

Delft University of Technology

Graph learning-based generation of abstractions for reinforcement learning

Xue, Y.; Kudenko, D.; Khosla, M.

DOI
10.1007/s00521-023-08211-x
Publication date
2023
Document Version
Final published version
Published in
Neural Computing and Applications

Citation (APA)
Xue, Y., Kudenko, D., & Khosla, M. (2023). Graph learning-based generation of abstractions for
reinforcement learning. Neural Computing and Applications. https://doi.org/10.1007/s00521-023-08211-x

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s00521-023-08211-x
https://doi.org/10.1007/s00521-023-08211-x

S. I . : ADAPTIVE AND LEARNING AGENTS 2021

Graph learning-based generation of abstractions for reinforcement
learning

Yuan Xue1 • Daniel Kudenko1 • Megha Khosla2

Received: 23 November 2021 / Accepted: 6 January 2023
� The Author(s) 2023

Abstract
The application of reinforcement learning (RL) algorithms is often hindered by the combinatorial explosion of the state

space. Previous works have leveraged abstractions which condense large state spaces to find tractable solutions. However,

they assumed that the abstractions are provided by a domain expert. In this work, we propose a new approach to

automatically construct abstract Markov decision processes (AMDPs) for potential-based reward shaping to improve the

sample efficiency of RL algorithms. Our approach to constructing abstract states is inspired by graph representation

learning methods, it effectively encodes the topological and reward structure of the ground-level MDP. We perform large-

scale quantitative experiments on a range of navigation and gathering tasks under both stationary and stochastic settings.

Our approach shows improvements of up to 8.5 times in sample efficiency and up to 3 times in run time over the baseline

approach. Besides, with our qualitative analyses of the generated AMDPs, we are able to visually demonstrate the

capability of our approach to preserve the topological and reward structure of the ground-level MDP.

Keywords Reinforcement learning � Abstract MDP � State representations � Graph representations

1 Introduction

Reinforcement learning algorithms often suffer from a high

sample complexity that is frequently due to a very large

state space. As the number of feature variables describing

the state grows, the size of state space increases expo-

nentially (the so-called curse of dimensionality [4]). A lot

of research effort has been spent to tackle this problem, e.g.

via reward shaping [20, 27, 37, 43], option framework

[42, 48], hierarchical RL [29, 50], hindsight experience

replay [3], etc. This paper focuses on leveraging

abstraction [1, 33] to condense large state spaces such that

essential information is preserved. Consequently, solutions

can be computed in a tractable manner. Abstraction

methods reduce ground-level MDPs with large state spaces

to abstract MDPs (AMDPs) with smaller state spaces by

aggregating states according to some notion of similarity.

Abstractions can be realized by aggregating states with

equal values of particular quantities, for example, optimal

Q-values. Our approach exploits state abstractions to build

informative AMDPs that can be solved a lot faster and

provide a ‘‘rough’’ solution to the RL task. This solution is

then used to shape the reward function of the ground-level

learning on the original MDP and thus improves the con-

vergence speed of RL algorithms, as suggested in [19, 33].

Most of the existing works assume abstractions to be

provided by experts [11, 12, 19, 33]. An example is shown

in Fig. 1 where a domain expert creates abstractions based

on the intuitive concept of ‘‘Rooms’’. However, such

manual approaches become infeasible as environments

scale up. In an attempt to automatically generate abstrac-

tions, [6] proposed to uniformly partition the state space to

build abstract states. While this has been shown to improve

the convergence rate of RL, it first needs to know the

& Yuan Xue

xue@l3s.de

Daniel Kudenko

kudenko@l3s.de

Megha Khosla

M.Khosla@tudelft.nl

1 L3S Research Centre, Leibniz University Hannover, Lange

Laube 6, Hannover 30167, Lower Saxony, Germany

2 Intelligent Systems Department, Delft University of

Technology, Van Mourik Broekmanweg 6, 2628 XE Delft,

The Netherlands

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-023-08211-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-1773-6682
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08211-x&domain=pdf
https://doi.org/10.1007/s00521-023-08211-x

boundaries of the state features of the environment to

perform uniform partitioning. Moreover, the resulting

abstract states ignore the connectivity and reward structure

of the underlying MDP. Consider for example (see Fig. 2)

two states are spatially close but are separated by an

obstacle and it takes a large number of steps to move

between the states, but these two states can likely be

aggregated into the same abstract state using [6].

We argue that the state aggregation for reward shaping

should be based on properties of topological and value

function similarity. Intuitively, the ground-level states

belonging to the same abstract state should be topologically

close and should appear more frequently together within

high reward paths from the start state to the goal state.

Moreover, if two states are in the same abstract state, their

long-term expected discounted rewards (value functions)

should also be similar.

To satisfy the above two properties, we propose a new

approach to generate state abstractions that exploits the

underlying topology and reward structure of the ground-

level MDP. Borrowing ideas from graph representation

learning, we first extract latent state representations which

encode the similarity among states in terms of topological

and reward structure. The state representations are then

clustered to generate abstract states of the AMDP. In both

stationary and stochastic environments, our experimental

results show vast improvements in convergence speed

compared to the previous state-of-the-art [6] which con-

structs AMDPs by uniformly partitioning each state

dimension into a predefined number of abstract cells. We

attribute the performance gains to an improved cluster

structure which qualitatively and intuitively agrees well

with the cluster structure induced by the state-value func-

tions of the ground-level MDP.

Regarding state representation learning for RL,

[9, 17, 52] also attempt to encode behavioural similarity of

states in the underlying MDP. The main goal of these

works is to incorporate representation learning into RL

learning frameworks so that informative state representa-

tions can help converge to better policies. In contrast, we

learn representations in order to explicitly build transparent

and interpretable abstractions for hierarchical RL, so that

sample complexity of learning on the ground-level can be

reduced.

To sum up, our main contributions are as follows.

1. We introduce a new approach to construct abstract

states to preserve properties of topological and value

function proximity among the ground-level states.

2. We show that reward shaping with our constructed

AMDP results in improvements for the Qk algorithm

of up to (i) 8.5 times in convergence speed and sample

efficiency for stochastic environments and 6.5 times for

stationary environments and (ii) 3 times in run time for

stationary environments.

3. With our qualitative analysis of the generated AMDP,

we demonstrate that our approach is able to preserve

the topological and reward structure of the ground-

level MDP.

For reproducibility, we release our code at https://github.

com/xy9485/GraphLearningBasedAMDP.

Fig. 1 Manually created abstraction, states in the maze are aggregated

into abstract states according to ‘‘rooms’’, which are in different

colours and labelled by numbers

Fig. 2 Two states in label ‘‘X’’ are spatially close, but topologically

quite far from each other. They are likely to be aggregated into same

abstract state using uniform partitioning

Neural Computing and Applications

123

https://github.com/xy9485/GraphLearningBasedAMDP
https://github.com/xy9485/GraphLearningBasedAMDP

2 Background

2.1 Reinforcement learning

Reinforcement learning consists of an environment and an

agent which is driven by a policy to interact with the

environment. For each interaction, the agent observes the

response of the environment to its actions and updates its

behaviours. The goal for the agent is to maximize the long-

term accumulated reward given by the environment. The

environment is typically represented by a Markov decision

process (MDP). The standard notation for MDPs:

M ¼ ðSM;AM;RM;PMÞ ð1Þ

where SM is a set of available states the agent may find

itself in the environment, AM denotes available actions for

each state, RMðs; a; s0Þ defines the immediate reward after

the agent transitions from s to s0 via a, PMðs;a;s0Þ denotes the

probability of reaching s0 when performing action a at state

s.

When the complete knowledge of the environment’s

MDP is unknown, algorithms based on utilizing temporal

difference are often used. Q-Learning is one of the fun-

damental TD learning algorithms, and it updates the value

of a state-action pair after each transition:

Qðs; aÞ ¼ Qðs; aÞ þ aðRðs; a; s0Þ þ cmax
a0

Qðs0; a0Þ � Qðs; aÞÞ

ð2Þ

where a denotes the learning rate and c is the discount

factor.

To improve the learning rate of Q-Learning, updates of

the Q function can be made for multiple state-action pairs

after each transition. Since an action made by the agent will

likely influence not only immediate, but also future

rewards, it is reasonable to give more credit to more

recently experienced state-action pairs. The extent of

updates to those state-action pairs is quantified by their

eligibility. After each transition, the current state-action

pair has its eligibility to 1, and the eligibility of other state-

action pairs in the same trajectory decays in contrast. Q-

Learning utilizing eligibility is referred to as Q(k) algo-

rithm. A more detailed introduction regarding reinforce-

ment learning is referred to [47].

2.2 Potential-based reward shaping

Reward sparsity is one of the main challenges of rein-

forcement learning; one intuitive solution is reward shap-

ing in which the agent receives an additional pseudo-

reward Fðs; a; s0Þ, which imparts the external domain

knowledge to the agent and stimulates the agent towards

desired behaviours.

It has been proven in [37] that if Fðs; a; s0Þ is defined as

the difference of potential /ðsÞ between two states, the

optimal policy will remain unchanged.

F s; a; s0ð Þ ¼ c/ s0ð Þ � /ðsÞ ð3Þ

Reward shaping methods employing Eq.(3) to compute

pseudo-rewards are referred to as potential-based reward

shaping (PBRS) techniques. To obtain reasonable potential

functions, domain experts are often required to provide

domain knowledge [10, 19] or demonstration [5, 21].

However, it might be infeasible to manually define such a

potential function for complex tasks, instead, it is prefer-

able to construct such a function automatically.

A potential function can be generated by solving an

abstract version of the task, represented by an abstract

Markov decision process (AMDP):

A ¼ SA;AA;RA;PAð Þ ð4Þ

where each element is an abstraction corresponding to its

counterpart in an MDP. A mapping function Z is also

constructed between ground states and abstract states.

AMDPs can induce potential-based reward shaping. Once

an AMDP is built, dynamic programming is used to com-

pute the optimal value function V over the AMDP. Then, V

is treated as the potential function /ðsÞ VðZðsÞÞ.
Since we have multiple agents operating on different

levels of abstraction, we refer to the agent interacting with

the AMDP as the abstract agent and the agent interacting

with ground-level MDP as the ground agent. We denote

this similarly for the abstract and ground learning

processes.

2.3 Graph representation learning

The key idea of graph (or node) representation learning

(GRL) is to learn low-dimensional latent node representa-

tions while preserving the structural properties of the

underlying graph together with node attributes. These

techniques can be broadly classified into (i) random walk-

based methods, (ii) matrix factorization based methods and

(iii) deep learning-based methods like graph neural net-

works (GNNs).

Random walk-based methods [23, 24, 41, 54] find node

embeddings such that nodes co-occur on random walks

over the graph are embedded closer. Matrix factorization-

based methods [39] rely on the low-rank decomposition of

a target matrix such as the k-step transition probability

Neural Computing and Applications

123

matrix and modularity matrix to obtain node embeddings.

Both the above classes of methods operate mainly in an

unsupervised manner on unattributed (when nodes do not

have features) graphs. GNNs are deep learning models

designed to extract features from the graph structure as

well as the input node attributes and can be further cate-

gorized into recurrent graph neural networks [45], convo-

lutional graph neural networks [26, 38] and graph

autoencoders [25, 44].

We observe that while matrix factorization and GNNs

would need the knowledge of the complete graph, random

walk-based methods are more flexible and can be applied

even if the complete graph is unknown beforehand. In

particular, for our current setting, when the exact MDP is

unknown and can only be explored, we develop a random

walk-based graph representation learning strategy (more

details in Sect. 4.1) to learn abstract states while encoding

the topology and reward structure of the ground-level

MDP.

Our approach employs random walk-based graph rep-

resentation learning or node embedding approaches

[18, 23, 24, 41]. The goal is to learn low-dimensional

representations of the nodes such that the topological and

reward structure of the ground-level MDP is preserved.

Other work [51] showed that graph representation learning

techniques can be leveraged to learn informative state

representations for DeepRL models. Madjiheurem and

Toni [31] employ graph-based feature learning techniques

for value function approximation. In particular, they

empirically show that low-dimensional-state embeddings

learned using graph representation learning techniques are

better suited for linear approximation of value functions

than the proto-value functions. Our work can be considered

to be complementary to the above works; in that we further

demonstrate the usefulness of GRL techniques in hierar-

chical RL.

3 Related work

3.1 Hierarchical reinforcement learning

To improve the reward performance and sample efficiency

of RL algorithms, hierarchical reinforcement learning

(HRL) is a popular paradigm that enables the decomposi-

tion of a challenging long-horizon decision-making task

into simpler subtasks [40].

One pattern of HRL which our approach complies with

is to construct a hierarchical structure of MDPs so that

high-level MDPs are less complex to solve and aid in the

learning over low-level MDPs. Marthi [33] first introduced

the idea to automatically modify the reward function of a

Markov decision process by defining an abstract MDP to

speed up standard reinforcement learning algorithms. In

past works (e.g. [13, 19]), AMDPs were manually built by

a domain expert. However, generating AMDPs in this way

often requires utilizing external domain knowledge which

can be hard to acquire or encode. When facing complex

domains, human experts could be inefficient and even fail

to build AMDPs. In [6, 7], a conceptually simple method

for constructing state abstractions was proposed. In this

approach, the state space is partitioned uniformly along

each dimension, and each partition forms an abstract state.

While the results showed a speed-up of RL, the resulting

state abstractions do not always match the topological and

reward structure of the underlying MDP. Consequently, the

reward shaping derived from corresponding AMDPs could

be inaccurate and mislead the ground learning process. Our

approach can handle this limitation.

In [22, 28, 32, 49], clustering algorithms are applied to

an MDP model or a graph estimated from states trajectories

to identify abstract states or bottlenecks and subsequently

generate options. This method struggles to generate

effective and robust abstractions that are aligned with the

underlying topological and reward structure. Note that

given the state transition history, there is no unique way to

construct the corresponding graph. It is therefore

inevitable to lose some information at this approximation

step. These approaches could require huge storage for the

estimated graph when facing large and complex environ-

ments. Our approach, on the other hand, directly learns

low-dimensional latent-state representations from the state

transitions. The latent-state representations are then clus-

tered to generate abstract states.

Another line of work to achieve HRL employs option

framework [42, 48]. Compared to constructing state

abstractions, option framework achieves temporal

abstraction by modelling courses of actions as options.

Policies over options and intra-option policies make up the

hierarchical RL structures. While useful options are proven

to speed up RL learning, approaches using option frame-

work often require prior knowledge to define options. To

mitigate the reliance on prior knowledge, automated dis-

covery of options [8, 34, 46, 53] has become an active

research area.

Feudal reinforcement learning [50] performs HRL by

employing a layered learning strategy with two modules:

Manager and Worker. States are first embedded into a

latent space. The Manager in the higher layer is trained to

predict advantageous directions of transitions in the latent

Neural Computing and Applications

123

space. The Worker in the lower layer is intrinsically

rewarded by following these advantageous directions. For

those RL tasks where long-term credit assignment does not

play an important role, the feudal network can be inferior

to a CNN connected by an LSTM network. In addition,

advantageous directions predicted by the Manager in the

latent-state space are learned in an implicit manner, which

makes the policy learned by the Manager lack inter-

pretability. In our approach, the abstract state space is

explicitly built according to topological and reward struc-

ture similarity; therefore, the learned abstract-level policy

is more transparent.

In [29], a hierarchical deep RL framework is proposed.

The high-level agent takes actions from a set of sub-goals

defined by domain experts, the low-level agent operates on

the initial action space to achieve the sub-goal from the

high-level controller. The high-level policy is learned

based on the accumulative extrinsic reward gathered by the

low-level agent given a sub-goal. The low-level policy is

then updated based on the intrinsic reward, describing

whether the assigned sub-goal is reached or not. This

framework can be practical in application when useful

prior knowledge can be imparted to the high-level agent.

However, it becomes hard to impart prior knowledge when

scaling up the RL task.

3.2 State representation learning in RL

Research has been focusing on learning informative state

representations for RL algorithms. In [52], Zhang et al.

learn state representations based on bisimulation metric

[14–16] to measure behavioural similarity between two

states. The learning of representations is integrated into the

RL learning framework. Note that their objective is quite

different from ours, in which they learn representations to

improve the robustness of the learned policy against

background distraction of pixel observations. Our objective

is to learn representations to explicitly construct abstrac-

tions and reduce sample complexity of ground-level RL

algorithms subsequently.

Another related representation learning strategy is

successor representation (SR) [9] which encodes the

expected discounted future visitations of each state

j along trajectories originating in a given state i. Conse-

quently, each state is represented as a sparse vector of

n dimensions where n is the total number of states.

Though in principle one can use these representations in

our framework, low-dimensional dense representations

like ours are better suited to obtain clusters as abstract

states. Though there are recent works [30] on approxi-

mating low-dimensional SR representation within deep

RL frameworks, those methods have a different objective

as ours. Specifically, we are interested in finding state

abstractions which facilitate reward shaping for faster

convergence of ground-level policy learning, whereas

deep successor representations are approximated as a

component of the whole network for learning the optimal

policy.

Agarwal et al. [2] proposed to learn policy similarity

embeddings in which states from different MDPs (sharing

the same action space) are close in the embedding space if

their optimal policies and future states are similar. The

main goal of learning such embeddings is to train a gen-

eralizable policy over multiple unseen environments. That

is quite different from our focus, which is to speed up the

RL process.

4 Our approach

Solving dynamic programming over AMDP to achieve

reward shaping is a well-known paradigm to boost the

convergence rate of model-free RL algorithms. It is crucial

to build appropriate AMDPs which can preserve the

topological and reward structure of the environment.

Inappropriate abstraction can result in inaccurate reward

shaping, which could slow down the convergence rate or

even make the ground learning process infeasible.

To get useful reward shaping, we formulate two

important properties for state abstraction, namely (i) topo-

logical proximity and (ii) value-function proximity. First,

the generated abstract states should preserve topological

proximity among the ground-level states. We say that two

states are topologically proximal if the states are reachable

from each other in a small number of steps. In other words,

the construction of abstract states should obey the under-

lying topology of the ground-level MDP. Second, any two

states in an abstract state should have similar value func-

tions. To understand the intuition behind the second

property, note that the member states of the same cluster

receive the same shaped reward. Now, if the actual value

functions of the states differ too much, then providing the

same shaped rewards would have a negative impact on the

learning of the ground-level policy.

Towards incorporating the desired properties, we first

generate latent representations of the states preserving the

topology as well as the reward structure of the ground-level

MDP. In particular, we design a exploration strategy,

Neural Computing and Applications

123

which collects experiences (trajectories of states) with a

bias towards making states sharing similar reachability and

ground value functions co-occur more frequently. The

experiences are then used to learn state representations.

The more co-occurring the states are, the closer the states

will be embedded in the low-dimensional representation

space. These representations are then clustered into abstract

states for constructing an AMDP. Finally, the AMDP is

exactly solved to induce reward shaping for the ground

agent. In the following subsections, we further elaborate on

our approach which we refer to as the TOPOLOGY approach.

4.1 Graph-based learning of abstract states

Let a graph G ¼ ðV;EÞ represent the MDP where each

node s 2 V corresponds to a state and two nodes ðs; s0Þ
have an edge between them if s0 can be reached from s in a

single-step transition. We adopt the ideas from graph rep-

resentation learning [23, 41] to learn continuous repre-

sentations of the nodes in V such that the topology of G is

preserved. As G is not known in advance, we devise a

novelty-based SARSA strategy to collect sequences of

states. The co-occurrence frequency of nodes in one epi-

sode within a predefined window range then quantifies the

similarity between the nodes.

Given the state sequences, we use the Skip-gram model

[35, 36] with negative sampling to learn state representa-

tions. States will be closer embedded if they co-occur more

frequently. Let N ðsÞ denote the higher-order neighbour-

hood or the co-occurring states of state s. We are interested

in learning the state and context representations Uð�Þ and
Hð�Þ such that the following objective is maximized:

X

s2V

X

s02N ðsÞ
logðrðUðsÞ �Hðs0ÞÞ þ

XK

k¼1
Es00 �P logðrð�UðsÞ �Hðs00ÞÞ

 !

ð5Þ

where rðxÞ ¼ 1=ð1þ expð�xÞÞ is the sigmoid function,

K is some constant denoting the number of negative sam-

ples and P denotes a random distribution over the observed

node set. The state representations are then used to con-

struct the abstract states.

4.1.1 Exploring the environment

In this section, we describe in detail our novelty-based

SARSA strategy employed to explore the ground-level

MDP and generate state sequences used in state represen-

tation learning. Our exploration strategy is motivated by

two main objectives: (i) explore the environment as much

and as uniformly as possible with limited cost, and (ii)

more similar states (in terms of their reachability and

ground value functions) should co-occur more frequently

during exploration.

The pseudocode of our ground-level exploration policy

is provided in Algorithm 1. To enforce our above two

objectives, we develop a dynamic reward function to

favour certain transitions over others. In particular, for a

transition ðs; a; s0Þ, a dynamic reward r (line 12 in the

pseudocode) is computed by taking into account both the

novelty (visit count) of s0 and the change in the ground

reward function (compared to the recent mean reward) for

this transition. If only the novelty of states matters the

reward function during exploration phase, the resulting

representations learned from collected experiences will not

encode the value function, but just the topology of the state

space. We learn Q-values for state-action pairs using a

SARSA-based feedback mechanism (see lines 17–20).

Note that we do not require Algorithm 1 to converge and

are only interested in using the learned Q-values to weakly

guide our exploration.

Moreover, if there are some states which cause rewards

lower than a predefined threshold value / (could be a large

negative value), they are treated as undesirable states to

visit and stored in a set called traps. The traps can be

useful when building the dynamics of the AMDP (see

Sect. 4.2 for a more detailed explanation of this).

The length M and number N of episodes are fixed to a

small number so that the size of the experiences will be

ðM þ 1Þ � N. The time complexity of the exploration phase

is therefore O(MN). In our experiment, we are able to keep

the time consumption for exploration acceptable so that the

total time of solving tasks is still substantially reduced, as

compared to the uniform partitioning approach. Detailed

comparison of run time is discussed in Sect. 5.2.2.

Neural Computing and Applications

123

4.1.2 Constructing the abstract states

We employ K-Means clustering to cluster the learned state

representations into k clusters, as k abstract states, where k

determines the granularity of state abstraction. States in

each abstract state should be similar in terms of reacha-

bility and ground value function. A mapping function Z :

S! SA is built which maps ground states in S to their

corresponding abstract states (clusters).

4.2 Dynamics of AMDP

Once the set of abstract states SA are determined, we

construct an AMDP which describes the dynamics of the

explored environment on the abstract-level as described in

Algorithm 2.

The transitions of the AMDP are determined by the

experiences from the exploration phase. The experiences

consist of sequences of states for each exploration episode,

if step ðs! s0Þ is observed in an episode while

ZðsÞ 6¼ Zðs0Þ, this indicates an abstract transition

ðZðsÞ ! Zðs0ÞÞ. For each episode during the exploration

phase, if ðZðsÞ ! Zðs0ÞÞ is observed at least once, the

probability PAðZðsÞ; ZðsÞ ! Zðs0Þ; Zðs0ÞÞ will be corre-

spondingly increased (line 17 in Algorithm 2). The

probability of abstract transitions that are not observed in

any of the exploration episodes will remain zero as ini-

tialized. During the exploration phase, the ground-level

goal state sg should also be observed. In the AMDP, the

agent in an abstract state containing the goal state always

stays in that same abstract state, i.e.

PAðZðsgÞ; ZðsgÞ ! ZðsgÞ; ZðsgÞÞ ¼ 1:

The corresponding abstract reward function is defined as

follows. We set

RðZðsgÞ; ZðsgÞ ! ZðsgÞ; ZðsgÞÞ ¼ 0;

so that the abstract state corresponding to the goal state,

ZðsgÞ will receive the highest value once the AMDP is

solved by value iteration [47].

As mentioned in Sect. 4.1.1, in case there are some

states in the environment that are undesirable (i.e. having

very low ground value functions) for the ground agent to

visit, those states are stored in a set traps during the

exploration phase. Algorithm 2 ensures that the value

function of the generated AMDP agrees with the ground

value function. More specifically, for transitions starting

from abstract states that contain ground states which

belong to traps, huge negative rewards are given (line 13

Algorithm 2). Thus, the abstract states corresponding to

Neural Computing and Applications

123

traps will eventually obtain lower-state values than their

neighbours once the AMDP is solved. This helps the

ground-level agent avoid states in traps when using reward

shaping induced by the AMDP.

4.3 Exploiting AMDP

Once a complete AMDP is constructed, value iteration [47]

is employed to solve the AMDP exactly, so that we can

acquire value function V(t), which is used to compute the

potential-based reward shaping to inform the ground-level

RL. V(t) is also called potential value in such context. More

specifically, for a ground-level transition ðs! s0Þ such that

ZðsÞ 6¼ Zðs0Þ (which means an abstract transition happens)

the agent gets a combined reward, r, as follows

r ¼ renv þ xFðt; t0Þ; ð6Þ

where t ¼ ZðsÞ; t0 ¼ Zðs0Þ, Fðt; t0Þ ¼ cVðt0Þ � VðtÞ, c is the
discount factor (close to 1 normally), and x is a scaling

parameter. The reward renv given by the environment plus

the scaled difference between two potential values xFðt; t0Þ
can be treated as an augmented reward to update the

agent’s policy. This helps reduce the sparsity of the reward

distribution of the ground-level MDP and improve the

convergence rate of RL algorithms.

In the solved AMDP, except for the abstract states

corresponding to traps, the closer an abstract state, t, to the

abstract state containing the ground goal state is, the higher

would be the corresponding value V(t). This property of the

AMDP intuitively ensures that the shaped reward r can

always steer the agent towards abstract states with higher

potential values. Now if the constructed AMDP reflects the

topology and value function of the ground-level MDP well,

the agent employing the shaped reward is able to approach

the goal state more efficiently.

5 Experimental evaluation

Our evaluation is conducted both in stationary as well as

stochastic environments and is divided into two parts. First,

we perform quantitative evaluations in which we show the

superiority of our approach in terms of sample efficiency,

convergence speed and run times. Besides, we conduct

sensitivity experiments in which we show that our

approach is robust (as compared to the baseline) towards

the number of clusters (or the granularities of state

abstraction) and the stochasticity within the environment.

We used the Flag Collection Domain to evaluate the per-

formance of our approach as compared to the uniform

Neural Computing and Applications

123

partitioning approach[6] which we refer to as UNIFORM

approach in our experiments. Second, we perform a qual-

itative analysis of the constructed AMDPs on the Grid

World and Flag Collection domains. In particular, through

visualizations of value function heatmaps of ground-level

MDPs and generated AMDPs, we demonstrate that our

approach achieves the two desired properties of topological

and value function proximity.

5.1 Setup

In the following, we describe the two navigational domains

employed for our experiments.

Flag collection domain We quantitatively evaluated our

approach on four different variants (shown in Fig. 3) of the

Flag Collection domain [19]. The actual sizes of the maze

variants are provided in the captions.

Fig. 3 Flag Collection variations, with the starting point marked as S, the goal marked as G and flags marked as F. Black blocks are walls which

are untraversable. Blocks in blue are doors which are stochastic to be close (Color figure online)

Neural Computing and Applications

123

As an augmentation of the normal Grid World Naviga-

tion domain, the Flag Collection domain tasks the agent

with traversing a Grid World environment, collecting flags

marked as F and bringing them to the goal marked as G.

The agent cannot move out of the environments’ boundary

and reappear on the opposite side. There are impassable

walls spread throughout the environments, which deter-

mine the connectivity of the environments. The cells in

blue are doors on the walls, which could be open with a

certain probability at each time step. Each state has up to

four actions to choose from, corresponding to the four

orthogonal directions. Each episode begins from the start-

ing point marked as S and terminates when the agent

reaches the goal coordinate, no matter how many flags are

collected. In all the experiments, the number of flags is

fixed to 3. For steps picking up a flag, a reward of 10,000 is

given. For reaching the goal state ðxgoal; ygoal; 1; 1; 1Þ, the
agent receives a reward of 0. Here, ðxgoal; ygoalÞ corresponds
to the coordinates of the goal state in the maze, the last

three binary dimensions (1, 1, 1) indicate that all three

flags are collected. For each ordinary step, where no flag is

collected and the goal state is not reached, the agent gets a

step penalty of - 1.

Grid world with traps For the qualitative analysis, we

also used a Grid World maze as shown in Fig. 4, which is

33� 48 in actual size. The task is to reach the green cell

marked as G starting from the red cell marked as S. The

agent should avoid getting into purple cells (traps) marked

as T, which cause substantial negative rewards. For each

ordinary step, a reward of - 1 is given; for a step reaching

the goal state sgoal ¼ ðxgoal; ygoalÞ, a reward of 0 is given,

and for steps getting into the traps, a reward of �2000 is

given.

5.1.1 Hyperparameter settings

For the Flag Collection domain, the hyperparameter set-

tings of our TOPOLOGY approach for the exploration agent

and the ground agent are listed in Table 1. The learning

rate is denoted by a; c is the discount rate; � controls the

probability of choosing actions at random when using �-

greedy policy; x stands for the scale factor of the differ-

ence between potential values; k indicates the decay rate of

the eligibility of state-action pairs; steps per episode for

the ground agent is unlimited until it visits the goal coor-

dinate. The UNIFORM approach also shares the same

hyperparameters for the ground agent.

For the domain of Grid World with traps, the number of

exploration episodes is reduced to 5,000, since the actual

state space of Grid World with traps is much smaller than

that of Flag Collection domain. More specifically, a state of

Flag Collection domain has three more binary dimensions

(indicating how many flags are carried) than a state of Grid

World with traps; regarding this point, a visualization can

be found in Sect. 5.3.

Moreover, parameter c for solving AMDP by value

iteration algorithm is set to 0.99 for both experimental

domains. In each Flag Collection domain, we quantita-

tively evaluate the performance based on mean results of

25 repetitions for both TOPOLOGY approach and UNIFORM

approach.

Fig. 4 Grid World with traps (33� 48), with the starting point

marked as S, the goal marked as G, traps marked as T. Black blocks

are untraversable walls

Table 1 Hyperparameters of experiments for exploration and ground

learning process

Parameter Explore agent Ground agent

a 0.1 0.1

c 0.999 0.999

� 0.01 1 ! 0.1

x – 300

k – 0.9

Episodes 30,000 500

Steps per episode 150 1

Neural Computing and Applications

123

Neural Computing and Applications

123

To prepare the data for training state representation,

each collected state sequence is 50% downsampled at

random, while still maintaining the original sequence

order. We observed that such downsampling allowed the

reduction in training time without any adverse affects on

the quality of the learned abstractions. Then, we use a

window size of 75 to collect the context states.

5.2 Quantitative results

For evaluation, we commence by analysing quantitative

results on the Flag Collection domain.

5.2.1 Convergence speed and sample efficiency

We compare TOPOLOGY and UNIFORM approaches over four

variants of the Flag Collection domain, in stationary and

stochastic environments, respectively. In stochastic envi-

ronments, a part of states are stochastic to be accessible.

The two approaches are compared based on: (i) the number

of flags collected with respect to the number of episodes

(ii) the cumulative reward with respect to the number of

episodes and (iii) the cumulative reward with respect to the

number of total steps. The results are shown in Figs. 5 and

6.

In both stationary and stochastic environments, our

TOPOLOGY approach (denoted as T) is more stable and faster

than UNIFORM approach (denoted as U). The TOPOLOGY

approach successfully converges (collecting all 3 flags) in

500 episodes, while the UNIFORM approach fails to collect

all flags in some mazes. Meanwhile, to achieve the same or

even higher reward, the TOPOLOGY approach requires fewer

total steps than the UNIFORM approach in 500 episodes. In

particular, our approach uses up to 6.5 times and 8.5 times

fewer steps to reach the same reward in stationary envi-

ronments and stochastic environments, respectively. This

showcases the better sample efficiency of the TOPOLOGY

approach than the UNIFORM approach. In stochastic

environments, the sample efficiency gap between the two

approaches increases further.

In addition, we investigate the performance of both

approaches under various levels of stochasticity in the

environment. In Fig. 7, we plot sample efficiency under

different stochastic settings for doors in environments

while using the same abstract granularity of 16 abstract

states per subspace on average. For example, T-90%

indicates that 90% of doors in the maze have a probability

of 25% to be closed. For all levels of stochasticity, the

TOPOLOGY approach converges to the optimal reward in at

most 500 episodes. On the other hand, in different

stochastic settings, the UNIFORM approach sometimes even

fails to obtain the optimal reward in three mazes and is

much slower to converge when the optimal reward is

eventually found.

We attribute the inferior performance of the UNIFORM

approach to its naive state partitioning. The way in which

the UNIFORM approach partitions mazes might cause con-

flicts between the layout of abstract states and the topology

of the environment. For example, two states separated by

an obstacle might belong to the same abstract state when

using the UNIFORM approach, but actually, they are topo-

logically pretty far from each other. Consequently, the

guidance of reward shaping provided by UNIFORM approach

could likely convey noise and be partially misleading.

5.2.2 Run time comparison

In Fig. 8, we present a detailed run time comparison for the

Flag Collection task over stationary maze Basic while

considering different abstraction granularities. In maze

Basic, both approaches can converge to the same reward. It

is not meaningful enough to do run time comparison for the

rest of three maze variants in which UNIFORM approach is

not able to reach the highest reward in 500 episodes. Our

TOPOLOGY approach, on the other hand, always converges in

less than 500 episodes even under varying abstraction

granularities. TOPOLOGY approach has three phases before

solving the AMDP: exploration, state representation

learning and state clustering, which UNIFORM approach does

not have. Nevertheless, TOPOLOGY approach is in total up to

3 times faster than UNIFORM approach while achieving the

same reward.

bFig. 5 Comparison of performance in stationary environments

between TOPOLOGY approach (T) and UNIFORM approach (U), using

same number of abstract states (abstract granularity). On average,

there are 16 abstract states in each subspace, and more intuitive

explanation locates in Sect. 5.3.2

Neural Computing and Applications

123

Neural Computing and Applications

123

We remark that the time taken to solve the AMDP by

dynamic programming (using the chosen numbers of

abstract states in Fig. 8) is negligible for both approaches.

The reason is that abstract state transitions in the AMDP

are deterministic given abstract state-action pairs, conse-

quently, the time complexity of the Value Iteration algo-

rithm is reduced. Nevertheless, the time to solve the AMDP

should not be neglected when drastically increasing the

number of abstract states.

5.2.3 Effect of abstraction granularity

Figure 9 compares the performance in terms of sample

efficiency under varying abstraction granularities. As

shown in Fig. 9 (left column), TOPOLOGY approach shows

robustness towards different abstraction granularities in

different mazes. In contrast, as shown on the right side of

Fig. 9, the performance of UNIFORM approach under fixed

abstraction granularity is quite unstable among different

mazes. In addition, for UNIFORM approach, the abstraction

granularity achieving the best performance in one maze is

not necessarily the best one in another or could even result

in task failure.

Another advantage of TOPOLOGY approach is that the

efficacy of reward shaping from AMDP is predictable as

the abstraction granularity varies. As shown on the left side

of Fig. 9, for each flag collection task, when the abstraction

granularity becomes finer, the extent of acceleration

increases correspondingly, and vice versa. This can be

observed among all maze variants.

However, for UNIFORM approach, finer abstraction

granularity does not necessarily increase the convergence

time and may result in failure. For some mazes, the best

uniform abstraction granularity turns out to be a coarser

one. Therefore, a proper abstraction granularity would need

to be determined experimentally, which costs extra time

and computational resources.

5.3 Qualitative analysis

5.3.1 Preserving topological and value function proximity

We use the domain of Grid World with traps (see Fig. 4) to

demonstrate through visualizations that our TOPOLOGY

approach can preserve both the topological and reward

structure of the ground-level MDP into the AMDP.

Towards that we first solve the ground-level MDP by

dynamic programming to obtain the optimal policy, which

certainly avoids the traps to reach the goal state. The cor-

responding value function as a heatmap for the ground-

level MDP is shown in Fig. 10b. According to Algorithm

1, the exploration agent always prefers to visit states with

higher novelty (lower visit counts). Meanwhile, the

exploration agent tries to avoid traps, once it gets into

them, then it is relatively hard to come out. Consequently,

the whole state space can be explored relatively uniformly

and the states sharing similar topological structure and

ground value functions will co-occur more frequently, as

shown in Fig. 10a.

Generated abstract states by clustering (K-Means)

together with the heatmaps corresponding to solved

AMDPs are shown in Figs. 10c and 10d for the TOPOLOGY

and UNIFORM approaches, respectively. Clearly, the layout

of abstract states for the TOPOLOGY approach agrees with

both the topology and value function of the ground-level

MDP (Fig. 10b). More prominently, our approach was able

to cluster the adjoining trap states together into a single

abstract state. By comparison, in Fig. 10d, UNIFORM

approach constructs abstract states ignoring the topological

structure and traps in the environment.

In particular, in Fig. 10c, we also note that the abstract

state containing traps gets a much lower value than its

neighbours. The closer an abstract state is to the goal state,

the higher its value. The difference (scaled by x) between
the values of two abstract states can be taken as an addi-

tional reward for the ground agent. Therefore, the guidance

from reward shaping will roughly agree with the optimal

policy derived from the solved ground-level MDP

(Fig. 10b). One can always simulate a successful path to

the goal state by following the colour of the heatmap from

darker to lighter regions.

bFig. 6 Comparison of performance in stochastic environments

between TOPOLOGY approach (T) and UNIFORM approach (U), where

50% of doors have probability of 25% to be closed for each time step.

Using same number of abstract states (abstract granularity), on

average there are 16 abstract states in each subspace

Neural Computing and Applications

123

Fig. 7 Sample efficiency for

different stochastic settings with

abstract granularity of 16

abstract states per subspace in

average. T-90% indicates 90%

of doors in the maze has

probability of 25% to be closed.

The left right columns present

the performance of TOPOLOGY

and UNIFORM approaches,

respectively

Neural Computing and Applications

123

In contrast, the reward shaping from UNIFORM

approach guides the agent straight towards the goal state,

directly traversing the region of traps, as indicated in

Fig. 10d. This looks correct in the abstract MDP, but

actually causes huge negative rewards in the environ-

ment. Moreover, reward shaping in Fig. 10d is actually

hindering the ground agent from learning the optimal

policy in a certain area (from the bottom right to the top

left) of the maze.

5.3.2 Visualization in flag collection domain

Figure 11 visualizes how our TOPOLOGY approach

works over the actual state space of the Flag Collection

domain (stationary setting). In our Flag Collection

domain, a state is in form of s ¼ ðx; y; a; b; cÞ, where

x, y indicate coordinates and a, b, c are binary variables

indicating whether the corresponding flag is collected or

not. Since the last three dimensions are binary, we are

able to visualize the five-dimensional state space by

converting it into eight two-dimensional subspaces, cor-

responding to each status of flag collection. Certain

transitions are only uni-directional, for instance, from

state (x, y, 0, 0, 0) one can transit to state (x, y, 0, 1, 0),

but the transition in the reverse direction is impossible.

As shown in Fig. 11, the regions with irregular

boundaries correspond to the abstract states generated by

TOPOLOGY approach and they all abide by the topology of

the environment. It is possible that one abstract state

containing a flag could span across two subspaces

because the TOPOLOGY approach generates abstract states

Fig. 8 Run time comparisons of both approaches in Flag Collection domain over Maze Basic for four abstraction granularities from coarser (9

abstract states per subspace on average) to finer (36 abstract states per subspace on average)

Neural Computing and Applications

123

Fig. 9 Performance comparison

with respect to sample

efficiency under different

abstraction granularities. The

left and the right columns

present correspond to TOPOLOGY

and UNIFORM approaches,

respectively

Neural Computing and Applications

123

following the topology of the complete five-dimensional

state space. This characteristic enables our approach to

build the transition and reward function of AMDPs

automatically, based on stored experiences without

external domain knowledge (according to Algorithm 1

and 2). That is to say, our TOPOLOGY approach is able to

generalize to various state spaces, in which each

dimension could have very different properties.

In Fig. 11, value function of the AMDP is presented as a

heatmap, where lighter colours indicate higher values and

vice versa. Starting from the white cell (left bottom corner)

in subspace (0-0-0), reward shaping can always steer the

agent towards abstract states with higher values so that the

agent can approach the goal state (blue cell on the left

bottom side) in subspace (1-1-1) efficiently.

Fig. 10 Comparison of solved AMDPs for both approaches in Grid World with traps. Green cell on the left side denotes starting state, goal state

is the blue cell on the right side (Color figure online)

Neural Computing and Applications

123

6 Conclusion

We proposed a novel approach for generating high-quality

AMDPs that helps accelerate existing model-free RL

algorithms. Our approach to construct abstract states is

inspired by graph representation learning methods and

effectively encodes the topological and reward structure of

the ground-level MDP. Meanwhile, it requires little exter-

nal domain knowledge and generalizes well to various state

spaces. We showed strong performance improvements over

the baseline approach in Flag Collection domain in terms

of convergence speed, sample efficiency and run time

Fig. 11 Solved AMDP for TOPOLOGY approach in Flag Collection

domain over maze: low connectivity. The agent starts from the white

cell (left bottom corner) in subspace (0-0-0) and tries to reach the goal

state (blue cell on left bottom side) in subspace (1-1-1). Green cells

located in the upper half of the maze are flags (Color figure online)

Neural Computing and Applications

123

consumption. In our qualitative analysis, we visually

showcased that our approach can generate AMDPs that

preserve the topological and reward structure of underlying

MDPs. In future work, we intend to incorporate our

approach with Deep RL algorithms.

Acknowledgements This work was partially funded by the Federal

Ministry of Education and Research (BMBF), Germany, under the

project LeibnizKILabor (Grant No. 01DD20003).

Funding Open Access funding enabled and organized by Projekt

DEAL.

Declarations

Conflict of interest The authors do not have any competing interests,

financial, or otherwise.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Abel D, Hershkowitz D, Littman M (2016) Near optimal behavior

via approximate state abstraction. In: 33rd International confer-

ence on machine learning (PMLR, 2016), pp 2915–2923

2. Agarwal R, Machado MC, Castro PS, Bellemare MG (2021)

Contrastive behavioral similarity embeddings for generalization

in reinforcement learning. arXiv preprint arXiv:2101.05265

3. Andrychowicz M, Wolski F, Ray A, Schneider J, Fong R,

Welinder P, McGrew B, Tobin J, Abbeel OAIP, Zaremba W

(2017) Hindsight experience replay. Adv Neural Inf Process Syst

30:66

4. Bellman R (2010) Dynamic programming. Princeton University

Press, Princeton

5. Brys T, Harutyunyan A, Suay HB, Chernova S, Taylor ME,

Nowé A (2015) Reinforcement learning from demonstration

through shaping. In: Twenty-fourth international joint conference

on artificial intelligence

6. Burden J, Kudenko D (2018) Using uniform state abstractions for

reward shaping with reinforcement learning. In: Workshop on

adaptive learning agents (ALA) at the federated AI meeting

7. Burden J, Kudenko D (2020) Uniform state abstraction for

reinforcement learning. In: 24th European conference on artificial

intelligence

8. Butz MV, Swarup S, Goldberg DE (2004) Effective online

detection of task-independent landmarks. In: Online proceedings

for the ICML vol 4, p 10

9. Dayan P (1993) Improving generalization for temporal difference

learning: the successor representation. Neural Comput

5(4):613–624

10. Devlin SM (2013) Potential-based reward shaping for knowl-

edge-based, multi-agent reinforcement learning. PhD thesis,

University of York

11. Efthymiadis K, Devlin S, Kudenko D (2014) Knowledge revision

for reinforcement learning with abstract mdps. In: Proceedings of

the 2014 international conference on autonomous agents and

multi-agent systems. Citeseer, pp 1535–1536

12. Efthymiadis K, Kudenko D (2013) Using plan-based reward

shaping to learn strategies in starcraft: Broodwar. In: 2013 IEEE

conference on computational intelligence in games (CIG). IEEE,

pp 1–8

13. Efthymiadis K, Kudenko D (2014) A comparison of plan-based

and abstract mdp reward shaping. Connect Sci 26:85–99

14. Ferns N, Panangaden P, Precup D (2004) Metrics for finite

Markov decision processes. In: UAI, vol 4, pp 162–169

15. Ferns N, Panangaden P, Precup D (2011) Bisimulation metrics

for continuous Markov decision processes. SIAM J Comput

40(6):1662–1714

16. Ferns N, Precup D (2014) Bisimulation metrics are optimal value

functions. In: UAI. Citeseer, pp 210–219

17. Gelada C, Kumar S, Buckman J, Nachum O, Bellemare MG

(2019) Deepmdp: learning continuous latent space models for

representation learning. In: International conference on machine

learning (PMLR, 2019), pp 2170–2179

18. Grover A, Leskovec J (2016) node2vec: scalable feature learning

for networks. In: Proceedings of the 22nd ACM SIGKDD inter-

national conference on knowledge discovery and data mining

19. Grzes M, Kudenko D (2008) Plan-based reward shaping for

reinforcement learning. In: 4th International IEEE conference

intelligent systems vol 2. IEEE, pp 10-22–10-29

20. Gu S, Holly E, Lillicrap T, Levine S (2017) Deep reinforcement

learning for robotic manipulation with asynchronous off-policy

updates. In: 2017 IEEE international conference on robotics and

automation (ICRA). IEEE, pp 3389–3396

21. Hussein A, Elyan E, Gaber MM, Jayne C (2017) Deep reward

shaping from demonstrations. In: 2017 International joint con-

ference on neural networks (IJCNN). IEEE, pp 510–517

22. Kheradmandian G, Rahmati M (2009) Automatic abstraction in

reinforcement learning using data mining techniques. Robot

Autonom Syst 57(11):1119–1128

23. Khosla M, Leonhardt J, Nejdl W, Anand A (2019) Node repre-

sentation learning for directed graphs. In: Joint European con-

ference on machine learning and knowledge discovery in

databases. Springer, pp 395–411

24. Khosla M, Setty V, Anand A (2021) A comparative study for

unsupervised network representation learning. IEEE Trans Knowl

Data Eng 33(5):1807–1818

25. Kipf TN, Welling M (2016) Variational graph auto-encoders.

arXiv preprint arXiv:1611.07308

26. Kipf TN, Welling M (2017) Semi-supervised classification with

graph convolutional networks. In: 5th International conference on

learning representations

27. Konidaris G, Barto A (2006) Autonomous shaping: knowledge

transfer in reinforcement learning. In: Proceedings of the 23rd

international conference on machine learning, pp 489–496

28. Krishnamurthy R, Lakshminarayanan AS, Kumar P, Ravindran B

(2016) Hierarchical reinforcement learning using spatio-temporal

abstractions and deep neural networks. arXiv:1605.05359

29. Kulkarni TD, Narasimhan K, Saeedi A, Tenenbaum J (2016)

Hierarchical deep reinforcement learning: integrating temporal

abstraction and intrinsic motivation. Adv Neural Inf Process Syst

29:66

30. Kulkarni TD, Saeedi A, Gautam S, Gershman SJ (2016) Deep

successor reinforcement learning. arXiv preprint arXiv:1606.

02396

Neural Computing and Applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2101.05265
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1605.05359
http://arxiv.org/abs/1606.02396
http://arxiv.org/abs/1606.02396

31. Madjiheurem S, Toni L (2019) Representation learning on

graphs: a reinforcement learning application. In: 22nd Interna-

tional conference on artificial intelligence and statistics (PMLR,

2019), pp 3391–3399

32. Mannor S, Menache I, Hoze A, Klein U (2004) Dynamic

abstraction in reinforcement learning via clustering. In: 21th

international conference on machine learning

33. Marthi B (2007) Automatic shaping and decomposition of reward

functions. In: Proceedings of the 24th international conference on

machine learning

34. McGovern A, Barto AG (2001) Automatic discovery of subgoals

in reinforcement learning using diverse density

35. Mikolov T, Chen K, Corrado GS, Dean J (2013) Efficient esti-

mation of word representations in vector space. In: 1st Interna-

tional conference on learning representations

36. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013)

Distributed representations of words and phrases and their com-

positionality. In: 27th Conference on neural information pro-

cessing systems

37. Ng A, Harada D, Russell SJ (1999) Policy invariance under

reward transformations: theory and application to reward shap-

ing. In: 16th International conference on machine learning

38. Niepert M, Ahmed M, Kutzkov K (2016) Learning convolutional

neural networks for graphs. In: 33rd International conference on

machine learning

39. Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric tran-

sitivity preserving graph embedding. In: Proceedings of the 22nd

ACM SIGKDD international conference on knowledge discovery

and data mining

40. Pateria S, Subagdja B, Tan A, Quek C (2021) Hierarchical

reinforcement learning: a comprehensive survey, vol 54, no 5

41. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning

of social representations. In: Proceedings of the 20th ACM

SIGKDD international conference on knowledge discovery and

data mining

42. Precup D (2000) Temporal abstraction in reinforcement learning.

University of Massachusetts Amherst

43. Randløv J, Alstrøm P (1998) Learning to drive a bicycle using

reinforcement learning and shaping. In: ICML, vol 98. Citeseer,

pp 463–471

44. Salha-Galvan G, Hennequin R, Vazirgiannis M (2019) Keep it

simple: graph autoencoders without graph convolutional net-

works. arXiv:1910.00942

45. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G

(2009) The graph neural network model. IEEE Trans Neural

Netw 20:61–80

46. Stolle M, Precup D (2002) Learning options in reinforcement

learning. In: International symposium on abstraction, reformula-

tion, and approximation. Springer, pp 212–223

47. Sutton RS, Barto AG (2018) Reinforcement learning: an intro-

duction. MIT Press

48. Sutton RS, Precup D, Singh S (1999) Between mdps and semi-

mdps: a framework for temporal abstraction in reinforcement

learning. Artif Intell 112(1–2):181–211

49. Taghizadeh N, Beigy H (2013) A novel graphical approach to

automatic abstraction in reinforcement learning. Robot Autonom

Syst 61(8):821–835

50. Vezhnevets AS, Osindero S, Schaul T, Heess N, Jaderberg M,

Silver D, Kavukcuoglu K (2017) Feudal networks for hierarchical

reinforcement learning. In: International conference on machine

learning (PMLR), pp 3540–3549

51. Waradpande V, Kudenko D, Khosla M (2020) Graph-based state

representation for deep reinforcement learning. In: Proceedings

of the 16th international workshop on mining and learning with

graphs (MLG)

52. Zhang A, McAllister R, Calandra R, Gal Y, Levine S (2020)

Learning invariant representations for reinforcement learning

without reconstruction. arXiv preprint arXiv:2006.10742

53. Zhang J, Yu H, Xu W (2021) Hierarchical reinforcement learning

by discovering intrinsic options. arXiv preprint arXiv:2101.06521

54. Zhou C, Liu Y, Liu X, Liu Z, Gao J (2017) Scalable graph

embedding for asymmetric proximity. In: 31st American Asso-

ciation for artificial intelligence

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

http://arxiv.org/abs/1910.00942
http://arxiv.org/abs/2006.10742
http://arxiv.org/abs/2101.06521

	Graph learning-based generation of abstractions for reinforcement learning
	Abstract
	Introduction
	Background
	Reinforcement learning
	Potential-based reward shaping
	Graph representation learning

	Related work
	Hierarchical reinforcement learning
	State representation learning in RL

	Our approach
	Graph-based learning of abstract states
	Exploring the environment
	Constructing the abstract states

	Dynamics of AMDP
	Exploiting AMDP

	Experimental evaluation
	Setup
	Hyperparameter settings

	Quantitative results
	Convergence speed and sample efficiency
	Run time comparison
	Effect of abstraction granularity

	Qualitative analysis
	Preserving topological and value function proximity
	Visualization in flag collection domain

	Conclusion
	Funding
	References

