give us 

insights on the extent of compliance with the defined four soft design criteria mentioned in 

the earlier chapter. The objective of the assessment is to devise a method to describe the 

qualitative design criteria related to wayfinding while also satisfying the conditions described 

in the EAT checklist. More critically, provide the assessment results in a numeric format that a 

computer can understand and interpret. The assessment method should also provide a more 

granular rating system that can distinguish between subtle variation in the floor plan and how 

it impacts the overall design criteria. 

 

The potential outcome of this methodology is an algorithm that can assess wayfinding 

quality of a layout based on floor plan geometry and store the data to interpret the results 

and classify floor plans based on their wayfinding quality indicators.  

 

4.1.1 Isovist Method 

A common method used in quantifying visual connection is the isovist method, which was 

coined by Clifford Tandy in 1967, referring to the root word “iso-“ from Greek, [isos meaning 

“equal” in English] and vista from Italian meaning “view” in English as a way to provide a 

permanent record for architectural and landscape spaces providing a viewshed, from “the 

inside out”, from the point of a person’s perception. Michael Benedikt later in 1979 

introduced an analytical method of isovist measurements to record the properties of such as 

polygon perimeter and area from a single vantage point providing local properties of space 

(Turner et al., 2001).  

 

Using the information provided by the isovist, we can determine whether an area is seen 

from a point in space. We can also determine how many times an object is seen from all 

possible points in space. Additionally, we can understand spatial perception features that 

influence perceived openness by examining the polygon area and its perimeter. 

 

 
(a)                                                     (b)   (c) 

Figure 20:  [a] an isovist polygon highlighting visible areas on the plan (Ostwald & Dawes, 2018); 

[b] an example of first-order visibility graph showing a pattern of connection for a simple 

configuration (Turner et al. 2001); [c] visibility graph analysis showing visual connectivity on a 

floor plan sample for dementia care facilities (Hing-wah et al. 2018) 
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Moreover, analysis of polygon area and perimeter facilitates understanding of spatial 

perception features influencing perceived openness. In the context of scale perception, 

isovist analysis can provide valuable insights into how space is experienced. 

 

4.1.2 Assessing Wayfinding Quality 

 

 
Figure 21: Assessment of wayfinding quality is determined by the isovist measures and added up 

to a final assessment score for wayfinding quality label. 

  

Wayfinding quality is assessed using grid-based test points where each test point perform an 

isovist operation and store the numerical value to process the results. To evaluate the quality 

of wayfinding of a given floor layout, three different processes are proposed: 

  

1. Isovist Grid Point: calculates the total percentage that satisfied the criterion. 

The rationale behind is based on the DDP requirement for clear sightlines between two 

spaces.  

2. Ray Properties: calculates the average sightline length 

The rationale behind it is to estimate the usability of visual access. If a space is too far 

away it might feel distant or indistinguishable enough to be useful, whereas short 

sightlines could indicate poor visibility in general and overly-compact space. 

3. Visibility Distribution: calculates the continuity of visual access in space by estimating the 

number of zones in the test area that suffer from poor visual access.  

The rationale behind it is to award points to zones that have consistent visual access 

across the test area and dock a point for excessively fragmented areas that do not have 

equal visual access quality. 

 

These 3 operations describe the current definition of wayfinding quality for dementia-

specific residential layouts that can be added up to give the final assessment outcome on the 

evaluated quality. Visual access measuring sightline being the most important factor, and 

gets penalized for inappropriate poor visibility due to distance or fragmented visual access 

in the test zone.  

 

The outcome for visual access can be labelled as insufficient which does not meet the 

minimum threshold requirement for visually-connected spaces, sufficient which meets a bare 



Machine-Learning Assessment Tool for Evaluating Wayfinding Quality in Dementia Care Spaces            Page 51 

minimum for visually-connected spaces but may suffer from scale problems or fragmented 

quality across an area, and finally, preferred which meets the recommended visual access 

requirements with good sense of scale and consistent across the entire test area.  

 

 
Figure 22: visual access is the main criterion for assessment. Isovist properties and average point 

distances are additional constraints to differentiate between spaces that have inconsistent visual 

access. 

 

Wayfinding quality is characterized from the perspective of one room function. The literature 

emphasized the importance of sightlines surrounding the common areas. For example, the 

living room can be tested for visual access, which are known to support independent 

wayfinding, by calculating the sightlines to the nearest toilet, kitchen, living, corridor, main 

entrance, garden, and occupant bedrooms/housing unit. The same sightline test can be 

taken across all room functions, i.e. from the point of view of users occupying the kitchen, 

dining, corridors, and so on.  

 

4.1.3 Sound Modelling 

The sound environment is shaped by the properties of geometry and material. Sound, in 

addition to other stimuli such as smell and color, can support wayfinding for people living 

with dementia. In this thesis, we reduce the complexity of sound modelling to a 2D plane to 

get a baseline measurement on how sound propagates in spaces based on general 

assumptions on expected sound intensities in the common areas.  

 

This method of sound propagation is based on the image-source method (Allen & Berkley, 

1979), which is a widely used method for model propagation and reflection of acoustic 

waves. The method done here uses points as particles of energy bounced on a specular 

surface where each time a ray is bounced, the scattered energy is subtracted with every 

bounce.  

 

Lp(R2) = Lp(R1) - 20·Log10(R2/R1) 

 

Where: 

Lp(R1) = Known sound pressure level at the first location (typically measured data or 

equipment vendor data) 

Lp(R2) = Unknown sound pressure level at the second location 

R1 = Distance from the noise source to location of known sound pressure level 

R2 = Distance from noise source to the second location 
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Figure 23: sound intensity decay over distance. (The Engineering Toolbox, 2005) illustration from 

wkc group. 

 

The sound intensity and frequency band varies from room to room. Based on conversations 

with architects in the field during this thesis, it was highlighted that sound and smells coming 

from the kitchen is received pleasantly by its occupants for the most part, citing that the smell 

freshly baked cookies or the sound of a tea kettle can bring up positive associations in the 

occupant’s mind, and entice them to approach the space where the sound/smell is coming 

from. If we examine a common household kitchen, we can see the sound intensities varies 

from activity to another. According to a sound experiment published in the Canadian 

Audiologist (Teder, 2014), dinner preparation sounds can peak at around 100 dBA measured 

2 feet away from the sound source. The characteristic of the majority of household kitchen 

sound can be characterized by high-frequency and quickly dissipated in 130 milliseconds. 

Whereas in the living, the sound characteristics could be vastly different depending on the 

size of the household and the activities being performed (conversations, playing games, 

watching TV, playing music, etc.) and requires more detail for defining a reasonable 

assumption on the sound intensity level and frequency spectrum.  

 

Material properties is assumed to be common gypsum-based drywall on timber studs which 

can have a sound absorption coefficient of 0.05 (The Engineering Toolbox, 2003). 

 

Sound modelling in the form of sound propagation is intended to indicate where the sound 

leakage is occurring, calculate the sound decay over its travel path, and estimate the sound 

intensity at a receiving point, i.e. the corridor to determine whether or not it is reasonable to 

assume sound can support wayfinding abilities of occupants through acoustic stimulation. 

Although not developed in the thesis, this simplistic approach can also be useful for 

producing sound map intensities to show how generalized soundscape baseline will look 

like to identify concentration of noises or overlap of different noise sources that may interfere 

with one another in an undesirable way. The dominance of one noise source that clashes with 

another common space could therefore be estimated and visualized.  

 

Two techniques are used to relate sound influence on space, the separation of sound 

between common and private areas, and sound intensity mapping to determine the 

characteristic of acoustic wayfinding cues. These techniques aim to assess factors such as 

sound transmission (perceived value range) and sound propagation to rate how sound is 

distributed in space. Environmental stimulation is associated with overall health and can be 

helpful for wayfinding; therefore, incorporating these sound measurement techniques 

alongside the visual connection assessment method can give us a more thorough 

assessment of wayfinding quality.  
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Figure 24: Testing for sound stimulation levels along a corridor based on expected levels of noise 

from common kitchen areas where the presence of a balanced stimulation is considered as a 

wayfinding cue 

 

Sound stimuli can aid indoor wayfinding. Having noticeable and distinguishable sound while 

navigating a corridor is recommended as it can improve wayfinding ability of occupants 

based on Universal Dementia Design handbook, which states “it is helpful to use multi-

sensory cues, such as sounds, to reinforce wayfinding and legibility.” In this assessment, we 

simulate how sound particles travel in 2D space which helps us estimate the perceived level 

of sound intensity based on the number of bounces and distance from the source. This cue is 

useful when it is discernable to help associate sound with space, and audible enough to be 

detected considering hearing limitation and frequency range for elderly occupants (Devos et 

al., 2019). Another utility for using acoustic cues to prompt and encourage useful social 

interaction.  

 

        4.2 Performance Assessment Procedure 

Analysis step is conducted inside of Grasshopper environment. Grasshopper is a visual-

scripting platform serves as an extension to 3D-modelling software package Rhino3D. This 

software package is commonly used by architects and scientists in the built environment 

domain for its user-friendly interface, but importantly, to develop customizable scripts that 

can pair with 3D model information, such as building information.  

 

4.2.1 Visual Access Analysis 

Step 1: Extract an area’s polygon for the test area (i.e. living room).  
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Figure 25: extraction of curve boundary 

 

Step 2: Add test points to create isovist lines. 1-meter grid is selected to approximate the 

human-scale (Turner, 2001). Removing test points that are too close to the perimeter by 

specifying the minimum distance between curve boundary nearest point.  

 
Figure 26: selecting the test grid for testing 

 

Step 3: Trace out the isovist lines, test how many intersections occur between the sightlines 

and the target space.  

 
Figure 27: measuring sightlines and recording intersections with other areas in the layout 

 

For Example:  

Lounge Visual Access Assessment 

Dining is seen from the selected point in the lounge 

Garden door is seen from the selected point in the lounge 

Toilet is not seen from the selected point in the lounge 

…. 

 Point n: [space] is [seen or not seen] from the selected point in the lounge 

 

Step 4: Iterate through the entire grid and record the results for each test point. Store the 

information in a data recorder and later retrieve it by internalizing the data inside of a Data 

component.  
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Figure 28: iterating through the grid with the same radial isovist lines and recording the 

intersections with other areas if any. 

 

Step 5: Determine the final score in that given space by adding up the number of 

intersections between sightlines and target area and dividing them by the total number of 

test points which gives us the percentage of points that has seen the target space can be 

assigned a range here, for example: 

 

≥ 0% - 35%  Insufficient 

>35% – 75%  Sufficient 

> 75%  Preferred 

 

To further assess the wayfinding quality, store the average length of sightline by adding up 

the total length of rays and dividing them by the total number of rays used.  

 

5 – 15 meters (poor visibility due to the space being too compact)  

15 - 30 meters (appropriate) 

>30 meters (indistinguishably far) 

 

Distribution of visibility is also evaluated in this stage. The average distance between the test 

points that satisfy the criteria is tested. In the case where the average distance is low or 

consistent, it is therefore assumed most test points are adjacent to one another. Otherwise, if 

not then there are big gaps between some or most test points which indicate uneven visual 

connection quality. For example: 

 

1 – 2 meter is the average distance between valid points; thus, it is evenly distributed. 

2 meter is the average distance between valid points; thus, it is unevenly distributed. 

 

4.2.1 Acoustic Wayfinding Cues 

 

Step 1: create a point sound source in the common area (i.e. the Kitchen).  

 

 

Step 2: Simulate the sound rays from the source tracing forward in space 
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Figure 29: forward raytracing setup on Grasshopper providing the number of bounces. 

 

 

Step 3: set the conditions for how far the sound travels and how many times it bounces 

depending on the material properties of the walls.  

 

Step 4: how far is the reach of the sound in the corridor? How many bounces did it go 

through?  

 
Figure 30: a preliminary stage for sound mapping of raytraced sound particle displaying 

intensities on various locations of the plan, here displaying only one sound particle. 

 

Step 5: create a grid of points along all corridors and evaluate whether the sound particle is 

within its radius of influence of the test point at 1 meter in diameter. Was there a point inside 

the test circle? What is the recorded dBA? Is the sound potentially discernable and audible?   

 

If there are not too many obvious dead zones, the corridor supports wayfinding through 

acoustic cues. Otherwise, if there are many dead zones and sound does not reach important 

areas, then it does not support wayfinding through acoustic cues. Alcoves along corridors 

might have an impact on sound propagation of acoustic wayfinding cues.  

 

4.3.1 Sound Separation 
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Separation between private and common areas can be linked to the ability of occupants’ 

wayfinding abilities. While the sound cues from common areas can be helpful for reinforcing 

wayfinding, excess background noise is linked to poorer health outcomes, and therefore 

should be balanced appropriately to ensure sufficient separation between common area and 

private area soundscapes.  

 

In this analysis step, we try to describe the level of sound separation between common areas 

and private spaces (bedrooms/apartments). Separation between those two key spaces are 

one of the design guideline recommendations found on EAT checklist. Even though the 

sound stimuli in itself may have subjective perception, the perceived sound intensity 

(exceeding 50 dBA of background noise) has been shown to negatively disrupt sleep and 

overall health. The assessment aims to describe which bedrooms have good level of 

separations from common areas and which that don’t so that users can choose the bedroom 

that fits their profile and preferences depending on the preferred level of stimuli and 

engagement in their surroundings.  

 

The Sound Separation indicator tests the resident Kitchen area to the Bedroom.  

 

Step 1: Extract the resident kitchen’s centroid and this will be considered as the sound 

source.  

 

Step 2: Extract the bedroom’s centroid and this will be considered the receiver.  

 
Figure 31:centroid of each bedroom is extracted and a common area such as kitchen or lounge. 

 

Step 3: Count the number of intersecting walls and centroid distances. 

       
Figure 32: drawing a line between the two and counting the number of intersecting walls and 

centroid distances. 

 

For example 

Bedroom 1: 

3 wall intersections between living and bedroom 1 

3 meters centroid distance between living and bedroom 1 

Perceived sound intensity from background noise: 40 dBA  

 

The proposed equation for determining sound separation:  
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• Air absorption as a function of distance and frequency: the loss due to air absorption 

increase with the distance.  

• The sound intensity reduction through walls by considering a typical absorption factor of 

15%. 

• Frequency range assumed here is high emanating from sharp objects colliding with each 

other in the kitchen area during meal preparation time.  

  

Note: a maximum range for sound intensity measured from the bedroom centroid should be 

40 dBA or less to avoid potential health risk associated with noisy environments.  

Therefore:  

> 20 dBA = under-stimulated 

20-30 dBA = sufficient sound separation 

< 30 dBA = over-stimulated 

 

        4.3 Application of Computational Assessment Workflow 

The entire assessment algorithm is developed in Grasshopper environment and runs 

automatically by flipping through the entire dataset of floor plan geometry. The main 

purpose of the assessment algorithm is to have it be reliable enough to be able to work on 

all types of geometries received from the dataset. One of the common challenges being the 

orientation of plan and axis of grid point for visual access. The outcome is that the algorithm 

can reliably produce a grid test points for every possible living room geometry, draw the 

isovist rays, and count the number of intersections made between living to kitchen. The 

Grasshopper screenshots is available in Appendix 5.  

 

4.3.1 Visual Access Script 

The assessment algorithm was built in Grasshopper environment by retrieving the geometry 

of the dwellings directly from the Swiss Dwellings dataset to calculate the isovist properties.  

 

Once the geometry has been isolated, the first algorithm takes the boundary of the living 

room and populates it with a grid point for initiating the isovist test. Then the results is 

logged in a data recorder which is subsequently exported as input data for the machine 

learning model training set.  

 

 
Figure 33: Flowchart for creating the test points inside of Grasshopper. 

 

Inside of Grasshopper, there is a native component called Isovist. The isovist takes the 

geometry of the walls as obstacles and finds all intersection points. Once the intersection 

points have been identified, the lines are drawn from the test point to each intersection point 

that correspond to one another.  
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Figure 34: Flowchart for creating the isovists and finding the number of intersecting points for 

each test point to arrive at a percentage score for visual access. 

 

The average ray length is calculated per floor plan and is also stored. The visibility 

distribution measures the average distance between all points that have satisfied the visual 

access requirements. The main important aspect for wayfinding is visual access but gets 

reduced if the visibility distribution is not even or if the isovist average length is too great / 

too little.  

 

The variables that can be adjusted in the script are the following:  

1. Test point spacing = 1 meter  

2. Minimum distance from the perimeter wall = 0.75 meters 

3. Isovist length = 30 meters 

4. Radial isovist count = 24 rays 

5. Obstacles/barriers = walls only (doors assumed to contain glazed panel with 

privacy shutters) 

 

4.3.2 Sound Modelling Script 

The sound modelling takes an existing component in Ladybug plugin library for raytracing. 

The code is modified to allow for sound decay over distance and absorption coefficient to 

record the sound intensity after a set number of bounces. The sound model shows where the 

sound travelled in the plan with corresponding estimated sound intensity level.  

 

 
Figure 35: Sound modelling done via forward raytracing applying sound decay over distance and 

absorption coefficient per wall bounce. 

 

        4.4 Data Included in Building the Model 

Several visual access indicators were stored in an Excel file, including sightlines from the 

living room to the kitchen, all toilets, all bedrooms, and dining area.  
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For this model, only two performance indicator are used—2_2 (living room to kitchen 

sightlines) and 4_2 (living room to toilet sightlines)— to predict wayfinding quality. Sound 

modeling was not incorporated into the model because of its complexity and the thesis 

timeline and remains a future area for research to provide a more comprehensive 

assessment of wayfinding quality based on multisensory data which can be used as training 

set for predicting wayfinding quality based on multisensory data. 

 

        4.5 Conclusion 

The definition of wayfinding quality is described by three values: the percentage of test 

points satisfying the visual access condition, sightline length, and visibility distribution within 

the test space. The developed computational framework allowed for the systematic 

measurement of floor plan geometry imported directly from the Swiss Dwellings dataset 

where the test points in the living room are automatically populated to run the isovist analysis 

script to calculate the visual access quality. The information were recorded inside of 

Grasshopper and later exported to an .xlsx file to add as a new column feature in the Swiss 

Dwellings dataset.  

 

The method serves as a starting point and will benefit from testing the different wayfinding 

quality indicators of floor layouts in experimental settings with real users to better calibrate 

the performance thresholds based on user behavior observed in the real world and in 

accordance with their clinical profile corresponding to the 3 dementia stages.  
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        5 Machine Learning Framework 

5.1 Machine Learning Methods  

5.2 Processing the Data for Testing 

5.3 Exploratory Data Analysis 

5.4 Observations on the Data 

5.5 Conclusion 
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        5.1 Machine Learning Methods 

From the literature review, it was concluded that it is possible to use information generated 

from visual-perception analysis such as isovist and visibility graphs analysis to train an AI 

model with, and make use of the measures to correlate them with spatial features.  

 

Initially, one assessment indicator for wayfinding quality is included to build a proof-of-

concept to demonstrate that machine learning methods can be applied to assess dementia-

friendly design criteria which took measurements of direct sightlines between living to 

kitchen. This data has expanded to additional sightline measures from living to bathrooms, 

and living to bedrooms.  

 

Before proceeding with building the model, additional literature review was conducted to 

narrow down the specifics of the AI methods and algorithms. In specific, narrowing down the 

model architecture, machine learning methods, feature selection methods, and 

hyperparameter tuning methods. 

 

5.1.1 Machine Learning Algorithms 

Machine learning refers to the broader term for computer systems that are able to learn and 

improve their performance with data. These computer systems learn from examples and is 

able to make predictions based on the patterns it has seen from the data (Sedlmeier & Feld, 

2018). The machine learning method will be used in this thesis to learn recurring patterns 

found in floor plan geometry in order to classify the wayfinding quality. The training will 

include isovist measures linked to wayfinding quality necessary to make a prediction and 

corelate them with building geometry features. 

 

In general, there are several machine learning algorithms that are divided into different 

categories. Unsupervised machine learning method leverages unlabeled dataset to learn a 

function that best describe the data’s inherent structure. A popular example of unsupervised 

learning is clustering similar data into groups without an explicit target value, instead it 

determines the function based on the patterns seen in the data (Sedlmeier & Feld, 2018).  

 

Supervised learning algorithms learns a function based on a given pair of inputs 

corresponding to known output label (Sedlmeier & Feld, 2018). Supervised learning can be 

further divided into two main categories: regression problems where the output is a 

continuous numeric value, and classification problems where the output is a finite number of 

discrete labels (Sedlmeier & Feld, 2018). Supervised learning method is a subset of artificial 

intelligence which aims to fit complex data to extract hidden relationships between target 

variables (i.e. predicting a discrete class or continuous variable) and find the coefficient 

function based on the related problem. The trained model is then tested for its accuracy 

based on its correctness with classifying a set of predetermined attributes (Alloghani et al., 

2020). 

 

In this project, a labelled dataset of wayfinding quality classes and building features will be 

used, thereby making the supervised learning a suitable method for building the machine 

learning model with a classification task. A supervised learning method will be used to fit the 

data between wayfinding quality labels (target variables) and building geometry features 

(inputs). This method will allow us to correspond between the two variables: isovist measures 

extracted from the assessment results, and building geometry features. Wayfinding qualities 

are described as three discrete classes: 0, 1, and 2, thereby a multiclass classification 

problem will be used.  
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The most commonly used algorithms for multiclass classification problems are random 

forest, k-nearest neighbor, support vector machine, decision trees, and naïve bayes for 

supervised learning (Ross et al. 2023).  

 

 
Figure 36: most common machine learning algorithms (Ross et al. 2023). 

 

5.1.2 Random Forest Classifier 

In the current number of target variables and dataset size of dwellings, Random Forest 

Classifier is a suitable option. Random forest classifier, based on the decision tree classifier, is 

a statistical machine learning algorithm for prediction (Breiman, 2001) which is a tree-based 

model involving “recursive partitioning of the given dataset into two groups based on certain 

criterion until it a predetermined stopping condition is met.” (Schonlau & Zou, 2020). The 

advantage of this method is its interpretability where the decision tree can also be graphed 

and analyzed. It particularly works well with tabular data and especially shines with large 

feature sets. A limitation for this algorithm is that it can get computationally expensive for 

larger datasets. 

 

 
Figure 37: architecture of random forest (Ross et al. 2023). 

 

With random forest classifier, feature importance is a method which is used by researchers to 

identify the most important features that affect the target variables. According to the authors, 

random forest was implemented in two stages. First, the entire dataset was classified, then 

feature importance was used to determine the most important feature influencing patient 
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satisfaction with respect to indoor environments quality measures (Ali et al., 2022). Artificial 

neural networks were used in combination with random forest classifier to confirm the most 

influential feature for patient satisfaction. The study is particularly useful for this thesis project 

as it shows a successful implementation of two machine learning models to determine the 

perceived quality for a binary classification problem to predict a patient’s satisfaction 

response based on indoor environmental quality controls described as numeric features 

such as temperature, sound level, and illumination levels.  

 

 
Figure 38: Feature importance plotted by the study indicating satisfaction of noise from 

neighbor’s room is among the most important feature for determining patient satisfaction based 

on a sample size of 497 (Ali et al., 2022). 

 

5.1.3 Artificial Neural Networks (ANN) 

One of the most commonly used models is the multilayer perceptron (MLP), a type of 

artificial neural network (ANN), that can be used for multiclass classification problems of 

discrete values as well as regression for continuous values. This model architecture is useful 

for complex datasets where the relationships between features and the target variable are 

non-linear and difficult to model with simpler methods (Cybenko, 1989). In particular, deep 

neural networks perform well with the recognition of recurring patterns for large datasets 

and the discovery of the underlying functions (Sedlmeier & Feld, 2018) as well as the added 

benefit of scalability as the data expands to add more assessment indicators and floor plan 

geometry. The neural network provides a range of hyperparameter that can be tuned to 

improve the model performance and to avoid memorizing the data (also known as 

overfitting) by adjusting the learning rate of the model for example. Based on the AI support 

tools literature conducted earlier in the Literature Review chapter, neural networks were 

employed for datasets consisting of isovist and visibility graph analysis measures as variables 

(Tarabishy et al. 2020 and Johanes & Huang, 2022). However, one major limitation of the 

ANN is its susceptibility for overfitting due to its complexity which needs to be addressed in 

the development stages of the wayfinding quality assessment model.  

 

Neural networks are based on the perceptron, the basic component of an ANN, which takes 

multiple input variables and multiplies them by their weight, adds bias term, and sums up the 
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results. An activation function is applied for each perceptron which introduces non-linearity 

into the neural network (Abhishek & Abdelaziz, 2023). 

 
Figure 39: A single perceptron in a neural network process the inputs using activation function to 

help determine the output (Abhishek & Abdelaziz, 2023). 

 

The most common activation functions being sigmoid, tanh, rectified linear unit (ReLu), and 

softmax. Activation functions are important for neural networks to capture non-linear features 

which is where a neural network shines (Pantalé, 2023). 

 

 
Figure 40: Example of activation functions used in ANNs (Pantalé, 2023). 

 

5.1.4 Feature Selection Methods 

Considering the novelty of machine learning models trained on wayfinding quality indicators 

for dementia care, special attention should be given to the feature selection strategy to 

better control the features this thesis introduces and evaluating them systematically in order 

to make useful observations on features that will help give insights for future project 

expansions. Similar studies that had novel machine learning-based models gave extra 

attention to the feature selection process and through a systematic process of elimination, 

feature combinations are discovered to build a more effective predictive model.  

 

The wrapper-based feature selection (WFS) method is leveraged by researchers to home in 

on a feature set that is useful for their models. The method is based on the “greedy search 

method” because it considers every feature set selection possibility respect to the evaluation 

criteria (i.e. accuracy of predicting the target variable) using pre-determined classifier such as 

random forest or decision tree (Balogun et al., 2020). Although the WFS method is 

computationally expensive, it could lead to better results than trial and error because it tests 

all possible options. Other important feature selection methods include filter feature ranking 

(FFR) which is less computationally expensive and is based on the correlation coefficient. FFR 

evaluates the rank of features in a given dataset by considering the latent properties of a 

given dataset, which subsequently rank scores are generated (Balogun et al., 2020).  
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Filter methods are tested in architectural-structural research employing the wrapper method 

for feature selection of building features related to structural responses of tall buildings 

(Kazemi et al., 2024). The authors introduced the wrapper-based method of feature selection 

testing using the random forest classifier in addition to exhaustive methods performed in the 

study for the purpose of feature selection highlighting it being a novel approach to handling 

limited data sets in structural engineering research. The exhaustive method takes a 

sequential approach testing all possible combinations as it iteratively adds and removes 

features to examine the impact on the model’s performance, yielding the best features for 

the learning process Kazemi et al., 2024). This method allows for the exploration of all 

possible feature combinations and provides the most comprehensive analysis. Given the 

small size of the dataset for this thesis project, the exhaustive method will be tested as the 

basis for feature selection for its comprehensive analysis benefit. 

 

 

 
Figure 41: An overview of all architectural features tested in relation to structural responses where 

advanced feature selection and plotted accuracy curve for all possible 8191 possible feature 

combinations (Kazemi et al., 2024). 

 

5.1.5 Test Split Method 

Splitting the training set for building the model is a common technique to track the model’s 

accuracy. Typically, there are three types of splits: the training set which is a dataset on which 

the model is trained on, a validation set which is a set used for tuning hyperparameters of the 

model, lastly an evaluation or test set which is used for the evaluation of the performance of 

the model (Abhishek & Abdelaziz, 2023). Another study showed that when using random 

forest classifier and artificial neural network for the purpose of assessing important features, 

it is critical to keep the split the same from the beginning of the process all the way to the 

end (Ali et al., 2022). In this thesis project, there are 256 dwellings with no null values. The 

data split will be in two sets: training at 70%, and validation at 30%. An additional test set 
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saved aside from an earlier filtering process has 94 dwellings which will be reserved for 

evaluating the model’s performance.  

 

 

Figure 42: Machine learning training workflow describing the components of the dataset and the 

development methodology using train/validation split to assess the model’s accuracy. 

 

5.1.6 Evaluation Metrics of Machine Learning Performance 

A common technique to evaluate the performance of a machine learning model is through 

confusion matrix which takes into account the number of true positives, true negatives, false 

positives, and false negatives, and is described in several metrics including accuracy of the 

model, precision, recall, and F1 score. Accuracy describes the overall accuracy of correct 

predictions, whereas precision focuses on the proportion of positive predictions that are 

actually correct. Precision is useful for assessing how well a model avoids false positives 

which demonstrates its ability to make accurate positive predictions. Recall, on the other 

hand, is the proportion of actual positive instances that are correctly identified by the model 

which is especially important when the cost of missing positive instances (false negatives) is 

high, such as in medical diagnoses. F1 is a useful metric when equal importance is given to 

both precision and recall which is a single metric as the harmonic mean of precision and 

recall (Abhishek & Abdelaziz, 2023).  

 

 
Figure 43: the equations used in a confusion matrix to provide detailed metrics on a model’s 

performance (Ross et al. 2023). 

 

Multi-output models will have an additional metric for evaluation to understand how the 

model is overall model with respect to multiple outputs. For a strict evaluation of the multi-

output model, we use the ‘subset accuracy’ which indicates the percentage of labels 

predicted that exactly match their corresponding set of true labels (Romeo et al., 2021; 

Jamthikar et al., 2022) where the higher the value the better. Hamming loss which serves to 

capture the fraction of incorrectly predicted labels by the model (SKLearn, Metrics and 

scoring) 
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Figure 44: Subset accuracy score that consider multiple classification outputs where 𝑦𝒾 is true 

values and 𝑦  is predicted value of the 𝒾th sample (Kim et al., 2022). 

 

 

 
Figure 45: Hamming loss takes the fraction of labels that are incorrectly labelled across multiple 

classification output where N is the number of test samples, 𝑦𝒾 is the true label set for sample x𝒾, g 

is the multilabel classifier, and delta is the symmetric difference between the sets. (Yang et al., 

2020). 

 

For wayfinding quality, it is important for minimizing false positives where a labeled space 

having insufficient wayfinding quality as sufficient or preferred. The subset accuracy serves as 

a strict measure that accepts no false positives in the multi-output classification model. On an 

individual output level, recall will be a useful measure for minimizing false negatives where a 

space does have sufficient wayfinding quality but classified as insufficient. 

 

5.1.7 Model Overfitting Mitigation Strategies 

A fundamental issue in supervised machine learning is overfitting which prevents the model 

from generalizing well from observed data to unseen new data, an issue especially 

exacerbated by when the training set is too small in size (Ying, 2019). One way to prevent 

overfitting is to expand the training data. Other techniques can also be used to prevent 

overfitting. This includes early stopping by computing the accuracy at the end of each epoch 

and stopping the training if the accuracy on the validation set stops improving to determine 

when to stop (Ying, 2019). Regularization techniques can be used when the number of 

features increases and becomes complicated. An overfit model takes into account all features 

regardless if only some of them have very limited effect on the final output (Ying, 2019). A 

useful technique to use is L1 and L2 regularization to prevent overfitting which adds a 

penalty term to the loss function and encourage the model to have smaller weights, thereby 

reducing its complexity. Dropout is another regularization technique for neural network 

which randomly deactivates a fraction of the neuron in a layer to prevent them from 

contributing to the output which can yield to better generalized features as it cannot rely on 

a single neuron for determining the output. Batch normalization is another neural network 

technique to help with overfitting issues which normalizes the inputs to each layer by 

adjusting the mean and standard deviation, a useful technique for deep learning to 

accelerate the training process and reduce weight sensitivity to weight initialization 

(Abhishek & Abdelaziz, 2023).  

 

A study on indoor environmental quality in a school building used an ANN to predict the 

predicted mean vote (PMV) and IEQ variables for a dataset of building simulation results 

based on a school in Seoul. They implemented a multi-objective genetic algorithm to search 

for optimal hyperparameter values including regularization amount (Cho & Moon, 2022). For 

complex tasks such as personalization of preference profiles of thermal environments with 

actual building occupants, regularization is an important strategy to control the complexity of 

the model and avoid overfitting (Lee et al., 2019)(Lee & Karava, 2020). 
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Overfitting prevention strategies will be tested in this thesis using a small selection of these 

techniques especially considering the limited data size for dwellings and the growing 

complexity of future expansion of more wayfinding quality indicators and additional features.  

 

5.1.8 Neural Network Model Hyperparameters 

A model’s hyperparameters are variables that can be set within the machine learning 

algorithm to manage the training process, often selected manually prior to initiating the 

training. The study on patient’s satisfaction provide a list of possible hyperparameters used 

for their neural network that performed well for predicting patient’s satisfaction. According to 

their results, model 1 had the highest accuracy at 0.967% followed by model 4 at 0.953%. 

Furthermore, the accuracy had a slight increase by using three hidden layers using the same 

activation functions ReLu and Sigmoid with the same number of epochs (Ali et al., 2022). 

 

 
Figure 46: Hyperparameter settings tested in the neural network experiment for a dataset 

containing IEQ conditions and correlating it with patient’s satisfaction captured from 497 hospital 

self-reported data surveys (Ali et al., 2022). 

 

5.1.9 Hyperparameters Search Methods 

Hyperparameter settings can be further improved by implementing the GridSearch 

algorithm from scikit-learn. The GridSearchCV function conducts an exhaustive search over 

specified parameter values while performing a k-fold cross validation (scikit-learn, 

GridSearchCV). CV stands for cross validation which is a k-fold cross-validation generator that 

randomly shuffles the data, divides the data into k parts, train the model on k-1, and 

evaluates it on the remaining data. This technique is used when the data size is limited where 

5 or 10 folds is the most common (Abhishek & Abdelaziz, 2023). In this thesis project, the 

hyperparameter settings found by the GridSearchCV will be used as inputs for a new training 

model on a separate file with a new test split to avoid data leakage between the grid search 

and the final results of the validation set.  
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Figure 47: Cross-validation data shuffling (SKLearn, Cross Validation). 

 

A study on developing a comprehensive performance assessment and rapid prediction of 

indoor and outdoor thermal performance of office buildings implements a combination of 

10-fold cross validation and grid search to train and optimize the hyperparameters for 3 

model algorithms on a data sample size of 6000 (Yan et al., 2022). The grid search is also 

useful for linear regression tasks employed by a study for predicting thermal sensation using 

ASHRAE comfort database to obtain optimal hyperparameters (Luo et al., 2020). 

 

 
Figure 48: a grid search for 3 different algorithm models  was conducted after the construction of 

the model and initial hyperparameter settings and training (Yan et al., 2022). 

 

Randomized Search is another variant for exploring the hyperparameter space by randomly 

sampling a combination of pre-determined range of hyperparameter variables. Unlike the 

grid search which systematically evaluates all combinations in the grid, the Randomized 

Search randomly samples from the distribution of hyperparameter range a user assigns to it. 

Thie approach is far more computationally efficient, but it lacks the comprehensiveness of 

the Grid Search method. This is especially useful when the hyperparameter space is too large 

as it provides a good trade-off between exploration and exploitation (Peters, 2023). A 

relevant machine-learning study that developed a surrogate model that can relate building 

design parameters to performance outcomes, such as seismic loss and carbon emissions, 

implemented both randomized and grid search methods citing “a randomized search 

algorithm was applied” on the feature subset “to find the bounds on best-performing 

hyperparameters based on the training dataset, followed by a grid search algorithm to 

further tune hyperparameters. 3-fold cross-validation (CV) was used to avoid overfitting at 

each hypertuning method” (Zaker Esteghamati, 2021). 
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Figure 49: surrogate modelling framework applying both randomized and grid search to find the 

most optimal hyperparameters to a novel machine learning model to support resiliency and 

sustainability in the early design (Zaker Esteghamati, 2021). 

 

5.1.10 Conclusion on Methods 

In summary, given our dataset being labelled with wayfinding quality classes, the supervised 

method will be employed for building the model to correlate the class of wayfinding quality 

with building features. Considering the novelty of wayfinding quality for dementia care, 

feature importance will be implemented using random forest classifier to better understand 

the influence of features on the wayfinding quality. Moreover, a neural network will be the 

basis of the model architecture allowing for future expandability as the feature set (inputs) 

and wayfinding quality labels (output) grow in complexity. Moreover, feature selection will be 

done both trial-and-error approach as well as using the randomized search method to test 

for a small subset of features to get a wide overview of the impact of each feature on the 

predictive ability of the model as well as guide the hypertuning parameters. Finally, 

hyperparameter selection will be guided by the GridSearchCV with the parameter range 

based on the study (Ali et al., 2022) in order to find the optimal settings for building training 

the model and reporting the final accuracy of the model.  

 

 

 
Figure 50: machine learning feature selection and testing pipeline. 
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        5.2 Processing the Data for Testing 

This section will detail the digital tools, data, and algorithms required to build a machine 

learning model for assessing wayfinding quality. The work will augment an existing floor plan 

geometry dataset assessment results and geometry features. A comprehensive pipeline is 

developed to perform assessment and extract geometric features. The initial iteration is 

focused on features that relate to the living room. Numeric tabular values are chosen for the 

format to enable a faster iteration process between the assessment algorithm and model 

tuning. Four key requirements were identified to build a basic AI model capable of 

predicting wayfinding quality based on floor plan geometry: data collection, data pre-

processing, model building, and result evaluation. 

 

 
Figure 51: The overall process to building an AI model for assessing soft criteria related to 

dementia care, i.e. wayfinding quality.  

 

5.2.1 The Model’s Target Objective 

The primary objective, also known as target variables, is to predict the wayfinding quality 

class for the living space.  

 

The model's function was determined to predict the wayfinding quality of a floor layout 

based on building geometry information taken from isovist measurements of wayfinding 

quality indicators described in an earlier chapter. The AI model aims to predict wayfinding 

quality by correlating visual access data with extracted building geometry features. The goal 

at the final ‘stage 4’ is to develop a machine capable of interpreting the wayfinding quality of 

an entire floor plan and providing individual assessments for each performance indicator to 

rank the overall quality of a floor plan based on the soft design criteria categories.  

 

The scope of this thesis is completing stage 1, working towards building comprehensive 

pipeline for the wayfinding quality assessment model. Currently the model tests one 

performance indicator, 2_2 wayfinding quality indicator, which measures sightlines between 

living and kitchen, with an initial selection of feature pool. 
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Figure 52: The model development’s milestones for a comprehensive assessment of wayfinding 

quality.  

 

In this project, a supervised learning method will be used to fit the data between wayfinding 

quality labels (target variables) and building geometry features (inputs). This method will 

allow us to correspond between the two variables, isovist measures extracted from the 

assessment results, and building geometry features. Wayfinding qualities are described as 

three discrete classes: 0, 1, and 2, thereby a multiclass classification problem will be used.  

 

An initial training data of floor plan geometry was selected from the Swiss Dwellings dataset 

for its high quantity and ready-to-use quality for machine learning applications including 

simulation features. The floor plan was imported into Grasshopper and evaluated by the 

assessment algorithm which developed in this project to generate numeric value describing 

visual access of a space in relation to a different adjacent space. Combing both visual access 

values of different adjacent spaces (e.g. living and kitchen, living and bedroom, etc.), a room 

can be assigned a score based on the soft criteria described in an earlier chapter (e.g. 

autonomy, connection, accessibility). For building the proof-of-concept model, only 1 

assessment indicator is used belonging to the ‘connection’ soft criteria.  

 

The model’s function is envisioned to take building geometry as input from the Swiss 

Dwellings dataset where an algorithm first extracts its features (i.e. through Grasshopper) 

then these features will be plugged into the model to provide assessment feedback on the 

wayfinding quality per each performance indicator as discrete classes:  

 

2 being preferred 

1 being sufficient 

0 being insufficient 
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Figure 53: the final model will work by taking a building geometry of area boundaries, extract its 

features, input the features into the model, then receive assessment feedback on the wayfinding 

quality indicators.  

 

The choice for neural network was largely decided based on the observed non-linear nature 

of the features. Another reason for this choice is to allow for scalability using the same model 

when increasing the data size of floor plans and increasingly complex feature sets with 

multiple assessment indicators. 

 

5.2.2 Training Data: Swiss Dwellings 

The process began with selecting a suitable dataset of floor plans that we can use for 

conducting the performance assessment. The first choice was to digitize floor plans of Dutch 

dementia care facilities form the literature (which add up to around 19 raster images 

containing information such as zone perimeter, walls, and door locations). The problem with 

this approach is the low quantity of the floor plans in addition to converting the low-quality 

raster images into vector-based format or tabular numerical value of the building geometry. 

The decision to choose the Swiss Dwelling dataset was made later on because of its high 

quality geometry, large quantity, and ready for application using minimal processing steps to 

get it ready.  

 

The Swiss Dwellings dataset was discovered during the literature review phase of this thesis. 

It is a large dataset of apartment models accompanied with simulation results for the 

dwellings of geolocation-based features covering wide range of categories including natural 

light, centrality, viewshed, traffic noise, geometric analysis, and so on (Standfest et al., 2022). 

The dataset is publicly available on Zenondo, an open source library of datasets found online 

at https://zenodo.org/records/7070952. The dataset contains detailed data on over 42 

thousand apartments, nearly a total of 242 thousand rooms in over 3000 buildings. The data 

is labelled using consistent formats for all important information needed to have such as 

room geometry, wall geometry, door geometry, window geometry, room functions, etc. The 

dataset was sourced through Archilyse AG, a software company based in Zürich specializing 

in the digitization and analysis of buildings, from their commercial clients. 

 

Before we can use the dataset, a sub-selection of dwellings is needed to control the 

requirements needed for each floor layout. For example, the layout should be residential, 

https://zenodo.org/records/7070952
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should include key spaces that are taken into consideration for a layout’s wayfinding quality 

while still manageable enough to be able to perform visual inspection when necessary. The 

dwellings should have more than 3 bedrooms minimum, single-story household, and contain 

a dining space and/or kitchen clearly defined as an area boundary. The earlier study on 

patient’s satisfaction had great results with a data size of around 500 (Ali et al., 2022), 

therefore, the goal is to keep the dwelling samples around this size. 

 

To select only the dwellings that can be used for the measurement procedures, these were 

the filter steps taken:  

 

1. Single-story dwellings by filtering unit_id values that have multiple floor_id values 

2. Has more 3 or more bedrooms by testing that unit_id contains corresponding two 

instances of ‘bedroom’ enitity_subtype 

3. Has a room function “Kitchen” by testing that unit_id contains corresponding an 

instance of ‘kitchen’ unitity_subtype 

4. Has room function “Dining” (this has been removed due to the inconsistency of 

dining room designation which made the total dwellings count to less than 100 

useful floor layouts) 

 

First, we isolate the floor plans for residential only:  

 
residential_dataset = full_dataset[full_dataset['unit_usage'] == 'RESIDENTIAL'] 
 
Output: unit_id count = 46937 

 
Figure 54: initial filtering for residential only 

 

Then we select only single-story dwellings. 

 
# Count the number of unique unit_ids per apartment_id 
apartment_unit_counts = residential_dataset.groupby('apartment_id')['unit_id'].nunique() 
 
# Get the apartment_ids with only one unique unit_id (single-story apartments) 
single_story_apartments = apartment_unit_counts[apartment_unit_counts == 1].index 
 
# Filter rows to include only single-story apartments 
df_single_story = residential_dataset[residential_dataset['apartment_id'].isin(single_story_apartments)] 
 
# Use nunique() method to get the number of unique items per column 
unique_counts = df_single_story.nunique() 
 
Output: unit_id count = 43192 

Figure 55: checking for dwellings that contain one apartment_id per unit_id 

 

It was later observed that the labelling for spaces are not standardized across the entire 

dataset. Therefore, an initial label standardization has been done by passing through all 

different found labels to uniform labels.  

 
# Create a list of variations of living room labels 
living_room_labels = ['LIVING_ROOM','LIVING_DINING']   
# dining_labels = ['KITCHEN_DINING'] 
bedroom_labels = ['STUDIO'] 
other_labels = ['STORELIVING','STOREBEDBEDROOM','STOREBEDROOM','STOREROOM'] 
bath_labels = ['BATHROOM'] 
outdoor_labels = ['TERRACE','BALCONY','OUTDOOR_VOID','LOGGIA','GARDEN'] 
 
# Define the required entity_subtypes 
required_entity_subtypes = ['LIVING', 'BEDROOM', 'KITCHEN', 'CORRIDOR', 'BATH'] 
 
Output: unit_id 9270 

 
Figure 56: then a filter process was performed to select building geometry that contain these 

functions: living, bedroom, kitchen, corridor, bath. Outputting 9270 dwellings. 
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Then, we initiate another filtering process to select dwellings that contain 3 or more 

bedroom instances per one unique unit_id.  

 
# Selecting unique unit_id samples containing more than 3 bedrooms   
bedroom_data = df[df['entity_subtype'] == 'BEDROOM'].groupby('unit_id') 
bedroom_counts = bedroom_data[entity_subtype].count()  
unit_ids_with_enough_bedrooms = bedroom_counts[bedroom_counts > 3].index 
filtered_df = df[df['unit_id'].isin(unit_ids_with_enough_bedrooms)] 
 
Output: unit_id 593 

 
Figure 57: then a filter process was performed to select building geometry that contain these 

functions: living, bedroom, kitchen, corridor, bath. Outputting 9270 dwellings. Outputting 593 

dwellings.  

 

Finally, we select a sample size of 500 dwellings to build our machine learning model on. A 

test sample of 93 dwellings is also put aside for testing the final model.  

 
# Selecting a small subset of the samples 
unique_unit_ids = df['unit_id'].unique() 
top_500_unit_ids = unique_unit_ids[:500]  
filtered_df = df[df['unit_id'].isin(top_500_unit_ids)] 

 
Figure 58: filtering method to select the top 500 unique unit_ids.  

 

However, during the physical inspection phase, it has been observed that there are a 

combination of building geometry that has been corrupted (either an error in the existing 

dataset or an error from the Grasshopper import operation) but more critically too many 

dwellings that are perfect replicas of one another. The process of manual filtering by visually 

inspecting each dwelling to remove any duplicates from the selected sample was completed. 

In the end, this process yielded 268 unique dwellings. Further down the line, it was 

discovered some living rooms had open polygons which could not be handled in the 

Grasshopper code, reducing the total count of dwellings to 256. 

 

 
Figure 59: final filtering procedure yielded 268 dwellings. See Appendix 6 for thumbnails of the 

sample. 
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Figure 60: a scatter plot showing the living room area compared to the number of bedrooms 

available in a single-story dwelling.  

 

5.2.3 Thresholds for Visual Access Measure 

The classification of wayfinding quality describes the visual access measurement by defining 

the threshold for the assessment, and in this exercise, it was strictly defined for the purpose 

of creating diverse results of all three classes to avoid the issue of imbalanced class labels. 

This step was qualitatively done and the threshold for the model has been determined to 

allow for diverse results due to the restricted size of our dataset. But in ideal case-scenarios, 

the thresholds are determined by the subject-matter expert in wayfinding compliance with 

dementia design principles, which will therefore surely require a much larger dataset of floor 

plan subdue potentially imbalanced labels. 

 

The floor plans are prepared in a digital environment (Rhino + Grasshopper) to prepare for 

the performance assessment. The digital algorithm, expressed in a Grasshopper definition, is 

intended to import a subset of apartments from the dataset that systematically perform and 

record the assessment results of each layout for all performance indicators of one group, i.e. 

wayfinding quality score measured from visual access results taken from different locations in 

the dwelling. The data is then recorded, alongside with the unit_id associated with each 

recording, to later amalgamate generated data back to the Swiss Dwelling subset of 

apartments using Pandas merge operation in Python. 

 

The threshold have been set as follows:  

 
bin_ranges = [ 
    (0.0, 0.35, 'insufficient'),  
    (.35, 0.75, 'sufficient'),  
    (0.75, 1, 'preferred')] 

 
Figure 61: the following threshold of visual access settings allow for the most variability of all 

three classes.  

 

From the assessment algorithm in grasshopper, the settings used ensured it gave variable 

results across all 268 floor plans. The settings are as follows: 

1. Test point spacing = 1 meter  

2. Minimum distance from the perimeter wall = 0.75 meters 

3. Isovist length = 12 meters 

4. Radial isovist count = 24 rays 

5. Obstacles/barriers = walls only (doors assumed to contain glazed panel with 

privacy shutters) 
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Note: with the current understanding of visual access for DDP, there are no thresholds set by 

experts in this subject. More work on this is needed to validate useful thresholds especially 

when considering people with varying dementia stages. For now, all bins will be created to 

allow for balanced distribution of classes for all output classes.  

 

 
Figure 62: distribution has now improved from being skewed to preferred and low diversity to 

almost evenly distributed results.  

 

5.2.4 Building Geometry Feature Extraction  

The floor plan from each dwelling also undergoes the procedure of feature extraction by 

taking the raw geometry information and converting them into numeric values that is stored 

and passed on as an excel or CSV file to store alongside their corresponding unit_id. This 

step is useful for iterating through different features that can be used for testing the machine 

learning model to see which allow for digital pipeline from Grasshopper environment into 

Python for further processing and combining the dataset. One key advantage for processing 

our own building geometry for feature extraction is that we can use the same algorithm for 

any floor plans whether it is from the Swiss Dwellings set or elsewhere. 

 

 
Figure 63: a list of potential features for testing developed during this thesis.  

 

In addition to the geometry features extracted via Grasshopper, the Swiss Dwellings 

simulation file contain many numeric values which includes viewshed, natural light, traffic 

noise, etc. Some of the most relevant features that may be of interest are the ones that 

describe spatial adjacencies and relationships, such as centrality. Moreover, there is an isovist 

view properties that of particular interest to investigate. Other geometry features that are also 

interesting for investigation describe the layout such as compactness and perimeter 
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properties. The simulation file from the Swiss Dwellings dataset will also be tested. One 

downside of these simulation features is that it is not clear how it was done and no easy way 

to re-produce it for floor plans outside of the Swiss Dwellings dataset. Due to time 

constraints, only a small fragment of this feature pool was tested.  

 

layout_compactness  
layout_mean_walllengths  
layout_std_walllengths  
layout_number_of_doors  
layout_has_entrance_door  
layout_perimeter  
layout_door_perimeter  
layout_connects_to_private_outdoor  
layout_biggest_rectangle_length  
layout_biggest_rectangle_width  
view_isovist_max  
view_isovist_mean  
view_isovist_median  
view_isovist_min  
view_isovist_p20  
view_isovist_p80  
view_isovist_stddev  
connectivity_eigen_centrality_max  
connectivity_eigen_centrality_mean  
connectivity_eigen_centrality_median  
connectivity_eigen_centrality_min  
connectivity_eigen_centrality_p20  
connectivity_eigen_centrality_p80  
connectivity_eigen_centrality_stddev  
connectivity_entrance_door_distance_max  
connectivity_entrance_door_distance_mean  
connectivity_entrance_door_distance_median  
connectivity_entrance_door_distance_min  
connectivity_entrance_door_distance_p20  
connectivity_entrance_door_distance_p80  

connectivity_entrance_door_distance_stddev  
connectivity_betweenness_centrality_max  
connectivity_betweenness_centrality_mean  
connectivity_betweenness_centrality_median  
connectivity_betweenness_centrality_min  
connectivity_betweenness_centrality_p20  
connectivity_betweenness_centrality_p80  
connectivity_betweenness_centrality_stddev  
connectivity_closeness_centrality_max  
connectivity_closeness_centrality_mean  
connectivity_closeness_centrality_median  
connectivity_closeness_centrality_min  
connectivity_closeness_centrality_p20  
connectivity_closeness_centrality_p80  
connectivity_closeness_centrality_stddev  
connectivity_bathroom_distance_max  
connectivity_bathroom_distance_mean  
connectivity_bathroom_distance_median  
connectivity_bathroom_distance_min  
connectivity_bathroom_distance_p20  
connectivity_bathroom_distance_p80  
connectivity_bathroom_distance_stddev  
connectivity_kitchen_distance_max  
connectivity_kitchen_distance_mean  
connectivity_kitchen_distance_median  
connectivity_kitchen_distance_min  
connectivity_kitchen_distance_p20  
connectivity_kitchen_distance_p80  
connectivity_kitchen_distance_stddev 
   

Figure 64: an overview of the most suitable features based on visual inspection of the column 

names for the Swiss Dwelling simulation dataset. 

 

5.2.4 Final Training Set  

Ultimately the final dataset will contain the floor plan data from the Swiss Dwellings, 

performance assessment values, and building geometry features in a single tabular numeric 

file. The numeric format is easy to handle and is shown to be an advantage for further 

machine learning optimization that can get computationally expensive, affording the 

opportunity to quickly iterate between features and hyperparameter tuning. The total 

number of dwellings is 256 after the removal of invalid geometries.  
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[(0, 'apartment_id'), (1, 'site_id'), (2, 'building_id'), (3, 'plan_id'), (4, 'floor_id'), (5, 'unit_id'), (6, 'area_id'), (7, 'unit_usage'), (8, 'entity_type'), 
(9, 'entity_subtype'), (10, 'geometry'), (11, 'elevation'), (12, 'height'), (13, 'LIV_KIT'), (14, 'LIV_BED1'), (15, 'LIV_BED2'), (16, 'LIV_BED3'), (17, 

'LIV_BED4'), (18, 'LIV_BED5'), (19, 'LIV_BED6'), (20, '# OF BEDS'), (21, 'LIV_BATH1'), (22, 'LIV_BATH2'), (23, 'LIV_BATH3'), (24, '# OF BATH'), (25, 

'invalid_geometry'), (26, 'LIV_KIT_bin'), (27, 'LIV_KIT_bin_mapped'), (28, 'layout_compactness'), (29, 'layout_std_walllengths'), (30, 'layout_perimeter'), (31, 
'layout_door_perimeter'), (32, 'layout_open_perimeter'), (33, 'layout_number_of_doors'), (34, 'connectivity_entrance_door_distance_max'), (35, 

'connectivity_entrance_door_distance_mean'), (36, 'connectivity_entrance_door_distance_median'), (37, 'connectivity_entrance_door_distance_min'), (38, 

'connectivity_entrance_door_distance_p20'), (39, 'connectivity_entrance_door_distance_p80'), (40, 'connectivity_entrance_door_distance_stddev'), (41, 
'connectivity_betweenness_centrality_max'), (42, 'connectivity_betweenness_centrality_mean'), (43, 'connectivity_betweenness_centrality_median'), (44, 

'connectivity_betweenness_centrality_min'), (45, 'connectivity_betweenness_centrality_p20'), (46, 'connectivity_betweenness_centrality_p80'), (47, 

'connectivity_betweenness_centrality_stddev'), (48, 'connectivity_closeness_centrality_max'), (49, 'connectivity_closeness_centrality_mean'), (50, 
'connectivity_closeness_centrality_median'), (51, 'connectivity_closeness_centrality_min'), (52, 'connectivity_closeness_centrality_p20'), (53, 

'connectivity_closeness_centrality_p80'), (54, 'connectivity_closeness_centrality_stddev'), (55, 'connectivity_bathroom_distance_max'), (56, 
'connectivity_bathroom_distance_mean'), (57, 'connectivity_bathroom_distance_median'), (58, 'connectivity_bathroom_distance_min'), (59, 

'connectivity_bathroom_distance_p20'), (60, 'connectivity_bathroom_distance_p80'), (61, 'connectivity_bathroom_distance_stddev'), (62, 

'connectivity_kitchen_distance_max'), (63, 'connectivity_kitchen_distance_mean'), (64, 'connectivity_kitchen_distance_median'), (65, 
'connectivity_kitchen_distance_min'), (66, 'connectivity_kitchen_distance_p20'), (67, 'connectivity_kitchen_distance_p80'), (68, 

'connectivity_kitchen_distance_stddev'), (69, 'layout_biggest_rectangle_length'), (70, 'layout_biggest_rectangle_width'), (71, 'LIV_BATH_bin'), (72, 

'LIV_BATH_bin_mapped'), (73, 'LIV_BED_count'), (74, 'LIV_BED_ratio'), (75, 'LIV_BED_bin')] 

 

Figure 65: The complete dataset of living room wayfinding quality for based on the geometry 

from the Swiss Dwelling set. 256 unique living rooms and 76 columns. The colored group of 

features on the left is the Swiss Dwelling geometry, the red in the middle is the assessment 

results, the green/blue on the right are features from the simulation set found in the Swiss 

Dwellings.  

 

        5.3 Exploratory Data Analysis 

5.3.1 Building Geometry Features from Grasshopper  

The distribution of labels and their correlation with features is plotted using histograms and 

scatter plots. From these plots we can get an understanding of how the features are 

distributed to look for any trends in our data and the type of relationship the features have to 

the target variable (2_2 wayfinding quality from living to kitchen). This step give us an idea on 

the structure of the data we are working with to make better decisions on which features to 

start testing next. For example, a feature that have a distinct boundary or clear relationship 

with the target variable may be more useful to start with than features that don’t have clear 

relationships or clear trendlines. Examining the features from Grasshopper, we can observe 

on the histogram that the distribution of labels is not clearly distinguished from one another. 

This can mean that the machine learning model could have a difficult time predicting the 

target variable. We can observe there is a weak trendline for feature X6 where the lower the 

value the likely it is a ‘preferred’ class. X1 has a concentration of labels for insufficient shown 

in its histogram which might offer some advantage in identifying insufficient labels, however, 

the potential advantage is limited due to the significant overlap in X1 values across all class 

as seen also in the KDE plot which confirms the concentration of labels of insufficient mostly 

overlapping with other class labels.  
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Figure 66: histogram plot for features extracted from Grasshopper.  

 

 
 

Figure 67: scatterplot with KDE curve overlaid for features extracted from Grasshopper.  

 

5.3.2 Simulation Results from Swiss Dwelling Dataset  

While there are not dominant trends in this feature set either, we can see a clearer trend for 

connectivity_kitchen_distance_p20 where the lower its value the more likely it is labeled as 

sufficient. Overall kitchen distances seem to be a likely predictor to target variable categories 

related to assessment indicator 2_2.  
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Figure 68: histogram plot for features extracted from Swiss Dwellings simulation.  

 

 
Figure 69: scatterplot with KDE curve overlaid for features from Swiss Dwellings simulation.  

  

 

        5.4 Observations on the Data 

Undergoing this data analysis step for the features already identified some architectural 

means that are working well with satisfying the target objective of wayfinding quality from 

living to kitchen. However not very strong, there is a trend in the features describing distance 

between living room to dining room, for instance. At a glance, the features seem to not 

correlate well with the target variable which could be for multiple reasons. One being is that 

the Swiss Dwellings floor plan sample is too similar despite my best efforts to manually 

remove duplicates from the set (starting from 500 down to 256 in this iteration of data 

analysis). Another reason might be that the features themselves may not be the best indicator 
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for wayfinding quality, and that more needs to be re-examined. Specifically more features 

need to be added that describe the conditions of the walls since it has a direct effect on 

visual access. Moreover, it is worth noting that the Swiss Dwellings are very unique in their 

own way and that testing it on a different typology of homes may not work due to the 

differences in the typology. Therefore, an even larger sample with more diversity is without a 

doubt the most impactful way to extract better features for the machine learning model to 

base its prediction on.  

 

        5.5 Conclusion 

With the feature pool selection, the next chapter will document the process and results for 

building the first machine learning model prototype. The features will be put to the test using 

a neural network model architecture. Our labelled training dataset is stored with 256 unique 

dwellings that will undergo several steps for testing and improving the predictive abilities of 

the machine learning model. In principle, the outcome of the model will be able to take 

geometry of floor plans as inputs, process it to extract building features, pass it through the 

model, and provide assessment results on wayfinding quality with accuracy.   
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        6.1 Machine Learning Workflow 

 
Figure 70: Workflow for determining the most suitable feature sets and hyperparameter settings. 
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At this step, we will take the data for visual access generated in Grasshopper and process it 

to perform machine learning operations. The setup includes the following: 

 

Assigning Label Bins: Also known as creating ‘bins’ from the visual access data retrieved 

from Grasshopper to classify them based on the quality of the visual access.  

 

Features Pool: First, we select all possible features available at this stage for consideration. In 

this case, we have features from the Swiss Dwellings dataset for examination. This step 

includes the removal of null, NaN, values from the code. 

 

Multi-Output Evaluation Metrics: Guided by the SK Learn documentation and the 

literature, we set up additional metrics to evaluate multi-output model, i.e. models that 

predict visual access from the living room to multiple spaces. 

 

Sequential Feature Selector: In this step, we perform a wrap-based filter method for feature 

selection utilizing both backward and forward sequential selection. An additional exhaustive 

search method on a smaller subset of features is used to plot the performance of all possible 

combinations to select the most suitable feature subset.  

 

Hyperparameter Tuning: Using both Random Forest and Neural Network model 

architectures, we perform hyperparameter tuning to select the most suitable combination of 

model settings. 

 

Evaluation: Finally, we evaluate the model using a confusion matrix, precision metrics, 

hamming loss, and subset accuracy to give us an idea of the performance of the model. The 

goal is for a model to be able to generalize on the test set of floor plans based on multiple 

sightline data from the living room to multiple spaces. 

 

6.1.1 Assigning Label Bins 

In this notebook, we have several assessment indicator to measure the sightlines between 

living room towards the kitchen, bathrooms, and bedrooms. In this notebook, a bin is 

intended to give us diverse distribution across all possible classes. In the instance of the 

kitchen, the bin range is defined to give us balanced classes. In the case of the bathroom, the 

rule is if any bathroom is visible, it gets one of two classes whether it is sufficient (visible from 

any point in the living room) or insufficient which is not visible from any point in the living 

room. The bedroom sightlines has been excluded from the rest of the code, but the bin 

process here was testing the visibility to all bedrooms, dividing the visibility by number of 

bedrooms in the household, to get a ratio for visible bedrooms from the living room which is 

a broad visual access quality to all bedrooms. 

 

Below is the code to look at all visual sightline data from living to kitchen, and whenever any 

columns is 0, i.e. no sightlines created, it gets insufficient class, otherwise it is sufficient: 

 
training_df['LIV_BATH_bin'] = training_df[['LIV_BATH1', 
'LIV_BATH2']].max(axis=1).apply(lambda x: '0_insufficient' if x == 0 else 
'1_sufficient').astype(str) 

 

The bedroom sightline data is processed in multiple steps: 

 

1. binning the bedroom sightlines have a greater value than 0:  
training_df['LIV_BED_count'] = training_df[['LIV_BED1', 'LIV_BED2', 'LIV_BED3', 'LIV_BED4', 
'LIV_BED5', 'LIV_BED6']].apply(lambda row: (row > 0).sum(), axis=1) 

 

2. Calculate the ratio of bedrooms that have value greater than 0: 
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training_df['LIV_BED_ratio'] = training_df['LIV_BED_count'] / training_df['# OF BEDS'] 

 

3. Assign the binning ratio to allow for even distribution among the classes:  

 
def classify_bed_ratio(ratio): 
    if ratio > 0.5: 
        return '2_preferred' 
    elif ratio > 0.25: 
        return '1_sufficient' 
    else: 
        return '0_insufficient' 

 

 
Figure 71: Class distribution of bedrooms and bathrooms. 

 

6.1.2 Feature Pool 

Ideally there is an exhaustive list of features available to us to select our feature list for further 

testing. This step is manually done based on the assessment of features during the 

exploratory data analysis phase.  

 

Feature selection is a critical part for building a machine learning model where the most 

relevant variables from the dataset are identified to build a predictive model. The features 

have a direct influence on the model’s performance; therefore, a selection procedure needs 

to be conducted and testing the most influential variables for the model’s performance in 

terms of accurate prediction of the target variable. 

 

The selection of feature is done by index values in the dataset. A dataframe was created in 

the form of tuples to show the index value per feature so that manual selection of the feature 

set can be done from the feature pool. 

 

Below describes the selection of all possible features that is included for the feature subset 

selection. 

 
# Create a DataFrame with column indices and names 
index_names_df = pd.DataFrame({'Index': range(len(Swiss_Sim.columns)), 'Column Name': 
Swiss_Sim.columns}) 
 
# Convert DataFrame to a list of tuples (index, column name) 
index_names_list = list(index_names_df.to_records(index=False)) 
 
column_indices = [[5,7], # Building information to associate different dataframes with 
                  [8,14,24,25,27], # Geometry-based features 
                  [16], # Adjacencies and relationships 
                  [297,298,299,300,301,302,302], # Centrality  
                  [304,305,306,307,308,309,310], # Distance to entrance door  
                  [311,312,313,314,315,316,317], # Betweenness 
                  [318,319,320,321,322,323,324], # Closeness 
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                  [325,326,327,328,329,330,331], # (living?) Room distances 
                  [332,333,334,335,336,337,338], # Living - Dining distance 
                  [339,340,341,342,343,344,345], # Bathroom distance 
                  [346,347,348,349,350,351,352], # Kitchen distance 
                  [353,354,355,356,357,358,359], # Distance to balcony 
                  [367,368]] # Layout biggest rectangle length and width 
 

 

 

6.1.3 Multi-Output Evaluation Metrics 

Because the model will have multiple output per visual sightline class, we also need to 

evaluate the overall model’s performance in its ability to classify multiple outputs correctly. 

The way this is handled is by adding multi-output evaluation metrics to measure the overall 

performance of the model. The evaluation metrics are explained in the sub-section 5.1.6 

Evaluation Metrics of Machine Learning Performance. In summary, the subset accuracy 

requires all labels to be correct whereas the hamming loss calculates the fraction of incorrect 

labels.  

 
# Custom scoring function for subset accuracy 
def subset_accuracy_score(y_true, y_pred): 
    return np.mean(np.all(y_true == y_pred, axis=1)) 
subset_accuracy_scorer = make_scorer(subset_accuracy_score) 
 
# Custom scoring function for Hamming loss 
def hamming_loss_score(y_true, y_pred): 
    return np.sum(y_true.values != y_pred) / np.size(y_true) 
hamming_loss_scorer = make_scorer(hamming_loss_score, greater_is_better=False) 

 

6.1.4 Sequential Feature Selector 

Using the Random Forest classifier, we perform two wrapper-based filter selection method. 

First we perform a forward sequential feature selector borrowed from SKLearn library, then 

we perform backward sequential feature selector to compare the results for the most suitable 

feature subset selection. This method balances computational cost with usefulness. An 

exhaustive search of all possible sequence using all features get us the most suitable feature 

subset which can be performed at a later stage to validate the best feature subset.  

 

Inside a loop, we perform the following actions: 

 

Count the number of features where max_n_features takes the number of columns in the 

dataframe: 
for n_features in range(1, max_n_features + 1): 

 

Initialize the random forest classifier wrapped by SKLearn’s MultiOutputClassifier module: 
    multi_target_rf = RandomForestClassifier(n_estimators=n_estimator, 
random_state=random_state) 

 

Performing the sequential feature selector optimizing for higher subset accuracy using the 5 

cross-fold validation:  
sfs = SequentialFeatureSelector( 
        multi_target_rf,  
        n_features_to_select=n_features,  
        direction='forward',  
        scoring=subset_accuracy_scorer,  # Optimize for subset accuracy or hamming loss 
        cv=cv, # k-fold = 5 
        n_jobs=-1 
    ) 

 

Fitting the feature selection on the training data and transform both training and test set: 
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        sfs.fit(X_train, y_train) 
        X_train_selected = sfs.transform(X_train) 
        X_test_selected = sfs.transform(X_test)  

 

Re-initialize the random forest using the same random seed: 
        multi_target_rf = RandomForestClassifier(random_state=random_state) 
        multi_target_rf.fit(X_train_selected, y_train) 
        y_test_pred = multi_target_rf.predict(X_test_selected) 

 

Finally, evaluate the model’s feature subset on both multi-output metrics: 
        hamming_loss = hamming_loss_score(y_test, y_test_pred) 
        subset_accuracy = subset_accuracy_score(y_test, y_test_pred) 

 

In the code documentation, a backward selection was also performed to compare the two 

results:  

 
Figure 72: Results of the feature selection using the sequential method. 

 
Figure 73: Results of the exhaustive feature selection method on a limited number of features 

using one classification output (living to kitchen sightlines).  

 

 

6.1.5 Hyperparameter Tuning 

A grid search is performed to improve the performance of the model (SKLearn, 

RandomForestClassifier). The grid search is computationally expensive but allows for testing 

all possible combination from a set of pre-defined hyperparameters whereas randomized 

grid randomly samples parameters.  

 

The parameter grid for the search is defined in the notebook:  
# Define hyperparameters for grid search 
param_grid = { 
    'n_estimators': [int(x) for x in np.linspace(start=50, stop=500, num=25)],  # Number of trees in the forest 
    'criterion': ['gini', 'entropy'],  # Function to measure the quality of a split 
    'max_depth': [None, 10, 20, 30, 40, 50],  # Maximum depth of the tree 
    'min_samples_split': [2, 5, 10],  # Minimum number of samples required to split an internal node 
    'min_samples_leaf': [1, 2, 4],  # Minimum number of samples required to be at a leaf node 
    'max_features': ['auto', 'sqrt', 'log2'],  # Number of features to consider when looking for the best split 
    'bootstrap': [True, False]  # Whether bootstrap samples are used when building trees 
    # 'max_leaf_nodes': [None, 10, 20, 30],  # Maximum number of leaf nodes 
    # 'min_impurity_decrease': [0.0, 0.01, 0.1],  # Minimum impurity decrease to split a node 
    # 'oob_score': [False, True],  # Whether to use out-of-bag samples to estimate the generalization accuracy 
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    # 'warm_start': [False, True],  # Reuse the solution of the previous call to fit and add more estimators to the 
ensemble 
    # 'n_jobs': [None, -1]  # Number of jobs to run in parallel 
} 

 

6.1.5 Evaluation  

Finally, based on the results from the hyperparameter search, we take the model parameters 

and evaluate it using confusion matrix including the precision, recall, f1-score, and multi-

output evaluation metrics defined earlier. We evaluate each output individually to give us a 

more detailed overview of the performance for each output, i.e. the sightlines from living to 

kitchen, living to bathroom, etc. 

 

  

 
 
 
 
Accuracy for LIV_KIT_bin: 0.8441558441558441 
Classification Report for LIV_KIT_bin: 
                precision    recall  f1-score   support 
 
0_insufficient       0.79      0.90      0.84        30 
  1_sufficient       0.81      0.74      0.77        23 
   2_preferred       0.95      0.88      0.91        24 
 
      accuracy                           0.84        77 
     macro avg       0.85      0.84      0.84        77 
  weighted avg       0.85      0.84      0.84        77 

 

 

 
 
 
Accuracy for LIV_BATH_bin: 0.8051948051948052 
Classification Report for LIV_BATH_bin: 
                precision    recall  f1-score   support 
 
0_insufficient       0.82      0.79      0.81        39 
  1_sufficient       0.79      0.82      0.81        38 
 
      accuracy                           0.81        77 
     macro avg       0.81      0.81      0.81        77 
  weighted avg       0.81      0.81      0.81        77

Hamming Loss: 0.16883116883116883 
Subset Accuracy: 0.7142857142857143 

 

Figure 74: Confusion Matrix for each output visualized in the notebook. 

 

        6.2 Neural Network Model Setup 

The setup of the neural network variation for the multi-output classification model follows the 

same setup as the one previously mentioned for the Random Forest Classifier. The change in 

this notebook is the hyperparameter grid used in a neural network, one-hot-encoding, which 

is to represent the classes in matrices, for compatibility with the tensor-based neural network 

from TensorFlow library (Novack, 2020). 

 

We use SKLearn PreProcessing library for performing the OneHotEncoding (SKLearn, 

Encoding categorical features):  
y1 = OneHotEncoder(sparse_output=False).fit_transform(y['LIV_KIT_bin'].values.reshape(-1, 1)) 
y2 = OneHotEncoder(sparse_output=False).fit_transform(y['LIV_BATH_bin'].values.reshape(-1, 1)) 
 
X_train, X_test, y1_train, y1_test, y2_train, y2_test = train_test_split(X, y1, y2, test_size=test_size, 
random_state=random_state) 
 
# Encode the target variables 
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label_encoder_1 = LabelEncoder() 
label_encoder_2 = LabelEncoder() 
 
y['LIV_KIT_bin'] = label_encoder_1.fit_transform(y['LIV_KIT_bin']) 
y['LIV_BATH_bin'] = label_encoder_2.fit_transform(y['LIV_BATH_bin']) 

  

A baseline reading was done by borrowing a model architecture from the literature (Ali et al., 

2022) to get an initial indication on the training progress:  

  

  
Accuracy for Output 1: 0.7792207792207793 
Classification Report for Output 1: 
              precision    recall  f1-score   support 
 
           0       0.80      0.80      0.80        30 
           1       0.65      0.74      0.69        23 
           2       0.90      0.79      0.84        24 
 
    accuracy                           0.78        77 
   macro avg       0.79      0.78      0.78        77 
weighted avg       0.79      0.78      0.78        77 
 
 

Accuracy for Output 2: 0.8181818181818182 
Classification Report for Output 2: 
              precision    recall  f1-score   support 
 
           0       0.79      0.87      0.83        39 
           1       0.85      0.76      0.81        38 
 
    accuracy                           0.82        77 
   macro avg       0.82      0.82      0.82        77 
weighted avg       0.82      0.82      0.82        77 
 

 

Hamming Loss: 0.2012987012987013 
Subset Accuracy: 0.6233766233766234 

 
Figure 75: Baseline reading using a neural network for training the model on the entire feature 

set.  

 

Considering the current model considers only 2 outputs / indicators, i.e. visual access 

between living to kitchen and bathrooms, hyperparameter tuning for the neural network 

remains an area for further development upon the completion a full assessment model. 

 

        6.3 Results 

First looking at the Random Forest Classifier, we can see upon completing the model we 

have an overall subset accuracy of around 70% and hamming loss of 17%, meaning that 17% 

of the labels on average were incorrectly labelled. The feature selection arrived at a set of 14 

features. On an individual output, the accuracy is over 80% but since we are interested in 

building a model that can generalize the quality of floor plans based on several assessment 

indicators, we should pay close attention to the subset accuracy and hamming loss as 

performance metrics of the model. Even though we have a relatively limited feature pool, the 

model is able to predict the visual access classes and there is enormous potential for 
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expanding the data to include additional assessment indicators to support the early-stages 

of design that can provide generalized assessment on dementia-friendly design with respect 

to an entire floor layout. The neural network results is not yet fully tuned and suffers from 

overfitting concerns and generally does not generalize floor layouts as well as the Random 

Forest model. At this stage with such limited data, the neural network is setup for future 

expandability as the model increases in complexity which might necessitate deeper neural 

networks.  

 

        6.4 Discussion on the Results 

6.4.1 Limitations of the Features 

In this iteration of the model, the feature selection procedure was streamlined to use the 

wrap-based filter method to assign the feature subset that is most suited for the model. The 

feature pool, although currently is still a quite expansive list, still leaves a lot of room to be 

desired. Many of the features from the feature set had null or NaN values which had to be 

eliminated from the test. More features need to be added, including addressing the null-

value features from the Swiss Dwellings. To name a few features to consider including in the 

pool: the indoor solid-to-wall ratios, number of doors separating living to other spaces, the 

angles of the walls, distances between walls, sequence of spaces, spatial hierarchy for overall 

spatial layout, zone shape complexity, and corridor moments of decisions. 

 

The feature importance ranking, averaged across both target variables, reveals that the 

distance-based features are the most effective for determining the class. While designing 

kitchens to be central is not a new discovery, it does show that the model does indeed 

benefit from having kitchens closely positioned to the living room. The time constraints of 

this thesis project did not allow further investigation of additional features and test it against 

a complete assessment model, which warrants further investigation on the usefulness of a 

machine learning model trained on wayfinding quality indicators for generalizing floor plan 

quality with respect to the early-stage soft design criteria.  

 

 

 
 

The feature extraction data from Grasshopper, which was an attempt to expand on the 

current feature pool, was not included in this model test due to its limited ability to make 
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accurate predictions. This can be a good place to start to define a script within Grasshopper 

to expand the feature set and combine them with the Swiss Dwellings features.  

 

Feature selection could be more thorough and less dependent what’s currently available. 

The features in this exercise have been manually selected based on their plots and 

histograms, and ultimately added all the features and used a more computationally-efficient 

way to select a feature subset, i.e. using the wrap-based filter method for sequential feature 

selection. No mathematical transformation has been applied and can be considered, for 

example, logarithmic or square root transformations to better control the outliers in the 

feature set.  

 

 

 
Figure 76: a closer look again at the pair plots and histograms for the Grasshopper features that 

were selected in the testing. 

 

 

6.4.2 Future Expandability with Neural Networks 

More work still needs to be done to improve the reliability of the model on unseen-before 

data. The assessment indicators for wayfinding quality are many and will ultimately contain 

different spatial experiences that will necessitate additional spatial features to improve the 

prediction of multiple multiclass outputs in one model.  As the complexity of the assessment 

grows, it might also be useful to incorporate more complex data such as visibility graph 

analysis measures to better describe the spatial features on a floor plan level, and potentially 

future users of this model will get assessment results based on their visibility graph analysis 

results. While neural networks offer greater expandability for handling complex feature sets 

and multiple assessment indicators, the interpretability of random forests and simple 

architecture can be valuable for understanding the model's decision-making process and 

identifying key features influencing wayfinding quality throughout the development process 

for the wayfinding quality assessment model. Ultimately, using a neural network architecture 

has to be paired with a complex enough prediction task which this project could increase to 

that level with the introduction of additional assessment indicators and features.  
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        7 Deployment in Architectural Design 

 

7.1 AI-Enabled Design Process 

7.2 Design Case Scenario 
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7.4 Roadmap for Distributing AI-Enabled Packages 
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        7.1 AI-Enabled Design Process 

 

7.1.1 Current Application of AI in the Practice 

 

Machine learning tools in architecture primarily fall in two categories (Rafsanjani & 

Nabizadeh, 2023): 

 

1. Surrogate modelling process for replacing time-consuming modelling process with 

a predictive model that can properly detect patterns from historical data to make 

generalized quick decisions.  

2. Design-assisting modelling that is integrated into the intuition of designs for better 

facilitation of architectural process responding to design task without analytical 

explanation.   

 

Applications of AI in architectural design covers a wide range of potential benefits for the 

design process. In particular AI provides great advantage in early design stage for providing 

insights on daylight, wind, and structural analysis. Autodesk Forma demonstrates one 

example where AI supports the decision-making process during the schematic design phase 

(AEC Plus Tech, 2023). The problem Autodesk is attempting to solve using AI is “give 

Architects all the relevant insight when they start a design project; augment their design 

exploration capabilities; and inform the design process with relevant analysis” signaling 

towards the new direction AI will find in the design industry as a companion for providing 

analytics on schematic designs. This approach aligns with the surrogate modelling process in 

machine learning. 

 

Despite the advantages of AI, it is still not universally adopted. RIBA’s review on the subject of 

AI applications in the practice showed 41% of practitioners have at least occasionally used AI 

in their project, but only 2 percent use AI for every project (RIBA Artificial Intelligence Report 

2024). The reports cites survey results showing that the majority of practitioners uses AI for 

early design stage visualization (i.e. Dalle and Midjourney text-to-image generator) followed 

by generative and parametric design model generation. Furthermore, there is an overarching 

sentiment across the entire results in the report that AI is a potential risk to the industry, and 

concludes on a note that transparent communication between industry experts in the AI 

development field and architectural professionals to help clarify the misconceptions about AI 

and to foster trust in AI technologies. 

 

 
Figure 77: RIBA’s survey response in 2024 related to AI applications in the practice.  

 

7.1.2 Notable Practitioners that Use AI in the Design Process 

Zaha Hadid Architects are known for their use of text-to-image generator, an AI model 

developed by Midjourney a generative AI company based in San Francisco, where they it is 

used for design ideas for new projects, prompting the AI to imagine designs in the style of 

Zaha Hadid (Barker, 2023).  As observed in the literature study, Foster & Partners are 

publishing papers on innovative ways to use machine learning to support the design 
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decisions in the early stages to inform spatial and visual connectivity of office layouts. In 

2019, Gensler explored machine learning applications utilizing natural language processing 

techniques to analyze large amounts of survey comments and clustering them based on their 

similarity which provided insights into user preferences and spatial experiences which allows 

their designers to make informed decisions on FF&E specification and balancing it with cost 

(Gensler Research Institute 2019).  

 

        7.2 Design Case Scenario 

The wayfinding assessment tool would fall under the analytical AI-enabled assessment tools 

that provides additional insights to the designer to base their decision-making process. The 

tool can be used in the evaluation of design alternatives for a new design proposal for 

residential care spaces intended for users living with dementia. The architect would have a 

brief of requirements for instance, to ensure that the new living facility follows the current-

best practices established in the DDP manual with large emphasis on promoting wayfinding 

quality to improve the resident’s sense of autonomy and independence.  

 

The AI tool will bridge the gap between the missing expert validation in the early design 

stages as it is often not the case dementia care experts with a design background are 

involved in the design process either due to lack of experts in the field or cost associated 

with having expert validations as part of an integrated design team early on.  

 

To bridge the expertise gap and augment design with analytical insights, the architect will 

have to install the model on their computer so that they can use it to evaluate multiple 

design options and gets feedback on the wayfinding quality in an iterative process between 

a designer conceptualizing new layouts and the AI giving feedback.  

 

One approach to integrate an AI assessment tool in the conceptualizing step is to conduct a 

design charrette with the entire design team, sketch layouts based that satisfies the design 

brief / program of requirements, upload the sketches to a program to convert the sketches 

into features that the model can understand, then feed them into the predictive model to get 

feedback on the layout. The model will give back results on the wayfinding quality based on 

its training which the designer will use as an additional input for shaping the next iteration of 

design concept, repeating the process until the design options are locked in for further 

detailed studies. Once completing this process, selected options have already been verified 

to have good wayfinding quality.  
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Figure 78: AI as the link in an iterative design step taking concept sketches by designer, 

converting the file to a format suitable for the model, receive feedback, then proceeding to 

detailed design after designer is satisfied with their design options.  

 

Thereby allowing the designer to dedicate their efforts into complying with the design brief 

while simultaneously getting feedback by the model on the human side of design early on in 

project’s lifetime. 

 

 

7.2.1 Testing Alternative Design Options 

In this hypothetical scenario, 6 design options have been supplied from the Swiss Dwelling 

dataset that the model has not been trained on.  
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Figure 79: hypothetical design alternatives for evaluation and approval by client.  

 

The 6 samples are presented here as potential design options for a single-story dwelling that 

will house a family including a person with pre-stages of dementia. In this hypothetical 

scenario, the 6 floor layouts are design options that were picked by the designer working 

with the architect based on their budget constraints, layout preferences, and different living 

room sizes.  

 

The design options are then prepared to be evaluated by the model on the soft criteria it is 

trained on, specifically if the household promote a sense of autonomy for an individual living 

with dementia based on the DDP criteria the model was trained on.  

 

The different floor layouts are converted into numeric features for the model to assess, and 

the architect receives feedback on the performance design options giving them insights on 

the soft, qualitative side of their floor options to present to their client.  

 
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 86ms/step 
     unit_id    area_id predicted_performance actual assessment 
100   159578  1665137.0            sufficient sufficient (37%) 
127   139823  1461812.0             preferred preferred (100%) 
129    95373   941667.0          insufficient insufficient (0%) 
130    12923   914963.0          insufficient insufficient (19%) 
131    97884   965601.0          insufficient sufficient (57%) 
132   100066   986826.0             preferred Preferred (100%) 

Figure 80: results from a preliminary test set to check the accuracy of the model trained on 205 

floor using 4 features and 1 assessment indicator. 

 

The architect now also has specific recommendations to which floor layouts might have 

better likelihood to allow their client to live independently as their condition progresses over 

time. 
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        7.3 Potential of AI-Driven Architectural Design in Dementia Care 

At this stage, the model is only trained on two criteria from the EAT checklist. The potential to 

expand to multiple criteria and assess wayfinding quality, and encompass all aspects of early-

stage soft design criteria, based on multiple criteria has potential to improve the possibility 

for a model that can provide more useful prediction on the wayfinding quality of an entire 

floor plan. The most immediate and useful way to improve the usefulness of the model is to 

add all other criteria that are assessed from the living room, such as sightlines to dining, 

sightlines to corridor, and so on. On a complete (soft) design criteria level, the model has the 

potential to generalize the results of entire floor plans based on the categorical designation 

of the design criteria. I.e., the floor plan promotes a sense of autonomy, fosters sense of 

connection, sound stimuli aids wayfinding, and toilets are accessible. 

 

7.3.1 Sketch Option Validator 

During integrated design charrette, the medium of choice for communicating design options 

is quickly through sketches with the all the project stakeholders. In this rapid design session, 

time is of the essence. The potential of a soft-criteria analytical model will serve as a guide for 

the entire team on pre-defined scope for objectives of the project, i.e. to support personal 

autonomy and social integration. The usefulness of a model trained to recognize the soft 

values in floor layouts can be deployed in the brainstorming sessions to provide data-driven 

assessment on the quality of different design options to allow the team to make informed 

decision in a timely manner.  

 

The compatibility of a machine learning model in analogue sketches can provide challenges. 

However, this can also be solved using AI. There are existing computer vision models that 

can translate floor plan drawings into vectorized data (Pizarro, 2022) which in turn be used to 

extract their features to feed into the wayfinding assessment model. Computer vision models 

specifically to recognize sketches is an area of research that can soon become a viable 

option for converting analogue (or digital sketching using stylus), for example a sketch-based 

system called a.SCatch developed by researchers that can differentiate between different 

line weights which allows architects to search for new floor plans by sketching parts of it 

(Ahmed et al., 2014). Developing a computer vision model for the purpose of floor layout 

recognition and feature extraction is technically feasible using image-based convolutional 

neural network that takes images as inputs and outputs the necessary features the model is 

trained on.  

 

7.3.2 Multi-Objective Optimization 

Another instance where such a model can be valuable during complex projects that tackles 

multiple engineering objectives in the early stages. For instance, a project that needs to 

perform structural optimization for earthquake resilience or high-rise wind loads that 

balances various objectives affected by structural design configuration response to seismic 

loads such as shear wall torsion, flexural shear, and drift (e.g. of a multi-objective optimization 

where shear wall positioning impact visual access Zhang & Meuller, 2017). Shear walls 

placement along the floor plan will have a direct effect on visual access between spaces, a 

critical aspect for dementia-friendly design that needs to be carefully managed in the early 

stages. An additional optimization criteria to structural design can include dementia-friendly 

design criteria for residential care communities in earthquake-prone regions such as Türkiye. 

An engineer can then balance the structural design requirement for structural integrity while 

maintaining acceptable spatial layout that supports ease of wayfinding by virtue of visual 

access continuity.  
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        7.4 Roadmap for Distributing AI-Enabled Packages 

7.4.1 Comprehensive Assessment Model 

The roadmap for a general-purpose dementia-friendly assessment model starts by 

expanding on the assessment data to encompass all aspects of the floor layout that affect 

wayfinding quality and the 4 soft design criteria (see Appendix 2, Appendix 3, Fleming & 

Bennett, 2017). The method for which we measure the extent of floor layout compliance to 

the dementia environmental design guidelines is one of the first steps to tackle towards a 

more comprehensive model.  

 

7.4.2 Expansion of Training Data 

On the data front, participation from architects is essential for developing high-quality 

database of floor plans that have high diversity and quality from around the world that is 

dedicated solely for machine learning exercises. This participation from practice is essential 

as dataset collection for dementia facilities can be processed by building technologist into 

the correct format for the compatibility with the machine learning algorithms. Such initiative 

requires coordination between multiple entities, but it starts with architects and developers 

giving access to their floor plans on projects such as nursing homes, dementia care facilities, 

residential care units and so on for data scientists to compile into a dataset comparable to 

the Swiss Dwellings.  

 

7.4.3 Launching an AI Project for Dementia-Friendly Architecture 

Once the pre-requisite assessment models are established, and a robust geometry dataset is 

prepared, an open call can be organized to allow students, engineers, and scientists to 

explore machine learning models based on the building geometry and their assessment 

results. Open sourcing this collaboration to the general public allows for better integration 

with industry and academia. This phase won’t be possible without having a complete 

assessment model that represent the most relevant early-stage design criteria architects 

need to be addressed in the early stages, and a high-quality dataset of floor plan 

geometries, but in the event those are available, this can allow for public participants to 

innovate software packages to serve the design practice to bridging the gap between early-

stage assessment and final design validation of building designs with respect to dementia-

friendly architecture. This also opens up multiple avenues for software development efforts 

such as plug-in packages that can be integrated in the toolbox of architects such as Revit.  

 

Scientists and practitioners working in the construction industry can work together to 

diversify the publicly available datasets of floor plan geometry to accelerate the 

development of more human-oriented AI tools. Moreover, human-oriented AI tools need 

participation by multidisciplinary teams to evaluate the validity of the model and give 

feedback on best evidence available to base off wellbeing indicator for a select user group. 

Lastly, participations by the end user group, architects, and spatial designers, can support the 

development by testing the tools and providing feedback on the ways they prefer to interact 

with the model.  

 

 

 

        7.5 Conclusion 

The roadmap to a human-centric AI analytic tool for the built environment requires further 

research. Software companies are already developing surrogate models to provide architects 

with insights into their design options without the need for time-consuming and costly 

studies. This allows architects to explore designs that have a high likelihood of performing 

well. Based on the results observed in the test set for the wayfinding quality model’s 
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performance, we conclude that this AI tool has the potential to become an important 

element in the design process for dementia care spaces. It could serve as an expert in 

dementia design principles, supporting designers in assessing soft design criteria that are 

difficult to measure during the design development phases. 
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The research presented in this thesis aimed to investigate an approach for measuring soft 

design criteria for assisted living building typology to develop a computational method for 

measuring them using machine learning. The soft criteria that had great impact on wellbeing 

was ease of wayfinding which was primarily measured through visual access. The wayfinding 

quality was defined as numeric values which was then used in the training of the AI model to 

predict the wayfinding quality based on a selection building features.  

 

        8.1 Answers to Research Sub-Questions 

8.1.1 What are the essential qualitative spatial design features that promote wellbeing for 

people living with dementia?  

There were several design principles that promote overall wellbeing for people living with 

dementia. Visual access has direct influence on the navigability of indoor environments 

which also influences perceived sense of community and promoting autonomy by virtue of 

intelligible layouts that does not cause confusion or a person to be lost in their environment. 

Wayfinding was also discovered to improve with additional stimuli such as sound and smell 

that reinforce the directionality of space for the person navigating their indoor environments.  

 

8.1.2 How can we implement digital tools for assessing floor plan geometry with respect to 

ease of wayfinding based on dementia design principles?  

The development of wayfinding quality indicator on Grasshopper proved to be a successful 

choice due to its user-friendly interface and adaptability to all types of data, such as 

importing floor plan datasets from ‘.csv’ files as well as exporting data back to the dataset. 

The decision to add an additional outcome to the assessment score of ‘preferred’ to the EAT 

checklist for whether visual sightlines are sufficient or not, yielded diverse results on the 

sample floor plan dataset allowing the opportunity to experiment with machine learning 

model on a limited-size dataset. 

 

8.1.3 What are the prerequisite data needed to build a machine learning model that 

predicts the wayfinding quality from floor plan design representation?  

The primary prerequisite for building a machine learning model is a labelled dataset. To 

build a machine learning model that gives feedback on the wayfinding quality requires a 

rigorous process of extracting features and methodically testing them to discover the most 

suitable features to allow for greater prediction accuracy. The labelled dataset in itself is 

important, but the feature selection process is the most important step that influence the 

outcome of the model’s performance. A list of features for predicting wayfinding quality 

indicators were highlighted in this research which include distance-based features and 

geometric properties of layouts. Right now we answered this question using the feature pool 

available during the project’s timeline, but a closer examination on what spatial features are 

the most meaningful for visual access needs additional attention. 

 

8.1.4 To what extent can a machine learning model predict wayfinding quality from floor 

plan information?  

The machine learning model was having a moderately successful attempt at predicting the 

wayfinding quality of floor plan geometry based on visual sightline data using both random 

forest and neural network architecture which suggests there is room to improve, possibly by 

expanding the dataset and improving the model by trying a less complex model architecture 

for assessing a single performance indicator-building method for feature selection for 

multiple assessment indicators. The model performance baseline reading shows a consistent 

70-80% accuracy which already signals that the methodology works although it is currently 

limited by the size of feature pool available for the machine learning task. Through the 

feature combination selection and hyperparameter tuning, it was able to improve the 

model’s accuracy, and therefore, a machine learning model can provide good approximation 
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of wayfinding quality based on floor plan information although dedicating more time on 

feature extraction and selection can significantly improve the model’s applicability. 

 

8.1.5 In what way can the AI model be deployed in the design process?  

Analytical models such as the wayfinding quality assessment tool can be a validation tool for 

design alternatives during the early stages of a design project. The wayfinding quality 

assessment tool serves as a companion to the existing architect workflow to bridge the gap 

between lack of expertise in the area of dementia design care spaces and building design 

practitioners.  

 

        8.2 Answer to Main Research Question 

❖ How can artificial intelligence support the design of dementia-friendly architecture? 
 

AI can support the design of dementia-friendly architecture by first measuring qualitative 

assessment of dementia design principles into numeric values that can be interpreted by a 

computer. This process involve expert opinion from various disciplines such as computer 

science, architects, dementia care specialists, environmental psychologists, and subject-

matter experts depending on the DDP. But in simple terms, the assessment of qualitative 

criteria for dementia design principles is the first step towards developing an assessment 

algorithm to assemble the required dataset for building the AI model. The path to creating a 

model with high accuracy is iterative and requires end-to-end manipulation of data from the 

very beginning of the digital pipeline all the way to the end. The AI model can then be used 

to support the design of dementia-friendly architecture by giving feedback on the soft 

criteria quality to compare different design options, effectively forgoing the assessment 

procedure of a complex and multivariable problem in the early stages of design, affording 

architects the time to iterate more effectively between different concept design alternatives, 

and bridges the gap between DDP expertise and early stage design development. 

 

        8.3 Discussion on Machine Learning Framework 

Feature selection is one of the most critical steps in the entire machine learning process that 

has been demonstrated in this thesis. The feature pool was introduced from the Swiss 

Dwellings simulation dataset. Active involvement in feature extraction through Grasshopper 

facilitated a deeper understanding of the model's internal workings, despite the limited 

success of the Grasshopper-derived feature set. 

 

The machine learning framework for feature nomination from feature pools to feature sub-set 

provides a good first step to methodically introduce new features and assessment indicators 

one by one to building the model. The current framework for selection features had 

moderately successful results. The need to expand the training set is a priority, and also the 

feature pool with an extended exploratory data analysis step before proceeding to the 

model-building phase.  

 

The Grasshopper assessment algorithm for floor layout using visual access to determine 

wayfinding quality allowed for greater control to dictate what data to generate and storing 

them in neat files for later retrieval. Grasshopper environment provides a good platform for 

experimenting with many options; however, it might be worth investigating to extract the 

features of floor plans results using depthMapX from Space Syntax Laboratory to use the 

numeric values from the visibility graph analysis as the basis for the assessment of wayfinding 

quality. What is interesting is that depthMapX is an open-source software with the entire 

code available on GitHub, making it more affordable and accessible by the practitioners 

compared to Grasshopper’s cost barrier to entry. What Grasshopper excelled in was being 
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able to import data and manipulate the data easily directly from the Swiss Dwellings dataset. 

Using a program dedicated to advanced analysis on spatial and visual connectivity might 

give better performance indicators to assess wayfinding quality for dementia-inclusive 

design. For the limited size of dataset available in this thesis, Grasshopper was sufficient, and 

the assessment algorithm was an asset to continuously re-iterate the algorithm’s code until it 

was able to assess every single floor layout regardless of its complexity or orientation.  

 

        8.4 Conclusion 

An AI-enabled assessment tool for wayfinding quality of indoor environments was 

demonstrated to be a viable direction for building AI models that give feedback based on 

numeric values derived from visual perception analysis measured using the isovist method. 

The final model was able to give prediction based on two assessment indicators based on 

sightlines from living to kitchen and bathrooms with an accuracy of around 80% for both 

outputs on the test set using both random forest classifier and a neural network. The test set 

shows promise for classifying wayfinding quality based on visual sightline data, although 

currently limited to assessing layouts from the Swiss dwellings.  

 

        8.5 Limitations and Challenges 

8.5.1 Limited Dataset 

Despite my best efforts to have diversity of floor plans by manually removing duplicates or 

units that are too similar, it might be still too homogenous, and the dataset could have 

benefited from a more diverse set of geometries that has different living room sizes and 

more varied spatial organization of rooms. Especially considering that the larger the living 

room size is, the more test points there are, and more data to assess wayfinding quality. The 

exploratory data analysis charts show most living room sizes are around the same range 

despite the differences in the number of bedrooms per dwelling, which ideally should 

change depending on the number occupant per dwelling.  

 

 
Figure 81: a scatter plot showing the living room area compared to the number of bedrooms 

available in a single-story dwelling.  

 

The Swiss Dwellings dataset provided a solid testing ground to build with a machine learning 

model for wayfinding quality assessment. Its biggest limitation is that it does not accurately 

represent dementia care facility indoor environments, although its limitation could be 

overlooked because it does contain the spaces needed to conduct preliminary studies (i.e. 

kitchen and living area which here also found in dementia care facilities). Expanding to multi-
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story dwellings and exploring new sub-typologies within the Dwellings dataset might 

provide much needed expansion to the size of the training set. However, it is still necessary 

to approximate the dementia care environments, all the good and the bad examples from 

around the world, to serve as a more accurate training set for wayfinding quality within 

dementia care spaces.  

 

8.5.2 Limited Predictive Ability of the Grasshopper Features 

The process for improving the accuracy of the model proved to be challenging to discern 

strong relationships in wayfinding quality which could be due to the lack of variability in the 

floor layouts. All thirteen Grasshopper building geometry features did not show strong 

correlation with the target variable which indicate there might be two approaches to address 

this challenge. First idea is to either introduce building typologies that are different from the 

Swiss Dwellings, such as commercial or nursing homes, in order to get clear differentiation 

between the features and the target variable, or create synthetic floor plan geometry to help 

create less homogenous dataset. The second idea is to experiment with new feature sets that 

are not necessarily architectural descriptions of geometry, such as mathematical expressions 

of the geometry beyond mean values and area ratios.  

 

The discrepancy in the distance measure was an insightful discovery indicating the sensitivity 

of the features. Both Grasshopper feature set and the Swiss Dwellings feature set has a 

distance measure for mean distance between living room to kitchen. The feature from 

Grasshopper had a grid of points where each point measured linear distance to the centroid 

of kitchen. This does not match with the way the Swiss Dwelling perform their measurement. 

Based on inspecting some of the geometry, it appears the distance measures are to the 

kitchen door instead of the centroid. A small detail like this made the feature measured in 

Grasshopper unhelpful for the prediction ability of the model.  

 

8.5.3 Limited Assessment Indicator 

The scope of this thesis is achieved to complete the entire process for one assessment 

indicator. In the end, 2 assessment indicators were introduced to the model. This is a major 

limitation that this current study has which can be overcome by expanding the assessment 

indicators and feature set. Although having more assessment indicators will give us more 

data to work with and make better conclusion, testing the model on just two assessment 

indicator as outputs proved to be valuable as it laid the foundation for the model building 

method for subsequent data expansion either more training data, more assessment results, 

or more features. One or two assessment indicator is not enough to generalize wayfinding 

quality from the living space, and therefore, next subsequent iteration should focus only on 

expanding indicators for this one room function to be able to better describe wayfinding 

quality for an entire room function.  

 

8.5.4 Lack of User Testing 

The model for measuring wayfinding quality has not been validated through user testing in 

dementia care spaces and residences. This limits the understanding of how well such a 

model is aligned with the actual wayfinding experience of people living with dementia. 

Although on a dementia assessment criteria level it meets the criteria for visual sightline, 

there is still more room for improving the effectiveness of more precise measurement of 

spatial experience and its influence on wayfinding ability.  

 

8.5.5 Limited Assessment Metrics on the Test Set 

The test set is understood as a whole how it performs using a confusion matrix and the 

evaluation metrics established in the thesis based on best-practices for model evaluation, 

class-based accuracy using precision, F1 score, and recall, and multi-output accuracy using 

hamming loss and subset accuracy. As the prediction task increases in complexity with more 
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inputs and outputs, it will likely be a challenge to interpret the model’s strengths and 

weaknesses using only these benchmarks at a high level. Additionally, examining the types of 

errors the model makes (i.e., false positives, false negatives) and identifying patterns or 

commonalities among misclassified samples by viewing the floor plans side by side can be 

an advantage. To make this process more manageable and streamlined, future 

improvements on this topic could consider a report template to summarize the main points 

observed whenever the model expands to provide more transparent progress over the 

model’s performance and have a track record of different test result benchmarks to compare 

the impact of changes on the data with different attained benchmarks for every model 

iteration. 

 

        8.6 Recommendations for Future Development 

8.6.1 Expanding the Dataset 

The model will benefit from expanding the training set to include a wider variety of 

geometries, such as additional dwellings from different datasets or multi-story dwellings 

within the Swiss dataset. Including geometries related to commercial and office typologies 

found in Swiss dwellings might also be beneficial, as it would add more variety to the training 

set.  

 

Furthermore, the field of AI would benefit from research focused on developing a 

methodology for generating synthetic floor plan geometries specifically for machine learning 

training. For dementia care, a collection of dementia care floor plans from around the world 

would be particularly valuable. 

 

And finally, expanding the assessment criteria and the feature pool alongside an exploratory 

data analysis assessment on the feature with respect to every class label from each 

assessment criterion.  

 

8.6.2 Multisensory Wayfinding 

The current model focuses on visual access. Future research should investigate the 

integration of additional sensory modalities, such as auditory and olfactory cues. This will 

lead to a more comprehensive assessment of wayfinding quality as it would take into account 

the full sensory range an individual with dementia uses while navigating their indoor 

environments.  

 

8.6.3 Incorporating 3D Model Information 

The current assessment environment is in 2D space which loses out on the complexity of 

spatial quality. Future studies on wayfinding quality should also investigate 3D model space 

that will give more realistic assessment of wayfinding quality taking into account furniture 

and eye-level field of view. 

 

8.6.4 Long-Term Effects of Layout on Individual Health 

Studying the impact of floor layouts on the individual health level over long periods of time 

might help us learn additional insights on how layout influences quality of life for people 

living with dementia which could involve tracking the wayfinding abilities of individuals over 

time while tracking their condition as it progresses.  

 

8.6.5 User Testing and Validation 

The integration of VR experiences or field experiments might allow researchers to test 

various design features’ influence on wayfinding in a controlled environment. This could lead 

to a more accurate assessment of wayfinding quality as it would allow the model to take into 

account the full visual experience of space. In summary, the relationship between visual 
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access and ease of wayfinding should be tested more rigorously in experimental settings to 

deepen our understanding on the connection between visual access to wayfinding.  
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9.2 Scientific and Societal Contribution 
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 The goal of this thesis was to respond to the question of what are the immeasurable side of 

spatial design that promotes happiness and wellbeing, how to measure it, and how AI can be 

deployed to help with this process. The conclusion was developing a methodology for 

arriving to user-specific design criteria that promote wellbeing, a measuring methodology as 

performance indicators for fulfillment of defined soft criteria, and a machine learning 

methodology to develop a model that can estimate the wayfinding quality of indoor 

environments. The resulting model was built on a dataset containing more than 250 floor 

plans as training data, the model (hyperparameter) tuning procedure of the model was done 

by experimenting with various model architectures and feature selection in order to attempt 

to improve the performance of the predictive abilities of the model.  

 

Being exposed to a vibrant scientific community at the Faculty of Architecture and the Built 

Environment who are exploring wide variety of AI-oriented topics inspired me to specifically 

ask the question of how AI can help in dementia care design and combine both my passions 

in the same thesis topic: designing for wellbeing and computational design. The big 

overarching question posed at the beginning stages of the thesis of what the immeasurable 

side of architecture is that contributes to occupant happiness and how to measure it, allowed 

for the freedom to explore problems and solutions that may not have been explored 

otherwise. 

 

        9.1 Graduation Process 

9.1.1 How is it aligned with the field of Building Technology? 

My graduation thesis involves the field of dementia-inclusive design and artificial 

intelligence, which I believe are both important themes for the Building Technology 

Graduation Studio. Combining the two fields of dementia care environmental design and 

artificial intelligence to develop an AI-enabled framework for assessing wayfinding quality of 

floor plans with respect to the dementia care design principles proved to be a fulfilling task 

with both fields being well-researched and documented domains. On one hand, the design 

principles for dementia-inclusive design is well-established in terms of assessing existing 

facilities to determine how it influences user behavior and wellbeing, however on the other 

hand, the implementation of these design principles in evidence-based design approaches 

is still broadly being developed (i.e. Quirke et al. 2021) which signaled to me an opportunity 

to investigate this gap through digital tools aligning well with the AE+T’s Chair of Design 

Informatics mission to develop and disseminate knowledge and know-how for topics related 

to designing built environments with special attention to the “overall performance of 

buildings and built environments involving both soft (human) and hard (physical) aspects” 

(Design Informatics - TU Delft , 2024) in addition to alignment with the faculty-wide ongoing 

research theme on Digitalization and Artificial Intelligence (Digitalisation and Artificial 

Intelligence – TU Delft , 2024). Moreover, the thesis project aligns with AE+T’s Chair of Indoor 

Environment’s strategy for “Assessment – indicators: Which parameters or indicators and 

assessment methods can be used to explain the effects or response? What type of 

information? How to assess?“ (Indoor Environments – TU Delft Website, 2024) which is an 

integral part of the Building Technology field.  

 

9.1.2 Product, Process, Outcome 

The end product of this thesis being AI-enabled soft criteria assessment tool developed 

through the process of data collection and conducted through the Building Technology 

Graduation Studio framework through literature review, computational design applications, 

and applying the research. The process gave insightful answers into both fields of dementia 

care and human-centered machine learning assessment tools. The Swiss Dwelling as a case 

study for training data allowed for the thesis to apply the methodology using high-quality 

information that would otherwise not be possible to reach to this level of completion. The 
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Dementia Design Principles EAT Checklist served as a solid grounding to build upon a 

measuring methodology that is backed by studies to promote indoor wayfinding, and 

ultimately wellbeing for the intended user. The link to practice through Tangram Architecture 

and the dissemination of knowledge through my exhibition contribution for Immeasurably 

Important (Muis, 2024) allows for greater integration between science and practice by 

involving the general audience to comment on the overall mission behind this thesis and 

contribute to the development of future AI-related applications affecting our built 

environment and the design industry as a whole. This connection to practice allowed me to 

also develop my soft skills as a future scientist in the built environment to engage the public 

with my ongoing research, and receive feedback through public discourse. I believe science 

should always be continuously tested for its societal relevance through public engagements, 

lectures, workshops, and publications not only for subject-matter experts, but also for 

general public audiences. 

 

I have learned through my thesis topic how to formulate soft design criteria, and discovered 

that they are context and user-dependent processes. It is a mind-expanding exercise in terms 

of allowing me to develop a deeper understanding on the correlation between building 

design and perceived wellbeing, in this instance wellbeing of people living with dementia. 

Elderly care facilities provided a narrow scope with more constrained variables affecting 

overall wellbeing, and with the help of conversations with expert in the field of elderly care 

and universal design, I was able to better narrow down the soft criteria to its fundamental 

level while still not losing many of the nuance occupant-wellbeing indicators, but just enough 

to continue my research to develop measurable methodology for preliminary wayfinding 

quality assessment procedure. 

 

We also got a glimpse into what makes spaces friendly for navigation by people with 

dementia. Implementing a random forest classifier to interpret the features was useful to 

understand how one feature correlate with the navigability of spaces especially because it 

the data analysis was not very distinct and was able to spot only weak trends in the class label 

‘preferred’. When faced with an overwhelming possibility of features, using the exhaustive 

search and sequential feature selector were a good decision to eliminate assumptions and 

only select feature combinations that work together which adds a deeper level of control and 

justification to the feature set combination and see how well they aligned with the qualitative 

assessment of the plots from the exploratory data analysis phase on an individual class level. 

To reduce the complexity of the model-building even further, guiding the hyperparameter 

search space with both wide randomized search and narrow grid search adds another layer 

of depth to guide the model-building process to at the very least eliminate options that don’t 

work well and potentially discover model architectures that work very well for wayfinding 

quality assessment. To avoid overly-complex models at this early stages of model 

development, using random forest algorithm on the test set is something that should be 

considered as a means to simplify the finalization of the first model iteration.  

 

9.1.3 The Transferability of This Project's Results 

The methodology for determining the soft criteria for a specific group can be done to other 

user groups especially ones that are sensitive to environmental conditions to improve the 

universal design quality of our built environment. While it is true that improving wayfinding is 

especially important for people living with dementia and is recognized as a desired outcome 

based on the universal design recommendations, it ultimately benefits everyone navigating 

indoor environment. More intelligible spaces ultimately benefits everyone. This type of 

improvement in our built environment is also known as the “curb cut effect” referring to the 

phenomenon where universal designs or systems that were initially developed to benefit a 

specific vulnerable user group with particular needs end up having cascading benefits to 

society. 
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        9.2 Scientific and Societal Contribution 

9.2.1 Scientific Contribution 

This thesis expands the current knowledge on machine learning-based approaches for early 

design stage analysis by selecting a performance indicator commonly used by professionals 

in the field of wayfinding, the isovist analysis, and relating it to wayfinding quality for 

dementia care spaces. Moreover, this research expands on the available isovist-based AI 

tools by exploring a novel assessment methodology for indoor-environment wayfinding 

quality for occupants living with dementia.  

 

9.2.2 Societal Contribution 

The possibility of improving the design process for new elderly care facilities has the 

potential for cascading benefits, especially considering the nature of digital tools that can be 

disseminated easily through open-source practices and collective contribution from the 

programming community. On a practical level, AI assessment tools for soft design criteria 

related to dementia care will bridge the gap between architects and expert validation in the 

most critical stages of design that determines the wayfinding quality of a layout, the early 

design stage. On a broader level, an AI assessment tool for wayfinding quality will improve 

the ability for people with dementia in the future to cope better in their own environments 

allowing them to enjoy a dignified high quality of living.  
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Appendix 5: Grasshopper Assessment Script 
 

 

 

 

 

 

Full script available here: https://github.com/ferasongithub/Dementia-

Friendly_Wayfinding_Assessment 
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