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Abstract

Compressed sensing is a framework in signal processing that enables the efficient acquisition
and reconstruction of sparse signals. A widely-used class of algorithms that are used for this
reconstruction, called greedy-algorithms, depend on non-convex optimization. With increas-
ing signal size, these problems become computationally very hard. Block compressed sensing
is a framework in compressed sensing that divides the compressed sensing problem into sub-
problems, gaining a better storage complexity. However, block compressed sensing has not
yet been studied form a computational complexity perspective.

This thesis focuses on the application of block compressed sensing to signals of high dimension
to gain insight into the relation between reconstruction performance and computational com-
plexity. This is done by, first investigating how theoretical reconstruction guarantees change,
when the problem is divided into smaller sub-problems and by doing a complexity analysis
of the reconstruction itself. Each sub-problem solves for a portion of a signal, defined as a
block. Next, experiments are conducted in order to get insight into the trade-off between
computational complexity and quality of the reconstruction. It can be found that, by using
this block-wise approach, the computational complexity of the reconstruction problem de-
creases, but at the same time, quality of the reconstruction deteriorates. Besides, a method
to compensate for this performance loss is proposed. The key idea of this method is that, by
propagating prior information among the different blocks, the reconstructions of the blocks
can be improved. Finally, block compressed sensing and prior-aware block compressed sensing
are analysed in a higher order tensor compressed sensing setting. Nevertheless, this setting
was found to exhibit a less favourable complexity-performance trade-off than the normal one,
as this setting resulted in both a more complex and a less accurate reconstruction than the
normal one.
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Chapter 1

Introduction

The process of sensing, recording and storing signals in a digital manner has become of last-
ing importance in technical innovations over the last decades. As technology evolves, the
demanded specifications in this domain increase, resulting in a need for more advanced hard-
ware and software. On the hardware side, this problem can be addressed by building computer
systems with more computing power and memory storage. However, merely ameliorating the
systems in this way is not sustainable. For these innovations namely, more powerful computer
systems are required which is associated with a need for more resources and having higher
energy consumption than the previous ones. On the software side though, research can be
done on how to better use these hardware components, such that the system as a whole
becomes more efficient.
The question of how to acquire and retrieve signals using limited hardware resources is key
in the domain of compressed sensing. This domain focuses on, for example, reducing the
memory storage requirements of a signal or measuring a signal from only a limited number
of measurements, due to hardware restrictions. This is done by exploiting the sparsity of a
signal, i.e. the property that a signal consists mostly of values equal to zero. Formally in
compressed sensing, a signal x ∈ Rn is measured by:

y = Ax (1-1)

with measurements y ∈ Rm for a measurement matrix A ∈ Rm×n with typically m ≪ n. The
signal is x is sparse, implying that the number of non-zero entries in x is small with respect
to its size, or formally: ||x||0 ≪ n. Here, the || · ||0 operator denotes the ℓ0-norm, returning
the number of non-zero entries in its argument. It is formally defined in definition 2. Since
the measurement matrix A has more columns than rows, reconstructing x from y and A is
equivalent to solving an under-determined linear system of equations, allowing for multiple
solutions. In compressed sensing, the sparsest possible solution to this system is of interest.
Formally, the original signal can then be reconstructed using y and A by:

x̂ = min
z∈Rn

||z||0

Subject to: Az = y.
(1-2)

Master of Science Thesis A.A.Bevelander



2 Introduction

From basic optimization theory, it is known that the computational complexity for opti-
mizing non-convex objective functions, such as this ℓ0-norm minimization problem, grows
super-linearly with an increasing number of variables [1]. Various approaches to this problem
exists. For example, under certain conditions the ℓ0-norm can be relaxed to a convex ℓ1-norm
minimization problem, which is far less complex to solve. However, the relaxation also has
downsides, such as additional constraints on the measurement matrix [2] and possible issues
with signal support identification [3].

To maintain the advantages of the ℓ0-norm at a reduced computational complexity, the recon-
struction problem can be partitioned, i.e., cut up into sub-problems. The idea of partitioning
in CS has received some research attention under the title of block-compressed sensing [4],[5].
In this framework, the sparse signal is sub-divided or partitioned into small blocks that allow
for independent measuring and reconstruction. The available literature on block compressed
sensing is tailored to specific signal processing applications. Besides, in [6, 7, 8], block com-
pressed sensing is approached from a storage complexity perspective. In traditional CS, the
storage complexity increases quadratically with the signal size, as the measurement matrix
A has to be stored entirely. By partitioning, the total size of the measurement matrix is
reduced. Based on this literature review it can be concluded that there is no work on a com-
putational complexity study on block compressed sensing. Anyhow, this is a relevant topic
as it considers the potential of BCS to handle signals of large and high dimension efficiently.
Before going further, let’s first define the terminology around dimensionality in a clear way.

Definition 1. (Dimensionality) A signal X ∈ Rn1×n2×···×nd has d dimensions.

• X is high dimensional if d is larger than 2, i.e. d ∈ {3, 4, . . . }

• X is of large dimension if the size of the dimensions are larger than 100, i.e. ni > 100
for i ∈ {1, 2, . . . , d}

Moreover, X is large, if the total number of signal entries is larger than 1000, i.e. Πd
i=1ni >

1000

1-1 Motivation

As mentioned, compressed sensing problems generally show a rapid increase in computational
complexity with signal size. Applications such as millimeter wave radar and MRI often fea-
ture signals of large dimension. A signal size of |X| = 106 is no exception. With signals
this large, CS tends to get time and energy consuming. Approaching the problem in parts,
by reconstructing blocks within the signal, can reduce the computational complexity, but at
what cost? A first take on answering this question, is by considering the Welch bound of
the partitioned problem, which is further elaborated in subsection 2-2-2. This bound directly
relates to the error bound on the reconstruction error relating to (1-2). This corresponds to a
trade-off: computational complexity versus reconstruction performance. However, if there is a
correlation across blocks and this correlation is known, it is possible to propagate information
from a reconstructed block to the next block. With such a prior propagation strategy, the
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1-2 Objectives 3

error bound could possibly be improved again.

These ideas are relevant for a number of cases.

1. Multi-core processors: Instead of solving the problems one-by-one, the independence
of the different sub-problems can be exploited. The sub-problems can be run in parallel
utilizing multiple cores. This can drastically reduce the computational time required for
the reconstruction. The drawback of this approach is that the individual reconstruction
problems for each partition will have to be independently solvable. So, no passing of
information about correlation of the signal between the partitions is possible.

2. Single-core processors: With just one processor, partitioning a compressed sensing
problem will still reduce the computational complexity. Furthermore, as the problems
are solved in series, it is possible to pass information from one reconstructed partition
to another and use it in the next partition. In this work, this is found to improve the
overall reconstruction performance at high SNR.

To summarize, the motivation for the work in this thesis is to gain insight in how CS problems
for large signals can still be executed with limited computational power. This is done by
taking a partitioned approach to CS which can improve computational complexity of the
reconstruction.

1-2 Objectives

In order to align with the motivation above, a number of research questions can be formulated.
Main question:

• How does the partitioning of a compressed sensing problem affect its reconstruction
performance and complexity?

To structure the answering process of this, still broad, question, the following corresponding
sub-questions are formulated:

1. How does reconstruction performance change with the number of blocks in a BCS
problem?

2. What is a proper strategy to partition a CS problem?

3. What is the change in computational complexity of the reconstruction when applying
a BCS algorithm?

4. How can relevant prior information be propagated between different blocks in a BCS
reconstruction and at what computational cost?

5. How can higher order CS algorithms be deployed within (prior-aware) BCS reconstruc-
tion?

Master of Science Thesis A.A.Bevelander



4 Introduction

Throughout this analysis, two and four dimensional data is used. Two-dimensional, as this
allows for straightforward interpretation of the proposed methods and reconstruction results,
such as the reconstruction of an image. Four-dimensional, as this clearly shows the behaviour
of the algorithms in higher order. E.g. the curse of dimensionality [1] already applies in four
dimensions: the number of entries in the data grows rapidly with the size of the dimensions.

1-3 Outline

Now that the aim of the thesis is clear, the proposed questions will be dealt with in the
following structure:
Chapter 2 explains prior work and basic concepts that are required for the rest of the thesis.
here, the compressed sensing framework and all of its relevant sub-domains are elaborated.
Especially prior work on the topics of block compressed sensing and Prior-Aware compressed
sensing is summarized and discussed when useful as these are the domains that lie closest to
the contributions.
In chapter 3, the contribbutions of this thesis are made. Here, in section 3-1, an extensive
description of the newly proposed prior-aware block compressed sensing framework is given.
This involves detailed steps on the design synthesis of the pipeline that is proposed in the
paper afterwards. Also, the choice for specific experiments and datasets are motivated and
constructed. The main goal of this section is to prepare the reader for the more abstract
and concise paper section that follows. After a short introduction, section 3-2 contains the
conference paper which will be submitted to the European Signal Processing Conference
(EUSIPCO) 2024. It contains all the principal findings and contributions in this thesis. The
introduction section of the paper has a slight overlap with the chapter 2, however the paper
is way more pithy. Next, the contributions that are relevant, but fall outside the scope of the
paper are made in section 3-3. This section involves theoretical derivations about algorithm
complexity of the tensor CS setting, but its focus is on showing numerical results of the
experiments that were introduced in section 3-1. Finally, in chapter 4, the main conclusions
of the thesis are summarized and recommendations for future research are made. Note again,
that this Chapter has a slight overlap with the conclusions section of the paper in section 3-2.

1-4 Contributions

Within this thesis, the principal contributions are made in the paper in section 3-2. These
are:

• Derivation of coherence-based reconstruction bounds for block compressed sensing.

• Analysis and experiments to motivate the use of block compressed sensing for the aim
of decreasing computational complexity of the CS reconstruction problem.

• Synthesis of a pipeline and an algorithm that are able to propagate known correlation
information among blocks in BCS reconstruction.

Besides, in section 3-3, some contributions are made that are outside the scope of the paper,
but still relevant in the thesis. These are:

A.A.Bevelander Master of Science Thesis



1-5 Notation and Abbreviations 5

Name symbol example
Scalar lowercase c

Set Uppercase S

Vector Bold Lowercase v
Matrix Bold Uppercase A
Tensor Underlined Bold Uppercase T

Table 1-1: Writing convention for arrays

• Influence of comb-like partitioning strategy on performance of the BCS problem.

• Analysis on how the BCS can be extended to work with a higher order CS algorithm.

• Extension of the prior-aware BCS pipeline to higher order CS algorithms.

1-5 Notation and Abbreviations

For the sake of clarity, Table 1-1 shows the writing conventions for number arrays that are
used in this thesis. Next, throughout this thesis, various abbreviations are used. They are
listed in Table 1-2.

Definition Abbreviation
(Block) compressed sensing (B)CS

Prior-aware PA
Higher-Order HO

(Orthogonal) Matching Pursuit (O)MP
Performance-Complexity trade-off PC trade-off

Table 1-2: List of abbreviations

Master of Science Thesis A.A.Bevelander
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Chapter 2

Background

This chapter functions as an introduction to the fundamental topics in the analysis, done
in this thesis. Also, prior work is discussed and elaborated if relevant. First, some essential
definitions are mentioned in section 2-1. Also, a necessary introduction to multi-linear algebra
is given. Next, in section 2-2, the CS framework is introduced and some essential notions
are explained. Then, in section 2-3 the prior-aware extension to CS is explained and existing
literature is discussed. Next, in section 2-4 the BCS framework is introduced and finally, the
higher order extensions of all the aforementioned frameworks are gone through in section 2-5.

2-1 Preliminaries

This sections presents some fundamental definitions used in CS and higher order algebra.

2-1-1 CS Definitions

Definition 2. (ℓ0-norm) The ℓ0-norm of an array returns its number of non-zero entries. The
ℓ0-norm of a vector a ∈ Rn is given by ||a||0 = s ≤ n. Note that the ℓ0-norm is a non-convex
operator.

Definition 3. (Sparsity) A signal is sparse if the number of non-zero components is small
compated to the signal length. The sparsity level indicates the fraction or percentage of a
signal that is non-zero. Consider x ∈ Rn with number of non-zero entries equal to ||x||0 = s,
then x is said to be sparse if s ≪ n with sparsity ratio s/n.

2-1-2 Multi-Linear Algebra

In the analysis and algorithms in both section 2-5 and section 3-3, a variety of multilinear
notions and operations are used. These are now introduced formally [9].

Master of Science Thesis A.A.Bevelander



8 Background

Definition 4. (n-way Tensor) Any number array is an n-way tensor, where n represents the
number of dimensions in that array. Hence, a vector and a matrix are respectively 1-way and
2-way tensors. An n-way tensor A can be written as:

A ∈ Rm1×m2×···×mn .

Definition 5. (mode-n product) The mode-n product (×n) between a tensor A ∈ Rm1×m2×···×md

and a matrix B ∈ Rk×mn is given by:

C = A ×n B ∈ Rm1×m2×···×mn−1×k×mn+1×mn+2×···×md .

In words, it is an operation that contracts the n-th mode, or dimension, of the tensor with
the second mode of the matrix. Note that these modes must be of equal size. Also note, that
the mode-n product is commutative over modes.

If ai1,i2,...,id
, bik,im and ci1,i2,...,id

denote the elements of A,B and C respectively, the elements
of C are computed by:

ci1,i2,...,id
=

mn∑
in

ai1,i2,...,im,...,id
· bk,im .

Definition 6. (Kronecker product) The Kronecker product (⊗) between tensors A ∈ Rn1×n2×···×nd

and B ∈ Rm1×m2×···×md is given by:

C = A ⊗ B ∈ Rn1m1×n2m2×···×ndmd .

In words, the Kronecker product between A and B constructs a new tensor by combining
each element of A with the entire tensor B. This results in a new tensor where each entry
of A is multiplied by the entire tensor B with its dimensions equal to the product of the
dimension sizes of A and B.

If aj1,j2,...,jd
, bk1,k2,...,kd

and ci1,i2,...,id
denote the elements of A,B and C respectively, the

elements of C are computed by:

ci1i2...id
= aj1,j2,...,jd

· bk1,k2,...,kd
,

with ip = jp · kp ∀p ∈ {1, 2, . . . , d}

Definition 7. (Khatri-Rao Product) The Khatri-Rao product (⊙) two matrices A ∈ Rn1×m

and B ∈ Rn2×m is given by:
C = A ⊙ B ∈ Rn1n2×m.

In words it can be described as a column wise Kronecker product where each column of the
resulting matrix is an element-wise outer product of the corresponding columns of A and B.
Note that it is only defined if the second modes of the matrices correspond in size.

If ai, bi and ci denote the i-th column of A,B and C respectively, the i-th columns of C is
then computed by:

ci = ai ⊗ bi

Definition 8. (Convolution) A convolution (⊛) between a tensor A ∈ Rm1×m2×···×md and a
kernel Φ ∈ Rk1×k2×···×kd is given by:

C = A ⊛ Φ ∈ Rm1×m2×···×md .

A.A.Bevelander Master of Science Thesis



2-2 Compressed Sensing Framework 9

At the edges, the convolution is chosen to be valid [10] with the use of zero-padding. The valid
setting makes sure that the convolution is only applied at locations where the two tensors
completely overlap. The zero padding adds zeros around the tensor, such that the edges are
captured fairly as well. This results in a tensor of same size as the original one.
Definition 9. (Vectorization) The vectorization or flattening of a tensor is equivalent to
making a vector out of a tensor. The vectorization of A ∈ Rm1×m2×···×md is given by:

vec(A) = a ∈ R(m1·m2·····md)×1.

Definition 10. (Frobenius norm) The Frobenius norm of tensor A ∈ Rm1×m2×···×md is cal-
culated by summing the squares of each element:

||A||F =
m1∑

i1=1

m2∑
i2=1

· · ·
md∑

id=1
(ai1,i2,...,id

)2.

Note that it is equivalent to the inner product of the vectorization with itself:
||A||F = ⟨vec(A)T , vec(A)⟩.

Definition 11. (CP-decomposition) A CP decomposition of a tensor can be thought of as a
higher order extension of the Singular Value Decomposition. It is formally given as:

A = Σ ×1 B(1) ×2 B(2) ×3 · · · ×d B(d) (2-1)
where the matrices B(k) ∈ Rnk×r are called factor matrices for k ∈ {1, 2, . . . , d} and with
Σ ∈ Rr(1)×r(2)×···×r(d) a super diagonal tensor containing the singular values in ascending
magnitude. Formally, this is denoted as:

σi1,i2,...,id
=
{

λb if i1 = i2 = . . . id for b ∈ {1, 2, . . . , r}
0 else

and λ1 ≥ λ2 ≥ · · · ≥ λr where r is the rank of the decomposition. Note that the k-th column
of each matrix relates to the k-th singular value in Σ.
This last observation allows us to rewrite (2-1) using the definitions of the vectorization and
the Khatri-Rao product as:

vec(A) = (B(d) ⊙ B(d−1) ⊙ · · · ⊙ B(1))


λ1
λ2
...

λr

 . (2-2)

2-2 Compressed Sensing Framework

In many real-world signal processing applications, a measured output y and a measurement
model y = Ax are used to retrieve information about the unknown signal state x. In order
to have a unique solution to the linear system of equations, A should be of full column rank
and y and x should be of same size. Otherwise, if y is larger than x, the system of equations
is overdetermined and its solution can be found using least squares. In the CS framework, the
case in which x only has a few non-zero elements is considered. Exploiting this information,
the signal can be reconstructed with a number of measurements that is smaller than the
original signal size. In order to enable more formal statements and explanations, first a few
key mathematical concepts are defined:

Master of Science Thesis A.A.Bevelander



10 Background

2-2-1 The CS reconstruction problem

In CS, a measurement signal y ∈ Rm is generally considered, originating from a measurement
model:

y = Ax + v (2-3)

where A ∈ Rm×n is the measurement matrix, or sensing matrix, v ∈ Rm a noise vector and
x ∈ Rn the signal. Typically, in CS problems, the number of measurements is chosen to
be m ≪ n such that the signal is compressed. In real-world applications, this can result in
a decrease in the duration of measurement acquisition. Specifically, this can decrease the
time a patient spends in a MRI machine or the time it takes for a radar to detect an object.
Eventually, the original signal x can be reconstructed from the measurements y by solving
the optimization problem [2]:

x̂ = min
z

||z||0

Subject to: ||Az − y||2 ≤ ϵ,
(2-4)

for a small tolerance ϵ ∈ R+. Various equivalent descriptions of this problem exist, all in
order to comply with a specific optimization framework. Also various ways to tackle this
optimization problem exist, but in this thesis, the problem is approached as formulated in
(2-4), optimizing the non-convex ℓ0-norm problem using a greedy approach. Additionally, let’s
consider measurement matrix A. From (2-3) and (2-4), becomes clear that the reconstruction
can only be successful when these matrices are carefully synthesized. Typically, the elements of
A are chosen to be independently drawn from a random distribution. In [11], the performance
of the reconstruction problem, is compared for measurement matrices that are sampled from
different distributions. One of the key conclusions in [11] is that sampling the entries of A
from a random partial Fourier matrix results outperforms the measurement matrices based
on other random distributions such as Gaussian or Bernouli ones.

2-2-2 Reconstruction guarantees

The problem formulation in (2-4) relates to a condition on the number of measurements m.
Namely, given the total length and sparsity of a signal, n and s respectively, the minimum
number of measurement to be taken to achieve exact reconstruction is given by [2]:

m ≥ c s log (s/n) (2-5)

with c ∈ R+ some positive constant, dependent on the data. Another take on reconstruction
guarantees is by considering the notion of coherence.

Definition 12. (Coherence) Coherence is defined as the normalized order of similarity be-
tween the individual columns of the measurement matrix [2]:

µ(A) = max
1≤n1 ̸=n2≤I2

∣∣∣∣ ⟨an1 , an2⟩
∥an1∥2∥an2∥2

∣∣∣∣ ≤ 1 (2-6)

where ai denotes the i-th column of A.

A.A.Bevelander Master of Science Thesis



2-2 Compressed Sensing Framework 11

The coherence is a measure for the quality of the measurement matrix. Intuitively, in the
measurement model in (2-3), the elements of x take a linear combination of the columns of
A. So, if the columns of A are similar, it is harder to identify the reconstruct the signal.
From this line of reasoning, a good measurement matrix is one that has a small coherence.
The relevance of this property becomes even more obvious, when it is known that coherence
directly relates to an upper-bound for the reconstruction error. This relation is different for
each reconstruction algorithm. Moreover, in the extreme case of an optimal sensing matrix,
the coherence is minimized. In this limiting case, the coherence is solely a function of the
dimensions of the sensing matrix. If A ∈ Rm×n [2]:

µ(A) ≥ µwb(A) =
√

n − m

m(n − 1) (2-7)

where µwb(·) represents the Welch bound, or lower coherence bound for a matrix with certain
dimensions. This lower bound is reached if A is an Equiangular Tight Frame or ETF.
For further reading on the ETF, please consider [2]. In spite of the ETF achieving optimal
coherence and therefore favourable reconstruction guarantees, in real-world applications, the
measurement matrices are not always freely designable such that a system practically always
operates above the Welch bound. However, the Welch Bound is related to the best perfor-
mance a CS reconstruction can achieve, given the size of the measurement matrix.
Moreover, in [12] the authors derive reconstruction error bounds that explicitly depend on
the coherence of the measurements matrix. These error bounds also depend on the type of
algorithm used, the signal sparsity and SNR. Since these bounds are key in investigating
the relation between complexity and performance, these will be discussed in depth in later
sections.

2-2-3 Greedy Reconstruction Algorithms

In this section, the class of greedy algorithms will be discussed and one of the algorithms
belonging to this class will be elaborated further. Greedy algorithms refer to those that
iteratively find local optima for the reconstruction problem with the hope of finding a globally
optimal solution [2]. These are greedy as they select the best available option at each iteration
without considering the global consequences of that choice. An example of such an algorithm
is the Orthogonal Matching Pursuit (OMP) algorithm. There are a few reasons that motivate
elaborating this specific algorithm further. RHis algorithm has been used for a long time in
a variety of applications, so a lot of research has already been done that proves the power
of the algorithm. As a result, various modifications to the algorithm exist [13, 2, 14] and
hence it offers the flexibility of choosing a modification that matches the demands of the
specific application. Through this argumentation, the OMP algorithm is chosen to be used
for experiments and modifications in the latter of this thesis. Now, the algorithm will be
elaborated.

Assume an estimate x̃ ∈ Rn for the reconstruction in (2-4) that is iteratively updated,a
measurement matrix A ∈ Rm×n and noise varianve σ2. In that case the likelihood of observing
y under hypothesis x = x̃ is given by [15]:

L(x̃) = 1√
2πσ2

e
||y−Ax̃||2

2σ2 ,
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the corresponding log-likelihood by:

log (L(x̃)) = − log (
√

2πσ2) − ||y − Ax̃||2

2σ2 .

In order to find the maximum, its derivative over dx̃ is taken and set equal to zero:
d

dx̃ log (L(x̃) = − 1
σ2 AT (y − Ax̃) = 0,

hence the maximum likelihood for x̃, under the assumption that x̃ is s-sparse, is given by:

x̃ML = arg min
x̃

|AT (y − Ax̃)| (2-8)

where x̃ML is the maximum likelihood estimator of x. In other words, for the current estimate
x̃, the expression |AT (y − Ax̃)| contains a measure of distance to the optimal estimate x̂ for
each element. In the same line of reasoning, the element of x̃ that is positioned the furthest
from x̂ is given by:

arg max
j

|AT (y − Ax̃)|j . (2-9)

The OMP algorithm uses exactly this reasoning. The full algorithm is shown in Algorithm 1[2]:

Algorithm 1 OMP Algorithm
Require: Measurement vector y ∈ Rm, CS matrix A ∈ Rm×n, desired error bound ϵ

1: Initialize iteration parameter i = 0, estimate x̂0 = 0, empty set S0 = ∅ and residual
r ∈ Rm = y

2: while ||r||2 > ϵ and i < m do
3: i = i + 1
4: ji = argmaxj |AT r|j
5: Si = Si−1 ∪ ji

6: x̃i = arg minz(||y − Az||2, supp(z) ⊂ Si)
7: r = y − Ax̃
8: end while
9: return x̂ = x̃i

In line 4, the algorithm executes the proposed step by selecting the index that is most likely to
result in the smallest residual r. Subsequently, in line 5 this index is added to the support set
S and finally in line 6, the estimation is updated by optimizing only over the indices within
the support set. Once the algorithm has converged, the final estimate is returned. Note that,
since in each iteration, there is only a single index added to the support set, the final estimate
x̂ can have at most i non-zeros entries.
The computational complexity of the algorithm is decomposed step by step in table Table 2-1
[16].

step symbol complexity
4 |AT r| O(n × m)
6 arg minz ||y − Az||2, supp(z) ⊂ Sn O(i3 + 2 · i2 × m + m × i)
7 y − Ax̃ O(n × m + m)

Table 2-1: Computational complexity of the steps in the i-th iteration of OMP
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2-3 Prior-aware CS 13

The complexities of step 4 and 7 consist merely of multiplications. The complexity in line 6
is equivalent to that of the Least-Squares solution:

(AT
Si

ASi)−1AT
Si

y

where ASi ∈ m × i grows one column per iteration. For a reasonable number of iterations i,
the cost is dominated by that of the matrix inverse that requires i3 + i2 · m multiplications,
with the worst case at i = m. Hence, by conclusion the complexity of the OMP algorithm is
of O(i3).
Next, as proposed in subsection 2-2-2, different algorithms have a coherence-based reconstruc-
tion guarantee. In [12], the guarantee of OMP is derived. It states that for v ∼ N(0, σ2I)
and sparsity s, given the measurement model:

y = Ax + v

if it holds that:
|xmin| − (2s − 1)µ|xmin| ≥ 2σ

√
2(1 + α) log m (2-10)

with some positive constant α ∈ R+ and |xmin| is the minimal signal amplitude, then we can
define a probability:

p(Λx) ≥ 1 − 1
mα
√

π(1 + α) log m
, (2-11)

where p(Λx) is the probability that the OMP algorithm both identifies the correct support
Λx and respects the error bound:

||x̂ − x||22 ≤ 2(1 + α)
(1 − (s − 1)µ)2 sσ2 log m. (2-12)

Note that the condition in (2-10) depends on measurement matrix A and the signal x itself.
The fact that |xmin| is used, is to make sure that the signal has sufficient amplitude to
overcome under noise. Also note that, since µwb ≤ µ ≤ 1, conclusions about coherence can
be drawn based on (2-10) and (2-12) the performance bound increases with increasing µ.
Namely, (2-10) is more easily fulfilled if µ is small. (2-12) likewise shows that an increasing µ
relates to an increasing performance bound. Hence, as expected, a small coherence is desirable
as it achieves tight bounds on the reconstruction quality, this coherence can be as small as
the Welch bound in the best case.

2-3 Prior-aware CS

In CS, the sparse property of a signal is exploited, but what if a signal varies slowly along a
certain dimension? In that case, is useful to propagate this correlation information to signals
alongside this dimension, which might result in an improved reconstruction performance. In
this section, some prior-aware CS algorithms from existing literature are discussed.
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2-3-1 Dynamical Compressed Sensing

If the signal is temporally correlated, it helps to incorporate some dynamic model that de-
scribes the evolution of the signal over time within the algorithm. This is the idea in the
Dynamical CS (DCS) framework. A formal definition for DCS does not yet exist as thus far,
algorithms are tailored to applications. However, in an attempt to generalize this framework,
it can be noted that DCS commonly consists of a normal CS reconstruction problem with the
addition of a dynamical prior. A formal description is shown in (2-13)

x̂t = min
z

||z||0

Subject to:
Az = y
z = f(x̂t−1)

(2-13)

where the operator f(·) describes some dynamic model. To illustrate this visually, consider
Figure 2-1, which shows subsequent snapshots of the classical Poing game. The game consists

(a) t = 0 (b) t = 1 (c) t = 2

Figure 2-1: Subsequent frames of the Poing game

of a static background, two dynamic bats and a dynamic ball. For the dynamic components
in the game, a dynamic model can be made that predicts the position and velocity of these
components in the next frame. In the figure for instance, it is clear that the ball moves
towards the right corner and the right bat moves upwards. If now these frames are now
sensed in a compressed way, the dynamics of the bat and the ball can be used to improve the
reconstruction of subsequent signal frames.

Numerous publications consider this dynamical problem [17, 18, 19], but these are beyond
the scope of this thesis due to their level of tailoredness. The problem as formulated in
the research questions is of different origin. Instead of propagating prior information over a
temporal dimension, the prior is propagated between different blocks within the signal. Until
now, little research has been conducted on this topic.

2-3-2 Logit Weighted OMP

The incorporation of prior information that is not per se time-dependent into a CS problem,
is described in [20]. This paper, derives information theoretic measurement bounds, such as in
(2-5), based on the amount of prior information available. Besides, it proposes a modification
to the OMP Algorithm 1, that directly incorporates this prior information into the algorithm
to result in the Logit Weighted OMP (LW-OMP) Algorithm, visualized in Algorithm 2. In
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2-3 Prior-aware CS 15

this algorithm, the vector p ∈ Rn describes prior probabilities for each element in x ∈ Rn

being non-zero. The difference with the original OMP algorithm is visible in lines 4 and 5. In
line 4, a weighting factor ck is calculated. This factor is dependent on the desired sparsity of
the solution κ, the iteration number k, a user defined positive constant g and the measurement
noise σ:

ck = g

2

(
2(κ − k) − 1 + 2

(
σ

g

)2
)

,

where the term g
2 relates to a heuristically chosen weight factor, (κ−k) relates to the number

of non-zero components that yet have to be found, and (σ
g )2 is chosen to be increasing with

σ, which imposes more weight on the prior when measurements are noisy and less when they
are clear. In line 5, ck is multiplied with the term p̄ that originates from the column stacking
of log

(
pi

1−p1

)
for i{1, 2, . . . , n}. This term, that increases with increasing amount of prior

information, realizes a contribution of the prior information on the support identification
step in line 5. Other weight terms than the ck in the algorithm are investigated in the paper,
but the one listed here was found to be the best among considered. The full derivation of
this weight term can be found in the appendix of [20].

Algorithm 2 LW-OMP Algorithm [20]
Require: measurement vector y ∈ Rm, matrix A ∈ Rm×n, desired sparsity level κ, aver-

age amplitude of the non-zero components g, prior vector p ∈ Rn that describes the
probability of each entry of x being non-zero.

1: Initialize iteration parameter k = 0, estimate x̃0 = 0, empty set S0 = ∅ and calculate
p̄ ∈ Rn as the column stacking of log

(
pi

1−p1

)
for i{1, 2, . . . , n}

2: while k < κ do
3: k = k + 1
4: ck = g

2

(
2(κ − k) − 1 + 2

(
σ
g

)2
)

5: jk = argmaxj

(∣∣∣|AT (y − Ax̃)| + ckp̄
∣∣∣)

j

6: Sk = Sk−1 ∪ jk

7: x̃k = arg minz(||y − Az||2, supp(z) ⊂ Sk)
8: end while
9: return x̂ = x̃k

To illustrate the LW-OMP algorithm, again consider the snapshots from the Poing game in
Figure 2-1. Now instead of a dynamical model, a prior can be constructed, for instance by
defining a probability distribution based on distance to the ball. The further away from the
ball, the less likely that in the subsequent frame, the ball is there. Hence, a prior distribution
over the whole signal is constructed that can be taken into account in the support identification
of the LW-OMP algorithm and so, information from the reconstruction of one frame is used
as prior information for the reconstruction problem of the next frame.
In this thesis, the prior-aware CS problem is solved using LW-OMP, a modification of OMP.
The increase in computational complexity by shifting from OMP to LW-OMP is equal to
O(n + log n), as line 4 requires 5 multiplications, which is negligible, and line 5 has complex-
ity O(n + log (n)). In the limiting case that the sparsity level close to zero, there is barely
any prior information due to which the prior term p̄ will be close to zero as well. However,
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when the values of p̄ tend to get larger, this term possibly dominate the support selection
in line 5, as the log function may return a very large argument. Also, the parameter g is
user-determined and requires a heuristic tweaking procedure in order to find a value that
works for the specific application.

2-4 Block Compressed Sensing

The motivation for the synthesis and use of BCS is to reduce memory storage of the traditional
CS problem when signals are large. In this section, the general BCS framework is introduced,
the storage complexity is analysed and relevant literature is discussed.

2-4-1 BCS framework

Instead of the traditional CS framework, as presented in (2-3) and (2-4), in BCS, the mea-
surements are taken in a block-wise fashion [6, 7, 8]. Formally, consider a signal x ∈ Rn,
measurements y ∈ Rm, noise v ∈ Rm, and sensing matrix A ∈ Rm×n in the traditional CS
framework. In BCS, the problem is divided into β blocks, resulting in β CS sub-matrices, β
signal blocks, β measurement blocks and β noise blocks, for the b-th block of the signal, the
CS matrix is denoted by Ab ∈ R

m
β

× n
β , the b-th signal block by xb ∈ R

n
β , the b-th measure-

ment block and noise block by ybvb ∈ R
m
β where b ∈ {1, 2, . . . , β}, in BCS, the standard CS

measurement model, as in (2-3), can be written as:


y1
y2
...

yβ

 =


A1 0 . . . 0

0 A2
. . . ...

... . . . . . . 0
0 . . . 0 Aβ




x1
x2
...

xβ

+


v1
v2
...

vβ

 . (2-14)

As briefly mentioned, the motivation for development of this framework was to reduce storage
complexity. The CS measurement matrix in BCS is block-diagonal, as seen from (2-14).
Note that this property of the A matrix introduces independence of yb on xp where p ̸= b.
In other words, the measurement model of (2-14) can be written as:

yb = Abxb + vb (2-15)

for b ∈ {1, 2, . . . , β}.

Now assume n to be the number of signal entries and κ determines the compression ratio,
such that m = κn is the total number of measurements taken. Then the storage complexity
of the ordinary CS matrix is given by O(κn2),
i.e., the number of elements in A. The BCS problem requires the storage of β sub-matrices,
having a storage complexity of

O(β · κ

(
n

β

)2
) = O

(
κ

n2

β

)
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2-4 Block Compressed Sensing 17

which is decreased by a factor β when compared to the standard CS matrix. The BCS
reconstruction problem is then given by

x̂b = min
z∈Rn

||z||0 Subject to: ||yb − Abzb||2 ≤ ϵb for b ∈ {1, 2, . . . , β}. (2-16)

The reconstruction is executed in block-wise fashion. In [21], the authors already note the ad-
vantage in computational complexity of the reconstruction for the BCS framework. However,
until now there is no available literature discussing the computational complexity of BCS and
the relating reconstruction performance.

2-4-2 The asymmetry problem

In prior work on BCS, the application is often in the field of image processing [6, 8]. However, if
sparse components in the image are clustered together, the uniformly partitioned structure of
(2-14) will yield asymmetric distribution of the sparse components across the signal partitions.
Such a distribution is shown in Figure 2-2.

(a) X (b) Partitions over X (c) Partitions over ΠX

Figure 2-2: Partitioning in BCS for a sparse image

In this case, all the non-zero components lie within a single block, all the other blocks do not
contain any non-zero components. The measurement relating to these "empty" blocks hence
do not contribute to the reconstruction problem as a whole. In order to address this problem,
the authors of [22] propose an adaptive measurement procedure. This means that based on
the original signal, the different signal blocks are measured by taking a different number of
measurements. This relates to (2-14) with each yb a different number of elements. Hence, more
measurements can be dedicated to partitions that contain more non-zero components and vice
versa. The advantage of this method, is that in this way, the measurements can be properly
distributed over the partitions. However, this method requires extensive prior knowledge of
the signal. In image reconstruction, this might be the case, but in real-time measurement
acquisition, this assumption cannot be made. Another way to tackle the asymmetry problem
is by making sure that each block contains more or less an equal number of sparse components.
This idea is presented in [23]. The corresponding framework, relating to (2-14), is given by:

y1
y2
...

yβ

 =


A1 0 . . . 0

0 A2
. . . ...

... . . . . . . 0
0 . . . 0 Aβ

Πx +


v1
v2
...

vβ

 (2-17)
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where Π ∈ Rn×n is a permutation matrix that accommodates for an arbitrary partitioning
structure. By choosing Π at random, ΠX is a randomly permuted revision of X. Such
permutations randomly distribute the non-zero components across different partitions. In
[23], the authors propose a strategy, applied on 2-D image data, on how to symetrize the BCS
problem. This is done by permuting columns of each 2D block, such that each permuted block
contains an equal number of sparse component. Let X ∈ Rn1×n2 be a signal and β ∈ N+\0
the number of partitions such that

√
β ∈ N. The permutation method proposed in [23],

equivalent to ΠX in (2-17), can then be explained by:

1. Define initial blocks: X̃1, X̃2, . . . , X̃β ∈ R
n1√

β
× n2√

β

2. Create block-flat matrix by concatenating over the first dimension: X̃flat = [X̃1, X̃2, . . . , X̃β] ∈

R
n1√

β
×n2

√
β

3. Derive permutation:

(a) Initialization: Let there be β number of empty sets and score parameters:

J1 = J2 = · · · = Jβ = ∅, s1 = s2 = · · · = sβ = 0

(b) ℓ0-norm sorting: Sort the columns of X̃flat according to their ℓ0-norm. Save the
sorted indices in k and the sorted signal vector in b:

k = arg sortj((||x̃flat||0)j)
b = sortj((||x̃flat||0)j)

(c) Sort the score variables sw1 ≤ sw2 ≤ · · · ≤ swp

(d) Distribute the first β entries of k to the smallest score parameters and add the
corresponding indices to the related sets:

swi = swi + bi ∀i ∈ {1, 2, . . . , β}
Jwi = Jwi ∪ ki; ∀i ∈ {1, 2, . . . , β}

(e) Remove the first β elements from b and k

(f) Repeat step 3-5. until k and b are empty.

(g) Ji contains the column indices that are in the i-th partition

The execution of this pseudo-code gives rise to an equal distribution of the sparse components
over the different measurement blocks. However, this method has a few drawbacks. First of
all, prior information about the signal is required to design a proper permutation strategy.
Secondly, this column-wise partitioning strategy only works properly if there are enough
columns containing non-zero elements. In the limiting case, where one single column contains
all the sparse components, a column-wise permutation strategy will not work. Hence the
application of this method requires some assumptions on the signal.
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2-5 Extension to higher order settings

The standard CS framework and corresponding algorithms work with 1-dimensional signals.
In essence, if a signal is of higher dimension, it could be flattened before feeding it through
the CS pipeline, but with a higher number of dimensions, the problem size might grow sig-
nificantly. Another way to approach this, is by extending the CS algorithm to higher orders.
In this section, a multi-dimensional description of the already discussed CS frameworks and
relevant algorithms are elaborated.

2-5-1 Higher order framework

Reconsider the measurement model and reconstruction problem in (2-3) and (2-4) respectively.
Now instead of having a one dimensional signal, consider a signal X ∈ Rn1×n2×···×nd . In that
case the measurement model reads:

Y = X ×1 A(1) ×2 A(2) ×3 · · · ×d A(d). (2-18)

In which A(k) ∈ Rnk×mk ∀k ∈ {1, 2, . . . , d} are factor matrices and Y ∈ Rm1×m2×···×md is the
compressed measurements tensor. Using this, the reconstruction problem for higher orders
can be defined as:

X̂ = min
Z

||Z||0

Subject to: Y = Z ×1 A(1) ×2 A(2) ×3 · · · ×d A(d).
(2-19)

Greedy methods to approach this problem are discussed in subsection 2-5-2.

2-5-2 Higher order CS algorithms

To solve the problem in (2-19), various approaches exist. Before, the OMP algorithm was
explained in subsection 2-2-3, so in order to keep consistency, a higher order extension to this
algorithm is now presented. First of all, recall the definition of the CP-decomposition from
subsection 2-1-2. Now assume that a tensor X is sparse, then a CP-decomposition can be
fitted on X, such that the super-diagonal tensor of the decomposition contains all the sparse
components of X. In that case, under the assumption that the factor matrices A(i) remain
unchanged, the measurement model can be rewritten using the Khatri-Rao product rule:

Y = Λ ×1 A(1) ×2 A(2) ×3 · · · ×d A(d)

=⇒ vec(Y) = (A(d) ⊙ A(d−1) ⊙ · · · ⊙ A(1))vec(Λ)
(2-20)

where Λ ∈ Rn1×n2×···×nd with Λi1,i2,...,id
=
{

λk k = i1 = i2 = · · · = id

0 else
. Using these equali-

ties, a higher order OMP algorithm can be derived. Analogously with the maximum likelihood
derivation in subsection 2-2-3, an equivalent description for the identification of the maximum
component Equation 2-9 can be extended as:

arg max
j1,j2,...,jd

|R ×1 A(1)T ×2 A(2)T ×3 · · · ×d A(d)T |j1,j2,...,jd
(2-21)
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with R ∈ Rn1×n2×···×nd the residual corresponding to the current estimate X̃ such that:

R = Y − (X ×1 A(1) ×2 A(2) ×3 · · · ×d A(d)).

Henceforward, (2-21) outputs the indices of the component that is most likely to be non-zero.
Using (2-20), now the problem can be written towards a least squares problem. The algorithm
as a whole is presented in Algorithm 3 [24].

Algorithm 3 K-OMP algorithm [24]
Require: Compressed measurements Y ∈ Rm1×m2×···×dmd , normalized factor matrices

A(k) ∈ Rmk×nk , k ∈ {1, 2, . . . , d}, desired error bound ϵ
1: Initialize iteration parameter i = 0, estimate x̂0 = 0, empty set S0 = ∅ and residual

R = Y
2: while ||R||2F > ϵ and i < Πd

k=1mk do
3: i = i + 1
4: j

(i)
1 , j

(i)
2 , . . . , j

(i)
d = arg maxj1,j2,...,jd

|R ×1 A(1)T ×2 A(2)T ×3 · · · ×d A(d)T |j1,j2,...,jd

5: S
(i)
k = S

(i−1)
k ∪ j

(i)
k ∀k ∈ {1, 2, . . . , d}

6: W(k)(: .i) = A(k)(:, j
(i)
k ) ∀k ∈ {1, 2, . . . , d}

7: x̃i = arg minz ||vec(Y) − (W(d) ⊙ W(d−1) ⊙ · · · ⊙ W(1))z||2F
8: vec(R) = vec(Y) − (W(d) ⊙ W(d−1) ⊙ · · · ⊙ W(1))z
9: end while

10: return {S1, S2, . . . , Sd}, z

The algorithm outputs a vector z ∈ Riend and index sets Sk ∀k ∈ {1, 2, . . . , d}, such that
|Sk| = iend where iend is the iteration at which the algorithm stopped. Now the original signal
X can be reconstructed by initializing an empty tensor X̂ and fill it in using:

X̂
s

(i)
1 ,s

(i)
2 ,...,s

(i)
d

= zi

where s
(i)
k is the i-th element of Sk, i ∈ [1, iend] and k ∈ {1, 2, . . . , d}. The computational

complexity of this algorithm is decomposed into Table 2-2.

step symbol complexity
identification |R ×1 AT

1 ×2 AT
2 ×3 · · · ×d AT

d | O(dmd−1n)
Least-Squares arg minz ||vec(Y) − (Wd ⊙ Wd−1 ⊙ · · · ⊙ W1)z||2F i3 + 2 · i2 × md + md × i

Residual vec(R) = vec(Y) − (Wd ⊙ Wd−1 ⊙ · · · ⊙ W1)z md

Table 2-2: Decomposed Computational Complexity K-OMP

2-5-3 Higher order prior-aware Block Compressed Sensing

To the best of our knowledge, no prior work exists on combining a higher order CS reconstruc-
tion algorithm with a prior-aware approach. Note that, although in DCS, signals are often
of higher order, in the reconstruction step they are flattened to fit the 1-D reconstruction
algorithm [17, 19, 18]. The same goes for BCS of high dimensional signals, where all the
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blocks are flattened before reconstruction [6, 21, 23].
Nevertheless, with the potential of both frameworks clearly shown, it would be interesting to
investigate the performance of a higher-order prior-aware BCS algorithm.
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Chapter 3

Experiments and result

This chapter contains the contribution in this thesis. section 3-1 gives a summary of the
experiments upfront, such that it is clear to which research question the experiments are
assigned. Next, section 3-2 contains the main contributions in the form of a preprint of the
conference paper. Lastly, section 3-3 discussed some experiments that relate to the research
questions, but which did not within the scope of the paper. These are mainly about motivating
the choice for partitioning strategies and about the higher order CS setting.

3-1 Block Compressed Sensing experiments setup

The aim of this section is to formally introduce an approach to analyse the computational
complexity Block Compressed Sensing and its extensions. The paper in section 3-2, considers
some topics only very briefly, these are elaborated here. Also, experiments regarding higher
order CS methods, which are not present in the paper, are motivated and synthesized here.
The results to these experiments are given in section 3-3.

This section is built-up, by first clarifying the problem that is central in the analysis and
experiments in this thesis. Next, subsection 3-1-2 gives an overview of all the experiments
that are conducted in this thesis. They are subdivided into those presented in the paper and
those presented in section 3-3. The research questions to which the experiments apply are
repeated. Lastly, the datasets that are used in the experiments are explained and motivated
in subsection 3-1-3.

3-1-1 Problem description

In chapter 2, the trade-off between the complexity and quality of the reconstruction is men-
tioned for various frameworks. However, the idea that defining a larger number of blocks
relates to a decrease in both complexity and quality of the reconstruction hasn’t been studied
before. The aim in this work is to study this issue by performing theoretical analysis and
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designing experiments for BCS and its prior-aware a higher order extensions, such that the
reconstruction quality can be studied in case computing power or time is restricted. The
theoretical analysis is performed in the paper and reconsiders the notion of coherence (2-6)
to derive error bounds for BCS. The experiments validating this analysis are discussed next.

3-1-2 Experiments

To properly investigate the properties of BCS, a number of experiments can be designed.
These are now presented, divided in those presented in the paper in section 3-2 and those
presented in section 3-3.

Within the paper

The experiments in the paper in section 3-2 focus on the trade-off between complexity and
performance of the reconstruction in BCS and investigate if this can be improved by incorpo-
rating prior information. The latter is done by using the LW-OMP algorithm and designing a
pipeline on handling prior information in the BCS framework. The experiments in the paper
can be motivated by a recap to the research questions of this thesis:

• How does reconstruction performance change with the number of blocks in a BCS prob-
lem? - (Sub-question 1)

• What is the change in computational complexity of the reconstruction when applying a
BCS algorithm? - (Sub-question 3)

• How can relevant prior information be propagated between different blocks in a BCS
reconstruction and at what computational cost? - (Sub-question 4)

These will be investigated by performing the following experiments:

• Compare the reconstruction performance of a BCS problem with a varying number of
blocks, given a fixed SNR, measurement ratio and signal.

• Compare the execution time of a BCS problem with a varying number of blocks, given
a fixed SNR, measurement ratio and signal.

• Compare the performance of BCS problems, executed with either traditional CS, or a
prior-aware extension.

• Compare the reconstruction execution time of a BCS problem, executed with either
traditional CS, or a prior-aware extension.

Auxiliary experiments

As stated in section 1-4, some research conducted in this thesis does not fit in the scope of
the paper. Therefore, some analysis and experiments are discussed in section 3-3. These aim
to respond to the following research questions:
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• What is a proper strategy to partition a CS problem? - (Sub-question 2)

• How does the prior-aware BCS framework extend to higher order CS algorithms? -
(Sub-question 5)

These will be investigated by performing the following experiments:

• Compare the reconstruction performance of a BCS problem with different permutation
strategies, given a fixed number of blocks, SNR, measurement ratio and signal.

• Analyse whether it is possible to extend the BCS procedure and LW-OMP algorithm
to a higher order setting

3-1-3 Data set

For all the experiments in the paper, a synthetic 4D nearfield communication dataset is
used. It is retrieved from [25]. This dataset is suitable for the experiments as it has higher
order features, it has a sparse 4D-DFT and the non-zero components are typically clustered
together. The latter property is useful, as it emphasizes the weakness in traditional BCS
towards clustered signals, as described in section 2-4. The exact signal model and dynamics
are outside the scope of this thesis. For experiments in section 3-3, another synthetic dataset
is used that creates a simple 2D sparse signal that has its non-zero entries clustered in a circle
at a random position.

3-2 Paper

This section presents a preprint of our conference paper that will be submitted to the Eu-
ropian Signal Processing Conference (EUSIPCO) 2024. EUSIPCO is a well-established yearly
conference in signal-processing related topics. The analysis on the tradeoff between recon-
struction quality and the computational complexity is novel and therefore it would make a
suitable submission. As mentioned before, the paper makes contributions on studying theo-
retical reconstruction bounds for BCS and the design of a prior-aware extension to the BCS
framework.
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Abstract—For high dimensional signals, traditional Com-
pressed Sensing (CS) reconstruction becomes computationally
expensive, as algorithms often grow rapidly with the num-
ber of signal entries. In Block Compressed Sensing (BCS), a
Compressed Sensing (CS) problem is partitioned into several
independent sub-problems. However, until now, BCS has merely
be approached from a storage complexity perspective. In this
paper, theoretical reconstruction bounds are considered for the
BCS problem, dependent on the number of blocks and it was
found that an increasing number of blocks theoretically decreases
the reconstruction performance. Next, the reconstruction per-
formance of the BCS setting is investigated by experiment and
finally, a prior-aware method is synthesized that is able to prop-
agate correlation information among the blocks to compensate
for the reconstruction loss.

Index Terms—Divide-and-Conquer, Block Compressed Sens-
ing, Prior Aware, Coherence, large arrays

I. INTRODUCTION

Sparse signals can efficiently be stored and reconstructed
using compressed sensing (CS) techniques. These are widely
used in signal processing applications such as imaging and
radar. Due to the use of large arrays in advanced imaging
and radar systems, the signals in these applications are high
dimensional. With state-of-the-art CS methods growing rapidly
in complexity with the number of signal entries, dealing with
these signals soon becomes problematic in real-time recovery,
as it imposes increased time and energy consumption.

This paper proposes a way to decrease computational
complexity of the compressed sensing problem, by taking a
divide-and-conquer approach, or taking advantage of the block
compressed sensing (BCS) framework [1]. In this framework
namely, the CS problems is partitioned into β sub-problems,
with each sub-problem having a computational complexity
less than 1

β times the initial complexity. Besides, this paper
will demonstrate that the block structure of the CS matrices
in BCS influences the theoretical reconstruction guarantees.
Particularly, increasing the number of blocks in BCS relates
to an expected decrease in reconstruction performance. The
problem thus shows a trade-off between complexity and recon-
struction quality: a decrease in complexity relates to a decrease
in reconstruction performance. Furthermore, using the BCS
framework allows for the parallel reconstruction of the sub
problems as these are completely independent. In addition, if
the sub-problems are solved in series, the reconstruction result
of one sub-problem can be used as prior information for the
subsequent one, in order to compensate for the performance
loss.

The divide-and-conquer approach is naturally related to
Block compressed sensing (BCS). Prior work on BCS is driven
by the desire for storage complexity reduction [2]–[4]. Recon-
struction in the BCS framework works well with the number
of sparse components well distributed among the blocks, but
when this can not be assumed, for instance in case of clustered
data, the reconstruction performance is severely affected. In
[5], this problem is addressed by determining the number of
measurements taken per block on its expected sparsity level.
Implementation of this method, however, is rather complex and
requires prior information on the signal. On the other hand, [3]
proposes a permutation of the block-columns of a 2-D signal.
Here, the authors propose an algorithm that equally distributes
the number of sparse components over the blocks. On prior-
aware CS, prior work has been published under Dynamical
compressed sensing, such as in [6]–[8], exploiting a temporal
correlation alongside a signal dimension by incorporating a
dynamical model in the reconstruction problem. Besides, in
[9] the authors assume a prior that is not per se temporal
correlated. Instead, a prior probability for each signal entry
is used in the support identification. Lastly, [10] presents
empirical evidence for the influence of the partitioning of a CS
problem relating to a change in reconstruction performance.
However, a more theoretical approach can be formulated, by
explicitly considering the coherence of a CS problem versus
the number of partitions.

This paper makes a number of contributions. Namely, in
section 2B, a computational complexity analysis of the BCS
framework is made. Next, in seciton 2C, the theoretical
reconstruction performance for the BCS problem is presented
in relation with the number of sub-problems and section 3
proposes a pipeline that combines BCS with a prior-aware CS
algorithm, such that prior information can be propagated from
one partition to another.

Notation: a ∈ R denotes a scalar, a ∈ Rn a vector,
A ∈ Rn1×n2 a matrix and A ∈ Rn1×n2×···×nd a d-th order
tensor. Indexing starts at 1 and is shown as subscript. The
convolution of the tensors A and B ∈ Rm1×m2×···×md

is denoted by C = A ⊛ B ∈ Rk1×k2×···×kd

where ki = max(ni,mi) i ∈ {1, 2, . . . , d}, such
that the elements of C are given by ci1,i2,...,id =∑n1

j1=1

∑n2

j2=1 . . .
∑nd

jd=1 aj1,j2,...,jd · bi1−j1,i2−j2,...,id−jd .
Lastly, the Frobenius norm of tensor A ∈ Rn1×n2 is given by
||A||F =

∑n1

i1

∑n2

i2
· · ·∑nd

id
|ai1,I2,...,id |2.



II. DIVIDE-AND-CONQUER STRATEGY

A. Motivation

In traditional compressed sensing, a signal x ∈ Rn is
measured using a matrix A ∈ Rm×n under noise v ∈ Rm,
obtaining measurements y ∈ Rm using:

y = Ax + v (1)

Afterwards, the original signal can be reconstructed using the
compressed measurements:

x̂ = min
z∈Rn

||z||0 Subject to: ||y − Az||2 ≤ ϵ (2)

with a small positive number ϵ. Let’s now consider the widely-
used class of greedy algorithms for this reconstruction. These
algorithms are known to have an order of complexity of at
least O(m × n), originating from an indispensable matrix-
vector multiplication. In case of a high dimensional signal, n
and m both increase rapidly, having a devastating influence
on the computational complexity of the reconstruction and
hence on the reconstruction time. This phenomenon makes
CS reconstruction for high dimensional signals infeasible for
real-time applications.

B. Computational Complexity for BCS

In this work, the complexity problem is addressed by divid-
ing the problem into smaller ones. This divide-and-conquer
approach naturally relates to the BCS framework. Until now,
BCS has merely been approached from a storage complexity
point of view, so let’s go about its computational complexity
properties. For a block-diagonal matrix A ∈ Rm×n, a signal
x ∈ Rn, measurements y ∈ Rm, noise v ∈ Rm and the number
of blocks β, the measurement model of (1) translates into the
BCS measurement model:




y1

y2
...

yβ


 =




A1 0 . . . 0

0 A2
. . .

...
...

. . . . . . 0
0 . . . 0 Aβ



Πx +




v1

v2

...
vβ


 (3)

where Ab ∈ R
m
β ×n

β , and yb, vb ∈ R
m
β denote the b-th blocks

of the corresponding-arrays for b ∈ {1, 2, . . . , β}. The matrix
Π ∈ Rn×n is a permutations matrix that arbitrarily x. Note
that in each row and each column of Π, only a single 1 can
be present, the rest of the matrix is zero. Where the storage
complexity of the CS measurement model in (1) was O(m×
n), its BCS equivalent is decreased to β ·O(mβ × n

β ), yielding a
total decrease of a factor β. If next, the reconstruction problem
for BCS, equivalent to (2), with x̄b ∈ R

n
β , yb, vb ∈ R

m
β and

Ab ∈ R
m
β ×n

β as the b-th permuted signal block, measurement
block, noise block and measurement sub-matrix respectively,
is defined as:

ˆ̄x = min
z∈Rnβ

||z||0 Subject to: ||yb − Abz||2 ≤ ϵ (4)

Then, the computational complexity, again for the class of
greedy algorithms, is equal to β times the complexity of the
sub-problem, or β ·O(mβ × n

β ). Compared to the computational

complexity of (2), again a decrease of a factor β. Finally, as
is clear from (4), the sub-problems are independent, enabling
them to be reconstructed in parallel. In the best case, all β sub-
problems can be handled in parallel, yielding a complexity
decrease of another factor β, or β2 with respect to the
traditional CS reconstruction.

C. Coherence-based reconstruction guarantees
With the previous section showing that the computational

complexity can be decreased using BCS, now the reconstruc-
tion guarantees for BCS are analysed using coherence as a
tool. This guarantee relates directly to an upper bound of
the reconstruction errors when BCS is executed Orthogonal
Matching Pursuit (OMP) [11], which belongs to the class of
greedy algorithms. First of all consider the definition of the
mutual coherence of matrix A ∈ Rm×n [12]:

µ(A) = max
1≤m ̸=n≤I2

∣∣∣∣
⟨am, an⟩

∥am∥2∥an∥2

∣∣∣∣ ≤ 1 (5)

Note that it is lower bounded by the Welch [13] bound:

µ(A) ≥
√

n−m

m(n− 1)
(6)

which applies in case A is an equiangular tight frame [14], or
a collection of unit vectors where the pairwise inner products
have equal magnitudes. A small coherence generally relates
to a good choice for a sensing matrix and thus favourable
reconstruction guarantees. Note that the Welch bound in (6)
only depends on the size of the measurement matrix. Note
that this bound relates to the traditional CS framework of
(1) and (2). When applying the divide-and-conquer method,
equivalent to (4), the new expression for the coherence upper
bound becomes:

µ(A) = max
i∈{1,2,...,β}

µ(Ab)

≤
√

n
β − m

β
m
β (nβ − 1)

(7)

which only depends on β for fixed dimension sizes m and
n. This implies the possibility to consider the coherence as a
function of the number of blocks, which makes it clear that
an increase in the number of blocks relates to a monotonic
increase in the coherence lower bound. Using contributions
from [11], this can be linked to a lower bound of the
reconstruction performance of OMP. The NMSE error bound
is given by:

||x̂ − x||22 ≤ 2(1 + α)

(1− (s− 1)µ)2
sσ2 logm (8)

given that the sparse components in x satisfy a condition on
their magnitude, ensuring that they can be separated from the
present noise. Hence, the relation between the NMSE upper
bound and the number of blocks can be visualized for the
OMP algorithm, as is done in Fig. 1. From this figure, it seems
that reconstruction guarantees rapidly worsen with increasing
number of blocks. Besides, it shows that, for a small number of
measurements m, the bound is less affected by an increasing
number of blocks.



Fig. 1: NMSE upper bound in (7) as a function of the number of
blocks for the OMP algorithm

III. PRIOR INCORPORATION

Reconsider Fig. 1 and the conclusion that the divide-and-
conquer approach increases the reconstruction upper bound. To
compensate for this loss in reconstruction quality, correlation
in the sparse signal can be exploited and used in the recon-
struction. This section aims to derive a framework that is able
to perform BCS reconstruction in series, while propagating
prior information from one sub-problem to another. To do so,
a high level overview of the steps, used in the framework are
mentioned and visualized.

1) Initialize: Consider a signal X ∈ R4×4 and a number of
partitions β = 4.

2) Partitioning: A partitioning strategy is chosen, such
that all four partitions contain 4 signal entries. In Fig.
2a, each square represents a single signal entry. The
entries filled wit the same icon are assigned to the same
partition.

3) Measurement process: For all partitions, compressed
measurements are taken using the measurement model
in (3).

4) Reconstruct one partition The entries belonging to an
arbitrary first partition are reconstructed, visible in Fig.
2b. The information used for the reconstruction here, is
merely the compressed measurements that relate to the
signal entries in the specific partition,

5) Collect prior information: The current reconstruction is
convoluted with a kernel describing statistical correlation
of the signal. In Fig. 2, the correlation kernel is of size
R3×3 and the gray-scale relates to the amount of prior
information available.

6) Reconstruct one partition using measurement and prior
information: Using the available prior information, first
the partition that has most prior information available
is chosen. Next, the reconstruction problem for this
partition is solved. Sources of information are both
measurements and the available prior information.

7) Repeat steps 5 and 6 until all partitions are reconstructed.

A. Development

To develop the above enumeration into a concrete frame-
work, a couple of questions need answering. First of all, in
bullet 2, a partitioning strategy is mentioned, but what strategy
should be implemented, or how should matrix Π in (3) be
designed? Next, in bullet 5, a correlation kernel is mentioned.
How is such a kernel synthesized and why is it valid to be
used? Finally, bullet 6 mentions a reconstruction algorithm to
which both measurement and prior information are fed. What
algorithm is well-suited for the execution of this task?

To start with the first question, finding a right permutation
strategy is, as mentioned before, a well-known question within
BCS. In this paper the permutations are done following a
comb-like structure as is introduced in [15]. This permuta-
tion strategy is chosen as it doesn’t require prior up-to-date
information about the signal and works well in the case of
a clustered signal. The comb-like structure is equivalent to
that of Fig. 2a, where clearly the periodical comb-like pattern
arises.

Also, the last question can be answered easily. The Logit-
Weight OMP (LW-OMP) algorithm [9] namely, is a simple
modification to OMP. Besides measurements, it takes prior
information and a single hyper-parameter as inputs and is
therefore a suitable candidate. The difference with OMP is
only an additive term in the support identification step. For
measurement matrix A ∈ Rm×n, rk the residual at iteration
k, p ∈ Rn a vector containing the prior information and ck+1

a constant depending on the iteration number k, define p̄ to
be the column stacking of log

(
pi

1−p1

)
for i{1, 2, . . . , n}. the

LW-OMP support identification is given by:

jk+1 = arg max
i∈{1,2,...,n

∣∣∣|AT rk|+ ck+1p̄
∣∣∣
i

(9)

Clearly, without the addition of ck+1p̄, the support identifica-
tion is equal to that of ordinary OMP.

Lastly, the question concerning the correlation kernel re-
quires more elaborate reasoning. The kernel is created using a
data-driven approach in a deterministic way. The creation of
the kernel requires one, or a series of signals that are similar to
those to be reconstructed. Its design process is summarized in
the following pseudo-code: This simple algorithm calculates

Algorithm 1 Correlation Kernel creation

Require: Signal X ∈ Rn1×n2×···×nd with non-zero entries
having indices in set S.

1: Initialize empty kernel Θ = 0 ∈ R3(1)×3(2)×···×3(d) and
define its middle element as Θ[2, 2, . . . , 2].

2: for Index in S do
3: Put Θ on the signal such that its middle element

coincides with Index
4: All entries in Θ that coincide with a non-zero in the

signal are raised by 1, the middle element is kept at zero.
5: end for
6: return Θ̄ = Θ

card(S)



the probability of having a neighbour in a certain direction,
given that the current position is a non-zero element. This is
done by calculating the number of neighbouring occurrences
in line 5, and normalizing by the number of non-zeros in line
7. The algorithm can be extended to work with a series of
signals, to obtain a more accurate representation.

B. Prior-Aware Block Compressed Sensing

Now that all questions are answered, the Prior-Aware block-
compressed sensing (PA-BCS) framework can be formalized
further.

Algorithm 2 PA-BCS algorithm

Require: Signal X ∈ Rn1×n2×···×nd , call N = Πd
i=1ni the

total number of elements in X. a permutation strategy Π ∈
RN×N , a number of partitions β, a measurement rate γ, a
correlation kernel Θ =∈ R3(1)×3(2)×···×3(d) and a sparsity
level s.

1: Initialize: make X a vector x ∈ RN , define index set K =
{1, 2, . . . , β} and prior space P = s · 1 ∈ Rn1×n2×···×nd

with its vector equivalent p ∈ RN , set iteration parameter
k = 1

2: Take measurements according to (3). Save measurements
[y1, y2, . . . , yβ ] and matrices A1,A2, . . . ,Aβ . Define prior
vector blocks as [p1,p2, . . . ,pβ ] = Πp

3: while K > 0 do
4: Solve partition k using LW-OMP [9]: x̂k =

LW-OMP(yk,Ak,pk)
5: Update prior space P = P + Xk ⊛Θ
6: remove k from set K
7: Calculate best prior match k = argmaxj∈K Σ|pj |
8: end while
9: return x̂ = Π−1[x1, x2, . . . , xβ ]T

In line 2, the inputs are made ready for the BCS measure-
ment process. Furthermore, a prior space is initialized. This
is a tensor of equal size as X, that saves prior probabilities of
each entry of X being non-zero. The prior space is initialized at
the global sparsity level for each element. In line 5, the partial
solution x̂k is used to update the prior space. This is done by
applying a convolution with the correlation kernel Θ. Next,
in line 7, the next partition is selected. This is done by only
considering the leftover partitions and look for the partition
for which the most prior information is available. Finally, in
line 9 the result is regained by multiplying the inverse of the
permutation matrix with the stacked partial solutions.

The computational complexity of this prior aware method
is different than that of the parallel, prior-less method. The
difference is, on one hand, that the support identification in
the LW-OMP algorithm requires the pointwise calculation of
the logarithm function, as was shown in (9), or an increase
of O(log (nβ )). On the other hand, the prior space has to be
updated iteratively, with the convolution as its main contri-
bution to the computational complexity. The prior space has
to be updated β − 2 times, not for the first and last iteration.

Each convolution is of complexity O(3d× N
β ), yielding a total

complexity of O(3d× (β−2)N
β ), which increases linearly in the

number of signal entries.

IV. EXPERIMENTAL RESULTS

For the numerical simulations, a 4th order tensor is used
that is inspired on a nearfield communication signal processing
application that is taken from [16]. The exact signal analysis
behind it is beyond the scope of this paper. The signal has a
clustered, sparse 4D-DFT and is thus useful to investigate the
performance of BCS with respect to both reconstruction and
computational performance.

Ihe simulations the measurement mode in (3) is applied
where the noise term v is adjusted such that a certain SNR
is obtained. As a benchmark, a β = 1 reconstruction is used,
meaning that the signal is flattened to become a 1D array and
afterwards the traditional OMP, is applied.

From Fig. 3, a number implications can be derived. First
of all. for low SNR both the OMP and LW-OMP algorithms
perform similar. In this SNR range, support identification is
more probable to fail than in high SNR due to the presence
of noise. This failure corrupts the prior space in Algorithm
2 line 5 as it is based on a falsely identified support. Hence,
prior information cannot be effectively exploited. Next, in high
SNR, the measurements already contain accurate information
on the signal support and hence the prior information is not
able to enhance this further. In the region in between however,
the LW-OMP outperforms the traditional OMP by around 2
dB. In other words, when the LW-OMP algorithm is applied
in this SNR domain, the power of the signal can be chosen
a significant 25% smaller compared to the case in which the
signal is reconstructed using traditional OMP.

Besides, Fig. 4 shows the reconstruction performance of the
two algorithms for different measurement rations. This ratio µ
is defined as the fraction of measurements of the number of
signal entries, or in case measurements y ∈ Rm and signal x ∈
Rn, then µ = m

n . From this graph, it can be seen that, while
the reconstruction improves for higher measurement ratios, the
performance difference between the LW-OMP and the OMP
algorithms decreases. Again, this is due to the fact that the
prior is of less importance in this range, as the measurements
result in an accurate reconstruction by themselves,

Finally, let’s discuss the reconstruction time. Based on the
statements about computational complexity in the previous
chapter, the expected reconstruction time should increase
superlinear with increased signal size. The results are shown
in table 1. The traditional solution for β = 1, so n = 16 · 103
using OMP took on average 18.2 · 108 ms or 30 minutes.
The table shows that, indeed the computational time grows

Partitions tOMP [ms] tLW−OMP [ms]
16 5910 9827
64 476 1469

TABLE I: Simulation times for the two algorithms on a CS
problem of size X ∈ R16×16×8×8 with measurement fraction
m
n = 0.4



(a) Comb-like par-
titioning strategy of
a signal X ∈ R4×4

(b) Reconstruction
of the first partition

(c) Creation of prior information by convolution of first partition result
with a correlation kernel

(d) Reconstruction
of the next partition
based on amount of
available prior in-
formation

Fig. 2: Prior-aware block compressed sensing pipeline

Fig. 3: NMSE for different Block sizes using traditional OMP and
the newly proposed LW-OMP method, using signal X ∈ R16×16×8×8

and measurement fraction m
n

= 0.4

Fig. 4: Reconstruction performance for OMP and LW-OMP method
for different measurement fractions

superlinear with the problem size. For the traditional OMP
simulation times, the problem size grows wih a factor 4 and
computational time with a factor around 12. Also note that,
the larger β, the more convolutions are required to update
the prior space. Hence, the computational complexity for LW-
OMP decreases slower than that of OMP.

V. CONCLUSIONS

In this paper, the BCS framework is approached from
a computation complexity point of view. This is done by
deriving a theoretic relationship between the BCS problem and
the reconstruction performances. Next, a pipeline is presented

that solves the partitions within the BCS problem one by
one, while propagating prior information along the partitions.
This pipeline was shown to yield an increase in reconstruction
quality for a specific SNR range. Follow-up research could be
conducted tailoring a prior aware reconstruction method, such
as the LW-OMP, to the task of propagating prior information
within a BCS problem, such that the propagation of prior
information among the partitions yields a larger performance
increase.
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3-3 Auxiliary Results & Analysis

In this section, analysis is performed that relate to contributions outside the scope of the
paper in the previous section. These contributions are mainly about the influence of different
partitioning strategies on the BCS reconstruction. This section is started by subsection 3-
3-1, in which an experiment demonstrating the influence of partitioning strategies to the
performance of BCS reconstruction. This is done by comparing different strategies for a
range of SNR values with respect to reconstruction quality. These experiments are done
using a 2D dataset, as this enables straightforward visual interpretation of the results.

Finally, in section 3-3-2 a higher order extension of LW-OMP to higher order is proposed and
its relevance is discussed with respect to the BCS framework

3-3-1 Permutation strategies in BCS reconstruction

Recall the permuted BCS problem as explained in section 2-4, where the BCS measurement
model was given by: 

y1
y2
...

yβ

 =


A1 0 . . . 0

0 A2
. . . ...

... . . . . . . 0
0 . . . 0 Aβ

Πx +


v1
v2
...

vβ

 . (3-1)

The aim of the experiments in this subsection, is to show the influence of the choice of Π on the
reconstruction performance. This is done by first, defining some permutation strategies, then
discuss their expected reconstruction performance and finally by performing the experiments
and interpreting the results. The scope of the analysis and results in this subsection is on
2D data, as this leads to interpretable results and doesn’t complicate the permutation-based
strategies too much. Note that for the experiments, 2D signals are used that have clustered
non-zero components in a certain region of the signal. This is done to give a fair measure
of how the strategies perform with respect to the asymmetry problem, as introduced in
subsection 2-4-2.

Partitioning strategies

In Figure 2-2, the need for permuting a BCS problem is motivated visually, but how do
different strategies relate to reconstruction performance? To answer this question, first a
few strategies should be introduced. Note that all these strategies are based on a 2D signal
X ∈ Rn1×n2 that has to be partitioned into β ∈ N+ blocks such that they relate to:

ΠX =


X1
X2
...

Xβ

 .
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Definition 13. (Uniform partitioning) In uniform partitioning, a signal is cut into pieces
without having its columns permuted. The blocks Xb ∈ R

n1√
β

× n2√
β can then be defined as:

X =


X1 X2 · · · X√

β

X√
β+1 X√

β+2 · · · X2
√

β

...
...

...
X

β−
√

β+1 X
β−

√
β+2 · · · Xβ

 . (3-2)

Definition 14. (Random permutation) The random permutation strategy of a 2D signal is
taken by performing uniform partitioning and afterwards permuting the columns of the blocks
in a random fashion. This is done by first, defining a flat block-wise matrix, based on the
uniform partitioning in (3-2):

Xflat =
[
X1 X2 · · · Xβ

]
⇐


X1 X2 · · · X√

β

X√
β+1 X√

β+2 · · · X2
√

β

...
...

...
X

β−
√

β+1 X
β−

√
β+2 · · · Xβ

 .

Next, by randomly permuting the columns of Xflat ∈ R
n1√

β
×n2

√
β
:

X̄flat = Xflat[:, shuffle({1, 2, . . . , n2
√

β})]

And finally be redefining the blocks:[
X̄1 X̄2 · · · X̄β

]
= X̄flat

such that X̄b b ∈ {1, 2, . . . , β} are the resulting permuted signal blocks.

Definition 15. (Optimal permutation) The optimal permutations strategy is already elab-
orated in subsection 2-4-2. To summarize, it is similar to the random permutation strategy,
but instead of shuffling the columns of Xflat randomly, the blocks are created by assignment
of the columns, based on the number of sparse components within each column.

Definition 16. (Comb-like partitioning) Inspired from [26], a signal can be permuted by
taking elements via a comb-like pattern. To visualize, an toy example is shown in Figure 3-
1, where all elements having the same colour are assigned to the same signal block. The
application of the comb-like pattern has a number of advantages to it. First of all, it does not
depend on prior knowledge of the signal, making it a suitable choice for real-time measuring.
Next, the comb-like structure is naturally resilient to clustered data, as neighbouring signal
entries are likely to be assigned to a different block. Also, the pattern is based on a real-world
application, which makes is useful to investigate.

Experiment design

An experiment is designed to demonstrate the performance difference between the permuta-
tion strategies. The dataset used for this experiment is a clustered one in order to be able
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Figure 3-1: Comb-like pattern to define partitions

to see how different strategies cope with the asymetry problem. These experiments comprise
executions of the BCS problem for different numbers of blocks and noise levels. Note that, in
order to make a fair comparison, the optimal permutation strategy is based on a signal, but
not the same signal used in the experiment.

All experiment are performed with clustered sparse a signal X ∈ R28×28 and a measurement
ratio of m

n = 0.7.

Results & Discussion

The experiment outcomes are presented in two different ways. In Figure 3-2 the reconstruction
performance of classical BCS between is shown for different numbers of blocks. In Figure 3-3
the performance difference is shown for different partitioning strategies.

First of all, it strikes form Figure 3-2 that when the partitions are large, i.e. β = 4 and
n = 196, each strategy is able to perform accurate reconstruction. When the partitions
are very small, i.e. β = 16, only the comb-like permutation strategy is able to perform a
somewhat accurate reconstruction. Furthermore, surprisingly, it seems from Figure 3-3 that
the optimal permutation strategy does not yield a good reconstruction performance. This is
probably because of the fact that the optimal strategy, for which detailed prior information
about the signal is needed, was not supplied. Instead, the strategy was based on a similar
signal and apparently, this doesn’t supply the strategy with adequate information to create
a decent strategy.

All together, it can be concluded that, compared to the other strategies listed in subsection 3-
3-1, a comb-like permutation strategy yields the best performance in term of reconstruction
performance. Besides, it has the advantage that it can cope with clustered data without
having prior information about the signal itself. Also, Figure 3-2 and Figure 3-3 clearly con-
firm the need of a permuting a signal before feeding it into a BCS algorithm, skipping the
permutation step would induce performance equivalent to that of the uniform partitioning
strategy.
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(a) β = 4 blocks. All strategies have suf-
ficient information to yield an accurate re-
construction.

(b) β = 16 blocks. The comb-like strat-
egy outperforms the others.

(c) β = 64 blocks. The comb-like strat-
egy is the only strategy still yielding an
accurate reconstruction.

Figure 3-2: Difference in reconstruction performance between partitioning strategies

Moreover, higher order extension of the strategies could be considered. The comb-like struc-
ture has a straightforward extension to higher order, maintaining all of its advantages. The
other strategies on the other hand, are based on the permutation of columns. It was already
mentioned in section 2-4 that this works well with the assumption that the sparse components
are not grouped in just a few columns, as this will most certainly eliminate the advantages
imposed by the permutation operations. In higher dimensions however, these strategies still
only permute alongside a single direction. This increases the chance of ending up with few
permutable slices that contain a large share of all the sparse components, again leading to
a asymmetric distribution of the non-zero components over the partitions. To summarize,
when working with higher order data, it is recommended to use the comb-like permutation
strategy exclusively.
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(a) Uniform partitioning (b) Random permutation

(c) Optimal permutation (d) Comb-like partitioning

Figure 3-3: Influence of the use of different partitioning strategies

3-3-2 Extension to higher order setting

BCS with K-OMP

Recalling the K-OMP algorithm in Algorithm 3, it is clear that, just as in BCS, the measure-
ment matrices are already compressed in size in comparison to the traditional CS problem.
In K-OMP, measurements are taken using one of the equivalent descriptions:

Y = X ×1 A(1) ×2 A(2) ×3 · · · ×d A(d) + V,

vec(Y) = (A(d) ⊗ A(d−1) ⊗ · · · ⊗ A(1))vec(X) + vec(V).
With the measurement matrices already compressed, applying the BCS framework would
relate to compressing these further.
With defining the total number of blocks β̄ = Πd

i=1βi:

superdiag([Y1, Y2, . . . , Yβ̄]) =superdiag([X1, X2, . . . , Xβ̄]) ×1 Ā(1) ×2 Ā(2) ×3 · · · ×d Ā(d)

+ superdiag([V1, V2, . . . , Vβ̄])
(3-3)
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such that:

Ā(k) =


A(k)

1 0 · · · 0

0 A(k)
2

. . . ...
... . . . . . . 0
0 · · · 0 A(k)

β̄

 (3-4)

where superdiag(·) creates a block diagonal tensor with its argument on the block diago-
nal. Here, V, Yb ∈ R

m1
β1

× m2
β2

×···× md
βd denote the b-th blocks of noise and measurement, Xb ∈

R
n1
β1

× n2
β2

×···× nd
βd is the b-th signal block and Ā(k) is the factor matrix for mode k ∈ {1, 2, . . . , d},

consisting of matrices A(k)
b ∈ R

nk
βk

× mk
βk on its diagonal for b ∈ {1, 2, . . . , β̄}

With the definition of the coherence limit in Equation 2-7, it can be deduced that taking
a BCS approach to this higher order framework deteriorates the theoretical reconstruction
bounds severely, as in each mode the measurement matrices are partitioned and therefore
worsened.

For the reasons above, simulations of BCS applied to a Kronecker-based measuring strategy
did not yield any results worth mentioning. These were either equal or worse than the trivial,
all zeros, solution. Hence, further results on BCS are not discussed.

Prior-aware Kronecker Matching Pursuit

The final contribution in this thesis is about extending the prior-incorporation pipeline to
a higher dimension CS setting. This is done by taking the pipeline as presented in section
3 of the conference paper and instead of performing the reconstruction using the LW-OMP
algorithm, a prior-aware extensions to the K-OMP algorithm is derived based on LW-OMP.
Just like in the paper, only the support identification of the K-OMP algorithm in Algorithm 3
is modified. For parameter ck and P̄i1,i2,...,id

= log
p(Xi1,i2,...,id

)
1−p(Xi1,i2,...,id

) depending on the iteration
number, this reads:

j
(i)
1 , j

(i)
2 , . . . , j

(i)
d = arg max

j1,j2,...,jd

|R×1 A(1)T ×2 A(2)T ×3 · · ·×d A(d)T |j1,j2,...,jd
+ck log p(X)

1 − p(X) .

Resulting in a higher-order extension to the LW-OMP algorithm: Validation of the benefits of
this algorithm is lead for further research, as due to the properties listed in subsection 3-3-2,
it is not relevant for usage in conjunction with a BCS structure and is therefore outside the
scope of this thesis.

A.A.Bevelander Master of Science Thesis



3-3 Auxiliary Results & Analysis 37

Algorithm 4 Logit-weighted Kronecker Orthogonal Matching Pursuit (LW-K-OMP)
algorithm

Require: Compressed measurements Y ∈ Rm1×m2×···×md , normalized factor matrices A(k) ∈
Rmk×nk , k ∈ {1, 2, . . . , d}, desired error bound ϵ, a probability distribution containing the
prior probabilities for the support positions p(X) ∈ Rn1×n2×···×nd , tuning parameter g ∈ R
and noise level σ ∈ R+.

1: Initialize iteration parameter i = 0, estimate x̂0 = 0, empty set S0 = ∅. Put P̄ =
log p(X)

1−p(X) and κ = Πd
k=1mk the maximum number of iterations.

2: while ||R||2F > ϵ and i < κ do
3: i = i + 1
4: ci = g

2

(
2(κ + 1 − i) − 1 + 2(σ

g )2
)

5: j
(i)
1 , j

(i)
2 , . . . , j

(i)
d = arg maxj1,j2,...,jd

|R ×1 A(1)T ×2 A(2)T ×3 · · · ×d A(d)T |j1,j2,...,jd
+ ciP̄

6: S
(i)
k = S

(i−1)
k ∪ j

(i)
k ∀k ∈ {1, 2, . . . , d}

7: W(k)(: .i) = A(k)(:, j
(i)
k ) ∀k ∈ {1, 2, . . . , d}

8: x̃i = arg minz ||vec(Y) − (W(d) ⊙ W(d−1) ⊙ · · · ⊙ W(1))z||2F
9: vec(R) = vec(Y) − (W(d) ⊙ W(d−1) ⊙ · · · ⊙ W(1))z

10: end while
11: return {S1, S2, . . . , Sd}, z
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Chapter 4

Conclusion

4-1 Summary

The aim of this thesis was to give insight in the matter that relates to the main research
question:

• How does the partitioning of a Compressed Sensing problem affect its reconstruction
performance and complexity?

The conclusions drawn from this thesis can be summarized in the following paragraphs:

In BCS, there is a trade-off between computational complexity and quality of the recon-
structed signal. Theoretical bounds on how these two entities relate were derived. Using this
theory, it was concluded that the computational resources can be drastically decreased for
specific applications with less accurate reconstruction quality requirements. Also, prior in-
formation can be propagated among different blocks in BCS to achieve the goal of improving
the reconstruction performance, while maintaining a favourable complexity in both storage
and reconstruction performance.

In BCS, the problem of having a disequilibrium in the number of non-zero components in each
block, i.e. asymmetry problem, can be overcome by permuting a signal, which distributes
its sparse components more evenly over the different blocks. However, in high dimensions,
sparse components are typically located within few slices, which disables a single permutation
operation to be a solution to the asymmetry problem. Instead, a comb-like partitioning
strategy can be chosen to overcome this problem. Not only is it applicable to clustered
data and easily extendable to higher dimensions, it also carries advantageous properties in a
prior-aware approach.

Finally, the computational complexity approach on BCS cannot be properly extended to work
with Kronecker-based CS reconstruction, as the resulting BCS techniques are severely affected
by the partitioning process.
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4-2 Answers to sub-questions

For the sake of completeness, the sub-questions, as mentioned in the introduction are now
repeated and answered one-by-one:

1. How does reconstruction performance change with the number of blocks in a BCS
problem?

• Increasing the number of blocks relates to a decrease in reconstruction performance.
This was supported by a coherence-based analysis and experiments.

2. What is a proper strategy to partition a CS problem?

• It was shown that the comb-like strategy is a good partitioning strategy as is can
cope with the asymmetry problem, also it worked well in the prior construction
process.

3. What is the change in computational complexity of the reconstruction when applying
a BCS algorithm?

• When applying the BCS, the computational complexity is decreased with a factor
equal to the number of blocks in comparison to the computational complexity og
the traditional CS problem.

4. How can relevant prior information be propagated between different blocks in a BCS
reconstruction and at what computational cost?

• Prior information can be collected based on statistics of the signal. The information
can be propagated among blocks by using a prior-aware CS algorithm that solves
the subsequent sub-problems. The computational cost of this prior propagating
scheme is low in comparison to traditional CS methods.

5. How can higher order CS algorithms be deployed within (prior-aware) BCS reconstruc-
tion?

• Although prior-aware higher order setting of the OMP algorithm is proposed in
this thesis, it was found that combining BCS with this higher order setting does
not yield good results. This is the result as the measurement procedure in such a
settings is too restricted.

4-3 Limitations

For the execution of the experiments in this thesis, specific datasets were used. On one hand,
this can be defended by saying that the data used is sparse and high dimensional, as required
by the frameworks used, on the other hand the use of these frameworks is not validated for
specific signal types such as very high dimensional data (e.g. 100 dimensional) or periodically
sparse datasets. It will be hard to perform experiments using these signals. First, because it
will be rather impossible to calculate the reference performance, since executing traditional
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CS using this problem sizes is not feasible. Second, because in very high dimensions, a very
large number of blocks is required to make the BCS problem feasible. With the comb-like
partitioning strategy, this will increase the probability of having blocks containing few or no
non-zero components, again causing asymmetry in the CS problem.

The construction of the prior in the proposed pipeline for prior-aware BCS, assumes that
a signal entry is related to its neighbouring entries, such that for a d-dimensional signal, a
3(1) × 3(2) × . . . 3(d) kernel is used to find the prior probabilities. However, signals are not
per se correlated in this fashion. If a signal is periodically correlated for example, this prior
construction method is not able to properly capture the dynamics in the signal.

Although the comb-like strategy is known to be realizable in a real world application, for the
other permutation strategies listed, this might not be the case. The freedom in synthesis of the
measurement matrix namely is restricted by specifications and dynamics of the measurement
application. Therefore, applying a comb-like measurement strategy in real world may not be
a straightforward task.

4-4 Recommendations

The choice for working with the OMP algorithm in this work is partly because of its simplicity
over other greedy methods and its LW-OMP extension. Future research can be performed on
investigating whether the proposed prior incorporation strategy has potential in higher order
extensions as well. Here it would be valuable to see whether this extensions can even have a
more favourable performance-complexity trade-off.

Next, CS algorithms that depend on ℓ1 norm relaxation exist. These are not considered in this
thesis, but the application in prior-aware BCS of these algorithms could also be investigated.
However, with these algorithms, e.g. ISTA relying on convex optimization, it is expected
that the partitioning of a ℓ1-norm relaxed CS problem has less potential to be improved by
applying the BCS framework to it. On the other hand, for storage complexity reasons, it is
still an attractive research direction. Also, it is interesting to know how the reconstruction
guarantees and constrains on the CS problem change for an ℓ1-norm generalized problem
when used in BCS.

As mentioned in the limitations, the prior collection is based on a kernel, that is designed
to work well for clustered signals. The influence of different shaped probability kernels on
different signal types could be investigated as well. A kernel could for instance be designed
to work well for periodically sparse signals or signals that exhibit some common probability
distribution of its sparse components. Important to note, is that computational complexity
difference between traditional CS and the prior-aware pipeline is dominated by the convolu-
tion of this kernel with an intermediate reconstruction estimate. When doing this research,
enlarging this kernel is therefore probably not a good choice.

When applying the comb-like partitioning strategy in very high dimensions, the probability of
having few or none sparse components within a block increases with the increase in the num-
ber of blocks. The comb-like strategy could be improved to address this problem. This is not
an easy task, as a main advantage of this strategy is that it doesn’t require prior information
about the signal itself, namely by constructing the partitions by assigning the non-zero ele-
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ments individually, similar to the optimal partitioning strategy. Nevertheless, a modification
to the comb-like strategy preferably maintains the independence of prior knowledge.
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