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Abstract

This thesis introduces a higher-order numerical method for elliptic boundary value
problems. The discretization method belongs to the class of mimetic discretizations,
which translate as many of properties of the continuous problem to the discrete sys-
tem, aiming to improve accuracy and reliability. The novelty lies in the application of
B-splines as basis functions in a dual grid approach. B-splines or basis splines are piece-
wise polynomials with a certain degree of continuity between the polynomial pieces.
Therefore, splines offer an attractive compromise between piecewise linear functions,
commonly seen in finite element analysis, and the Lagrange polynomials from spectral
element methods.

Inner-oriented quantities, such as line integrals, are placed on the primal grid and
outer-oriented quantities, such as fluxes, on the dual grid. The discrete Hodge operator
is a mapping between the two grids and plays a key role in the discretization of the
Laplacian. The definition of an explicit Hodge operator is not necessary, but has several
advantages: material laws and Neumann boundary conditions can be imposed strongly,
and problems can be posed naturally in a mixed formulation.

The discretization method is applied to Poisson’s equation as a prototype for ellip-
tic boundary value problems. The convergence rates with respect to grid refinement
are found to be k − 1 for odd order splines, but k for even order splines. The conver-
gence rates of k− 1 agree with theoretical estimates established for conventional spline
collocation methods.

Keywords : Mimetic discretizations, B-splines, discrete Hodge operator, dual grid.
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Chapter 1

Introduction

Partial differential equations (PDEs) describe the laws of continuum physics. The first
step in solving the PDEs numerically, is the discretization of the continuum equations.
The PDE is translated to a discrete system of algebraic equations, expressed in a finite
set of degrees of freedom. An important goal in numerical analysis is to minimize
the information lost in translation. The discretization has to be stable, accurate and
physically consistent. Finite differences (FD), finite volumes (FV) and finite elements
(FE) methods are all capable of approximating the PDE to an arbitrary extent, but
may violate some of the conservation laws, leading to unphysical divergence or rotation
in vector fields for example.

The issue with conservation is caused by the fact that the numerical solution merely
approximates the vector calculus identities. Of course, the numerical solution cannot
be expected to exactly comply with every vector identity. Otherwise, one would obtain
the exact solution of the problem, and the exact solution is not an element of the typical
function space in which one seeks the numerical solution. Nonetheless, discrete models
do aim to mimic the behaviour of the continuous problem. For instance, FV methods
reformulate the PDE into integral equations for individual cells using the discrete diver-
gence theorem. The resulting solution does not exactly satisfy the divergence theorem
within cells, but the divergence is, cellwise, contained and controlled by the discrete
formulation of the divergence theorem; integral quantities, such as mass, are at least
conserved.

In , Hyman and Scovel [31] introduced a far more general discretization ap-
proach to mimic the vector calculus identities. The idea is to discretize the general
Stokes’ theorem, formulated in differential forms [14, 22, 23], and to employ the duality
with algebraic topology. Discretizations that adhere to this paradigm are consequently
called mimetic or compatible discretizations. Differential forms replace the classic scalar
and vector fields, and their manifolds are the geometric objects on which the problem
is studied. The Hodge duals of ordinary differential forms, with an internal orientation,
are twisted differential forms, with an external orientation. The duality between the
ordinary and twisted forms is naturally discretized by means of a dual grid. The primal
grid houses the inner-oriented quantities, and the dual grid the outer-oriented ones.
Nevertheless, the use of a dual grid can be circumvented, as demonstrated by Bochev
& Gunzburger [8] and Hiptmair [27, 28]. The elimination of the dual grid will how-
ever obscure the geometric structure of the physical theory, including the constitutive
relations between ordinary and twisted differential forms.

Mimetic discretizations are easily connected to the concept of expansion methods,

1



2 CHAPTER 1. INTRODUCTION

i.e. the numerical solution is expanded into basis functions. The function space of the
solution will be the span of those basis functions. There is a plethora of possible basis
functions available. One of the simpler basis functions are the piecewise linear (“hat”)
functions, which is the classic choice in finite element analysis. Piecewise linear functions
feature local support, and in general their implementation is straightforward. Never-
theless, a significant disadvantage are the relatively low resolving capabilities; refining
the mesh is not always feasible due to constraints of the computer hardware. Higher-
order polynomials, such as Lagrange or Legendre polynomials, are efficient alternatives,
but tend to be inflexible because of their global support. B-splines offer an interesting
compromise between the two. B-splines are piecewise polynomials of arbitrary degree
and combine the flexibility of piecewise linear functions with the resolving capabilities
of higher-order polynomials. At present, B-splines have been successfully been applied
in mimetic discretizations in which the dual grid is eliminated. The goal of this thesis
is to explore the possibilities of dual grids with B-splines. The focus lies therefore on
the construction of a discrete Hodge operator. The discretization method is tested for
(linear) elliptic boundary value problems. The main question is:

How is a discrete Hodge operator constructed when using a dual grid in
mimetic discretizations of B-splines?

Now the global direction of the work is set clear, the following section gives an
overview of literature on the subject to support some of the previous statements and
to give more details on the current state of relevant research. The second section lastly
explains the organization and structure of the report.

1.1 Literature survey

B-splines are attractive basis functions because of their arbitrarily high degree of conti-
nuity over the computational domain. For example, turbulent flow computations benefit
from increased continuity in the solution space, as observed by Akkerman et al. [1]. The
benefits of the high continuity is recognized by Botella [10, 11] as well. The high re-
solving capabilities of B-splines are confirmed, yielding “spectral-like” solutions of the
incompressible Navier-Stokes equations. Botella uses a collocation method in which
the residual is set to zero at the collocation points. To prevent spurious modes in the
solution the bases for velocity and pressure are staggered, see Fig. 1.1. The B-spline
base of the pressure is of one order lower, because no boundary conditions are available
for the pressure. The staggered B-spline base could be seen as a precursor for a dual
grid in mimetic discretizations.

In many computer-aided design (CAD) packages B-splines or NURBS (non-uniform
rational B-splines [33]) are used for generating smooth curves and surfaces. Hughes et
al. [17, 30] introduced the concept of isogeometric analysis (IGA), integrating CAD with
finite element analysis (FEA). The NURBS functions not only represent the geometry,
but also span the solution space. This approach is originally found in isoparametric
finite element methods [12]. The workhorse in IGA is the Bubnov-Galerkin method,
which in itself does not abide by the conservation laws. Therefore, Buffa et al. [13]
developed a mimetic isogeometric method, with applications to electromagnetism. In
principle, the method is an extension of the variational methods described by Arnold et
al. [2, 3] and Hiptmair [29] to the isogeometric concept. Hiemstra [25] pioneered another
mimetic method for IGA with application to elliptic boundary value problems. The
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method corresponds to the discretization techniques proposed by Bochev & Hyman [9],
in which the mass matrix fullfills the role of the discrete Hodge star operator. The
methods by Hiemstra and Buffa are similar to Galerkin methods in eliminating the
dual grid.

Back & Sonnendrücker [5] use B-spline bases for mimetic discretizations of Maxwell’s
equations. The dual grid is not eliminated, but realized by staggering the knots, some-
what similar to the staggered grid of Botella. The B-splines are periodic and therefore
only appropriate for periodic boundary conditions. The resulting primal and dual grid
are illustrated in Fig. 1.2. The periodic staggered base is the only example found in the
literature in which B-splines and dual grids are combined in mimetic discretizations.

1.2 Report outline

The main content of this thesis is presented in a trilogy of chapters. First, Chapter 2 in-
troduces the elementary theory of B-splines. The chapter serves as on overview of useful
properties and definitions, without much mathematical rigour. Important mathemati-
cal tools, such as interpolation and differentiation, are explained and used as references
in later chapters. In the end of the chapter, the construction of basis functions with
splines for mimetic methods is discussed.

Chapter 3 covers the theoretical framework for mimetic discretizations with B-
splines. Possible dual grids for B-splines are discussed, and the discrete operations
relevant for mimetic discretizations of elliptic boundary value problems. The dual grid
is used to discretize the Hodge (⋆) operator, which plays an essential role in the con-
struction of a discrete Laplace operator.

Results of numerical computations are presented in Chapter 4. Poisson’s equation is
solved both in one dimension and two dimensions. The discretizations are validated by
comparison by means of a manufactured solution. The main aspect is the convergence
of the numerical solution to the exact solution with respect to mesh refinement. The
report is then finalized by the conclusions and suggestions for future work.
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Figure 1.1: Staggered B-spline bases for (a) the velocity, with k = 4, and (b) the
pressure, with k = 3, on a uniform knot sequence (×). The collocation points (•) are
the maximum of the velocity B-splines. [10]
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Figure 1.2: Periodic B-splines of k = 4 on (a) the primal grid, and (b) the dual grid on
a staggered uniform knot sequence (×).



Chapter 2

Fundamentals of splines

In this chapter the notion of splines, and B-splines in particular, is introduced. The goal
is mainly to explain the tools used later on in Chapter 3 and to equip newcomers with
the appropriate vocabulary dealing with splines. The only prerequisite is knowledge of
undergraduate-level calculus and linear algebra. The core of this chapter draws exten-
sively upon the classic handbook written by de Boor [21], which is highly recommended
to anyone planning to work with B-splines. Towards the end of the chapter, the focus
shifts to constructing basis functions for numerical solutions of differential equations.

2.1 Introduction

A common problem in numerical analysis is the interpolation of a given set of data
points, obtained by either sampling or experiments. To approximate the unknown func-
tion a high-order polynomial can be fitted through the data points. The resulting in-
terpolant is however susceptible to oscillatory artifacts, known as Runge’s phenomenon.
Recourse can be found in using piecewise polynomials. The idea for improving accuracy
is to increase the number of polynomial pieces, rather than the polynomial order. An
example of interpolating equidistant data points is given in Fig. 2.1, where Runge’s
phenomenon manifests in the polynomial, but is strongly mitigated in the piecewise
polynomial.

In , Schoenberg [35] introduced the term splines referring to piecewise polyno-
mials as interpolants. The name originates from the aerospace and maritime industry,
where splines are the flexible rulers used by draftsmen to produce the smooth curves
of a hull or a wing. The splines are fixated at specified coordinates, which bends their
shapes to the desired curve. Their mathematical counterparts generate similar shapes
when fitted through a set of interpolation points.

Later in , Curry & Schoenberg [19] published a fundamental paper on the
mathematical construction of spline functions. In general, a spline is proven to be a
linear combination of fundamental splines. Therefore, these fundamental splines are
being referred to as basis splines or just B-splines. The recognition of B-splines as
linear bases paved the way for numerical computations with splines. Unfortunately, the
original algorithm for computing B-splines was ill-conditioned and prone to round-off
errors. B-splines really matured in  when de Boor [20] developed an algorithm for
numerically stable evaluations of B-splines. In the same year, an identical algorithm
was found independently by Cox [18]. That is why one commonly refers to the Cox-de
Boor algorithm.

5



6 CHAPTER 2. FUNDAMENTALS OF SPLINES

Over the years B-splines became a popular choice for interpolating data. Further-
more B-splines are succesfully applied to other problems encountered in numerical anal-
ysis, such as the smoothing of noisy data and solving differential equations.

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

 

 

10th−order polynomial

3rd−order piecewise polynomial

Figure 2.1: Runge’s phenomenon in the interpolation of equidistant data points
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2.2 Knots and B-splines

The most important splines are the basis splines or B-splines, as they form the basis for
all spline functions or piecewise polynomials. The spline functions are defined as linear
combinations of B-splines:

S(x) =
∑

j

ajBj,k(x), (2.1)

where aj is the jth basis coefficient and Bj,k is the jth basis spline of order k. The
evaluation of the basis splines starts with defining an increasing sequence of real num-
bers: the knot vector or knot sequence t = {t0, ..., tn}. The first-order basis splines are
defined as piecewise constant functions on intervals prescribed by the knot sequence t:

Bi,1 :=

{
1, if ti ≤ x < ti+1

0, otherwise
. (2.2)

Higher-order B-splines are then evaluated in a stable way using Cox-de Boor recurrence
relation:

Bj,k :=
x− tj

tj+k−1 − tj
Bj,k−1 +

(
1−

x− tj

tj+k−1 − tj

)
Bj+1,k−1. (2.3)

Polynomials are typically classified by their degree p. With regard to B-splines, one
commonly refers to the order k, where simply k = p + 1. The order k and the knot
vector together constitute the B-splines.

Knots are not necessarily uniquely defined and can be repeated up to k times.
The multiplicity of the knots prescribes the exact order of continuity in derivatives.
An example with duplicate knots is shown in Fig. 2.2, where the recurrence relation
constructs a “pyramid” of basis splines. Each time the recurrence relation is applied
a new layer of higher-order basis splines is obtained. The maximum order is reached
when only one basis spline remains. The multiplicity t1 = t2 means that [t1, t2) = ∅, in
other words ∀x : B1,1(x) = 0. This condition propagates in higher-order basis splines
as a reduction in continuity.
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The order k and the knot sequence t define the B-splines, and thus span the func-
tion space of the spline Sk,t. In this space spline functions are formed by the linear
combination of B-splines. Let the formal definition of the space of spline functions Sk,t

be:

Sk,t := span(Bk,t) =




∑

j

ajBj,k,t : aj ∈ R



 . (2.4)

The polynomial pieces that comprise the spline are joined smoothly at the knots, in
the sense that derivatives are continuous up to a certain order. For example, a cubic
spline has continuous second order derivatives. In general the continuity over the knots
is Ck−2. The polynomial pieces between knot intervals are infinitely smooth (C∞) like
regular polynomials.

Lemma 1. Suppose the knot sequence t consists of unique knots. Then Sk,t ⊂ Ck−2.
A function f ∈ Sk,t has continuous derivatives of order (k − 2) and lower.

Increasing the multiplicity of a knot reduces the local continuity of the spline over
that particular knot. The continuity of the spline over the global domain is then equal
to the lowest degree of continuity occuring in the domain.

Lemma 2. Suppose a knot t ∈ t has multiplicity m. Then the continuity of f ∈ Sk,t

over t is Ck−m−1.

A spline based on a knot sequence of unique knots, always equals zero at the bound-
aries of the domain. To improve the flexibility of the spline, the local continuity of
spline over the boundary knots must be decreased to C−1. Hence the knot multiplicity
m must be equal to k, recalling that the local continuity is Ck−m−1. The corresponding
knot sequence is called open and is generally defined as:

t = [t0, ..., t0︸ ︷︷ ︸
k

, t1, ..., tn−1, tn, ..., tn︸ ︷︷ ︸
k

]. (2.5)

As the knots are multiplied by k at the boundaries only, the global continuity of the
spline is not compromised. In practice most B-splines are defined on open knot se-
quences. An example of an open cubic spline and its basis splines is shown in Fig. 2.3.
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Figure 2.3: A cubic spline and its basis functions. With t = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}
and a = {2, 4, 1, 1, 2, 5, 3}
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2.3 Control points

The basis coefficients shape the B-spline function f ∈ Sk,t, but do not represent function
values, as the basis functions of order k ≥ 2 in general do not satisfy the interpolation
condition Bj(xi) = f(xi). Although the coefficients do not represent function values,
they can be visualised in the form of control points. These control points give a reason-
able approximation of the spline function and illustrate how the coefficients “control”
the spline. Relevant to control points are the knot averages, called the Greville sites:

τj,k =
tj+1 + ...+ tj+k−1

k − 1
. (2.6)

The Greville sites have the property:

x =
∑

j

τj,kBj,k(x).

The coordinates of the control points Pj are then defined as:

Pj := (τj , aj) ∈ R
2. (2.7)

At last, the control polygon is obtained by linearly interpolating the control points. The
control polygon, consisting of broken lines, is a coarse approximation to a spline. An
important feature of B-splines is the convex hull property. The spline is bounded to the
convex hull of the control polygon, that is the function can not overshoot the control
polygon. For x ∈ [ti, ti+1] this means the “nearby” coefficients mark the limits:

min{ai+1−k, ..., ai} ≤ f(x) ≤ max{ai+1−k, ..., ai}.

Example For example a quadratic and a cubic B-spline function with their control
polygons are shown in Fig 2.4. Both splines are defined on an open knot sequence. Hence
the first and the last basis coefficients prescribe the boundary values of the spline. For
these points the basis coefficients do represent a function value. The corresponding
control points coincide with the function itself.
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(b) A cubic spline and its control polygon.
With t = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4} and
a = {2, 4, 1, 1, 2, 5, 3}

Figure 2.4: B-spline functions on open knot sequences. The position of the knots is
indicated by (•).
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2.4 Differentiation

The linearity of B-spline functions provide simple means for exact differentiation. Con-
sider the B-spline function f ∈ Sk,t:

f(x) =
m−k∑

j=0

ajBj,k,t(x).

Here the basis functions Bj,k,t are defined on an arbitrary knot sequence:

t = {t0, ..., tm}.

Using the same knot sequence, the function g ∈ Sk−1,t is:

g(x) =

m−k+1∑

j=0

bjBj,k−1,t(x).

Differentiating f(x) with respect to x gives however:

df

dx
=

m−k∑

j=1

k − 1

tj+k−1 − tj
(aj+1 − aj)Bj,k−1,t(x). (2.8)

So the first and last basis functions of Sk−1,t vanish in the derivative. Therefore the
basis functions Bj,k−1 can be defined on a new knot sequence, called the reduced knot
sequence:

t′ = {t1, ..., tm−1},

where the first and the last knot have been removed from t. Hence the derivative of
f(x) can be expressed as a spline function in Sk−1,t′ :

df

dx
=

m−k−1∑

j=0

bjBj,k−1,t′(x), (2.9)

where the basis coefficients are found from t:

bj =
k − 1

tj+k − tj+1
(aj+1 − aj) : j ∈ [0, ...,m − k − 1]. (2.10)

As t0 and tm remain unused, an equivalent expression would be:

bj =
k − 1

t′j+k−1 − t′j
(aj+1 − aj) : j ∈ [0, ...,m − k − 1]. (2.11)

An example of a cubic B-spline and its derivatives is shown in Fig. 2.5. The double
knot at x = 1 reduces the continuity of the spline to C1, causing a discontinuity in the
second derivative. The double knot gives a singular point in the third derivative.



14 CHAPTER 2. FUNDAMENTALS OF SPLINES

0

1

2

3

f

−2

0

2

4

df
/d

x

−10

−5

0

5

d2 f/d
x2

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−5

0

5

x

d3 f/d
x3

Figure 2.5: A cubic B-spline function f(x) with t = {0, 0, 0, 0, 1, 1, 2, 3, 4, 4, 4, 4} and
a = {1, 2, 3, 2, 1, 1, 2, 2}, and its derivatives. Note the influence of the double knot at
x = 1 on the smoothness of the derivatives.
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2.5 Integration

The indefinite integral of a B-spline is:

∫
∞

−∞

Bj,k(x)dx =
tj+k − tj

k
. (2.12)

The indefinite integral of a B-spline function f ∈ Sk,t by using the linearity of the
integration operator:

∫
∞

−∞

∑

j

ajBj,k(x)dx =
∑

j

aj

∫
∞

−∞

Bj,k(x)dx =
∑

j

aj
tj+k − tj

k
. (2.13)

2.6 M-splines

The B-splines introduced by Curry & Schoenberg [19] in  have a different scaling
than the contemporary B-splines. The original B-splines are commonly referred to as
Curry-Schoenberg B-splines, or more fashionably M-splines, as the basis functions are
denoted by Mk,t. Let the space of M-splines, Mk,t, then be defined as:

Mk,t := span(Mk,t) =




∑

j

ajMj,k,t : aj ∈ R



 . (2.14)

M-splines differ from B-splines in the normalisation of the basis splines. M-splines are
normalised namely such that:

∫
∞

−∞

Mj,k(x)dx = 1. (2.15)

Combined with Eq. (2.12) this leads to the definition:

Mj,k(x) :=
k

tj+k − tj
Bj,k(x). (2.16)

M-splines are simply scaled B-splines, making their numerical evaluation straightfor-
ward. The notion of M-splines allows a new expression for B-spline derivatives:

df

dx
=

d

dx

n∑

j=0

ajBj,k,t =

n−1∑

j=0

(aj+1 − aj)Mj,k−1,t′. (2.17)

In the context of numerical analysis, this relation proves to be of great value in the
discrete formulations of Stokes’ theorem discussed in Section 3.2.

2.7 Interpolation

Suppose we want to approximate a scalar function f(x) by interpolation at specified
nodes. The approximation function fh(x) is assumed to be spline function:

fh(x) =
n∑

i=1

aiBi(x), (2.18)
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where the basis function Bi are defined on a knot sequence t. The interpolation points
are denoted by τ = [τ1, ..., τm]. If the interpolation points are to be chosen freely, the
Greville points, Eq. (2.6), are recommended. At those nodes the approximation function
equals the exact function:

f(τi) = fh(τi) =

n∑

i=1

aiBi(τi). (2.19)

Combining the conditions for each interpolation point gives a linear system of equations:




f(τ1)
...

f(τm)


 =




B0(τ1) · · · Bn(τ1)
...

. . .
...

B0(τm) · · · Bn(τm)






a1
...
an


 , (2.20)

which defines the collocation matrix B:

Bij :=




B1(τ1) · · · Bn(τ1)
...

. . .
...

B1(τm) · · · Bn(τm)


 . (2.21)

For an invertible system m must be equal n, in other words the number of nodes must
equal the number of basis functions. Furthermore, each basis function must have at least
one node lying in its span to prevent empty columns of B. The conditions for a solution
to exist are formally stated by Schoenberg’s theorem, which requires Bj(τj) 6= 0. Due
to the local support of the basis functions B is a banded matrix and can be solved
efficiently. If m = n, then the linear system can be solved for unknown coefficients ai:

a = B−1f . (2.22)

Alternatively, the linear system of equations can be solved using Gaussian elimination.

2.8 Histopolation

Interpolation approximates a function by preserving function values at the points of
interpolation. Histopolation is a different approximation method and preserves integrals
of the function over the intervals of histopolation: the total integral of the function is
preserved. The approximation function fh is a linear combination of m M -splines:

fh(x) =
m∑

j=1

ajMj(x).

The advantage of using M-splines instead of B-splines, is the simple evaluation of inte-
grals (Eq. (2.25)). Also, the relation between B- and M-splines comes to good use in
the discrete formulation of the generalized Stokes’ theorem in Section 3.2. The func-
tional domain is subdivided into n intervals Li on which integrals are preserved. The
histopolation condition for an interval is:

∫

Li

f(x)dx =

∫

Li

m∑

j=1

ajMj(x)dx =
m∑

j=1

aj

∫

Li

Mj(x)dx. (2.23)
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The histopolation conditions on the intervals poses a linear system of equations:




∫
L1

f(x)dx
...∫

Ln
f(x)dx


 =




∫
L1

M1(x)dx · · ·
∫
L1

Mm(x)dx
...

. . .
...∫

Ln
M1(x)dx · · ·

∫
Ln

Mm(x)dx







a1
...
am


 . (2.24)

In this case, the collocation matrix M is an n×m matrix with entries:

Mij =

∫

Li

Mj(x)dx.

Lemma 3. The integrals on [a, b] of the M-splines of order k are calculated by evaluating
the B-splines of order (k + 1) at the interval boundaries:

∫ b

a
Mj,k(x)dx =

i∑

j=1

[Bi,k+1(a)−Bi,k+1(b)]. (2.25)

Proof. The fundamental theorem of calculus states that for any function F = f ′ on
[a, b]: ∫ b

a
f(x)dx = F (b)− F (a). (2.26)

Substitution of a B-spline of order (k + 1) gives:

∫ b

a

d

dx
Bj,k+1(x)dx = Bj,k+1(b)−Bj,k+1(a). (2.27)

According to Eq. (2.17), the derivative of a B-spline is:

d

dx
Bj,k+1(x) = Mj−1,k(x)−Mj,k(x). (2.28)

Substituting of (2.28) in (2.27) results in:

∫ b

a
[Mj−1,k(x)−Mj,k(x)]dx = Bj,k+1(b)−Bj,k+1(a).

Rearranging the terms gives a recursive relation for the definite integral:

∫ b

a
Mj,k(x)dx = Bj,k+1(a)−Bj,k+1(b)−

∫ b

a
Mj−1,k(x)dx. (2.29)

An explicit expression is obtained by summation of individual terms:

∫ b

a
M1(x)dx = B1,k+1(a)−B1,k+1(b),

∫ b

a
M2(x)dx = B2,k+1(a)−B2,k+1(b)− [B1,k+1(a)−B1,k+1(b)],

. . . = . . .

∫ b

a
Mj,k(x)dx =

j∑

i=1

[Bi,k+1(a)−Bi,k+1(b)].
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The histopolation problem can only be solved under the right conditions and is directly
related to an interpolation problem.

Theorem 1. Consider the histopolant fh(x) =
∑m

j=1 ajMj,k(x) on tk with an an-

tiderivative F (x) =
∑m+1

j=1 bjBj,k+1(x) on tk+1 and the interval boundaries of inte-
gration are {τ1, ..., τm+1}. The histopolation problem is solvable if F (τi) satisfies the
Schoenberg-Whitney theorem, i.e. Bj,k+1(τj) 6= 0.

Proof. The histopolant is constructed from m M-splines and the histopolation is to be
satisfied on m intervals defined by τ : the collocation matrix is an m×m matrix. Then,
the system of histopolation equations, Ma = f , is solvable when the unique solution
to the homogeneous system, Ma = 0, is the trivial solution a = 0. The histopolation
condition for the homogeneous problem is:

∫ τi+1

τi

fh(x)dx = F (τi+1)− F (τi) = 0. (2.30)

In other words, the antiderivative must satisfy:

F (τi) = F (τi+1). (2.31)

An integration constant appears in the indefinite integral of fh(x):

∫
fh(x)dx = F (x) + C.

Considering the arbitrary constant, the condition (2.31) imposed on the antiderivative
is equivalent to:

F (τi) = F (τi+1) = 0.

The antiderivative must be the solution of the interpolation problem:

F (τi) =
m+1∑

j=1

bjBj,k+1(τi) = 0,

which gives the linear system Bb = 0. If the interpolation points are chosen such that
Bj,k+1(τj) 6= 0, then the Schoenberg-Whitney theorem applies. As a consequence, the
only solution to Bb = 0 is the trivial solution b = 0, which induces:

aj = bj+1 − bj = 0.

Thus, Ma = 0 has indeed the only solution a = 0. Therefore, the nonhomogeneous
histopolation problem has a solution of the form a = M−1f .
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2.9 Basis functions

Basis splines can be deployed as basis functions for numerical solutions of differential
equations. In general, the numerical solution uh is a linear combination of basis functions
Φj(x), in other words: uh(x) =

∑
ajΦj(x). In the case of basis splines, the basis

coefficients are generally not equal to physical quantities: their values represent neither
function values nor function integrals. The spline function must then be evaluated to
obtain any physical quantities. In mimetic spectral element methods [24, 32] however,
nodal and edge basis functions are used, of which the basis coefficients respectively
represent function values and function integrals. Comparable nodal and edge basis
functions can be constructed as spline functions, i.e. those basis functions are linear
combinations of basis splines themselves.

2.9.1 Nodal basis functions

If a function fh(x) is expanded into nodal basis functions hi(x), then the basis coeffi-
cients equal function values at the interpolation points. Prime examples of nodal basis
functions are piecewise-linear polynomials and Lagrange polynomials. Nodal basis func-
tions are defined by the interpolation condition:

hi(τj) = δij =

{
1 if i = j

0 if i 6= j.
(2.32)

The nodal basis function hi(x) is constructed from m B-splines:

hi(x) =
m∑

i=1

ajBj(x). (2.33)

To obtain the coefficient aj, the interpolation problem posed by Eq. (2.32) must solved.
For m B-splines, there must be m interpolation points τj, such as the Greville sites. The
problem is formulated as a linear system of equations (see Section 2.7 on interpolating
functions with B-splines):




hi(τ1)
...

hi(τm)


 =




B1(τ1) · · · Bm(τ1)
...

. . .
...

B1(τm) · · · Bm(τm)







a1
...
am


 . (2.34)

The basis coefficients of hi(x) are given by the solution of the form a = B−1h. Each
basis function is associated to a node, or interpolation point. The condition (2.32)
imposed on all nodal basis functions, gives an m×m identity matrix: Im = (δij)

m
i,j=1.

The complete set of nodal basis functions can therefore be obtained efficiently from the
solution B−1Im, or simply calculating the inverse B−1.

Example. B-splines of order k = 2 are piecewise-linear polynomials, and thus nodal
basis functions. For higher orders this no longer the case. An example is shown in
Fig. 2.6, where nodal basis functions are built from quadratic B-splines. The resulting
nodal basis functions are supported by the entire knot span, whereas B-splines have
local knot spans as support.
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Figure 2.6: Nodal basis functions hi(x) and B-splines Bi(x) of order k = 3. The knot
sequence is t = [0, 0, 0, 1, 2, 3, 4, 4, 4] and the interpolation points (•) are Greville sites
τ = [0, 23 , 2, 3

1
3 , 4].

2.9.2 Edge basis functions

If a function fh(x) is expanded into the edge basis functions ei(x), then the basis co-
efficients equal function integrals over histopolation intervals. Their construction is
similar to that of nodal basis functions. The edge basis functions are defined by the
histopolation condition:

∫

Lj

ei(x)dx =

{
1 if i = j,

0 if i 6= j.
(2.35)

The nodal basis function ei(x) is constructed from m M-splines:

ei(x) =

m∑

i=1

ajMj(x). (2.36)

To obtain the coefficient aj , the histopolation problem posed by Eq. (2.35) must solved.
For m B-splines, there must be m histopolation intervals Lj, which must comply with
Theorem 1. The problem is formulated as a linear system of equations (see Section 2.8
on histopolating functions with M-splines):




∫
L1

ei(x)dx
...∫

Lm
ei(x)dx


 =




∫
L1

M1(x)dx · · ·
∫
L1

Mm(x)dx
...

. . .
...∫

Lm
M1(x)dx · · ·

∫
Lm

Mm(x)dx







a1
...
am


 . (2.37)

The basis coefficients of ei(x) are given by the solution of the form a = M−1e. Each
basis function is associated to an edge, or histopolation interval. The condition (2.35)
imposed on all edge basis functions, gives an m × m identity matrix: Im = (δij)

m
i,j=1.

The complete set of edge basis functions can therefore be obtained efficiently from the
solution M−1Im, or simply calculating the inverse M−1.

Example. In Fig. 2.7 edge basis functions are shown, which are obtained from quadratic
M-splines. Their support is the entire knot span, as is the case for nodal basis functions.
The integrals of the edge basis functions evaluate to 1 over the intervals associated to
their own, and to 0 over the intervals of others.
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Figure 2.7: Edge basis functions ei(x) and M-splines Mi(x) of order k = 3. The knot
sequence is t = [0, 0, 0, 1, 2, 3, 4, 4, 4] and histopolation intervals are given by the Greville
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integrals of each edge basis function are coloured.

Alternatively, edge basis functions can be obtained from a given set of nodal basis
functions of one order higher [24]:

ei(x) = −
i∑

j=1

dhj

dx
. (2.38)

The mimetic spectral element method deploys nodal and edge basis functions. In Chap-
ter 3.2.2, they are proven not to be an absolute necessity for mimetic methods. B- and
M-splines are equally suited as basis functions, although their basis coefficient do not
represent physical quantities. In both cases, the numerical solution remains unchanged,
varying only in its expression in basis functions.
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Chapter 3

Mimetic discretizations

In Chapter 2 splines are introduced as basis functions for numerical solutions of par-
tial differential equations. This chapter presents a framework for mimetic discretiza-
tions using splines. First, the mathematical background of mimetic discretizations is
introduced, covering the elementary operators in differential geometry and algebraic
topology. Then, the discrete counterparts of the analytic operators are presented. The
key operator is the Hodge ⋆ operator, which is necessary for discretizing the Laplacian.
Applications to Poisson’s equation and results follow in Chapter 4.

3.1 Introduction

In mimetic discretizations the connection between the generalized Stokes’ theorem and
algebraic topology is employed in order to obtain conservative solutions. Stokes’ theorem
is formulated in the language of differential geometry, which generalizes vector calculus.
This section gives a brief overview of differential forms and algebraic topology upon
which mimetic discretizations are founded.

3.1.1 Differential forms

Differential geometry generalizes vector calculus in a way that is independent of coordi-
nate systems. Scalar and vector fields are represented by differential forms. A general
p-form can be integrated over p-dimensional geometric objects, known as manifolds.
This subsection contains a brief overview of ordinary and twisted differential forms, and
their connection by the Hodge duality. All the mathematical definitions presented are
extracted from the self-containing introductory books on differential geometry by Flan-
ders [22] and Frankel [23], and in particular by Burke [14] for his elaborate treatment
of twisted forms.

Ordinary differential forms

Dual vector space
A vector space E spanned by the tangent vectors ∂

∂xj has a dual space spanned by linear
functionals dxi, if the manifold is equipped with a metric. The components of a vector
are contravariant with respect to a change of basis, whereas those of a dual vector are
covariant. The covariant components of the dual to contravariant vector v ∈ E follow

23
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from:
vj =

∑

i

vigij . (3.1)

where g is the metric tensor. Contravariant components have superscript indices, and
covariant ones have subscript indices. The components of the metric tensor are defined
by the inner products of the basis vectors:

gij :=

〈
∂

∂xi
,

∂

∂xj

〉
. (3.2)

In an n-dimensional orthonormal basis the metric tensor simply evaluates to the identity
matrix In. The covariant and contravariant components are equal then, vi = vi. A
general representation of covariant vector, or covector, fields in R

3 is:

α = α1(x, y, z)dx + α2(x, y, z)dy + α3(x, y, z)dz, (3.3)

of which the components are functions of the spatial coordinates x, y and z. Differential
1-forms are defined as covariant vector fields. The space of 1-forms is denoted by Λ1,
and for generalized p-forms by Λp.

Exterior product
The exterior product or wedge product, denoted by ∧, is the product between two
differential forms αp and βq, resulting in γp+q:

∧ : Λp ∧ Λq 7→ Λp+q. (3.4)

The wedge product is skew symmetric and associative:

αp ∧ βq = (−1)pqβq ∧ αp, (3.5a)

(α ∧ β) ∧ γ = α ∧ (β ∧ γ). (3.5b)

It is also bilinear:

(a1α1 + a2α2) ∧ β = a1(α1 ∧ β) + a2(α2 ∧ β), (3.5c)

α ∧ (b1β1 + b2β2) = b1(α ∧ β1) + b2(α ∧ β2). (3.5d)

Exterior derivative
The exterior derivative, denoted by d, maps a p-form into a (p+ 1)-form:

d : Λp 7→ Λp+1, (3.6)

satisfying the conditions:

d(α + β) = dα+ dβ, (3.7a)

dα0 =
∑

i

∂α0

∂xi
dxi, (3.7b)

d(αp ∧ βq) = dαp ∧ βq + (−1)pαp ∧ dβq, (3.7c)

d(dα) = 0, ∀α. (3.7d)

The exterior derivative connects the spaces of p-forms in a sequence called the De Rham
complex, for example in R

3:

R →֒ Λ0(Ω)
d

7−→ Λ1(Ω)
d

7−→ Λ2(Ω)
d

7−→ Λ3(Ω) 7−→ 0. (3.8)
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Twisted differential forms

Descriptions of ordinary differential forms are independent from the orientation of the
vector space, whereas twisted differential forms do change sign with a change of orien-
tation. For example, the magnetic field B circulates about a current-carrying wire. The
direction of circulation is in the sense of a right-hand screw when the common right-
handed orientation is positively defined, or in the sense of a left-hand screw, when the
left-handed orientation is positively defined; both orientations are equally valid choices.
The ambiguity in orientation is removed by prescribing an orientation Ω to an ordinary
form α, so twisted forms are written as (α,Ω). The explicit notation of twisted forms
is often neglected by tacitly presuming a right-handed orientation, as most engineers
and physicists are accustomed by this kind of orientation. In many texts on differential
geometry twisted forms are overlooked for that reason. A notable exception is the work
of Burke [14, 15, 16], which provides a more thorough discussion of twisted forms.

The orientation of an n-dimensional space can be specified by n factors on the mono-
mial Ω = dα. The orientation dα is written in curly brackets and has the equivalence
property:

{dα} ≡ {kdα}, k > 0, (3.9)

and the equality:
{−dα} = −{dα}. (3.10)

The orientation {dα} is paired to a differential form by multiplication. The ∧ symbol
for the exterior product is omitted for brevity.

Example. In Euclidean two-space the twisted 2-form is:

{dx dy} dx dy.

And the twisted 1-forms are:
{dx dy} dx

{dx dy} dy

Here, the right-handed orientation {dx dy} of R2 is employed.

Ordinary forms have an inner orientation, whereas twisted forms have an transverse or
outer orientation with respect to the manifold. For instance, a twisted 1-form represents
the flux across a line in R

2, and the circulation about a line in R
3. The transverse

orientation {β} of the twisted form α follows from the relation:

{β ∧ α} = {Ω} . (3.11)

Example. The orientation of {dx dy}dy is:

{β ∧ dy} = {dx dy} → {β} = {dx} ,

which is the flux in the plus x-direction. However, the orientation of {dx dy}dx
is:

{β ∧ dx} = {dx dy} → {β} = {−dy} ,

which is the flux in the minus y-direction. The counterintuitive minus sign could
be resolved by assigning the orientation {dy dx}dx, such that a positive flux is
in the positive y-direction.
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Writing the orientations of the coordinate system in brackets clutters the notation of
twisted forms. Burke proposed a rather elegant notation as an alternative, following
these rules:

1. denote all of the missing basis forms by writing them in with a hat over them;

2. arrange the factors, changing the sign if necessary, so that they are in the same
order as the factors in the orientation;

3. since the orientation information is now redundant, leave it out;

4. use the hat notation only for twisted forms;

5. the twisted n-form has nothing left out, write it with a hat over the space in front
of it.

Example. The alternative notation for twisted 1-forms is:

{dx dy} dy = {dx dy} d̂x dy = d̂x dy,

{dy dx} dx = {dy dx} d̂y dx = d̂y dx,

and for the twisted 2-form:

{dx dy}dx dy = {dx dy}̂dx dy = ̂dx dy.

Example. In Euclidean three-space the twisted 2-forms can be written:

d̂x dy dz = d̂x dz dy,

d̂y dx dz = d̂y dz dx,

d̂z dx dy = d̂z dy dx,

which represent the fluxes in x-, y- and z-directions respectively.

Thus, the order of the explicit factors contains no essential information. Their redun-
dancy calls for the final rule of the shorthand notation:

6. leave out the explicit factors.

Example. The twisted forms in the ultimate shorthand become:

d̂x dy = d̂x,

d̂y dx = d̂y,

̂dx dy = 1̂.

Also for twisted forms there is a De Rham complex:

R →֒ Λ̃0(Ω)
d

7−→ Λ̃1(Ω)
d

7−→ Λ̃2(Ω)
d

7−→ Λ̃3(Ω) 7−→ 0, (3.12)

where Λ̃p is the space of twisted p-forms.
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Hodge duality

An ordinary p-form is the Hodge dual of a twisted (n− p)-form and in the same way a
twisted p-form is the Hodge dual of an ordinary (n − p)-form. In general, the Hodge-⋆
operator maps a p-form to an (n− p)-form:

⋆ : Λp 7→ Λn−p. (3.13)

The ⋆ operator consequently connects the ordinary De Rham complex with the twisted
one.

R Λ0 Λ1 Λ2 Λ3 0

0 Λ̃3 Λ̃2 Λ̃1 Λ̃0
R

d

⋆

d

⋆

d

⋆ ⋆

d d d

The relation between Hodge duals is:

α ∧ ⋆β = (α, β)ωn = (α, β) ⋆1 ∀α, β ∈ Λk. (3.14)

which defines the local inner product (α, β). Here the unit volume form is defined as
ωn := ⋆1. The definition of the local inner product leads to a global inner product
defined as:

(α, β)Ω =

∫

Ω
(α, β)ωn =

∫

Ω
α ∧ ⋆β. (3.15)

Often, the twistedness of the volume form is being ignored by choosing an arbitrary
orientation:

ωn :=
√

|det(gij)| dx
1 ∧ ... ∧ dxn. (3.16)

With this definition, the orientation of the volume form is automatically imposed on
the twisted Hodge duals. The effects become clear in the next two examples.

Example. In Euclidean three-space the Hodge duals of the basis forms are:

⋆1 = dx dy dz

⋆dx = dy dz, ⋆dy = dz dx, ⋆dz = dx dy,

⋆dx dy = dz, ⋆dy dz = dx, ⋆dz dx = dy,

⋆dx dy dz = 1.

Example. In Euclidean two-space the Hodge duals of the basis forms are:

⋆1 = dx dy,

⋆dx = dy, ⋆dy = −dx,

⋆dx dy = 1.

In R
2, the peculiarity occurs of having ⋆dy = −dx, i.e. a positive flux is directed in

the negative y-direction. Here, the Burke notation of twisted forms comes to good
use, when defining the volume form actually as a twisted form ωn = {dx dy}dx dy =
{dy dx}dy dx = 1̂.
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Example. In Euclidean two-space the Hodge duals of the basis forms are:

⋆1 = {dx dy}dx dy = 1̂,

⋆dx = {dx dy}dy = d̂x, ⋆dy = {dy dx}dx = d̂y,

⋆dx dy = {dx dy}1 = d̂x d̂y.

Using the exterior derative and the ⋆ operator, the Laplacian differential operator of
vector calculus is generalized by the Laplace-de Rham operator in R

n:

∆ := ⋆ d ⋆ d+ (−)nd ⋆ d ⋆ . (3.17)

3.1.2 Algebraic topology

Algebraic topology is the discrete counterpart of differential geometry, without involving
any notion of metric, see [22, 24, 32]. The analogues of p-forms are p-cochains, which
serve as the degrees of freedom of the numerical solution. Like p-forms are associated
to p-dimensional manifolds, p-cochains are placed on p-dimensional grid elements. In
three-space, the computational grid is comprised of vertices, edges, faces and cells. The
main concern is the topology of the grid: what elements are connected to what elements
and what orientation do they have. By structuring the connection and orientation the
conservation laws can be formulated topologically, e.g. the fluxes through faces are
summed to give the net flux through the total surface of the cell, which is equal to the
volume integral of the divergence.

Chains and cochains
The manifold is represented by a cell complex, consisting of p-cells denoted by sip. In
three-space, the complex consists of 0-cells (vertices), 1-cells (edges), 2-cells (faces)
and 3-cells (volumes). The cell complex can be constructed by simplices (triangles
or tetrahedrons). Multidimensional splines are however defined by tensor products.
Therefore the cell complex is built from p-cubes. A p-chain is linear combination of
p-cells:

cp =
∑

i

wis
i
p, (3.18)

where p-chain cp is an element of a set Cp and wi are the weights of the cells. The
values of the weights are [+1,−1, 0], indicating if a cell is part of a chain and how it is
orientated. The dual basis of the chains follows from the relation:

si(sj) = δij . (3.19)

Cochains are dual to chains, like covectors are dual to vectors, and defined as a linear
combination of the dual basis:

a =
∑

i

ais
p
i . (3.20)

A set of cochains is denoted by Cp, so a ∈ Cp. Covectors are linear functionals on
vectors, leading to a duality between p-forms and p-vectors. Similarly, p-cochains are
linear functionals on p-chains:

a(cp) = 〈a, cp〉 =
∑

i

aiwi. (3.21)
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The cochains are the discrete representations of differential forms. When the numerical
solution is composed of basis functions, the cochains form the basis coefficients. In
other words, the cochains serve as the degrees of freedom of the algebraic system of
equations. The direct relation between cochains and differential forms is discussed in
detail in Section 3.2.

Boundary operator
The boundary operator ∂ returns the boundary of a p-chain, which is a (p − 1)-chain:

∂ : Cp 7→ Cp−1. (3.22)

The boundary operator satisfies ∂∂ = 0, in other words a boundary has no boundary
by itself. The cell complex must have a sequence, such that:

0 7−→ C3
∂

7−→ C2
∂

7−→ C1
∂

7−→ C0 7−→ 0. (3.23)

Coboundary operator
The adjoint of the boundary operator ∂ is the coboundary operator δ : Cp 7→ C(p+1):

〈cp, ∂cp〉 = 〈δcp, cp+1〉, (3.24)

where 〈·, ·〉 denotes a duality pairing. The coboundary operator is the discrete coun-
terpart of the exterior derivative, and similarily satisfies δδ = 0. Also, the coboundary
operator forms a discrete De Rham complex:

R →֒ C0 δ
7−→ C1 δ

7−→ C2 δ
7−→ C3 7−→ 0. (3.25)

3.2 Basic operations

The basic operations are reconstruction and reduction of differential forms. Discrete
differential forms are reconstructed from the cochains, which are the degrees of freedom
in the discrete system. Conversely, the reduction operation maps forms to cochains.

3.2.1 Reconstruction

The reconstruction operator I : C̄p 7→ Λp
h reconstructs differential forms using basis

splines. The cochains are then the basis coefficients of the spline function, which is
emphasised by the barred notation of C̄p (see Subsection 3.2.2). The reconstructed
p-form is called a discrete form, because it can be expressed in a finite set of DOFs.
The space of the discrete forms is denoted by Λp

h. The general expansion of differential
forms in basis functions is:

Ia =
∑

j

ajΦj(x)dα, (3.26)

where a ∈ C̄p and Φj is the j-th basis function.

Example. In R
1, 0-forms, or scalar functions, are expanded in B-splines:

Ia =
∑

j

ajBj(x).
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One-forms, or volume-forms, are expanded in M-splines:

Ib =
∑

j

bjMj(x)dx.

The use of B-splines and M-splines preserves the duality of d and δ.

Lemma 4. The reconstruction operator I has the commuting property: dI = Iδ.

Proof.

dIa = d


∑

j

ajBj(x)


 =

∑

j

(aj+1 − aj)Mj(x)dx = Iδa

The mapping I is hence called a conforming mimetic reconstruction operator.

By similar proof, the reconstruction operator extends to higher dimensions, while
retaining the conforming property. The commutivity of I is illustrated in the following
diagram.

C̄p C̄p+1

Λp
h Λp+1

h

δ

I I

d

Example. In R
3, the basis forms of 0-forms are:

Φi,j,k(x, y, z) = Bi(x)Bj(y)Bk(z).

For 1-forms:

Φx
i,j,k(x, y, z)dx = Mi(x)Bj(y)Bk(z)dx,

Φy
i,j,k(x, y, z)dy = Bi(x)Mj(y)Bk(z)dy,

Φz
i,j,k(x, y, z)dz = Bi(x)Bj(y)Mk(z)dz.

For 2-forms:

Φxy
i,j,k(x, y, z)dx dy = Mi(x)Mj(y)Bk(z)dx dy,

Φyz
i,j,k(x, y, z)dy dz = Bi(x)Mj(y)Mk(z)dy dz,

Φzx
i,j,k(x, y, z)dz dx = Mi(x)Bj(y)Mk(z)dz dx.

And, for 3-forms:

Φi,j,k(x, y, z)dx dy dz = Mi(x)Mj(y)Mk(z)dx dy dz.
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3.2.2 Reduction

The common choice for the reduction operator is the De Rham map Λk 7→ Ck:

〈Rα, c〉 =

∫

c
α (3.27)

where c ∈ Cp is a p-chain and α ∈ Λp is a p-form. In other words, the operator R is
simply equivalent to integration of the p-form over the p-chain. In the case of 0-forms
the integration operation reduces to evaluating the 0-form at points. An important
feature of the De Rham map is the commuting property: Rd = δR.

Lemma 5. The De Rham map has the commuting property Rd = δR.

Proof. Bochev [9] gives the proof by combining Stokes’ theorem with the duality of the
boundary operator ∂ and the coboundary operator δ:

〈Rdα, c〉 =

∫

c
dα =

∫

∂c
α = 〈Rα, ∂c〉 = 〈δRα, c〉. (3.28)

The commutative property is illustrated in the following diagram.

Λp Λp+1

Cp Cp+1

d

R R

δ

Basis coefficients of B- or M-splines generally do not correspond to cochains according
to the De Rham map: the coefficients do not represent function values or integrals.
To deploy B- and M-splines as basis functions directly, an additional mapping from De
Rham cochains to spline cochains is required. Spline cochains are denoted by C̄p to
distinguish them from De Rham cochains Cp. Hiemstra et al. [26] defined the linear
map F : C̄p 7→ Cp as:

F := R ◦ I, (3.29)

using the definitions of Eqs. (3.26) and (3.27).

Lemma 6. The map F commutes with respect to the coboundary operator δ, so it has
the commutative property δF = Fδ.

Proof. Combining the commuting properties Iδ = dI and Rd = δR gives the relation:

RIδ = RdI = δRI,

which is equal to:

Fδ = δF .

The commutative property is illustrated in the following diagram.
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C̄p C̄p+1

Cp Cp+1

d

F F

δ

The constructed bridge between De Rham cochains and spline cochains, leads to the
definition of an alternative reduction operator R̄ : Λp 7→ C̄p is defined to be as:

R̄α := F−1Rα.

Here, the invertibility of F is an essential requirement.

Lemma 7. Similar to R, the spline reduction operator R̄ has the commuting property:
R̄d = δR̄.

Proof. Combining Stokes’ theorem and the duality of δ and ∂ gives:

〈FR̄dα, c〉 =

∫

c
dα =

∫

∂c
α = 〈FR̄α, ∂c〉 = 〈δFR̄α, c〉.

Subsequently, substituting δF = Fδ gives:

〈FR̄dα, c〉 = 〈FδR̄α, c〉.

The reduction operator R̄ is paramount to the use of splines, because it pairs to the
reconstruction operator I in terms of consistency. The operator I has the consistency
property, so that I is the right inverse of R̄:

R̄I = F−1RI = F−1F = id.

Additionally, the operator I has the approximation property:

IR̄ = id+O(hs),

as in general the projected p-form is not an element of the particular spline space. The
projection of a form on the space of discrete forms is defined as:

π := I ◦ F−1 ◦ R. (3.30)

The commutative diagrams can be assembled to form the big picture. Note that this
diagram can be established in similar fashion for basis functions other than basis splines,
as long as the reconstruction I is conforming and the mapping F is invertible.

Λp Λp+1

Cp Cp+1

C̄p C̄p+1

Λp
h Λp+1

h

d

R

π

R

π

δ

F
−1 F

−1

δ

I I

d
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Algebraic realisations The linear map F = R ◦ I can be realised as an invertible
matrix. For 0-forms F is:

Fa = RIa =
∑

j

∑

j

ajBj(xj) = Ba (3.31)

where B is the collocation matrix of a B-spline. The operator R̄ is equivalent to inter-
polating data points x with B-splines:

R̄α = F−1Rα = B−1α(x) (3.32)

For 1-forms F is:

Fa = R̄Ia =

∫

Lj

∑

j

∑

j

ajMj(x)dx = Ma (3.33)

where Mij =
∫
Li

Mjdx. The operator R̂ is equivalent to an integral-preserving interpo-
lation (i.e. histopolation):

R̄α = F−1Rα = [M−1]

{∫

Lj

α

}
(3.34)

3.3 Natural operations

Unlike the exterior derivative, the inner and exterior product on cochains do not have
exact discrete representations. Their actions on cochains are defined naturally with the
basic operations: reduction and reconstruction.

3.3.1 Inner product

The inner product of two differential forms is induced by the metric, see Eq. (3.14).
Similary, the local inner product of two cochains is defined as follows:

(a, b) := (Ia,Ib), ∀a, b ∈ Cp. (3.35)

Subsequently, the inner product in a global sense, as in Eq. (3.15), follows from the
local definition:

(a, b)Ω := (Ia,Ib)Ω, ∀a, b ∈ Cp. (3.36)

3.3.2 Exterior product

The exterior product or wedge product on cochains, ∧ : Cp ∧ Cq 7→ Cp+q, follows
naturally from the definition of the wedge product for differential forms:

a ∧ b = R(Ia ∧ Ib) ∀a ∈ Cp,∀b ∈ Cq. (3.37)

3.4 Discrete operators

In the introduction the Laplace-De Rham operator is expressed in terms of the exte-
rior derivative and the Hodge ⋆ operator. To solve Laplace equations numerically, the
Laplace-De Rham operator is discretized using the discrete exterior derivative and the
discrete ⋆ operator, which act on cochains.
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3.4.1 Exterior derivative

The exterior derivative acts on differential forms, whereas the discrete counterpart of
the exterior derivative acts on the cochains. Their connection lies in the generalized
Stokes’ theorem: ∫

Ω
dα =

∫

∂Ω
α. (3.38)

Thus, the exterior derivative d is the adjoint of the boundary operator ∂. Also, the
coboundary operator δ is the adjoint of ∂. The coboundary operator δ acts as the
discrete exterior derivative. This property becomes apparent in Eq. (3.28). The discrete
derivative is realized as a matrix containing the values +1,−1, 0, called the indicidence
matrix D. The sign indicates the orientations of (p − 1)-chains with respect to the
boundary of p-chains.

3.4.2 Hodge ⋆ operator

Unlike the exterior derivative, the Hodge ⋆ operator has no exact discrete counterpart.
A discretization technique is necessary for obtaining a discrete Hodge (⋆h) operator,
mapping inner-oriented quantities to outer-oriented quantities, and vice versa. Bochev
& Hyman [9] distinguish two general approaches for constructing a discrete ⋆h operator.
Depending on the choice of approach, the discrete ⋆h does not inherit some of the
properties of the analytic ⋆ operator. In general, the ⋆h operator includes a form
of approximation and connects the discrete De Rham complexes of inner- and outer-
oriented cochains.

R C0 C1 C2 C3 0

0 C̃3 C̃2 C̃1 C̃0
R

δ

⋆h

δ

⋆h

δ

⋆h ⋆h

δ δ δ

Natural ⋆h operator. The natural ⋆h operator follows from the reduction R and re-
construction I operators. The definition of the natural ⋆h operator is, mapping cochains
Cp to cochains Cn−p in Rn:

⋆h := R ⋆ I, (3.39)

which is proposed by Tarhasaari et al. [37] as well. If basis splines are applied as basis
functions for I, then the appropriate reduction operator R̄ (see Subsection 3.2.2) and
cochains must be used. The natural ⋆h operator is compatible with reduction and
reconstruction by definition, but not with the inner product and wedge product.

Example. In R
1, a twisted 0-cochain is the Hodge dual to a 1-cochain: b̃ =

⋆ha, where b̃ ∈ C̃0, a ∈ C1. The vertices of the dual grid denoted by τ̃ . The
reconstructions are:

Ia =
∑

j

ajMj(x)dx,

Ib =
∑

j

bjB̃j(x).

The ⋆h is then realized as:

b = ⋆ha = R ⋆ Ia = B−1Ma,
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where B = Bj(τ̃i) and M = Mj(τ̃i). The discrete Hodge operator can be writ-

ten as the linear system: Bb̃ = Ma, without inverting the collocation matrix
B. The ⋆h operator can also be defined as a mapping from twisted 0-cochains
to 1-cochains and involves a histopolation problem instead of an interpolation
problem. Alternatively, this ⋆h : C̃0 7→ C1 operator can be approximated by the
inverse of the demonstrated ⋆h : C1 7→ C̃0.

Derived ⋆h operator. The derived discrete ⋆h operator does not follow directly from
the reduction and reconstruction operators, but from the inner product and wedge
product. The definition of the Hodge dual is:

∫

Ω
α ∧ ⋆β = (α, β)Ω, (3.40)

where α, β ∈ Λk. The derived ⋆h operator is hence defined as:

∫

Ω
a ∧ ⋆hb = (a, b)Ω, (3.41)

where a, b ∈ Ck. The derived ⋆h operator is however incompatible with the reduction
and reconstruction, as opposed to the natural ⋆h operator.

Dual grid

The ⋆h operator directly relates inner- and outer-oriented cochains, representing the
Hodge duality of ordinary and twisted differential forms. This explicit relation ne-
cessitates the implementation of a dual grid to facilitate the Hodge duals of primal
quantities. The adjectives primal and dual here do not imply a specific orientation of
the grid. The inner-oriented grid could be declared as either the primal or the dual grid
for instance. The vertices of the grids are the interpolation points. The Greville sites
from Eq. (2.6) are the preferred interpolation points, because of they yield accurate
solutions, are simple to calculate and have correspondence to control points. There are
two general possibilities for constructing a dual basis with basis splines.

Staggered knots. Back & Sonnendrücker [5] introduced a mimetic method with pe-
riodic splines. The dual grid is obtained by staggering the knots: they are positioned
halfway between the knots of the primal grid. The use of periodic splines limits the
method to problems with periodic boundary conditions. This approach can however
be extended to non-periodic splines, i.e. on closed knot sequences. An example with
quadratic splines is shown in Fig. 3.1. At boundaries of the dual grid two additional
points must be added to close the spline. Boundary conditions must be imposed at these
points to prevent additional degrees of freedom. Thus, every line element (the intervals
between interpolation points) is associated to one interpolation point of the dual grid,
excluding the boundary points. The one-to-one mapping is required for transferring the
invertibility property of the analytic ⋆ operator to its discrete counterpart.

Increased order. A different dual grid is proposed by Hiemstra [25], where the lo-
cations of the breakpoints remain unchanged. The knot multiplicity at the ends is
increased, and so is the order of the B-splines. Due to the difference in order, the
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interpolation points of the dual grid are nevertheless staggered with respect to the pri-
mal grid, establishing a one-to-one relation between the grids. An example is shown
in Fig. 3.2 with a cubic primal grid and a quadratic dual grid. Again, the boundary
conditions must be imposed on the boundary points added to the dual grid.
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Figure 3.1: The primal grid (a) is defined by the uniform knot vector t =
[0, 0, 0, 1, 2, 3, 4, 4, 4], and the dual grid (b) by t = [0, 0, 0, 1

2 , 1
1
2 , 2
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2 , 3

1
2 , 4, 4, 4]. The

positioning of the knots is marked by (×) and the interpolation points by (◦), which
are the Greville sites.
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Figure 3.2: The primal grid (a) is defined by the uniform knot vector t =
[0, 0, 0, 1, 2, 3, 4, 4, 4], and the dual grid (b) by t = [0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4]. The po-
sitioning of the knots is marked by (×) and the interpolation points by (◦), which are
the Greville sites.
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Higher dimensions. Spline functions in higher dimensions are defined by tensor
products of one-dimensional splines. Two- and three-dimensional grids are thus created
by the tensor products of one-dimensional knot vectors and interpolation points. The
vertices of the grid cells are the interpolation points, and subsequently define the line,
surface and volume elements, presuming quadrilateral elements. An example of a two-
dimensional primal and dual grid is shown in Fig. 3.3. The formal dual grid, with the
right number of DOFs, is not a closed cell complex, which cannot be implemented using
closed spline functions. Therefore a boundary is added to the dual grid, as shown in the
one-dimensional dual grids. The boundary conditions must then be imposed on the dual
grid, so the number of actual DOFs remains unchanged. Dirichlet boundary conditions
are realized on the boundary vertices of the dual grid, and Neumann conditions on the
line elements of the boundary.

(a) Primal (blue) and dual (red) grid. (b) Closed boundary of the dual grid.

Figure 3.3: Two-dimensional primal and dual grids defined by the tensor-product of
interpolation points. Note that the vertices in the far corners of the dual grid are
inevitable due to the tensor-product definition.
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3.4.3 Laplace-de Rham operator

The Laplace-de Rham operator acting on cochains, ∆h : Cp 7→ Cp, arises from the
coboundary operator and the discrete Hodge ⋆ operator:

∆h = ⋆h δ ⋆h δ + (−1)nδ ⋆h δ ⋆h (3.42)

Example. The coboundary operator is represented by the incidence matrix D

and the discrete Hodge ⋆ operator by the matrix H. The Laplacian on the 0-form
α is:

∆α = ⋆ d ⋆ dα = β,

where β is a nonhomogeneous right-hand side. Discretizing the differential equa-
tion gives:

H2D2H1D1a = b,

where a and b are 0-cochains such that b = Rβ and the numerical solution
Ia = αh. The matrix K = H2D2H1D1 is named the stiffness matrix in the
terminology of finite-element analysis. Then, the linear system of equations
becomes:

Ka = b.

Example. Alternatively, the equation in the previous example could be formu-
lated differently by bringing the ⋆ operator to the right-hand side:

∆α = d ⋆ dα = ⋆β.

Discretizing the differential equation gives:

D2H1D1a = b,

where a is the 0-cochain approximating the analytic solution, Ia = αh, and b is
the n-cochain such that b = R(⋆β). The second ⋆ operator is thus not discretized,
but treated analytically.
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Chapter 4

Numerical experiments

In Chapter 2 splines are introduced as basis functions for numerical analysis. In Chap-
ter 3 a framework for mimetic discretizations with splines is presented. Within this
framework, the discrete Hodge (⋆) operator plays a key role in the discretization of the
Laplace operator. The discrete Hodge operator requires the definition of a dual grid,
as there is an explicit relation between Hodge duals. In the first section the projection
error associated to the discrete Hodge operator is investigated. Then to assess the ac-
curacy of the discretization method, Poisson’s equation is solved in one dimension in
Section 4.2 and subsequently in two dimensions in Section 4.3. The goal is to assess
the convergence of the numerical solution to the analytic solution with respect to global
mesh refinement.

4.1 Projection error

In Chapter 3 the projection operator π is introduced. In this section the projection error
is analysed, before advancing to numerical solutions of (partial) differential equations.
The projection of a differential form on the space of discrete differential forms, spanned
by the basis splines, is:

π = I ◦ R, (4.1)

where R is not the De Rham map, but the reduction operator mapping forms to spline
coefficients, omitting the bar notation R̄. The projection on the dual grid is denoted by
π̃, where the tilde denotes operation defined on the dual grid. The projection operator
contains a consistency error by not reconstructing the differential form exactly:

IR = id+O(hk), (4.2)

where h is a measurement of grid spacing and k is the polynomial order. The approx-
imation error of the projection operator approaches zero asymptotically when the grid
h is refined: eventually the error norm becomes zero for the hypothetical value h = 0.
The order of convergence, of the projection, with respect to refinement of h is the poly-
nomial order k. The natural ⋆h operator contains an approximation error as well, which
is related to the projection operator. The natural discrete ⋆ operator is defined as:

⋆h = R̃ ⋆ I. (4.3)

The ⋆h operator converges asymptotically to the analytic ⋆ operator when the grid is
refined. The ⋆h operator is related to a projection followed by a second projection on

41



42 CHAPTER 4. NUMERICAL EXPERIMENTS

the dual grid in the following way:

π̃ ⋆ π = ĨR̃ ⋆ IR = Ĩ(R̃ ⋆ I)R = Ĩ ⋆h R. (4.4)

The relation between projection operator and the ⋆h operator gives an estimate of the
order of grid convergence for the ⋆h operator. The approximation error of the double
projection of a differential form α ∈ Λp is therefore decomposed into two errors:

ǫtot = ⋆α− π̃ ⋆ πα = (⋆α− ⋆πα)︸ ︷︷ ︸
ǫ1

+(⋆πα− π̃ ⋆ πα)︸ ︷︷ ︸
ǫ2

= ǫ1 + ǫ2. (4.5)

The convergence properties of the two errors depend on the order of the polynomial
space on which the form is projected.

Example. Let α ∈ Λ1 in R be projected on the space of M-splines of order k − 1,
whereas β ∈ Λ0 is projected on the space of B-splines of order k. The first error is
approximately:

ǫ1 = ⋆α− ⋆πα = ⋆α− ⋆(id +O(hk−1))α = O(hk−1).

The second error is estimated to be:

ǫ2 = ⋆πα− π̃ ⋆ πα = ⋆(id +O(hk−1))α− (id+O(hk)) ⋆ (id+O(hk−1))α = O(hk−1).

Thus, the total error ǫtot is expected to be in the order of O(hk−1).

Grid convergence study

To verify the error estimates given in the previous example, a one-dimensional test case
is analysed. Consider the 1-form α ∈ Λ1:

α = sin(2πx) dx, ∀x ∈ [0, 1]. (4.6)

The spaces of the spline functions are defined by the polynomial order k and the knot
sequence t. Zero-forms are projected on B-splines of order k, whereas one-forms are
projected on M-splines of order k − 1. The knot sequence of the primal grid is defined
as the open and uniform sequence:

t = [t0, ..., t0︸ ︷︷ ︸
k

, t1, ..., tn−1, tn, ..., tn︸ ︷︷ ︸
k

]. (4.7)

Here, h is the uniform spacing between the breakpoints. The knot sequence of the dual
grid results from the staggering the breakpoints of the primal grid:

t̃ = [t0, ..., t0︸ ︷︷ ︸
k

,
t1 + t2

2
, ...,

tn−2 + tn−1

2
, tn, ..., tn︸ ︷︷ ︸

k

]. (4.8)

The M-splines are consequently defined on the reduced knot sequences t′ and t̃′. The
points of interpolation for the primal and dual grid are the Greville sites, defined by
Eq. (2.6). Results of the errors, measured in the L2-norm, versus the grid size h are
plotted in Figs. 4.1, 4.2 and 4.3. The data points of the plots are listed in Tables 4.1,
4.2 and 4.3. The average slope of the logarithmic curves are shown in Tables 4.4, 4.5
and 4.6.
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Figure 4.1: Error norm ‖ǫ1‖L2 versus uniform knot distance h.
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Figure 4.2: Error norm ‖ǫ2‖L2 versus uniform knot distance h.
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Figure 4.3: Error norm ‖ǫtot‖L2 versus uniform knot distance h.
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Table 4.1: Logarithmic data points of uniform knot distance h and error norm ‖ǫ1‖L2 .

log(‖ǫ1‖L2)

log(h) k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

-2.9444 -2.6974 -5.8372 -8.8209 -11.7296 -14.6665 -17.5652
-3.6636 -3.4151 -7.2846 -10.9868 -14.4800 -18.2979 -21.8010
-4.0775 -3.8289 -8.1143 -12.2496 -16.3403 -20.4174 -24.4966
-4.3694 -4.1207 -8.6993 -13.0725 -17.5578 -21.8111 -26.2831
-4.5951 -4.3463 -9.1455 -13.8474 -18.3700 -23.0514 -27.5626
-4.7791 -4.5303 -9.5246 -14.2513 -19.1978 -23.8224 -28.7545
-4.9345 -4.6856 -9.8365 -14.8032 -19.8040 -24.6818 -29.6616
-5.0689 -4.8201 -10.0979 -15.2613 -20.2510 -25.4039 -30.3841
-5.1874 -4.9386 -10.4230 -15.5303 -20.7033 -25.9207 -31.0566
-5.2933 -5.0445 -10.5926 -15.8716 -21.2908 -26.4309 -31.8108

Table 4.2: Logarithmic data points of uniform knot distance h and error norm ‖ǫ2‖L2 .

log(‖ǫ2‖L2)

log(h) k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

-2.9444 -2.6648 -4.9624 -8.7347 -11.1689 -14.5381 -17.0742
-3.6636 -3.3931 -6.3926 -10.9358 -14.0069 -18.2240 -21.3566
-4.0775 -3.8133 -7.2199 -12.2126 -15.7033 -20.3589 -23.9030
-4.3694 -4.1088 -7.8036 -13.0471 -16.8374 -21.7713 -25.6203
-4.5951 -4.3367 -8.2548 -13.8256 -17.8199 -23.0184 -27.0531
-4.7791 -4.5222 -8.6228 -14.2356 -18.5343 -23.8010 -28.1416
-4.9345 -4.6782 -8.9335 -14.7859 -19.1651 -24.6538 -29.0826
-5.0689 -4.8140 -9.1945 -15.2492 -19.6423 -25.3813 -29.8212
-5.1874 -4.9331 -9.4245 -15.5139 -20.1534 -25.8954 -30.5688
-5.2933 -5.0395 -9.6625 -15.8648 -20.6275 -26.4288 -31.2725

Table 4.3: Logarithmic data points of uniform knot distance h and error norm ‖ǫtot‖L2 .

log(‖ǫtot‖L2)

log(h) k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

-2.9444 -3.2934 -5.0602 -9.3352 -11.3660 -15.3382 -17.3106
-3.6636 -4.3473 -6.4851 -11.8058 -14.2300 -19.2631 -21.6155
-4.0775 -4.9663 -7.3116 -13.2481 -15.8843 -21.5433 -24.0995
-4.3694 -5.4044 -7.8947 -14.2673 -17.0517 -23.1510 -25.8515
-4.5951 -5.7434 -8.3466 -15.0564 -17.9553 -24.3961 -27.2069
-4.7791 -6.0198 -8.7141 -15.6998 -18.6909 -25.4092 -28.3105
-4.9345 -6.2533 -9.0243 -16.2434 -19.3115 -26.2654 -29.2391
-5.0689 -6.4553 -9.2934 -16.7135 -19.8496 -27.0044 -30.0488
-5.1874 -6.6332 -9.5307 -17.1278 -20.3241 -27.6593 -30.7486
-5.2933 -6.7924 -9.7426 -17.4991 -20.7478 -28.2415 -31.3658
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Table 4.4: Logarithmic slope (m) for ‖ǫ1‖L2 averaged over data intervals and the mean
absolute deviation (MAD).

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m 0.9996 2.0395 2.9959 4.1310 4.9680 6.0755
MAD 0.0004 0.1609 0.3786 0.4859 0.3843 0.4285

Table 4.5: Logarithmic slope (m) for ‖ǫ2‖L2 averaged over data intervals and the mean
absolute deviation (MAD).

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m 1.0092 2.0129 3.0241 4.0628 5.0197 6.0844
MAD 0.0030 0.0521 0.3892 0.2199 0.3617 0.2480

Table 4.6: Logarithmic slope (m) for ‖ǫtot‖L2 averaged over data intervals and the mean
absolute deviation (MAD).

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m 1.4974 1.9974 3.4892 3.9980 5.5032 5.9696
MAD 0.0075 0.0039 0.0131 0.0047 0.0128 0.0457
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Figure 4.4: Local errors in the double projection π̃ ⋆ πα for k = 4 and k = 5, with grid
spacing h = 0.0345.

The orders of convergence for ǫ1 and ǫ2 are approximately k − 1, as expected. The
total error ǫtot for the odd orders (3,5,7) has order k − 1 as well. For the even orders
(2,4,6) however, the order is approximately k− 1

2 , which is higher than initially expected.
The cause of this convergence behaviour is exemplified in Fig. 4.4 for an even order k = 4
and an odd order k = 5. In the case of even orders the second error counterbalances
the first one, which evens the total error beneficially. In the case of odd orders the two
errors are not balanced. This phenomenon explains why higher-than-expected orders of
convergence are obtained with even orders, although the exact mechanism behind this
feature remains unexplained. In Appendix A, an additional example of an asymmetric
function is included, which exhibits the same phenomenon. The convergence behaviour
is therefore expected for smooth functions in general, and not only for even and odd
functions, such as sines and cosines.
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4.2 1D Poisson’s equation

In this section the Poisson’s equation in one-dimensional space is solved numerically
the mimetic discretization method presented in Chapter 3. Poisson’s equation is a
second-order differential equation:

∇ · ∇φ = ∆φ = f. (4.9)

For f = 0, the equation becomes Laplace’s equation. In one-dimensional space, Pois-
son’s equation is written in terms of the coordinate x:

d2

dx2
φ(x) = f(x), ∀x ∈ Ω. (4.10)

The accompanying boundary conditions are Dirichlet boundary conditions:

φ(x) = 0, ∀x ∈ ∂Ω. (4.11)

The problem is solved on the interval:

Ω = [0, 1]. (4.12)

Poisson’s equation written in terms of differential forms is:

⋆ d ⋆ dφ = f. (4.13)

Introducting the additional variables u, q and v, Poisson’s equation could be written as
a combination of two metric relations and two topological relations (the conservation
laws): 




u = dφ, (gradient theorem,)

q = ⋆u,

v = dq, (divergence theorem,)

f = ⋆v.

(4.14a)

(4.14b)

(4.14c)

(4.14d)

The gradient theorem is discretised on the inner-oriented primal grid and the divergence
theorem on the outer-oriented dual grid. The discrete Hodge operators serve as the
bridges between the variables on the primal and the dual grid.

4.2.1 Dual grid

The discrete Hodge ⋆ operator is constructed by its natural definition in Eq. (3.39). The
explicit formulation of the discrete ⋆ operator requires a dual grid to allocate the Hodge
duals. Two options for the dual grid, named A and B, are described in Subsection 3.4.2.
Poisson’s equation is solved with both grids to compare their results.

Grid A. The dual grid is constructed by staggering the knots, while maintaining the
same polynomial order. An example is shown in Fig. 4.7.

Grid B. The dual grid is constructed by reducing the order, while maintaining the
positions of the knots. An example is shown in Fig. 4.8.
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Vertices and edges. The vertices, or 0-cells, of the grid are the interpolation points
of the spline functions. The Greville sites, Eq. (2.6), are used as the interpolation points.
The vertices of the primal and dual grid are denoted by τj and τ̃j respectively. The ver-
tices form the boundaries of the edges, or 1-cells. Following the work of Toshniwal [38],
the positive orientation of the 0-cells is defined to a sink and the positive orientation
of the 1-cells is defined to be from left to right. The positive orientations of the primal
grid are illustrated in Fig. 4.5. For the dual grid, the 0-cells are defined from left to

τj τj+1

Figure 4.5: Positive orientations of the vertices and edges

right and the positive orientation of the 1-cells is a source (indicative of a net outflux).
The positive orientations of the dual grid are illustrated in Fig. 4.6.

τj τj+1
~ ~

+

Figure 4.6: Positive orientations of the vertices and edges

The 0- and 1-cells are associated to 0- and 1-cochains, which are the DOFs of the
discrete differential forms. The inner-oriented 0-cochains are related to point values and
1-cochains to line integrals. Their exact relation is given by the Stokes’ theorem in the
form of the gradient theorem:

φ(τj+1)− φ(τj) =

∫ τj+1

τj

dφ =

∫ τj+1

τj

u,

and the divergence theorem:

q(τ̃j+1)− q(τ̃j) =

∫ τ̃j+1

τ̃j

dq =

∫ τ̃j+1

τ̃j

v.

The line integrals are obtained by differencing function values at points and therefore
they are path-independent; Stokes’ theorem is a topological equation which does not
involve the metric of the space. In one-dimensional space the gradient and divergence
theorem seem much alike. The interpretation of the cochains however does depend on
the grid orientation. The primal grid houses the inner-oriented 0-cochains φ̄ (sinks)
and 1-cochains ū (line integrals). The dual grid houses the outer-oriented 0-cochains q̄

(fluxes) and 1-cochains v̄ (net outfluxes). The discrete representation of Stokes’ theorem
is the coboundary operator, for example the discrete gradient operator:

δφ̄ =




−1 +1 0 0 0
0 −1 +1 0 0
0 0 −1 +1 0
0 0 0 −1 +1







φ1

φ2

φ3

φ4

φ5




,

where the coboundary operator returns four line integrals for a grid consisting of five
vertices. The incidence matrix is denoted by D and represents the coboundary operator.
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4.2.2 Basis functions

The knot sequences of the primal and dual grid define the basis functions of the primal
and dual quantities. The discrete ordinary differential forms are defined on the primal
grid:

φh =

m∑

j=1

φjBj,k(x), (4.15)

uh = dφh =
m−1∑

j=1

(φj+1 − φj)Mj,k−1(x)dx, (4.16)

where the spline functions Bj,k(x) are defined on the knot sequence t and Mj,k−1(x) on
the reduced knot sequence t′. Similarly, the discrete twisted forms are defined on the
dual grid A:

qh =

m−1∑

j=1

qjB̃j,k(x), (4.17)

vh = dqh =

m−2∑

j=1

(qj+1 − qj)M̃j,k−1(x)dx, (4.18)

where the spline functions B̃j,k(x) are defined on the knot sequence t̃ and M̃j,k−1(x) on
the reduced knot sequence t̃′. On dual grid B, the basis splines are of one order lower:

qh =
m−1∑

j=1

qjB̃j,k−1(x), (4.19)

vh = dqh =
m−2∑

j=1

(qj+1 − qj)M̃j,k−2(x)dx. (4.20)

Note that for grid B, two knot sequences are identical, t′ = t̃, and that M-splines are
B-splines scaled according to Eq. (2.16). The ⋆h operator, mapping ordinary 1-forms to
twisted 0-forms, simply scales the splines appropriately and contains no approximation
error by itself. For grid A, the two knot sequences are defined differently: t′ 6= t̃ and as
a consequence the ⋆h operator contains a form of approximation. For both grids, the ⋆h
operator between ordinary 0-forms and twisted 1-forms is an approximation, because in
that case: t 6= t̃′.

4.2.3 Discretization

The system of equations (4.14) is discretized with the discrete counterpart of the Hodge
⋆ operator and with the coboundary operator:





ū = δφ̄, (discrete gradient theorem,)

q̄ = ⋆hū,

v̄ = δq̄, (discrete divergence theorem,)

f̄ = ⋆hv̄.

(4.21a)

(4.21b)

(4.21c)

(4.21d)
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The right-hand side function f is approximated with a spline interpolation:

f̄ = R̄(f) = B−1R(f). (4.22)

The reduction operator R̄ maps the function f to the B-spline coefficients f̄ , i.e. the
coefficients that solve the interpolation problem. The compact notation of the discrete
Poisson equation is:

⋆hδ ⋆h δφ̄ = R̄(f). (4.23)

Let the coboundary operator be represented by the incidence matrix D and the ⋆h
operator by the matrix H, then discrete equations give the linear system of equations:

[
H(0,1̃)D(1̃,0̃)H(0̃,1)D(1,0)

] {
φ̄
}
=

{
R̄(f)

}
. (4.24)

The superscripts of the matrices specify the cochains on which the operator acts, e.g.
H(0̃,1) acts on 1-cochains and maps to twisted 0-cochains. The natural ⋆h operator,
given by Eq. (3.39), consists of a reduction and a reconstruction matrix:

H(0̃,1) = B̃−1M, (4.25)

H(0,1̃) = B−1M̃. (4.26)

The entries of the reconstruction matrices are defined as follows:

Mij = Mj(τ̃i), (4.27)

M̃ij = M̃j(τi), (4.28)

and the entries of the reduction matrices as:

B̃ij = B̃j(τ̃i), (4.29)

Bij = Bj(τi). (4.30)

The Dirichlet boundary conditions are imposed strongly by inserting φ1 = 0 and φm = 0.
The spline functions are defined on an open knot sequence where the first and last basis
coefficients equal the boundary values. Non-zero boundary conditions φ(τ1) and φ(τm)
could then be imposed by the straightforward insertion of φ1 = φ(τ1) and φm = φ(τm).

4.2.4 Error analysis

The numerical method is validated by means of a manufactured solution. The analytic
solution to Poisson’s equation is chosen to be:

φ(x) = ex sin(2πx). (4.31)

Taking the derivative of φ(x) twice with respect to x yields the required right-hand side
of Poisson’s equation:

f(x) =
d2φ

dx2
= ex

((
1− 4π2

)
sin (2πx) + 4π cos (2πx)

)
. (4.32)

The local error of the numerical solution φh(x) is:

ǫ(x) = φ(x)− φh(x). (4.33)
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The global error is measured in the L2-norm of the local error:

‖ǫ‖L2 =

(∫

Ω
|ǫ(x)|2 dx

)1/2

. (4.34)

The numerical solution converges to the analytic solution when the uniform knot dis-
tance h = tj+1 − tj is refined. The discretization error is presumed to decrease alge-
braically when refining the mesh:

‖ǫ‖L2 = O(hm). (4.35)

The order of convergencem can be derived numerically from the slopes of the logarithmic
curves, plotting the error ‖ǫ‖L2 against the mesh size h.

Grid A. In Fig. 4.9 the error is plotted against h. The data points of the logarithmic
curves are listed in Table 4.7. The average slopes and mean absolute deviation from
the average slope are given in Table 4.9. For the even orders k = 2, 4, 6, the orders
of convergence are optimal. For the odd orders k = 3, 5, 7 however, the orders of
convergence are perceived to be suboptimal k − 1.

Grid B. In Fig. 4.10 the error is plotted against h. The data points of the logarithmic
curves are listed in Table 4.8. The average slopes and mean absolute deviation from the
average slope are given in Table 4.10. Note that data for k = 2 is missing, because the
minimum required order is k = 3 for second-order problems. The requirement is due to
the fact that the order of the M-splines on the dual grid is k − 2. For the even orders
k = 4, 6, the orders of convergence are suboptimal k − 2. For the odd orders k = 3, 5, 7
as well, the orders of convergence are seen to be suboptimal k − 1.
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Figure 4.9: Error ‖ǫ‖L2 versus uniform knot distance h, obtained with grid A.
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Figure 4.10: Error ‖ǫ‖L2 versus uniform knot distance h, obtained with grid B.
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Table 4.7: Logarithmic data points of uniform knot distance h and error norm ‖ǫ‖L2 ,
obtained with grid A.

log(‖ǫ‖L2)

log(h) k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

-2.9444 -3.2934 -5.0602 -9.3352 -11.3660 -15.3382 -17.3106
-3.6636 -4.3473 -6.4851 -11.8058 -14.2300 -19.2631 -21.6155
-4.0775 -4.9663 -7.3116 -13.2481 -15.8843 -21.5433 -24.0995
-4.3694 -5.4044 -7.8947 -14.2673 -17.0517 -23.1510 -25.8515
-4.5951 -5.7434 -8.3466 -15.0564 -17.9553 -24.3961 -27.2069
-4.7791 -6.0198 -8.7141 -15.6998 -18.6909 -25.4092 -28.3105
-4.9345 -6.2533 -9.0243 -16.2434 -19.3115 -26.2654 -29.2391
-5.0689 -6.4553 -9.2934 -16.7135 -19.8496 -27.0044 -30.0488
-5.1874 -6.6332 -9.5307 -17.1278 -20.3241 -27.6593 -30.7486
-5.2933 -6.7924 -9.7426 -17.4991 -20.7478 -28.2415 -31.3658

Table 4.8: Logarithmic data points of uniform knot distance h and error norm ‖ǫ‖L2 ,
obtained with grid B.

log(‖ǫ‖L2)

log(h) k = 3 k = 4 k = 5 k = 6 k = 7

-2.9444 -4.7058 -4.4884 -9.6150 -10.5046 -14.7001
-3.6636 -6.3818 -5.9250 -12.5067 -13.4549 -19.0352
-4.0775 -7.2941 -6.7526 -14.1658 -15.1238 -21.5271
-4.3694 -7.9194 -7.3364 -15.3349 -16.2960 -23.2828
-4.5951 -8.3949 -7.7877 -16.2377 -17.2007 -24.6382
-4.7791 -8.7785 -8.1557 -16.9741 -17.9378 -25.7454
-4.9345 -9.0992 -8.4664 -17.5959 -18.5599 -26.6811
-5.0689 -9.3765 -8.7352 -18.1336 -19.0980 -27.4727
-5.1874 -9.6200 -8.9722 -18.6077 -19.5722 -28.1599
-5.2933 -9.8366 -9.1840 -19.0314 -19.9961 -28.8602

Table 4.9: Logarithmic slopes (m) averaged over data intervals and the mean absolute
deviation (MAD), obtained with grid A.

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m 1.9241 1.9769 3.9898 4.0074 5.9958 5.9792
MAD 0.0340 0.0121 0.0460 0.0078 0.0293 0.0949

Table 4.10: Logarithmic slopes (m) averaged over data intervals and the mean absolute
deviation (MAD), obtained with grid B.

k = 3 k = 4 k = 5 k = 6 k = 7

m 2.1217 1.9996 4.0045 4.0196 6.0455
MAD 0.0692 0.0005 0.0046 0.0211 0.1259
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4.2.5 Conclusions

A comparison of the L2-errors in Tables 4.7 and 4.8 indicates that grid A yields more
accurate solutions than grid B for the analysed orders with the only exception of k = 3.
The results given Tables 4.9 and 4.10 point out that the convergence orders of grid A
are greater than or equal to the orders of grid B. The estimated orders of convergence
with respect to h-refinement suggest the conclusion that:

m

k Grid A Grid B

2 k -
3 k − 1 k − 1
4 k k − 2
5 k − 1 k − 1
6 k k − 2
7 k − 1 k − 1

The mimetic discretization method introduced in this work bears much resem-
blance with spline collocation methods, such as described by Russell & Shampine [34].
The principle of collocation methods is to interpolate the derivatives with splines, e.g.
φ′′

h(τ) = f(τ) in Poisson’s equation, from which the solution φh is derived from φ′′

h. The
errors are estimated to be O(hk−s), where the sth derivative interpolates the right-hand
side function. For grid A, the right-hand side function is interpolated by M-splines
of order k − 1, so the error is O(hk−1). For grid b, the right-hand side function is
interpolated by M-splines of order k − 2, so the error is O(hk−2).

The results of the numerical computations agree partially with the estimates given
by Russell & Shampine. For grid A, the orders of convergence are found to be k − 1
for k = 3, 5, 7, but k for k = 2, 4, 6. For grid B, the orders of convergence are found
to be k − 2 for k = 4, 6, but k for k = 3, 5, 7. The difference between odd and even
order splines is demonstrated already in Section 4.1. The higher-than-expected orders
of convergence are witnessed as well in collocation methods by Auricchio et al. [4],
Beirão da Veiga [7] and Botella [10, 11]. The results found in literature lack adequate
explanation however. The results presented here suggest that interpolating the righ-
hand side function of Poisson’s equation with odd order splines lead to superconvergent
solutions. The probable explanation lies in a beneficial superposition of numerical errors,
as seen in Fig. 4.4.
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4.3 2D Poisson’s equation

In the previous section Poisson’s equation is solved in one dimension. Grid convergence
tests have demonstrated that staggering knots of the dual grid (grid A) is superior to
reducing the order of the dual grid (grid B). Therefore the approach of staggering knots
of the dual grid with respect to the primal grid is applied to a two-dimensional problem.
The orders of convergence with respect to mesh refinement are examined again.

4.3.1 Problem formulation

Poisson’s equation is solved on the unit square domain Ω = [0, 1] × [0, 1] in Euclidean
two-space. Poisson’s equation in Cartesian coordinates including Dirichlet boundary
conditions is:

{
⋆ d ⋆ dφ(x, y) = f(x, y), ∀(x, y) ∈ Ω, (4.36a)

φ(x, y) = 0, ∀(x, y) ∈ ∂Ω. (4.36b)

By introducing the variables u, q and v, Poisson’s equation can be separated into two
topological relations and two metric relations:





u = dφ, (gradient theorem,) (4.37a)

q = ⋆u, (4.37b)

v = dq, (divergence theorem,) (4.37c)

f = ⋆v. (4.37d)

The numerical solution φh is compared to a manufactured analytic solution in order to
assess the accuracy of the numerical solution. The manufactured analytic solution is:

φ(x, y) = ex+y sin(2πx) sin(2πy). (4.38)

The right-hand side function corresponding to the manufactured solution is:

f(x, y) =
∂2φ

∂x2
+

∂2φ

∂y2

= (2− 8π2)ex+y sin(2πx) sin(2πy) + 4πex+y sin (2π(x+ y)) . (4.39)

The right-hand side function f(x, y) is illustrated in Fig. 4.11. The function is nonpe-
riodic and has two local minima and two local maxima located in its domain.

4.3.2 Discrete differential forms

Two-dimensional spline functions are defined as tensor products of one-dimensional
spline functions. The space of one-dimensional spline functions is determined by the
knot sequence t and polynomial order k. The B-splines for ordinary differential forms
are defined on the uniform knot sequence:

t = [t0, ..., t0︸ ︷︷ ︸
k

, t1, ..., tn−1, tn, ..., tn︸ ︷︷ ︸
k

]. (4.40)

The uniform spacing between the breakpoints is denoted by h and is indicative for the
mesh size. The B-splines for twisted forms, the Hodge duals of ordinary forms, are
defined on a staggered knot sequence:

t̃ = [t0, ..., t0︸ ︷︷ ︸
k

,
t1 + t2

2
, ...,

tn−2 + tn−1

2
, tn, ..., tn︸ ︷︷ ︸

k

]. (4.41)
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Figure 4.11: Right-hand side function f(x, y) of Poisson’s equation in R
2.

This dual grid corresponds to “grid A” in the one-dimensional test case, in which it
produces the most accurate results. The breakpoints of t̃ are staggered with respect
to t in order to preserve the one-to-one relation between Hodge duals. Naturally, the
M-splines of order k − 1 are defined on the reduced knot sequences t′ and t̃′. The two-
dimensional splines are the tensor products of the one-dimensional spline functions of
x and y. The knot sequences in x and y direction are not necessarily identical and can
be varied independently from one another.

When the univariate basis splines are defined, the basis forms of the ordinary and
the twisted differential forms are obtained by the tensor products. For brevity the
basis splines are written in a compact format: Bi(x) = Bi,k,t(x), B̃i(x) = Bi,k,t̃(x),

Mi(x) = Mi,k−1,t′ and M̃i(x) = Mi,k−1,t̃′ .

Ordinary forms The discrete 0-forms have m2 basis forms:

φh =

m∑

i=1

m∑

j=1

φjBi(x)Bj(y), (4.42)

whereas the 1-forms have 2m2 − 2m basis forms:

uh =

m−1∑

i=1

m∑

j=1

uxijMi(x)Bj(y)dx+

m∑

j=1

m−1∑

j=1

u
y
ijBi(x)Mj(y)dy. (4.43)

Twisted forms Twisted forms are notated in Burke’s notation described in Subsec-
tion 3.1.1. The Hodge duals of 0-forms, which are twisted 2-forms, have m2 − 4m + 4
basis forms:

vh =
m−2∑

i=1

m−2∑

j=1

vijM̃i(x)M̃j(y)1̂, (4.44)

whereas twisted 1-forms have 2m2 − 6m+ 4 basis forms:

qh =

m−1∑

i=1

m−2∑

j=1

qxijB̃i(x)M̃j(y)d̂x+

m−2∑

j=1

m−1∑

j=1

q
y
ijM̃i(x)B̃j(y)d̂y. (4.45)
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To achieve a one-to-one relation between Hodge duals, the number of DOFs must
be equal in both bases. Initially, the basis of the ordinary forms involves more basis
coefficients than the basis of twisted forms. The surplus of basis coefficients is remedied
by the imposition of boundary conditions on the ordinary forms, which in this case
are Dirichlet boundary conditions. The number of DOFs of the 0-forms then reduce to
m2−4(m−1) = m2−4+4 and of the 1-forms to (2m2−2m)−4(m−1) = 2m2−6m+4.
Now the number of DOFs agrees with the number of DOFs of the Hodge duals.

4.3.3 Computational grid

The vertices, or 0-cells, of the computational grid are the interpolation points of the basis
splines. For univariate spline functions the interpolation points are the Greville sites τ ,
calculated for the specified knot sequence t. The interpolation points of the two-variate
splines can then be defined as the Kronecker product of the univariate interpolation
points, which gives the vertices:

c
i,j
(0) = (τi, τj), i, j ∈ {1, . . . ,m}. (4.46)

The vertices form the boundaries of the faces, the 1-cells of the cell complex, e.g.:

c
i,j
(1) = (ci,j(0), c

i+1,j
(0) ). (4.47)

The faces again are the boundaries of the volumes, the 2-cells, resulting in a quadrilateral
grid:

c
i,j
(2) = (ci,j(0), c

i+1,j
(0) , c

i+1,j+1
(0) , c

i,j+1
(0) ). (4.48)

The dual grid is defined in an identical way in which the Greville sites τ̃ are calculated for
t̃. The construction of an inner- and outer-oriented cell complices gives rise to incidence
matrices that represent the coboundary operators, i.e. the discrete formulations of the
gradient theorem and the divergence theorem, see Subsection 3.1.2. On the primal grid
the gradient operator is discretized by the coboundary operator δ : C0 7→ C1:

δ = D(1,0). (4.49)

On the dual grid the divergence operator is discretized by the coboundary operator
δ : C̃1 7→ C̃2:

δ = D̃(2,1). (4.50)

Poisson’s equation is discretized by the coboundary operator δ and the discrete Hodge
operator ⋆h:

⋆h δ ⋆h δφ = R̄(f). (4.51)

An example of a two-dimensional primal and dual grid is given in Fig. 4.12. The positive
orientations are chosen to be from left to right, and from down to up. To complete the
discretization of the Laplace-operator, the Hodge ⋆ operator has to be discretized as
well. The discrete ⋆h operator relates the inner-oriented 1-cochains (line integrals) to
the outer-oriented 1-cochains (fluxes), and the inner-oriented 0-cochains (point values)
to the outer-oriented 2-cochains (volume integrals). As in the one-dimensional test case,
the ⋆h is construced according to its natural definition:

⋆h = R̄ ⋆ I. (4.52)
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The ⋆h operator is realized as a pair of matrices M and W , where M is the reduction
and W is the reconstruction of the differential form. For example, M is collocation
matrix for the 0-form, then W evaluates the dual 2-form at the interpolation points. In
general, the Hodge duality is discretized as:

⋆ha = b → Ma = Wb, (4.53)

where a ∈ Cp and b ∈ C(n−p). The ⋆h operator can be represented by the matrix:

H(p,n−p) = M−1W. (4.54)

The discretization of Poisson’s equation, given in (4.36), is given in terms of the cobound-
ary operator δ and the discrete Hodge operator ⋆h:

⋆h δ ⋆h δφ̄ = R̄(f), (4.55)

where the right-hand side function is approximated by a bivariate spline interpolation:
R̄(f) returns the B-spline coefficients that solve the interpolation problem. In matrix
representations, the discrete system becomes:

[
H(0,2)D̃(2,1)H̃(1,1)D(1,0)

]
{φ̄} = {R̄(f)}, (4.56)

which can be solved when the boundary conditions are imposed on φ̄. Dirichlet boundary
conditions are imposed strongly by inserting values at the boundary nodes. Alterna-
tively, Neumann boundary conditions could be imposed by inserting flux values v̄ at the
boundary edges. Then, the problem should be posed in a mixed formulation, such that
v̄ becomes an additional variable in the linear system of equations.

(a) Inner-oriented primal grid with point
values φij (◦) and line integrals uij (⊲).
Boundary conditions are marked red.

+

+

+

+

+

+

+

+

+

+
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+

+

+

+

+

(b) Outer-oriented dual grid with fluxes qij
(⊲) and net outfluxes vij (+).

Figure 4.12: Primal and dual grid on which Poisson’s equation is solved, indicating the
positive orientation of quantities. The gradient theorem is discretized on the primal
grid and the divergence theorem on the dual grid.

4.3.4 Error analysis

The numerical solution is compared to the manufactured solution to assess the accuracy
of the discretization method. The local error in the numerical solution φh(x, y) is defined
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as:
ǫ(x, y) = φ(x, y)− φh(x, y). (4.57)

The global error is measured in the L2-norm:

‖ǫ‖L2 =

(∫

Ω
|ǫ(x, y)|2 dΩ

)1/2

. (4.58)

Grid convergence tests are performed for polynomial orders in the range from 2 to 7.
The results for the global error are plotted in Fig. 4.13. The logarithmic data is listed
in Table 4.11. From the slopes of the logarithmic curves the orders of convergence
are derived. The average slope over each data interval is given in Table 4.12. For
the polynomial orders k = 3, 5, 7 convergence orders of k − 1 are determined. For the
polynomial orders k = 2, 4, 6 higher orders of approximately k are attained. For k = 4
the convergence order is even slightly higher than k.
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Figure 4.13: Error in the numerical solution of Poisson’s equation in 2D, measured in
the L2-norm, versus knot spacing h.
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Table 4.11: Logarithmic data points of knot spacing h and error norm ‖ǫ‖L2 , plotted in
Fig. 4.13.

log(‖ǫ‖L2)

log(h) k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

-2.1972 -1.9863 -1.8995 -5.6754 -6.8236 -9.8586 -11.3494
-2.9444 -4.0128 -3.3309 -8.8554 -9.7183 -14.4614 -15.7959
-3.3673 -4.9723 -4.1389 -10.7248 -11.3776 -16.9395 -18.3214
-3.6636 -5.5540 -4.7085 -12.0728 -12.5502 -18.7513 -20.0859
-3.8918 -5.8217 -5.1546 -12.9825 -13.4592 -20.1312 -21.4508

Table 4.12: Logarithmic slopes (m) averaged over data intervals and the mean absolute
deviation (MAD).

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m 2.0294 1.9259 4.3030 3.9346 6.0453 5.9646
MAD 0.4612 0.0142 0.1824 0.0355 0.0925 0.0113

4.3.5 Conclusions

The results found in the two-dimensional test case agree with those found in the one-
dimensional test case presented in Subsection 4.2. For spline orders k = 3, 5, 7 the
estimated convergence order k− 1 is found. Again, for k = 2, 4, 6 higher-than-expected
convergence of order k is witnessed. The superconvergent behaviour is conjectured to be
caused by a fortunate superposition of numerical errors, as seen previously in Fig. 4.4.
An anomalous result is encountered with k = 4 where the average order of convergence
is m = 4.3030. Also, the results for even orders k exhibit relatively larger deviations
than for odd k, see Table 4.12. These signs cast doubt on whether a solid theoretical
estimate for the superconvergence phenomenon can be made.



Chapter 5

Conclusions

In this thesis a mimetic discretization method deploying B-splines as basis functions
is introduced and succesfully applied to Poisson’s equations in one and in two dimen-
sions. Differential operators of the continuum problem, that is div, grad and curl, are
represented by discrete analogues satisfying vector calculus identities of the continuous
operators (div ◦ curl = 0, curl ◦ grad = 0). With the aforementioned discrete operators,
the discretization method is applicable to a wide variety of elliptic partial differential
equations (PDEs), producing locally conservative solutions of arbitrarily high orders.

In the first chapter a link is made between the nodal and edge basis functions de-
ployed in the mimetic spectral element method (MSEM), of which the basis coefficients
represent function values or integrals. In the MSEM, nodal basis functions are La-
grange polynomials and edge basis functions are found from the derivatives of those
Lagrange polynomials. Comparable nodal and edge basis functions can be constructed
by solving an interpolation or histopolation problem with basis splines. Histopolation
is here understood as an integral-matching approximation of functions. Solutions of the
histopolation problem are proven to exist under the conditions stated in Theorem 1 in
Section 2.8. The construction of nodal and edge basis functions is not required, as basis
splines can be used directly as basis functions in mimetic discretizations. Nodal and
edge basis functions can be replaced respectively by B- and M-splines.

The discrete Hodge operator (⋆h) plays a key role in the discretization of the Laplace-
Beltrami operator, required for numerical solutions of Poisson’s equation. The dis-
cretization process could be simplified when the ⋆h operator is effectively realized by
the mass matrix [8, 9, 27, 28], which eliminates the need for a dual grid. The construc-
tion of an explicit ⋆h operator brings several advantages on the other hand. Firstly,
Neumann boundary conditions and material laws can be imposed strongly. Secondly,
the problem is expressed naturally in a mixed formulation by introducing a dual quan-
tity, which could be the quantity of interest in fact.

The Hodge operator is discretized according to its natural definition (3.39), based
on the reduction and the reconstruction operators. Different field quantities are then
stored on different grid elements, similar to staggered grids in finite volume methods.
Inner-oriented quantities, e.g. line integrals, are housed on the primal grid and outer-
oriented quantities, e.g. fluxes, on the dual grid. The ⋆h operator provides an invertible
map between the two complices. The formal adjoint of a closed cell complex is an
open complex, which is not compatible with spline functions. The subsequent solution
is to close the open complex by boundary elements for which boundary conditions
are available. Dirichlet boundary conditions are imposed on the boundary vertices

63
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augmenting an open primal grid and Neumann boundary conditions on the boundary
faces augmenting an open dual grid.

The construction of an adjoint grid allows some freedom. One option is to stagger
the knots of the dual grid with respect to the primal grid; the knots correspond to the
“joints” of the polynomial pieces that comprise the spline. Another option is to reduce
the polynomial order of the splines on the dual grid. The results of numerical tests
in Section 4.2 indicate that the former provides faster-converging and more accurate
solutions. Staggering the knots has the implication though that the dual grid does not
adhere to the isogeometric paradigm: in isogeometric analysis the knots are retrieved
from the geometry defined in the computer-aided design program.

In Chapter 4, the discretization method is applied to Poisson’s equation on one- and
two-dimensional Cartesian meshes. The two-dimensional spline functions are defined
as tensor products of one-dimensional splines and could be extended similarly to three
dimensions. The error of the numerical solution is measured in the L2-norm to analyse
the convergence to the analytic solution when refining the knot spacings, i.e. increasing
the number of polynomial pieces of the spline. In the one-dimensional test case, the
grid convergence, using a dual grid with staggered knots, is of order k for even order
(k = 2, 4, 6, . . .) splines and k − 1 for odd order (k = 3, 5, 7, . . .) splines, where k is the
polynomial order. Using a dual grid with reduced order, the grid convergence is of order
k − 2 for even order splines and k − 1 for odd order splines. Considering the accuracy
of the obtained solutions, the dual grid with staggered knots is indubitably the best
option.

In the two-dimensional test case, the dual grid is defined with staggered knots only.
A grid convergence study supports the results of the one-dimensional test case. The
grid convergence is of order k for even order splines and k − 1 for odd order splines.
The alternating orders are however not supported by solid theory. Similar convergence
properties are witnessed by others [4, 7, 10, 11] as well, but are not explained ade-
quately and require more in-depth research. Error estimates found in literature [34] for
conventional spline collocation methods predict orders of k− 1 for first-order problems.
Poisson’s equation in the mixed formulation is a combination of two first-order problems
solved by collocation: one involves the gradient operator on the primal grid and one the
divergence operator on the dual grid. A general convergence order of k− 1 can then be
expected. Higher orders of k might be explained by a fortunate superposition of several
error terms, as observed in Section 4.1.

All by all, B-splines can be deployed as basis functions in mimetic discretizations of
elliptic PDEs. The numerical solution is of arbitrary order and locally conservative. The
grid convergence is generally of order k− 1, one order lower than the polynomial order.
For even order splines however, the convergence is of order k, but is not supported by
theory. The dual grid can be constructed by staggering the knots with respect to the
primal grid.



Chapter 6

Future work

The application of splines in numerical analysis is growing rapidly in popularity with
the advent of isogeometric analysis. Mimetic discretizations is another relatively young
topic that is expected to mature in the years to come. The potential of both research
areas is recognised by the scientific community, publishing more and more articles each
year. This thesis is by no means comprehensive and inclusive, leaving many possibilities
unexplored and questions unanswered. This chapter includes a number of pointers to
direct possible future work that builds upon the research presented in this thesis.

Adjoint coboundary operator

In this thesis the Laplace-Beltrami operator is discretized with the discrete Hodge ⋆

operator and the coboundary operator δ:

∆h = δ ⋆h δ ⋆h + ⋆h δ ⋆h δ. (6.1)

where the ⋆h operator is obtained according to the its natural definition (3.39). Another
common approach [8, 9, 27, 28] is to derive an adjoint coboundary operator δ∗ from mass
matrices M :

∆h = δ∗δ + δδ∗ = M−1
p DT

p Mp+1Dp +Dp−1M
−1
p−1D

T
p−1Mp. (6.2)

There is no need to define a dual grid and the exact adjointness between differential
operators is preserved:

(δ∗a, b)Ω = (a, δb)Ω, a ∈ Cp, b ∈ Cp−1. (6.3)

The adjoint coboundary can also be discretized using the reduction operator R and
reconstruction operator I:

δ∗ = (−1)pR ⋆ d ⋆ I, (6.4)

which is the natural definition of the adjoint coboundary operator and closely related to
collocation methods. Neither this discretization or Eq. (6.1) will give an exact adjoint
with respect to the inner product:

(δ∗a, b)Ω = (a, δb)Ω +O(hs), a ∈ Cp, b ∈ Cp−1. (6.5)

The approximation might be justified by expected gains in computational efficiency.
Collocation methods and alike are known to be low-cost alternatives to Galerkin meth-
ods, which require numerical quadrature to evaluate the inner products.
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Derived Hodge ⋆ operator

An alternative to the natural ⋆ operator is the derived definition:

(a, b)Ω =

∫

Ω
a ∧ ⋆b, a, b ∈ Cp. (6.6)

Evaluation of the inner product and wedge product for the basis functions gives the
algebraic system:

Mpb = Wn−p{⋆hb}, (6.7)

in terms of the mass matrix M and the wedge or pairing matrix W . This discretiza-
tion is regarded as a Galerkin method: the discrete form is projected orthogonally on
the dual grid. The error, measured in the L2-norm, is then minimised and is therefore
indubitably smaller than for the natural definition of the ⋆h operator: the error is ex-
pected to be O(hk) for even and odd k. Note that this distinction does not exist in
the mimetic spectral element method (MSEM): the spaces of discrete forms and their
Hodge duals are identical, allowing a lossless map to the dual grid. It is however ques-
tionable if the accuracy of the derived ⋆h operator outweighs the computational cost of
its implementation. For example, the discrete scalar Laplacian requires the evaluation of
two mass matrices and two pairing matrices, necessitating highly-demanding numerical
quadrature.

Local refinement

Much of the current research activities in isogeometric analysis concentrate on local re-
finement of splines, which is an essential capability for analysing realistic problems. The
computer-aided design software provides geometries that are generally too coarse for ac-
curate analysis. The tensor product nature of multivariate B-splines or NURBS however
obstruct the local adaptation of the mesh. Sederberg [6, 36] introduced a generalisa-
tion of NURBS, called T-splines for allowing T-junctions in the meshes. With certain
restrictions, T-splines are linearly independent and form a partition of unity. These
properties make T-splines interesting candidates for locally adaptable basis functions
in mimetic discretizations. Yet another approach to local refinement are hierarchical
B-splines which is a multilevel refinement, leading to a hierarchy between the degrees
of freedom.

Practical applications

The discretization method proposed in this thesis is directly applicable to realistic linear
diffusion problems. For instance one can think of heat conduction, electromagnetism,
Stokes flow, Darcy flow, and more. To allow more general geometries, a pullback opera-
tor must be defined to perform integration on curvilinear domains. The tensor product
formulation of bivariate spline functions allows a natural extension to three dimensions.
Also, more complex geometries can be achieved by connecting multiple patches or su-
perelements of splines.
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[19] H.B. Curry and I.J. Schoenberg. On Pólya frequency functions IV: The fundamental
spline functions and their limits. Journal d’Analyse Mathématique, 17:71–107, 1966.

[20] C. de Boor. On Calculating with B-Splines. Journal of Approximation Theory,
6:50–62, 1972.

[21] C. de Boor. A Practical Guide to Splines, volume 27 of Applied Mathematical
Sciences. Springer, 2001.

[22] H. Flanders. Differential Forms with Applications to the Physical Sciences. Dover
Publications, December 1989.

[23] T. Frankel. The Geometry of Physics: An Introduction. Cambridge University
Press, 2nd edition, November 2003.

[24] M. Gerritsma. An Introduction to a Compatible Spectral Discretization Method.
Mechanics of Advanced Materials and Structures, 19:48–67, 2012.

[25] R. Hiemstra. Isogeometric mimetic methods. Master’s thesis, Delft University of
Technology, 2011.

[26] R.R. Hiemstra, R.H.M. Huijsmans, and M.I. Gerritsma. High order gradient, curl
and divergence conforming spaces, with an application to NURBS-based IsoGeo-
metric Analysis. Eprint arXiv:1209.1793, submitted to Journal of Computational
Physics, September 2012.

[27] R. Hiptmair. Discrete Hodge operators. Numerische Mathematik, 90:265–289, 2001.

[28] R. Hiptmair. Discrete Hodge-Operators: An Algebraic Perspective. Progress In
Electromagnetics Research, 32:247–269, 2001.

[29] R. Hiptmair. Finite element in computational electromagnetism. Acta Numerica,
11:237–339, 2002.

[30] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Computational Methods
in Mechanics and Engineering, 194:4134–4195, 2005.



BIBLIOGRAPHY 69

[31] J.M. Hyman and J.C. Scovel. Deriving mimetic difference approximations to dif-
ferential operators using algebraic topology. Los Alamos National Laboratory, un-
published report, 1988.

[32] J.J. Kreeft, A. Palha, and M.I. Gerritsma. Mimetic framework on curvilinear
quadrilaterals of arbitrary order. At arXiv:1111.4304v1, 18 November 2011.

[33] L. Piegl and W. Tiller. The NURBS book. Springer-Verlag, 1995.

[34] R.D. Russell and L.F. Shampine. A Collocation Method for Boundary Value Prob-
lems. Numer. Math., 19:1–28, 1972.

[35] I.J. Schoenberg. Contributions to the problem of approximation of equidistant data
by analytic functions. Quarterly of Applied Mathematics, 47:45–99 and 112–141,
1946.

[36] M.A. Scott, X. Li, T.W. Sederberg, and T.J.R. Hughes. Local refinement of
analysis-suitable T-splines. Comput. Methods Appl. Mech. Engrg., 213–216:206–
222, 2012.

[37] T. Tarhasaari, L. Kettunen, and A. Bossavit. Some realizations of a discrete Hodge
operator: A reinterpretation of finite element techniques. IEEE Transactions on
Magnetics, 35(3):1494–1497, May 1999.

[38] D. Toshniwal. A geometic approach towards momentum conservation. Master’s
thesis, Delft University of Technology, 2012.



70 BIBLIOGRAPHY



Appendix A

In Section 4.1, the projection error is examined for a sine function specifically. Similar
observations can made for more general functions, such as the asymmetric function:

α(x) = ex sin(2πx),

where the sine function is multiplied by an exponential function. The local projection
errors are shown in Fig. A.1. Again, the second projection error counterbalances the
first projection error for k = 4, which benefits the grid convergence of the total error.
Similar results are expected for C∞ functions in general.
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Figure A.1: Local errors in the double projection π̃ ⋆ πα for k = 4 and k = 5, with grid
spacing h = 0.0345.
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