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Abstract

The scheduling algorithm of the printer is an important factor that affects printing effi-
ciency. For current printers, paper scheduling often follows the first-in-first-out principle, so
it is often not optimal. The printer system is a type of semi-cyclic discrete-event system
with synchronization but no concurrency. The system contains a set of operations that vary
over a limited sequence of operations, which can be further modelled as a Switching Max-
Plus-Linear (SMPL) system through max-plus-linear algebra, and can be switched between
different modes of operation. Since max-plus algebra has a significant analogy with conven-
tional algebra, some properties in conventional algebra can be applied to such kind of system,
making the system easier to achieve optimal control.

In this report, a printing scheduler modelled by the max-plus algebra is presented. We review
and summarize the basic knowledge of the Max-Plus-Linear (MPL) system from the existing
literature in the first half of the report. We first introduce the basic properties of max-plus
algebra and SMPL systems. Then we turn to the stochastic case, and consider the two
types of stochastic uncertainty that may be included in the SMPL system, namely stochastic
parametric uncertainty and stochastic mode switching uncertainty. Next, we review a Model
Predictive Control (MPC) approach that can achieve optimal scheduling of systems containing
two random uncertainties.

In the second half of the report, based on the content summarized in the first half, we make
a further derivation of the printer scheduling system modelled by SMPL approach. We first
present the modelling framework of the printer. Three working modes, namely duplex mode,
idle mode and simplex mode, are modelled separately and merged into a compact form. Then
a scheduler that takes the feeding and processing time of each sheet of paper as design variables
is introduced. It can find the global optimal schedule of different types of paper by solving the
Mixed-Integer Linear Programming (MILP) problem. After that, we discuss cases involving
switching, and consider switching between two sizes of paper and two working modes. Three
possible intermediate switching modes are designed. Finally, we take noise/interference into
consideration, discuss the impact of noise on scheduling, and the changes that the previously
proposed methods may require to achieve optimal scheduling in the presence of noise.
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Chapter 1

Introduction

1-1 Printer Scheduling Problem

In recent years, with the rapid development of various industries, the scale of enterprises
has continued to expand and their performance has continued to grow. Business activities
triggered by this have become more frequent, and people’s daily reading volume has also
increased significantly. Although the use of electronic documents can reduce the demand for
some paper documents, in many industries such as construction, machining, surveying, etc.,
the importance of paper documents is still very high and cannot be replaced. Due to increased
competition and limited budgets, companies have higher requirements in choosing printing
solutions. They not only hope to have better purchase cost and use cost but also hope that
the printer is faster and the printer supports more types of jobs.

The printers currently used in the market are mostly small printers. This type of printer can
only print on a single sheet of paper, and the next sheet of paper can only be started after
the previous sheet of paper is completed. Although the price of this type of printer is low, it
has the following disadvantages: the high cost of consumables, for users with greater printing
needs, the overall cost required is high; errors are prone to occur, this type of printer not only
has a high probability of paper overlap but also a high rate of component damage; the printing
logic of the printer is simple, which also leads to relatively low printing efficiency. Therefore,
this type of printer cannot meet the ever-increasing customer demand in the market.

In order to have a higher market share, printer manufacturers continue to update their tech-
nology. The development of new machines with high modularity and high speed has been
summarized as the common goal of major manufacturers [1]. This type of printer is highly
automated and can perform continuous large-scale printing jobs with a low error rate. It can
process multiple of different types of sheets at the same time, usually consisting of a paper
source, a system for transporting paper, and a module for transporting images to paper. The
crucial elements include Paper Input Module (PIM), Image Transfer Station (ITS), Invert
Module (IM), Re-entry Module (RM) and Paper Output Module (POM) (as shown in Figure
1-1) [2].
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2 Introduction

PIM POM

IM

RM

ITS

PIM=paper input module
ITS=image transfer station
IM=invert module
RM=re-entry module
POM=paper output module

Paper

Figure 1-1: A Schematic of the Printer Modules

Since some of the events in the printer are taken place simultaneously, a supervisory controller
which schedules the modules in order to optimize certain criteria is required to ensure that
the image can be printed accurately at the required position [3] [4]. However, during the
duplex printing, some of the resources are involved twice per sheet, which means the system
has to be operated cyclically. This kind of system can be modelled as Discrete Event Systems
(DESs), which in general will lead to an NP-hard Problem in conventional algebra [5]. Since
conventional algorithms are difficult to find the optimal solution for such problems, the current
printer scheduling is usually not optimal.

Fortunately, there exists a subclass of DESs in which only synchronization and no concurrency
or choice occur. This type of DESs can be modelled by max-plus algebra and can be converted
into a kind of linear system under max-plus operation, which is named as Max-Plus-Linear
(MPL) systems [6]. In addition, the MPL system has been extended to a Switching Max-
Plus-Linear (SMPL) system, in which different operating modes can be modelled [7].

Due to the excellent modelling ability of max-plus algebra on this kind of DESs, SMPL system
has already been used to model the printer system [1] [2]. The supervisory controller based
on max-plus algebra can not only generate global optimal scheduling for multiple types of
sheets, but also deal with the system with noise/disturbance. The optimal scheduling problem
is finally transformed into a Mixed-Integer Linear Programming (MILP) problem, which can
be solved by a variety of algorithms. In this report, how to implement the SMPL system to
the printer system and how to obtain optimal scheduling with SMPL system in different cases
will be discussed.

1-2 Research Questions

The issues to be studied in the report are as follows:

Q1. How to convert the printer system to SMPL system?
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1-3 Outline of the Report 3

Q2. How to achieve optimal scheduling of printers with max-plus algebra?

Q3. How to order the system when mode/paper size switching happens?

Q4. What happens to the optimal scheduling problem when the system is disturbed?

Q5. In which aspects can the method be further improved?

1-3 Outline of the Report

In this report, Chapters 2-4 are mainly the summary of the literature study content, and
Chapters 5-8 are mainly the author’s further derivation based on the literature study. The
specific organizational structure of this report is as follows:

• Chapter 2: the foundations of max-plus algebra, MPL systems, and SMPL systems
are explained. In addition, this chapter also discusses the dynamic graph and stability
criterion of MPL systems and SMPL systems.

• Chapter 3: parameter uncertainties and switching uncertainties of SMPL systems are
introduced respectively and a model containing both types of stochastic is presented.

• Chapter 4: a general Model Predictive Control (MPC) method for stochastic SMPL
systems is introduced.

• Chapter 5: the printer scheduling model and related graphs are introduced. And state
equations of three modes of the printer are derived. Finally, a compact form of the state
equations is given.

• Chapter 5: solve the optimal control problem for one mode printers in the deterministic
case by transforming it into a MILP problem.

• Chapter 7: introduce switching in the printer, and design intermediate modes for dif-
ferent situations.

• Chapter 8: on the basis of the previous chapters, discuss the switching with stochasticity.

• Chapter 9: a brief summary and conclusion of the report are given, and possible future
work is discussed.
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Chapter 2

Max-Plus Algebra and
Max-Plus-Linear Systems

In this chapter, the basic operations of the max-plus algebra and the max-plus-algebraic
matrix will be given first. Then the properties of max-plus-linear systems and switching
max-plus-linear systems will be discussed respectively.

2-1 Basic Operations of Max-Plus Algebra

According to [8] and [9], define ε = −∞ and Rε = R ∪ {ε}, then the max-plus-algebraic
addition (⊕) and multiplication (⊗) can be defined as:

x⊕ y = max(x, y) (2-1)
x⊗ y = x+ y (2-2)

for any x,y ∈ Rε.

Let r ∈ R, the r-th max-plus-algebraic power of x ∈ R is denoted by x⊗r and corresponds to
rx in conventional algebra.

There exist remarkable analogies between the max-plus operation (⊕ and ⊗) and conventional
operation (addition and multiplication): many theorems of conventional linear algebra can
be translated to the max-plus algebra. One major difference to note is that there exists no
inverse element in the max-plus algebra with respect to ⊕ in Rε [6]. We can regard ε as the
‘zero’ from linear algebra (x⊕ ε = x = ε⊕ x and x⊗ ε = ε = ε⊗ x), and 0 as the ‘one’ from
linear algebra (x⊗ 0 = x = 0⊗ x).

The rules of the evaluation order of the max-plus-algebraic operator correspond to the rules
of conventional algebra, which means that max-plus-algebraic power has the highest priority,
and max-plus-algebraic multiplication has a higher priority than max-plus-algebraic addition
[6].
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6 Max-Plus Algebra and Max-Plus-Linear Systems

Based on these operation rules, a special type of functions, namely max-affine functions (or
max-plus-scaling functions, donated Smpns) is introduced, i.e., functions f of the form

f(z) = max
i

(αi,1z1 + · · ·+ αi,nzn + βi) (2-3)

with variable z ∈ Rnz
ε , constants αi,j ∈ R+ and βi ∈ R, where nz denotes the size of the

vector z and R+ denotes the set of non-negative real numbers. According to [10], Smpns is
closed under the operations maximization, addition, and multiplication by a scalar.

2-2 Max-Plus-Algebraic Matrix Operations

According to [8] and [9], define matrices A,B ∈ Rm×nε and C ∈ Rn×pε , and then apply the
basic max-plus-algebraic operations to the matrices, the following max-plus-algebraic matrix
operations can be obtained:

(A⊕B)ij = aij ⊕ bij = max (aij , bij) (2-4)

(A⊗ C)ij =
n⊕
k=1

aik ⊗ ckj = max
k=1,··· ,n

(aik + ckj) (2-5)

Another important operations on matrices is max-plus Hadamard product (or named as
max-plus element-wise multiplication) “�”, which requires both matrices have the same size.
Multiplying two matrices An×m ∈ Rε and Bn×m ∈ Rε results in:

A�B =

a11 · · · a1m
... . . . ...
an1 · · · anm

�
b11 · · · b1m

... . . . ...
bn1 · · · bnm



=

a11 ⊗ b11 · · · a1m ⊗ b1m
... . . . ...

an1 ⊗ bn1 · · · anm ⊗ bnm



=

a11 + b11 · · · a1m + b1m
... . . . ...

an1 + bn1 · · · anm + bnm

 .
Similar to the conventional algebra, the matrix εm×n with all the elements of ε is the max-
plus-algebraic zero matrix, satisfying (εm×n)ij = ε, ∀i, j; the max-plus-algebraic identity
matrix E is defined as a diagonal matrix, satisfying Eii = 0, ∀i and Eij = ε, ∀i, j with i 6= j.

For a matrix A ∈ Rn×nε , the max-plus-algebraic matrix power is defined as A⊗0 = E and
A⊗

k = A⊗A⊗(k−1) for k ∈ N \ {0}. If for a max-plus diagonal matrix S = diag⊕ (s1, · · · , sn)
all values si are finite, then the inverse of S is equal to S⊗−1 = diag⊕ (−s1, · · · ,−sn). There
holds S ⊗ S−1 = S⊗

−1 ⊗ S = E.
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2-3 Max-Plus-Linear Systems

In [9], [8], [11] and [7], it has been proposed that a type of Discrete Event Systems (DESs)
with synchronization and no concurrency or choice occur can be modelled using max-plus
operation. This type of systems are named as Max-Plus-Linear (MPL) DESs, which can be
described by the following form

x(k) = A(k)⊕ x(k − 1)⊗B(k)⊗ u(k) (2-6)
y(k) = C(k)⊗ x(k) (2-7)

with A ∈ Rn×nε , B ∈ Rn×mε , and C ∈ Rl×nε , where n is the number of states, m is the number
of inputs, l is the number of outputs, and k is the event counter. The matrices A, B, and
C usually consist of sums or maximizations of internal process times, transportation times,
etc. [8]. One thing that needs to be noted is that the states are event times, which means
the state x(k), the input u(k) and the output y(k) contains the time instants at which the
internal events, input events and output events occur for the k-th time respectively.

2-4 Switching Max-Plus-Linear Systems

According to [7], Switching Max-Plus-Linear (SMPL) systems are a type of discrete event
systems that can switch between different modes of operation. In each mode, the system is
described by a max-plus-linear state equation and a max-plus-linear output equation. For
different modes, it may have different system matrices. If the systems are in mode `(k) ∈
{1, · · · , nL} for every step k, then SMPL systems can be described as

x(k) = A(`(k)) ⊗ x(k − 1)⊕B(`(k)) ⊗ u(k) (2-8)
y(k) = C(`(k)) ⊗ x(k) (2-9)

where the matrices A(`(k)), B(`(k)) and C(`(k)) are the system matrices for mode `(k).

In general, the moments of switching are determined by a switching mechanism [7]. The mode
`(k) is mainly depend on the previous state x(k − 1), the previous mode `(k − 1), the input
variable u(k) and an auxiliary control variable v(k):

`(k) = φs (x(k − 1), `(k − 1), u(k), v(k)) (2-10)

where φs is the switching function.

For a given integer N , the set of all possible consecutive mode switching vectors is denoted
as

LN =
{

[`1, · · · , `N ]T | `m ∈ {1, · · · , nL} ,m = 1, · · · , N
}

(2-11)

Denote the probability of switching to mode `(k) given `(k − 1), x(k − 1), u(k) and v(k) by

P [L = `(k) | `(k − 1), x(k − 1), u(k), v(k)] (2-12)

For deterministic switching (systems without uncertainties), the probability functions are
piecewise constant with values either 0 or 1.
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8 Max-Plus Algebra and Max-Plus-Linear Systems

The model given in Equation (2-8) is often referred to as an explicit SMPL model. Another
type of model, named as implicit SMPL model, is given by

x(k) = A
(`(k))
0 ⊗ x(k)⊕A(`(k))

1 ⊗ x(k − 1)⊕B(`(k))
0 ⊗ u(k) (2-13)

The implicit SMPL model can be transformed into the explicit form (2-8), with

A(`(k)) =
[
A

(`(k))
0

]∗
⊗A(`(k))

1

B(`(k)) =
[
A

(`(k))
0

]∗
⊗B(`(k))

0

where
[
A

(`(k))
0

]∗
is max-plus Kleene star of A(`(k))

0 , which is given by:

[
A

(`(k))
0

]∗
= E ⊕A(`(k))

0 ⊕
[
A

(`(k))
0

]⊗2

⊕ · · · ⊕
[
A

(`(k))
0

]⊗n

.

However, the system matrices obtained by rewriting the implicit SMPL model into an explicit
SMPL are usually quite complex, which makes it hard to introduce additional constraints in
the final Mixed-Integer Linear Programming (MILP) problem, and the optimization with
the explicit model is thus much slower than the optimization with the implicit model [2].
Therefore, sometimes using implicit models in model predictive scheduling may be more
efficient.

2-5 Dynamic Graph

There exists a close relation between max-plus algebra and graphs. Important properties such
as irreducibility and structural controllability can be determined from the precedence graph
of a max-plus system [8] [6]. However, if there exists frequent mode switching in the max-plus
system, the precedence graph cannot be used anymore since the mode `(k) and the A-matrix
of the system may change for every cycle k. For a better understanding of the switching
behaviour, the dynamic graph concept was introduced [12]. The definition is given as follows:

Definition 1. Consider an implicit SMPL system for a given mode sequence ` ∈ LN .
The dynamic graph G =

(
G1

0, G
1
1, G

2
0, G

2
1, · · · , Gm0 , Gm1 , , · · · , Hm

)
is a sequence of graphs,

where Gk0 =
(
Xk, Ek0

)
is a directed graph with only non-positive circuit weights, Gk1 =(

Xk, Xk−1, Ek1

)
, is a directed bipartite graph with Ek1 being the set of edges from Xk−1 to

Xk, and Hk(Xk, Uk, Ek(u)) is a directed bipartite graph with Ek(u) being the set of edges from
Uk to Xk. The nodes Xk represent the state of a system at cycle k and the nodes Uk corre-
spond to the input of the system at cycle k. The weight of the edge of Gk0 from node

[
Xk
]
j

to
[
Xk
]
i
is equal to [A0(`(k))]i,j , the weight of the edge of Gk1 from node

[
Xk−1

]
j
to
[
Xk
]
i

is equal to [A1(`(k))]i,j , and the weight of the edge of Hk from node
[
Uk
]
j
to
[
Xk
]
i
is equal

to [B(`(k))]i,j .

The main advantage of the dynamic graph is that it can handle the switching characteristics
of the SMPL system [2].
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2-6 Stability Condition Analysis

In this section, the stability criteria of max-plus-linear systems and switching max-plus-linear
systems will be discussed based on the research of [13] and [2].

2-6-1 Stability Conditions for Max-Plus-Linear Systems

In this report, we adopt the notion of stability for discrete-event systems from [14], in which
a discrete-event system is considered to be stable if all its buffer levels remain bounded. Let
r(k) be the reference signal (or named as the due date), which is a reference for the time
that the output event should occur. If the output event occurs after the due date, a delay
will happen in the system. For a proper operation of the system, the delays should remain
bounded.

Definition 2. An asymptotically increasing reference signal r(k) is defined as

r(k) = ρk + d(k), where |di(k)| ≤ dmax,∀i (2-14)

where r and d are vectors and ρ is a scalar, satisfying ρ > 0.

All the buffer levels in a discrete-event system are bounded if the dwelling times of the parts
or batches in the system remain bounded [13]. So for an MPL system with an asymptotically
increasing reference signal r(k), stability is achieved if and only if there exist finite constants
k0,Myr,Myx and Mxu such that

|yi(k)− ri(k)| ≤Myr, ∀i (2-15)

|yi(k)− xj(k)| ≤Myx, ∀i, j (2-16)

|xj(k)− um(k)| ≤Mxu, ∀j,m (2-17)

for all k > k0. Condition (2-15) means that the delay between the actual output date y(k)
and the due date r(k) remains bounded (for y − r < ∞), and on the other hand, that the
stock time will remain bounded (for r− y <∞). Conditions (2-16) and (2-17) mean that the
throughput time (i.e. the time between the starting date u(k) and the output date y(k)) is
bounded.

In summary, for a max-plus-linear system with a reference signal r(k), condition (2-14)-(2-17)
imply finite buffer levels.

2-6-2 Stability Conditions for Switching Max-Plus-Linear Systems

Similar to max-plus-linear systems, stability is not an intrinsic feature of the SMPL system,
but it also depends on the reference signal. We use the concept of maximum autonomous
growth rate:
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10 Max-Plus Algebra and Max-Plus-Linear Systems

Definition 3. Consider an SMPL system of the form (2-8) and (2-9) with system matrices
A(`), ` = 1, · · · , nL. Define the matrices A(`)

α with
[
A

(`)
α

]
i,j

=
[
A(`)

]
i,j
− α. Define the set

Sfin,n of all n× n max-plus diagonal matrices with finite diagonal entries, that is

Sfin,n =
{
S | S = diag⊕ (s1, · · · .sn) , si is finite

}
The maximum autonomous growth rate λ of the SMPL system is defined by

λ = min
{
α | ∃S ∈ Sfin,n such that

[
S ⊗A(`)

α ⊗ S⊗
−1]

i,j
≤ 0, i, j, `

}
(2-18)

The maximum growth rate λ can be easily computed by solving a linear programming prob-
lem.

Definition 4. Let α ∈ R be given. Define the matrices A(`)
α with

[
A

(`)
α

]
i,j

=
[
A(`)

]
i,j
− α.

An SMPL system is structurally controllable if there exists a finite positive integer N such
that for all ˜̀= [`1, · · · , `N ]T ∈ LN , the matrices

ΓNα (˜̀) =
[
A(`N )
α ⊗ · · · ⊗A(`2)

α ⊗B(`1) · · · A(`N )
α ⊗A(`N−1)

α ⊗B(`N−2) A(`N )
α ⊗B(`N−1) B(`N )

]
are row-finite, i.e. in each row there is at least one entry different from ε.

Definition 5. Let α ∈ R be given. Define the matrices A(`)
α with

[
A

(`)
α

]
i,j

=
[
A(`)

]
i,j
−α. An

SMPL system is structurally observable if there exists a finite positive integer M such that
for all ˜̀= [`1, · · · , `M ]T ∈ LM , the matrices

OMα (˜̀) =



C
(`N )
α ⊗A(`N )

α ⊗ · · · ⊗A(`2)
α

...

C
(`N )
α ⊗A(`N )

α ⊗A(`N−1)
α

C
(`N )
α ⊗A(`N )

α

C
(`N )
α


are column-finite, i.e. in each column there is at least one entry different from ε.

Remark: Note that the structural controllability and structural observability are structural
properties and do not depend on the actual value of α. If a SMPL system is structurally
controllable (observable) for one finite value of α it is structurally controllable (observable)
for any finite value of α [13].

Theorem 1. Consider an SMPL system with maximum autonomous growth rate λ and
consider a reference signal (2-14) with grow rate ρ. Define the matrices A(`)

ρ with
[
A

(`)
ρ

]
i,j

=[
A(`)

]
i,j
− ρ. Now if

1. ρ > λ,

2. the system is structurally controllable, and
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3. the system is structurally observable,

then any input signal

u(k) = ρk + µ(k), where |µi(k)| ≤ µmax, ∀i,∀k (2-19)

for a finite value µmax, will stabilize the SMPL system.

The proof of the theorem is given by [13].
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Chapter 3

Uncertainties in Stochastic Switching
Max-Plus-Linear Systems

In the previous chapter, the deterministic Switching Max-Plus-Linear (SMPL) systems have
been introduced. However, in reality, due to modelling errors and perturbations/noise, or due
to the random sequence of synchronization of the event steps, uncertainties are introduced
into the system. The uncertainties of SMPL system can in general be classified as parametric
uncertainty [10] and mode switching uncertainty [13]. In this chapter, both kinds of uncer-
tainties are assumed to be stochastic quantities. An introduction of each kind of stochastic
SMPL will be given first, and then a summary of these two kinds of uncertainties will be
made. Finally, one approach of how to combine both types of uncertainties into one SMPL
system will be presented based on the result from [15].

3-1 Switching Max-Plus-Linear Systems with Uncertain Parameter

3-1-1 Introduction

In contrast to conventional linear systems, where uncertainties such as noise and disturbances
are usually modelled by including an extra term in the system equations and considered to
be additive terms, the influence of noise and disturbances in SMPL systems is not max-
plus-additive, but max-plus-multiplicative [8] [10]. Therefore, uncertainties in SMPL systems
are included in the system matrices. Ignoring the uncertainties will result in poor tracking
behaviour or even an unstable closed loop.

Consider the following stochastic SMPL system:

x(k) = A(`(k)) ⊗ x(k − 1)⊕B(`(k)) ⊗ u(k) (3-1)
y(k) = C(`(k)) ⊗ x(k) (3-2)
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14 Uncertainties in Stochastic Switching Max-Plus-Linear Systems

where A(`(k)), B(`(k)) and C(`(k)) represent uncertain system matrices due to modelling errors
or disturbances for k-th event.

If all such uncertainties caused by the disturbances and errors in the estimation of physical
variables are gathered into an uncertainty vector e(k), and assuming that e(k) is a stochastic
variable that captures the complete time-varying aspect of the system, then A(`(k)), B(`(k))

and C(`(k)) will belong to the set of max-affine functions of e(k) [10], i.e.

A(`(k)) ∈ Sn×nmpns (e(k)) , B(`(k)) ∈ Sn×nmpns (e(k)) , C(`(k)) ∈ Sn×nmpns (e(k))

Since Smpns (e(k)) is closed under the operations maximization, addition, and multiplication
by a scalar, when applying the control algorithm such as MPC to the system, the cost function
J and some of the constraints consist of the system matrices will also be stochastic and belong
to the set of Smpns (e(k)).

Let
f (e(k)) = max

i
(αi,1e(k)1 + · · ·+ αi,ne(k)n + βi) = max

i

(
αTi e(k) + βi

)
be the function in the set of Smpns (e(k)), where αi,n and βi are constant coefficients.

To solve such kind of stochastic constrained optimisation problems, two stochastic quantities
are important, namely the expectation of f(e(k)):

E [f(e(k))] = E
[
max
i

(
αTi e(k) + βi

)]
(3-3)

where E [.] denotes the expectation,

and the chance constraint that f(e(k)) is less than B:

P [f(e(k)) ≤ B] = P
[
max
i

(
αTi e(k) + βi

)
≤ B

]
(3-4)

where P [.] denotes the probability and B ∈ R is a constant.

The computation difficulty of these two quantities varies with the type of stochastic. In the
following two sub-sections, the computation or approximation methods of these two stochastic
quantities will be discussed respectively.

3-1-2 Computation or Approximation Method of Expectation

The most common method for calculating the expectation of the max-affine expressions is
numerical integration, which is in general exact but complex and time-consuming. The com-
putation time is severely affected by the types of stochastic. This method is usually used for
stochastic systems with uncomplicated probability density functions, such as uniform distri-
bution, and sometimes normal distribution, but the computation time is still quite high.

The second method is analytic integration based on piecewise affine probability density func-
tions [10] [16]. The method can be used for stochastic systems with uniform distribution or
normal distribution probability density function. However, even though the method results
in an analytic solution, its complexity still increases drastically as the number of stochastic
variables or the order of the system increase.
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3-1 Switching Max-Plus-Linear Systems with Uncertain Parameter 15

The third method is variability expansion based on Taylor series [17] [18]. Since this method is
an analytical method and does not resort to simulation, in principle, the higher-order moments
of the performance characteristics of stochastic systems can be calculated. However, the level
of the complexity of the main problem remains too high.

Another approximated method is Monte Carlo (MC) simulation [19] [20]. The method consists
of approximating the expectation of the max-affine function on the basis of a large number of
random samples. The method has a relatively good approximation effect but the computation
time is still a little bit long.

Finally, another effective approximation approach is proposed by [18]. The approximate value
of the expectation is based on the raw moments of a random variable, which results in a much
lower computational complexity and a much lower computation time, while still ensuring a
good performance. The details of this approach are as follows:

Consider the following expression for the expectation of the max-affine function:

E
[

max
j=1,··· ,n

(
βj + γTj e

)]
(3-5)

where βj ∈ R and γj ∈ Rne . For simplicity, define yj = βj + γTj e.

According to the norm properties, the following proposition [18] is given:

Proposition 1.

E [max (y1, · · · , yn)] ≤ E [max (|y1|, · · · , |yn|)]

E [max (|y1|, · · · , |yn|)] ≤ E
[
(|y1|p, · · · , |yn|p)1/p

]
(3-6)

E
[
(|y1|p, · · · , |yn|p)1/p

]
≤

 n∑
j=1

E [yj ]p
1/p

In order to reduce the error, define an offset L such that xj = yj − L is almost positive, and
then the expectation of the max-affine function given in Equation (3-5) can be converted to:

E
[

max
j=1,··· ,n

(
βj + γTj e

)]
= E [max (y1, · · · , yn)]

= E [max (y1 − L, · · · , yn − L)] + L

= E [max (x1, · · · , xn)] + L

≤ E [max (|x1|, · · · , |xn|)] + L

≤ E
[
(|x1|p, · · · , |xn|p)1/p

]
+ L

≤

 n∑
j=1

E [|xj |p]

1/p

+ L (3-7)

Assuming p is an even integer greater than or equal to 2, then E [xp] = E [|x|p].
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16 Uncertainties in Stochastic Switching Max-Plus-Linear Systems

Therefore, based on Equation (3-7) and Jensen’s Inequality, the upper bound of E
[

maxj=1,··· ,n(
βj + γTj e

)]
can be approximated as follows:

U

(
E
[

max
j=1,··· ,n

(
βj + γTj e

)])
≤

 n∑
j=1

E
[(
βj + γTj e− L

)p]1/p

+ L (3-8)

for p a positive even integer and for independent random variables yj , j = 1, · · · , n.

Remark. 1 The offset L is used to reduce the error in the first step of the Equation (3-6).
If the variables are all positive, the first inequality changes to equal. If yj is drawn from a
distribution with a finite domain (such as the uniform distribution), then L can be defined
such that L ≤ yj for j = 1, · · · , n and the first inequality hence becomes equality. However,
if yj is drawn from a distribution with an infinite or a left semi-infinite domain such as the
normal distribution, the inequality will never be reduced to equal, and the error will always
exist. The error can only be decreased by defining L such that it is less than or equal to
“almost” all yj for j = 1, · · · , n.

Remark. 2 From Remark. 1, the offset L should be selected as large as possible to reduce
the error in the first inequality of Equation (3-7). However, in the second inequity, where the
infinite norm is replaced by the p-norm, the error is reduced by choosing a small value of L.
Therefore, we should weigh the trade-offs when choosing L. Similarly, in the second inequity,
p should be chosen as large as possible to reduce the error; while in the last step, a smaller
value of p will result in less error. Thus, the choice of L and p values should depend on the
properties of a given system.

3-1-3 Computation or Approximation Method of Chance Constraints

Similar to the computation or the approximation of the expectation of max-affine function,
the following approaches are proposed to compute or approximate the chance constraints of
max-affine functions.

The first method is exact computation (numerical integration). As discussed in the previous
sub-section, the method has the advantage of high accuracy but the computational burden is
extremely high. The computation time is affected by the types of stochastic.

The second method is analytic expression [10] [16]. Even though the method results in an
analytic solution, as the number of stochastic variables or the order of the system increases,
the amount of offline calculation is still high. However, online computations using analytic
solutions (such as using the Model Predictive Control (MPC) controller built with the analytic
solution) are quite fast.

The third method is MC simulation, and its principle is the same as that mentioned in the
previous sub-section.

Another method is pointwise approximation [21], the chance constraints are approximated
and substituted with a finite number of pointwise constraints at independently generated
scenarios of the uncertainties.
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Finally, two other approximated approaches are proposed by [20] and [22], in which the chance
constraints are converted into reduced forms based on some probabilistic inequalities. The
details of these two methods are given as follows:
Consider the following constraints:

G ũ(k) +H ỹ(k) ≤ h(k) (3-9)

with ũ(k) =
[
uT (k) · · · uT (k +Np − 1)

]T
and ỹ(k) =

[
yT (k) · · · yT (k +Np − 1)

]T
, G

and H being constant matrix, Np being a constant representing the prediction horizon of
MPC process (given in Section 4-1).
The components of ỹ(k) are assumed to be max-affine functions of w̃(k) and ũ(k), where
w̃(k) =

[
wT (k) · · · wT (k +Np − 1)

]T
is uncertain and only its distribution is supposed to

be known, which means that the constraints given in Equation (3-9) are also random.
To reformulate the random constraints (3-9), they are required to satisfy for sufficiently many
realizations of w̃(k), that is the following chance constraints:

Pr {G ũ(k) +H ỹ(k) ≤ h(k)} ≥ 1− ε (3-10)

where ε ∈ (0, 1) is the probability of possible violation of Equation (3-9).
Further transform it, we have:

Pr {G ũ(k) +H ỹ(k) ≤ h(k)}
= Pr {G ũ(k) +H ỹ(k)− h(k) ≤ 0}

= Pr
{

max
i=1,··· ,c

(G ũ(k) +H ỹ(k)− h(k))i ≤ 0
}

Since the vector G ũ(k) + H ỹ(k) − h(k) only contains affine operations on the components
of ũ(k) and ỹ(k), and the components of ỹ(k) are max-affine functions of w̃(k) and ũ(k),
assuming that H has nonnegative entries, then each component of G ũ(k) +H ỹ(k)− h(k) is
also a max-affine function of w̃(k) and ũ(k). Let m =

∑c
i=1 ni where ni is the number of affine

expressions appearing in the maximization for the ith component of G ũ(k) +H ỹ(k)− h(k),
we have:

Pr
{

max
i=1,··· ,c

(G ũ(k) +H ỹ(k)− h(k))i ≤ 0
}

= Pr
{

max
i=1,··· ,m

(zi(k)) ≤ 0
}

(3-11)

with z(k) = Λ
[
w(k − 1) w̃(k)

]T
+ Γũ(k) + Ξ(k) for some appropriately sized matrices and

vectors Λ,Γ, and Ξ.
Thus, the chance constraint (3-10) is equivalent to

Pr
{

max
i=1,··· ,m

(zi(k)) ≤ 0
}
≥ 1− ε (3-12)

Although the probability in (3-12) can be computed by numerical integration method, the
amount of calculation remains quite huge, thus converting it into the following two forms that
can be effectively evaluated:
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18 Uncertainties in Stochastic Switching Max-Plus-Linear Systems

a) Based on Boole’s Inequality

Proposition 2. If
∑m
i=1 Pr {zi(k) > 0} ≤ ε, then Pr

{
max

i=1,··· ,m
(zi(k)) ≤ 0

}
≥ 1− ε

b) Based on Chebyshev’s Inequality
Assuming the components of w̃(k) are independent and identically distributed random
variables. Let µw and Σw be the mean vector and covariance matrix of w̃(k). Define

µz(k) = Λµw + Γũ(k) + Ξ(k) (3-13)
Σz = ΛΣwΛT (3-14)

According to the properties of the mean and covariance matrix of random vectors, µz(k)
and Σz are the mean vector and covariance matrix of z(k).

Proposition 3. If Σz is a positive definite matrix, let λmin
(
Σ−1
z

)
> 0 be the smallest

eigenvalue of the matrix Σ−1
z . Let µ̄z(k) = maxi=1,··· ,m µz,i(k). If µ̄z(k) < 0 and

m

µ̄2
z(k)λmin

(
Σ−1
z

) ≤ ε
then

Pr
{

max
i=1,··· ,m

(zi(k)) ≤ 0
}
≥ 1− ε

The proof of two propositions can be found from [20] and [22].

3-2 Switching Max-Plus-Linear Systems with Uncertain Switching

3-2-1 Introduction

Switching max-plus-linear systems with switching uncertainties (also named as Randomly
Switching Max-Plus-Linear (RSMPL) systems) are a type of SMPL systems in which the
order of synchronization of the event steps may vary randomly, or cannot be determined a
priori [13]. In other words, compared with the deterministic switching max-plus-linear systems
discussed in the previous section, given the current mode `(k), it may still be impossible to
determine the next mode `(k+1) of RSMPL systems. The mode switching of RSMPL depends
on a stochastic sequence, i.e. the mode switching variable `(k) is a stochastic process. Based
on the types of the stochastic, RSMPL systems can be classified into two categories:

Consider the following SMPL system:

x(k) = A(`(k)) ⊗ x(k − 1)⊕B(`(k)) ⊗ u(k) (3-15)
y(k) = C(`(k)) ⊗ x(k) (3-16)

If the probability of switching is unknown and cannot be determined, which means the switch-
ing is totally random and its probability function of stochastic switching

Ps(`(k − 1), `(k)) = P [L = `(k) | `(k − 1), x(k − 1), u(k), v(k)]
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3-2 Switching Max-Plus-Linear Systems with Uncertain Switching 19

is not regular (i.e uniform or piecewise affine on polyhedral partition), then what can be
derived is that the switching probability is bounded satisfying:

0 ≤ P [L = `(k) | `(k − 1), x(k − 1), u(k), v(k)] ≤ 1 (3-17)
nL∑

`(k)=1
P [L = `(k) | `(k − 1), x(k − 1), u(k), v(k)] = 1 (3-18)

If the probability of switching is deterministic, which means the probability function of
stochastic switching

Ps(`(k − 1), `(k)) = P [L = `(k) | `(k − 1), x(k − 1), u(k), v(k)]

is uniform or piecewise affine on polyhedral partition of the space of the variables `(k −
1), x(k − 1), u(k), v(k) [13], then some approximation methods can be applied to reduce the
computational burden, the details will be given in the next sub-section.

3-2-2 Computation or Approximation Method of Switching Probability

In this sub-section, we will focus on the RSMPL systems with uniform or piecewise affine
probability functions and discuss how to compute or approximate the switching probability.

The most common method is the direct method, which calculates the probability for each
switching sequence respectively and treats each switching sequence as a deterministic SMPL
system, that is:

P
(˜̀(k) | `(k − 1)

)
= Ps(`(k− 1), `(k)) · Ps(`(k), `(k+ 1)) · · ·Ps(`(k+Np − 2), `(k+Np − 1))

(3-19)
where Ps denotes the switching probability and Np represents prediction horizon for the MPC
process.

The result of this algorithm is accurate. However, it has the drawback that the number of
linear constraints and the number of optimization variables increase rapidly with the increase
of the prediction horizon and the number of modes in the system, which is not suitable for
systems with a large number of modes or large prediction horizons.

Another effective method to solve the problem is the scenario-based algorithm [23], that is,
instead of computing all possible realizations of ˜̀(k), only the most probable mode switching
vectors will be considered. This approach is not quite effective when a uniform switching
probability is given. The algorithm mainly consists of the following two steps:

• Step 1: Select nmax paths of length Np − 1 in the search tree T using a random
selection or a greedy approach. This results in a candidate set of realizations LredNp

={
¯̀1, · · · , ¯̀nmax

}
. Define

πred = min
¯̀∈Lred

Np

P
(

¯̀ | `(k)
)

(3-20)
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20 Uncertainties in Stochastic Switching Max-Plus-Linear Systems

• Step 2: Apply a breadth-first search in T , cutting a subtree originating in a node n
if P (n) ≤ πred, and updating LredNp

whenever a leaf node nleaf is encountered such that
P (nleaf ) > πred; in the latter case, the node ¯̀ in LredNp

with the lowest probability is
removed and replaced by ¯̀real (nleaf ) and πred is updated accordingly.

Remark. In Step 2, the idea of cutting off the subtree originating in the node n if P (n) ≤
πred is that any leaf node from a subtree cannot have a probability higher than that of the
realizations that are already in LredNp

; so there is no need to consider and explore the subtree
any further.

One of the difficulties of this method is that currently there is no algorithm that can return
the nmax shortest path with a fixed number of nodes or edges. To solve this problem, the
basic idea of the algorithm is to apply a dedicated algorithm based on a breadth-first search
in combination with an approach to cut away parts of the search tree in order to guarantee
a fixed-mode-number of nmax shortest path. Compared with the previous exact method, the
computational burden is much smaller and the accuracy is also quite high.

3-3 Summary of Parametric Uncertainty and Switching Uncertainty

In this section, the contents of the previous two sections are summarized in Table 3-1 and
3-2.
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Table 3-1: Stochastic SMPL Systems with Parametric Uncertainty

Type of Stochastic Stochastic Quantities

Methods Uniform
Distribution

Normal
Distribution Expectation Chance

Constraints

Numerical Integration Accurate
Hard

Accurate
Very Hard × ×

Analytic Expression
(Piecewise Polynomial

Expression)

Exact{
Hard (offine)
Easy (online)

Exact{
Hard (offine)
Easy (online)

× ×

Analytic Integration
(Piecewise Affine PDF)

Very Good
Hard

Very Good
Hard × ×

Variability Expansion Good
Hard

Good
Very Hard ×

MC Simulation Good
Medium

Good
Medium × ×

Upper Bound
(Raw Moments

of Random Variable)

Good
Easy

Very Good
Easy ×

Pointwise Approximation Good
Medium

Bad
Hard ×

Boole’s Inequality Good
Easy

Bad
Hard ×

Chebyshev’s Inequality Good
Easy

Bad
Hard ×

* The first row in the table refers to the quality of the approximation.
** The second row in the table represents the difficulty of the computation.

Table 3-2: Stochastic SMPL Systems with Switching Uncertainty

Type of Stochastic
Methods Random Piecewise Affine

Exact Method Accurate/Very Hard Accurate/Very Hard
Scenario-Based Algorithm N.A. Very Good/Easy
* The contents in the table refer to approximation quality/calculation difficulty.

3-4 Switching Max-Plus-Linear Systems with Two Types of Uncer-
tainties

In [15], a unified setting for stochastic SMPL systems to include both types of uncertainties has
been proposed: enhance the mode switching uncertainty first, and then include the parametric
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uncertainty for each mode independently, which results in a model of the form

x(k) = A(`(k)) (e(k))⊗ x(k − 1)⊕B(`(k)) (e(k))⊗ u(k) (3-21)
y(k) = C(`(k)) (e(k))⊗ x(k) (3-22)

where A(`(k)) (e(k)), B(`(k)) (e(k)) and C(`(k)) (e(k)) are the system matrices that correspond to
mode `(k) and where the stochastic random vector e(k) represents the stochastic parametric
uncertainty at the k-th event step.
Compared with Section 3-1 and 3-2, the most extensive computation problem of the system is
that the model contains both two types of uncertainty, which are continuous random variable
ẽ(k) represents the parametric uncertainties and discrete random variable ˜̀(k). Therefore,
the Joint Density Function (JDF) need to be determined.
Let L be the (discrete) sample space of all the mode switching sequences ˜̀(k), and E be the
(continuous) sample space of the parametric uncertainty ẽ(k). Assume that the probability
density function of the uncertainty ẽ(k) does not depend on the discrete mode sequence ˜̀(k),
and the continuous probability density function of ẽ(k) is given by fE (ẽ(k)), then the JDF is
given as:

fL,E
(˜̀(k), ẽ(k)

)
= fE (ẽ(k)) P̃

[
L = ˜̀(k) | E = ẽ(k)

]
(3-23)

where P̃
[
L = ˜̀(k) | E = ẽ(k)

]
denotes the probability that we have mode switching sequence˜̀(k), given the parametric uncertainty ẽ(k), which satisfies

P̃
[
L = ˜̀(k) | E = ẽ(k)

]
= P̃ [L = `(k) | `(k − 1), x(k − 1), ũ(k), ṽ(k), ẽ(k)]

=
Np−1∏
j=0

P [L = `(k + j) | `(k + j − 1),

x(k + j − 1), ũ(k + j), ṽ(k + j), ẽ(k + j)]

When both the continuous probability density function fE (ẽ(k)) and the mode switching
probability P̃

[
L = ˜̀(k) | E = ẽ(k)

]
are known, the expression for the expectation of the cost

function J(k) in MPC process can be defined as:

E [J(k)] =
∑
˜̀(k)∈L

[∫
E
J
(˜̀(k), ẽ(k)

)
fE (ẽ(k)) P̃

[
L = ˜̀(k) | E = ẽ(k)

]
dẽ(k)

]
(3-24)

If the mode switching uncertainty ˜̀(k) does not depend on the parametric uncertainty ẽ(k),
that is P̃

[
L = ˜̀(k) | E = ẽ(k)

]
= P̃

[
L = ˜̀(k)

]
. Represent the set L of all possible consecutive

mode switching vectors as L =
{˜̀1, ˜̀2, · · · , ˜̀m} for M = (nL)NP , then

E [J(k)] = E
ẽ,˜̀[J(k)]

=
∑
˜̀(k)∈L

[
P̃
[
L = ˜̀(k)

]
Eẽ
[
J
(˜̀(k), ẽ(k)

)]]

=
M∑
m=1

[
P̃
[
L = ˜̀m(k)

]
Eẽ
[
J
(˜̀m(k), ẽ(k)

)]]
(3-25)
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where Eẽ
[
J
(˜̀m(k), ẽ(k)

)]
is the expectation of the cost function after substitution of a given

mode switching sequence ˜̀m(k) ∈ L.

It can be observed that the problem has been decomposed into two sub-problems, involving
respectively an expected value computation over a discrete stochastic variable and an expected
value computation over a continuous stochastic variable. Therefore, we can deal with the mode
switching uncertainty first, and then compute the expectation of the parametric uncertainty
only. On the other hand, the approximation approaches discussed in the previous sections
can still be applied. This significantly simplifies the computation of the expectation of the
cost function.

If the mode switching uncertainty ˜̀(k) depends on the parametric uncertainty ẽ(k), the com-
putation will be quite hard. An analytical approach for this case can be found from [15].

In Chapter 4, MPC framework will be further applied to this structure.
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Chapter 4

General Model Predictive Control
Problem

Model Predictive Control (MPC) is an online model-based control approach that relies on a
dynamic model of the process and that is capable of handling constraints on both inputs or
outputs in a systematic way. It has the advantages of high efficiency and computationally
tractable [18]. In [24], the MPC framework has been extended to discrete-event systems and
in particular to time-invariant max-plus-linear models. Max-plus-linear MPC results in a
linear programming problem, which can be solved efficiently. In this section, we will apply
the MPC algorithm to the system discussed in Section 3-4 referring to [15].

4-1 Cost Function

Similar to the conventional MPC, a cost function J that reflects the input and output cost
(Jin and Jout respectively) in the event period [k, k +Np − 1] need to be designed, which in
general should have the form

J(k) = Jout(k) + λJin(k) (4-1)

where Np is the prediction horizon and λ is a weighting parameter that makes a trade-off
between the output cost function and the input cost function.

Referring to the result from [15], Jout and Jin can be chosen as

Jout =
Np−1∑
j=0

ny∑
l=1

E [ηi(k + j)] (4-2)

Jin = −
Np−1∑
j=0

nu∑
l=1

ul(k + j) (4-3)
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where ny and nu are equal to the number of outputs and inputs respectively, E [·] denotes
the expectation of some random variables and ηi = max (yi(k)− ri(k), 0) denotes the i-th
tardiness error. ri(k) is a vector of the reference (due date) signal.

The input cost function maximizes the input instants while the output cost function penalizes
the late deliveries.

4-2 Prediction Model

As mentioned previously, Max-Plus-Linear (MPL) systems are different from the conventional
time-driven system in the sense that k represents the event number rather than a specific
time. So far, we have assumed that x(k) is available when optimizing over the future control
sequence. However, not all components of x(k) are known at the same time instant since x(k)
contains the time instants at which the internal activities or processes of the system start for
the k-th time [7]. Let t be the present time instant and define the actual current cycle k as
follows:

k = max
κ
{κ | xi(κ− 1) ≤ t ∀i ∈ {1, 2, · · · , n}} (4-4)

This means x(κ) ≤ t for κ ≤ k − 1, so these states are all known at time t. Note that parts
of the states x(κ) ≤ t for κ ≥ k may also be known [2]. Define the vectors

x̃(k) =

 x(k)
...

x(k +Np − 1)

 ũ(k) =

 u(k)
...

u(k +Np − 1)

 ỹ(k) =

 y(k)
...

y(k +Np − 1)



ẽ(k) =

 e(k)
...

e(k +Np − 1)

 ˜̀(k) =

 `(k)
...

`(k +Np − 1)


and the matrices

C̃
(˜̀(k), ẽ(k)

)
=


C̃1

(˜̀(k), ẽ(k)
)

...
C̃Np

(˜̀(k), ẽ(k)
)
 D̃

(˜̀(k), ẽ(k)
)

=


D̃1,1

(˜̀(k), ẽ(k)
)
· · · ε

...
. . .

...
D̃Np,1

(˜̀(k), ẽ(k)
)
· · · D̃Np,Np

(˜̀(k), ẽ(k)
)


satisfying
ỹ(k) = C̃

(˜̀(k), ẽ(k)
)
⊗ x(k − 1)⊕ D̃

(˜̀(k), ẽ(k)
)
⊗ ũ(k) (4-5)

where

C̃m
(˜̀(k), ẽ(k)

)
= C`(k+m−1) (e(k +m− 1))⊗A`(k+m−1) (e(k +m− 1))⊗ · · · ⊗A`(k) (e(k))

and

D̃m,n

(˜̀(k), ẽ(k)
)

=


C`(k+m−1) (e(k +m− 1))⊗A`(k+m−1) (e(k +m− 1))⊗ · · ·
⊗A`(k+n) (e(k + n))⊗B`(k+n−1)) (e(k + n− 1)) if m > n

C`(k+m−1) (e(k +m− 1))⊗B`(k+m−1)) (e(k +m− 1)) if m = n

ε if m < n
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4-3 Constraints

One of the advantages of MPC is that constraints are easy to apply to the model. The first
constraint that needs to be considered is for the input signal u(k). Since it corresponds to
consecutive event occurrence times, the following constraint for j = 0, · · · , Np − 1 should be
applied:

∆u(k + j) = u(k + j)− u(k + j − 1) ≥ 0 (4-6)

which means that the start of the (k + j)-th event will always be later than the start of the
(k + j − 1)-th event.

Moreover, to reduce the number of decision variables and the computational complexity,
control horizon Nc (≤ Np) is introduced, which should satisfy

∆2u(k +m) = ∆u(k +m)−∆u(k +m− 1) = 0 (4-7)

for m = Nc, · · · , Np− 1. This means after event step k+Nc− 1, the increments of ∆u(k) are
assumed to become constant.

Finally, possible additional linear constraints on the inputs and the outputs can be applied,
which should satisfy

Ac(k)ũ(k) +Bc(k)E [ỹ(k)] ≤ Cc(k) (4-8)

4-4 Optimization Problem

In summary of this section, the final optimization problem can be defined as:

min
ũ(k)

Np−1∑
j=0

ny∑
l=1

E [max (ỹi(k)− r̃i(k), 0)]− λ
Np−1∑
j=0

nu∑
l=1

ũl(k)


subject to

ỹ(k) = C̃
(˜̀(k), ẽ(k)

)
⊗ x(k − 1)⊕ D̃

(˜̀(k), ẽ(k)
)
⊗ ũ(k)

∆u(k + j) ≥ 0 for j = 0, · · · , Nc − 1
∆2u(k +m) = 0 for m = Nc, · · · , Np − 1
Ac(k)ũ(k) +Bc(k)E [ỹ(k)] ≤ Cc(k)

The most difficult part of the optimization process is the expectation part with two stochastic
variables e(k) and l(k). Based on whether these two random variables are dependent, the
expectation of the cost function can be simplified into different forms, which can be found in
paper [15].
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Chapter 5

Printer System Modelling

As mentioned in the previous chapters, when different types of paper (length, thickness, print-
ing method, etc.) are involved, the current scheduling algorithms commonly used in printers
will not be optimal, because the controller cannot take the paper changes in subsequent print
queues into consideration in advance. In order to achieve optimal scheduling, the max-plus
algorithm can be applied to the printer. In this chapter, we will model the printer system as
a Switching Max-Plus-Linear (SMPL) system.

5-1 Printer Model Introduction

In principle, the paper transported in the printer corresponds to the movement in the 3-
dimensional space. If we assume that the paper does not deviate from its intended path and
has no skew or transverse buckling, then the sheet transportation movement can be simplified
to move along a straight line [1]. The schematic of the paper path in a typical printer is given
in Figure 5-1.

u(k) τ1(k) y1(k), y3(k) τ5(k)

τ2(k)

y4(k)

τ4(k) τ3(k)

y2(k)

PIM POM

IM

RM

ITS

PIM=paper input module
ITS=image transfer station
IM=invert module
RM=re-entry module
POM=paper output module

Figure 5-1: A Schematic of the Paper Path in a Typical Printer [2]
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30 Printer System Modelling

The Paper Input Module (PIM) feeds the sheets to the Image Transfer Station (ITS), where
the image is printed on the paper. After that, the paper in simplex mode runs directly
to the Paper Output Module (POM), and the paper in duplex mode runs via the Invert
Module (IM) and Re-entry Module (RM), and then re-enters the image transfer station for
backside printing [1] [2]. When the printing sequence in the duplex mode is about to end,
that is, when there is no new paper input, the printer will enter the idle mode to ensure that
the printer can continue to print back on the paper in the RM.

One thing to note is that in IM, the direction of paper movement is reversed. Since this
process requires the paper to decelerate to 0 and then accelerate in the reverse direction, the
subsequent paper should keep a certain following distance from the previous paper in this
process. Therefore, the sheet is designed to decelerate first and then accelerate after entering
the IM. The specific processes are shown in Figure 5-2:

(a) Sheets Approach
IM

(b) Sheets Enter IM (c) Sheets Leave IM

Figure 5-2: A Schematic of Inverse Module in the Printer

When the first sheet approaches IM, its speed will decrease first, and the distance between
the first and second sheets will decrease. Next, the first sheet starts to accelerate into the IM
and the second sheet starts to decelerate. This will cause the distance between the first two
sheets to increase and the distance between the second and third sheets to decrease. When
the second sheet starts to accelerate into the IM, the first sheet will just leave the IM, which
can avoid overlap in the reverse process.

In general, we will use the position-time profile to describe the sheet movement in the printer,
which is a one-dimensional path that represents the paper path from the printer input to the
output [1]. As an example, the position-time profile for a printer working in duplex mode is
given in Figure 5-3.
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t

t

x

ITS

PIM

ITS

IM

RM

ITS

POM

resourse

τ1

τ2

τ3

τ4

τ2

τ5

u(k)

y1(k)

y2(k)

y3(k)

y4(k)

Figure 5-3: The Position Time Profile of a General Printer

In the bottom part of the figure, the position of the block represents the time when the event
starts, and the length of the block represents the processing time of the event. It can be seen
that the processing time of other parts is shorter than that of RM, which is mainly because
the length that the sheet needs to move in RM is much longer than that of other parts. It
can also be found from the upper part of the figure that the sloop in the section of ITS is
smaller than the other part, the main reason is that due to the working principle of ITS, the
scrolling speed of the rollers in the module is much lower than that of other parts to ensure
the printing quality of the product. Note that the processing time in ITS only depends on
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the length and the type of the sheets, and has nothing to do with the pattern to be printed.

Due to the different scrolling speeds of ITS and other modes, the speed of the paper entering
the ITS module will slow down and be caught up by the paper behind, which will lead to a
paper overlap. In order to avoid this problem, a certain buffer distance is required between
every two sheets. The length of the buffer distance is the distance between the tail of one sheet
and the head of the next sheet. The buffer distance should not be less than some minimum
length, which is around the speed difference between the two modules multiplied by the
paper processing time in ITS. In the simulation process, for the convenience of calculation,
the length of the virtual paper is used, and its value is set to the length of the actual paper
length plus the buffer distance.

Another graph that is used to describe the behaviour of the printer system is the dynamic
graph discussed in Section 2-5, which can reflect the mode switching of the system. Figure
5-4 shows an example of a dynamic diagram of the printer’s paper flow system.

Figure 5-4: Example of a Dynamic Diagram of the Printer’s Paper Flow System [2]

In this figure, the printer works in duplex mode in the cycles k − 2, k − 1, k + 1, and k + 2,
but in simplex mode in cycle k.

In the printer, the movement of the paper is driven by rollers. We assume that the rollers
in each module except RM and ITS can only roll at full speed and cannot be adjusted. The
average rolling speed in ITS depends on the type of paper. For the same type of paper, the
average rolling speed is the same. The rollers in RM can scroll at three speeds: 0, normal
speed, which is the same speed as in other modes except ITS, and high speed, which is much
higher than normal speed. With this setting, the paper speed in each module except ITS
and RM is fixed, which means that the time intervals required for the paper to move in these
modules are also fixed, regardless of the length of the paper.
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5-2 Model Derivation

In the following sub-sections, the basic model of duplex mode, idle mode and simplex mode
will be derived.

5-2-1 Model for Duplex Mode

The path of the paper in double-sided printing can be converted to a one-dimensional repre-
sentation as shown in Figure 5-5. Let u(k) be the time instant that the k-th sheet enters the
PIM, y1(k) the time instant that the k-th sheet enters the ITS, y2(k) the time instant that
the k-th sheet enters the IM, y3(k) the time instant that the k-th sheet enters the ITS for
the second time, y4(k) the time instant that the k-th sheet leaves the printer. Assume τ1(k),
τ2(k), τ3(k), τ4(k), τ5(k), are the processing time for feeding, printing, handling in the first
part of the loop, inverting, handling in the second part of the loop and stacking for the sheet
k respectively.

τ1(k) τ2(k) τ3(k) τ4(k) τ2(k) τ5(k)

PIM ITS IM ITS POM

u(k) y1(k) y2(k) y3(k) y4(k)

Figure 5-5: One-dimensional Schematic Diagram of Paper Movement for Double-Sided Printing

According to the assumption in Section 5-1, the processing time τ2(k) is only determined by
the type of paper, and the processing time τ4(k) of each sheet of paper can be changed with
k, which can make the paper wait for a period of time in RM or accelerate to enter ITS a
little earlier. The processing time of other modules (τ1, τ3, τ5) will remain constant.

Then the paper path for the duplex mode can be evaluate as follows:

y1(k) ≥ max (u(k) + τ1(k), y3(k − cp(k)) + τ2(k − cp(k))) ,
y2(k) ≥ max (y1(k) + τ2(k) + τ3(k), y2(k − 1) + τ4(k − 1)) ,
y3(k) ≥ max (y1(k + cp(k)− 1) + τ2(k + cp(k)− 1), y2(k) + τ4(k)) ,
y4(k) ≥ y3(k) + τ2(k) + τ5(k),

(5-1)

where cp(k) is a parameter affected by the printer itself, which represents the number of
papers in the printer during the printing cycle k.

Equation (5-1) means that the second time that paper k enters the ITS (y3(k)) is scheduled
after the first time that paper k+cp(k)−1 leaves the ITS (y1(k+cp(k)−1)+τ2(k+cp(k)−1)).
In the same way, the first time paper k enters the ITS (x1(k)) will be scheduled after the
second time paper k − cp(k) leaves the ITS (y3(k − cp(k)) + τ2(k − cp(k))).

Since y3(k) depends on the future event, we introduce the state x and a new input ū as follows:

x(k) =


y1(k)
y2(k)

y3(k − cp(k) + 1)
y4(k − cp(k) + 1)

 , ū(k) =
[

u(k)
u(k − cp(k) + 1)

]
. (5-2)
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The new set of state equations become:

x1(k) ≥ max (ū1(k) + τ1(k), x3(k − 1) + τ2(k − cp(k))) ,
x2(k) ≥ max (x1(k) + τ2(k) + τ3(k), x2(k − 1) + τ4(k − 1)) ,
x3(k) ≥ max (x1(k) + τ2(k), x2(k − cp(k) + 1) + τ4(k − cp(k) + 1)) ,
x4(k) ≥ x3(k) + τ2(k − cp(k) + 1) + τ5(k − cp(k) + 1).

(5-3)

Note that in Equation (5-1) and (5-3), an inequality sign is used instead of an equality sign.
This is because the starting times of the printer system may also depend on ordering, which
can delay the starting times [2]. In the following analysis, we assume that an event will
take place as soon as all constraints are satisfied, which means that we now have equality in
Equation (5-3) instead of inequality. Then we can write the state equations into the following
standard implicit SMPL form:

x(k) = Adup
0 ⊗ x(k)⊕Adup

1 ⊗ x(k − 1)⊕Adup
cp ⊗ x(k − cp(k) + 1)⊕Bdup

0 ⊗ ū(k), (5-4)

with

Adup
0 =


ε ε ε ε

τ2(k) + τ3(k) ε ε ε
τ2(k) ε ε ε
ε ε τ2(k − cp(k) + 1) + τ5(k − cp(k) + 1) ε

 , Bdup
0 =


τ1(k) ε
ε ε
ε ε
ε ε

 ,

Adup
1 =


ε ε τ2(k − cp(k)) ε
ε τ4(k − 1) ε ε
ε ε ε ε
ε ε ε ε

 , Adup
cp =


ε ε ε ε
ε ε ε ε
ε τ4(k − cp(k) + 1) ε ε
ε ε ε ε

 .

5-2-2 Model for Idle Mode

In the duplex mode, when the printing sequence is about to end, there is no new paper input,
in other words, the new paper input time u becomes infinite. Due to the max operation in
Equation (5-1), the backside printing time y3 will also become infinite, which means that the
back printing of the paper in RM is prevented. To avoid this situation, we set the idle mode,
assuming that u is ε when there is no new input, and y1(k) = y1(k − 1). The paper path in
this mode can be evaluated as follows:

y1(k) = y1(k − 1),
y2(k) = y2(k − 1),
y3(k) ≥ max (y3(k − 1) + τ2(k − 1), y2(k) + τ4(k)) ,
y4(k) ≥ y3(k) + τ2(k) + τ5(k).

(5-5)

Using the same states and inputs defined in Equation (5-2), we have

x1(k) = x1(k − 1),
x2(k) = x2(k − 1),
x3(k) ≥ max (x3(k − 1) + τ2(k − cp(k)), x2(k − cp(k) + 1) + τ4(k − cp(k) + 1)) ,
x4(k) ≥ x3(k) + τ2(k − cp(k) + 1) + τ5(k − cp(k) + 1).

(5-6)
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Similarly, assuming that an event will take place as soon as all constraints are satisfied, the
new implicit SMPL form is given as:

x(k) = Aidle
0 ⊗ x(k)⊕Aidle

1 ⊗ x(k − 1)⊕Aidle
cp ⊗ x(k − cp(k) + 1)⊕Bidle

0 ⊗ ū(k), (5-7)

with

Aidle
0 =


ε ε ε ε
ε ε ε ε
ε ε ε ε
ε ε τ2(k − cp(k) + 1) + τ5(k − cp(k) + 1) ε

 , Bidle
0 =


ε ε
ε ε
ε ε
ε ε

 ,

Aidle
1 =


0 ε ε ε
ε 0 ε ε
ε ε τ2(k − cp(k)) ε
ε ε ε ε

 , Aidle
cp =


ε ε ε ε
ε ε ε ε
ε τ4(k − cp(k) + 1) ε ε
ε ε ε ε

 .

5-2-3 Model for Simplex Mode

In the simplex mode, y1(k) and y2(k) in the paper path are skipped and the sheets immediately
go from the input to y3(k). The paper path can be evaluate as follows:

y1(k) = y3(k − cp(k)),
y2(k) = y2(k − 1),
y3(k) ≥ max (y1(k + cp(k)− 1) + τ2(k − 1), u(k) + τ1(k)) ,
y4(k) ≥ y3(k) + τ2(k) + τ5(k).

(5-8)

With the states and input defined in Equation (5-2), we have

x1(k) = x3(k − 1),
x2(k) = x2(k − 1),
x3(k) ≥ max (x1(k) + τ2(k − cp(k)), ū2(k) + τ1(k − cp(k) + 1)) ,
x4(k) ≥ x3(k) + τ2(k − cp(k) + 1) + τ5(k − cp(k) + 1).

(5-9)

Apply the same assumption as previous sub-sections, we can write the state equations6y into
the following standard implicit SMPL form:

x(k) = Asimp
0 ⊗ x(k)⊕Asimp

1 ⊗ x(k − 1)⊕Asimp
cp ⊗ x(k − cp(k) + 1)⊕Bsimp

0 ⊗ ū(k), (5-10)

with

Asimp
0 =


ε ε ε ε
ε ε ε ε

τ2(k − cp(k)) ε ε ε
ε ε τ2(k − cp(k) + 1) + τ5(k − cp(k) + 1) ε

 ,

Asimp
1 =


ε ε 0 ε
ε 0 ε ε
ε ε ε ε
ε ε ε ε

 , Asimp
cp =


ε ε ε ε
ε ε ε ε
ε ε ε ε
ε ε ε ε

 , Bsimp
0 =


ε ε
ε ε
ε τ1(k − cp(k) + 1)
ε ε

 .
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5-2-4 Compact Form

Based on the results of the previous subsections, we define a set of max-plus switching binary
variables `(k) for the system in cycle k, with `1(k), `2(k) and `3(k) represents for duplex
mode, idle mode and simplex mode respectively. If `(k) = 0, then the corresponding mode is
on, and if `(k) = −∞, the corresponding mode is off. In each cycle k, only one mode can be
activated. Then the system can be written as the following compact form:

x(k) = A
`(k)
0 ⊗ x(k)⊕A`(k)

1 ⊗ x(k − 1)⊕A`(k)
cp ⊗ x(k − cp(k) + 1)⊕B`(k)

0 ⊗ ū(k), (5-11)

with

A
`(k)
0 = `1(k)⊗Adup

0 ⊕ `2(k)⊗Aidle
0 ⊕ `3(k)⊗Asimp

0 ,

A
`(k)
1 = `1(k)⊗Adup

1 ⊕ `2(k)⊗Aidle
1 ⊕ `3(k)⊗Asimp

1 ,

A`(k)
cp = `1(k)⊗Adup

cp ⊕ `2(k)⊗Aidle
cp ⊕ `3(k)⊗Asimp

cp ,

B
`(k)
0 = `1(k)⊗Bdup

0 ⊕ `2(k)⊗Bidle
0 ⊕ `3(k)⊗Bsimp

0 .
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Chapter 6

Optimal Scheduling with MILP
Method

In the previous chapter, we have already modelled the printer system in three different modes.
The state equations are given in the form of switching max-plus-linear systems. There are
two main methods to realize the optimal scheduling of the system. The first is the max-plus
Model Predictive Control (MPC) method introduced in Chapter 4, and the other is to convert
the system into a Mixed-Integer Linear Programming (MILP) problem. In this chapter, we
will apply the second method and introduce how to solve the printer optimization scheduling
problem with the MILP framework.

6-1 Conventional Algebra Transformation

Consider the Switching Max-Plus-Linear (SMPL) system defined in Equation (5-11):

x(k) = A
`(k)
0 ⊗ x(k)⊕A`(k)

1 ⊗ x(k − 1)⊕A`(k)
cp ⊗ x(k − cp(k) + 1)⊕B`(k)

0 ⊗ ū(k),

with

A
`(k)
0 = `1(k)⊗Adup

0 ⊕ `2(k)⊗Aidle
0 ⊕ `3(k)⊗Asimp

0 ,

A
`(k)
1 = `1(k)⊗Adup

1 ⊕ `2(k)⊗Aidle
1 ⊕ `3(k)⊗Asimp

1 ,

A`(k)
cp = `1(k)⊗Adup

cp ⊕ `2(k)⊗Aidle
cp ⊕ `3(k)⊗Asimp

cp ,

B
`(k)
0 = `1(k)⊗Bdup

0 ⊕ `2(k)⊗Bidle
0 ⊕ `3(k)⊗Bsimp

0 .
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Redefine the m-th row of the matrices A and B as follows:

A
`(k)
0m

=



A
`(k)
0m1

A
`(k)
0m2

A
`(k)
0m3

A
`(k)
0m4



T

, A
`(k)
1m

=



A
`(k)
1m1

A
`(k)
1m2

A
`(k)
1m3

A
`(k)
1m4



T

, A`(k)
cpm

=



A
`(k)
cpm1

A
`(k)
cpm2

A
`(k)
cpm3

A
`(k)
cpm4



T

, B
`(k)
0m

=

B`(k)
0m1

B
`(k)
0m2

T ,

where m = 1, 2, 3, 4.

According to the nature of the max-plus system, the system can be converted into the following
equation in conventional algebra:

xm(k) = max
(
A
`(k)
0m1 + x1(k), A`(k)

0m2 + x2(k), A`(k)
0m3 + x3(k), A`(k)

0m4 + x4(k),+ · · ·

A
`(k)
1m1 + x1(k − 1), A`(k)

1m2 + x2(k − 1), A`(k)
1m3 + x3(k − 1), A`(k)

1m4 + x4(k − 1),+ · · ·
A`(k)
cpm1 + x1(k − cp(k) + 1), A`(k)

cpm2 + x2(k − cp(k) + 1),+ · · ·
A`(k)
cpm3 + x3(k − cp(k) + 1), A`(k)

cpm4 + x4(k − cp(k) + 1),+ · · ·

B
`(k)
0m1 + ū1(k), B`(k)

0m2 + ū2(k)
)
, (6-1)

with m = 1, 2, 3, 4.

Thus, for each m, the equation can be transformed as following fourteen inequalities:

xm(k) ≥ A`(k)
0m1 + x1(k),

...

xm(k) ≥ A`(k)
0m4 + x4(k),

xm(k) ≥ A`(k)
1m1 + x1(k − 1),

...

xm(k) ≥ A`(k)
1m4 + x4(k − 1),

xm(k) ≥ A`(k)
cpm1 + x1(k − cp(k) + 1),

...
xm(k) ≥ A`(k)

cpm4 + x4(k − cp(k) + 1),

xm(k) ≥ B`(k)
0m1 + ū1(k),

xm(k) ≥ B`(k)
0m2 + ū2(k),

which can be rewritten into the following compact form:



xm(k) ≥ A`(k)
0mi

+ xi(k),

xm(k) ≥ A`(k)
1mi

+ xi(k − 1),
xm(k) ≥ A`(k)

cpmi
+ xi(k − cp(k) + 1),

xm(k) ≥ B`(k)
0mj

+ ūj(k),

(6-2)

with m = 1, 2, 3, 4, i = 1, 2, 3, 4, j = 1, 2.
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6-2 Binary Variable for Mode Selection

As discussed in Chapter 5, the printer has three working modes (with `1, `2 and `3 represent
duplex mode, idle mode and simplex mode respectively). Therefore, we introduce conventional
binary variable v1, v2 and v3 with v1(k) + v2(k) + v3(k) = 1 referring to these three modes
and scalar β � 0. Then the inequality (6-2) can be split into the following inequalities:



xm(k) ≥ A`q(k)
0mi

+ xi(k) + (1− vq(k)β) ,

xm(k) ≥ A`q(k)
1mi

+ xi(k − 1) + (1− vq(k)β) ,
xm(k) ≥ A`q(k)

cpmi
+ xi(k − cp(k) + 1) + (1− vq(k)β) ,

xm(k) ≥ B`q(k)
0mj

+ ūj(k) + (1− vq(k)β) ,

These inequalities can also be written as:

−xm(k) + xi(k) + (1− vq(k)β) ≤ −A`q(k)
0mi

,

−xm(k) + xi(k − 1) + (1− vq(k)β) ≤ −A`q(k)
1mi

,

−xm(k) + xi(k − cp(k) + 1) + (1− vq(k)β) ≤ −A`q(k)
cpmi

,

−xm(k) + ūj(k) + (1− vq(k)β) ≤ −B`q(k)
0mj

,

(6-3)

with i,m = 1, · · · , 4; j = 1, 2; q = 1, 2, 3; v ∈ B, which satisfies

v1 + v2 + v3 = 1. (6-4)

And the inequality (6-3) can be divided into 4× 3× 14 = 168 inequalities.

6-3 Solve the MILP Problem

Assume N is the prediction horizon of the system, y is the maximum value after N steps, i.e.
y ≥ xi(N), ∀i, which represents the finishing time of the last module after N cycle. Define

z =
[
y x1(1) x2(1) · · · x3(N) x4(N) ū1(1) · · · ū2(N) v1(1) · · · v3(N)

]T
,

c =
[
1 0 0 · · · 0 0

]T
.

Then the scheduling problem defined in Equation (6-3) and (6-4) is transformed into a con-
strained MILP problem:

min
z
cT z (6-5)

s.t. EZ ≤ F
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Chapter 7

Optimal Scheduling for Printers with
Switching

In the actual printing process, due to the diversity of printed products, it is also necessary
to consider the switching of multiple modes, such as the use of different types of paper for a
document, or frequent switching of simplex and duplex modes. Mode switching often means
a change in the routing (paper path) or ordering, which acts as an important issue for the
optimal scheduling problem. In this chapter, we will discuss the use of the max-plus algorithm
to solve scheduling problems involving different types of model switching.

7-1 Problem Introduction

Long-term printing (simplex mode and duplex mode) can be regarded as the steady states
of the system. For the printer system, switching between different steady states cannot be
completed instantaneously. It often requires many cycles of adjustment to stabilize, and
this type of adjustment process is called the intermediate mode. In general, more than
one intermediate mode is required, and the state equations of each intermediate mode are
different. For different starting and ending steady states, the required intermediate modes
are also different (such as from A4 to A3 and from single-sided A4 paper to double-sided A4
paper). This means that in the scheduling design process, a large number of intermediate
modes have to be considered, and we need to parametrize the modes in a structured and
generic way.

There are mainly three methods to do the parametrization [2]:

• Mode parametrization: enumerate all possible modes and use a specific mode number
as a parameter.

• Integer parametrization: Use integers to describe features such as the order of operations
of a specific resource (modules), or determine the route of a specific job.

Master of Science Thesis Shubo Zhang



42 Optimal Scheduling for Printers with Switching

• Binary parametrization: Binary variables can describe which of two operations go first
for a resource.

Due to the large number of modes, it is difficult to apply mode parametrization. Therefore,
we will use binary parametrization for our printer system. An important control decision,
namely ordering, needs to be considered.

7-2 Ordering

In the printer system, ordering refers to which sheet enter the specific module first. We need
to consider the ordering of events in different cycles, the basic idea is as follows:

Let Zµ(k) ∈ R4×4, µ = 0, 1, cp(k) be order decision matrices with max-plus binary entries,
where [Zµ(k)]i,j = 0 if operation i in cycle k is scheduled after operation j in cycle k+µ, and
[Zµ(k)]i,j = ε if operation i in cycle k is scheduled before operation j in cycle k + µ. Define
the control vector zµ(k) as the vector with the stacked column vectors of matrix Zµ(k), that
is zµ(k) = vec(Zµ(k)). Then we can use the notation Zµ(k) = Z (zµ(k)), and the ordering
matrices can be defined as:

Aord
µ (zµ(k)) = Z (zµ(k))�A`(k)

µ , (7-1)

where A`(k)
µ is defined in Equation (5-11), “�” refers to max-plus Hadamard product which

satisfies:
(A�B)ij = (A)ij ⊗ (B)ij = (A)ij + (B)ij .

With ordering matrices, some unnecessary constraints previously defined can be cancelled.
Then the operation ordering constraints in the system can be formulated as:

x(k) = Aord
0 ⊗ x(k)⊕Aord

1 ⊗ x(k − 1)⊕Aord
cp ⊗ x(k − cp(k) + 1)⊕B`(k)

0 ⊗ ū(k). (7-2)

And all max-plus binary decision variables can be stacked into one vector:

b(k) =

 z0(k)
z1(k)
zcp(k)

 ∈ BLbin
ε , (7-3)

where Lbin is the total number of max-plus binary variables.

7-3 Intermediate Mode Design

As discussed in the previous section, the intermediate modes are in general different from
the modes in steady states. This means that it is difficult for the supervisory controller to
schedule the routing and ordering for intermediate modes. Therefore, we need to pre-design
the intermediate modes. In the following sub-sections, we will consider the switching of modes
(duplex and simplex) and paper sizes (A3 and A4 paper), and design the corresponding
intermediate modes.
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7-3-1 Applied Parameters

The parameters applied in this section are defined in Table 7-1:

Table 7-1: Parameters for Intermediate Modes Design

Width of the Paper Path (mm) 297

Actual Length of A4 Paper (mm) 210

Buffer distance for A4 Paper for Duplex Printing (mm) 20

Virtual Length of Duplex A4 Paper (mm) 230

Buffer distance for A4 Paper for Simplex Printing (mm) 10

Virtual Length of Duplex A4 Paper (mm) 220

Actual Length of A3 Paper (mm) 420

Buffer distance for A3 Paper for Duplex Printing (mm) 40

Virtual Length of Duplex A3 Paper (mm) 460

Buffer distance for A3 Paper for Simplex Printing (mm) 20

Virtual Length of Duplex A3 Paper (mm) 440

The conveying direction of the paper in the printer is shown in the figure below:

Figure 7-1: Conveying Direction of the Paper in the Printer

7-3-2 From Simplex Printing to Duplex Printing

In this sub-section, we assume that the size of the paper will not change, only the mode is
switched from simplex to duplex. We use A4 paper as an example.

As shown in Figure 7-2, as the printer work in simplex mode, the back-loop (the loop with
Invert Module (IM) and Re-entry Module (RM)) is empty, which means that we do not need
to consider the ordering of RM. However, it can be noticed that the length of the buffer
distance has changed significantly after the mode is switched. There are several reasons:
first, since the double-sided printed paper will enter Image Transfer Station (ITS) twice, a
longer buffer distance is required; secondly, after the first two sheets that need to be printed
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PIM POM

IM

RM

ITS

Simplex Mode
Duplex Mode

Figure 7-2: A Schematic of the Paper Path from Simplex Printing to Duplex Printing

on both sides enter RM via the loop, a new sheet of paper needs to be inserted, so a gap of
at least one virtual paper length is required between the two sheets.

So the printer can switch the mode directly in this case without intermediate modes. And
the buffer distance required after mode switching can be calculated as:

Buffer distance for A4 Paper for Duplex Printing+Virtual Length of Duplex A4 Paper = 250 mm.

7-3-3 From Duplex Printing to Simplex Printing

In this sub-section, we still assume that the size of the paper will not change, but the mode
is switched from simplex to duplex. We also take the A4 paper as an example.

PIM POM

IM

RM

ITS

Simplex Mode
Duplex Mode

Figure 7-3: A Schematic of the Paper Path during Mode Switching
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The schematic of the case is given in Figure 7-3. Compared with the paper for single-sided
printing, the paper for double-sided printing passes through ITS twice, which leads to a longer
buffer distance. This can be regarded as the virtual length of the input sheet is reduced, and
the processing time of ITS will also be reduced. Therefore, the switching of the paper size
from large to small (for example, A3 to A4) is the same case, and will not be discussed later.

The basic idea of the intermediate mode is to insert the new paper into the gap between the
papers from RM, and all papers leave the printer alternately. It should be noted that for
the printer system, if there are two types of paper in the loop, we need to apply the larger
value of the processing time in the system matrices. Although the processing time of small
sheets is overestimated and will lead to a larger buffer distance, on the contrary, applying
smaller processing time prematurely on large-sized papers will cause system errors and paper
overlaps. Only when all the large sheets exit the loop, a smaller processing time can be
applied.

So in this case, the printer can directly switch from the duplex mode state equation given
in (5-4) to the simplex mode state equation given in (5-10), but keep the processing time of
ITS τ2(k) and the buffer distance the same as double-sided printing until the last sheet of
double-sided printing leaves Paper Output Module (POM). And the buffer distance required
in intermediate modes is:

Buffer distance for A4 Paper for Duplex Printing+Virtual Length of Duplex A4 Paper = 250 mm.

7-3-4 From A4 Paper to A3 Paper

In this sub-section, we assume that the mode is fixed and only the paper size is modified
from A4 to A3. In order to make the intermediate mode more universal, we use the more
complicated double-sided printing as an example.

PIM POM

IM

RM

ITS

A4 Paper
A3 Paper

Figure 7-4: A Schematic of the Paper Path during Paper Size Switching

The schematic of the case is given in Figure 7-4. Similar to the previous sub-section, as the
length of the input paper increases, the required buffer distance and the processing time of
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ITS increase. To design intermediate modes for this case, the following two problems need to
be considered:

1) How to leave enough space between A4 paper (the length of virtual A3 paper) so that
A3 paper can be inserted into the gap?

2) In the process of adjusting the gap, how to ensure that the paper to be printed twice
in the RM does not overlap with the newly entered A3 paper (the green circled part)?

To solve the question, the movement of the sheets is converted into a one-dimensional diagram:

Moving Direction

Figure 7-5: A Schematic of the Paper Path before Paper Size Switching

The movement of the paper that is about to enter Paper Input Module (PIM) before the
mode switch is shown in the Figure 7-5, where the shaded part represents the position of the
paper, and the dashed part represents the remaining space of the paper to be inserted from
RM.

Suppose from one moment the input paper of the printer will switch to A3 after a few cycles.
We will first switch the parameters in the system matrix (τ2) from A4 paper to A3 paper. In
order to improve efficiency, the buffer distance for feeding paper has been increased a little
bit earlier. As shown in Figure 7-6 (a), compared with the figure above, half of the sheets are
arranged to be fed in later.

(a)

(b)

(c)

Moving Direction

Figure 7-6: A Schematic of the Paper Path before Paper Size Switching (modified)

When this sequence is fed from PIM, it needs to be merged with the paper sequence in the
back-loop (RM). Since the sequence in the back-loop has not been adjusted, the sequence is
the same as that shown in Figure 7-5. The combined sequence is shown in Figure 7-6 (b).
The lined part represents the paper that has been printed once from the RM, while the blank
part still represents the space between the papers.

When the merged sequence passes through the ITS, the lined part of the paper will be output
directly from the POM, and the previously unlined paper has been printed once and becomes
the lined part, as shown in Figure 7-6 (c).
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(a)

(b)

(c)

(d)

Moving Direction

Figure 7-7: A Schematic of the Paper Path after Paper Size Switching

As mentioned in Chapter 5, the scroll speed in RM can be adjusted. Therefore, the sequence
in Figure 7-6 (c) can be delayed by RM (stay at RM for a suitable time), and then merged
with the A3 paper sequence in Figure 7-7 (a) into the sequence shown in Figure 7-7 (b).

After the sequence in Figure 7-7 (b) passes the ITS, all A4 papers will leave the printer
through the POM. Meanwhile, the A3 papers that entered previously have completed one-
sided printing, and will enter the RM through the loop (shown in Figure 7-7 (c)). It should
be noted that at this time, the length of the gap between the lined paper can just be inserted
into a new piece of A3 paper from PIM, as shown in Figure 7-7 (d). At this time, the printer
has finished the intermediate mode and enters the double-sided printing A3 paper mode.

In summary, since the side length of A3 paper is twice that of A4 paper, the intermediate
mode only needs to adjust the input sequence twice, and the result is optimal.

7-4 Compact Form for Paper Size Selection

In Section 5-2-4, we have discussed using the max-plus binary variables for working mode
selection. In this section, we use a similar method to obtain a compact form for the paper
size selection. We will consider duplex printing with four selectable paper sizes.

Consider the state equations for duplex mode printing given in (5-3):

x1(k) ≥ max (ū1(k) + τ1(k), x3(k − 1) + τ2(k − cp(k))) ,
x2(k) ≥ max (x1(k) + τ2(k) + τ3(k), x2(k − 1) + τ4(k − 1)) ,
x3(k) ≥ max (x1(k) + τ2(k), x2(k − cp(k) + 1) + τ4(k − cp(k) + 1)) ,
x4(k) ≥ x3(k) + τ2(k − cp(k) + 1) + τ5(k − cp(k) + 1),

where τ and cp are parameters depend on the mode and paper size.

Let (τd, cdp), d = 1, 2, 3, 4 be the pair of the printing parameter pairs for four different sizes of
paper respectively. Introduce max-plus binary variables vµ, µ = 1, · · · , 4 to control the order
of the system, then the previous state equations can be transformed as:
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x1(k) ≥ max
(
ū1(k) + τ1

1 (k) + v1, ū1(k) + τ2
1 (k) + v2, ū1(k) + τ3

1 (k) + v3, · · ·

ū1(k) + τ4
1 (k) + v4, x3(k − 1) + τ1

2 (k − c1
p(k)) + v1,+x3(k − 1) + · · ·

+ τ2
2 (k − c2

p(k)) + v2, x3(k − 1) + τ3
2 (k − c3

p(k)) + v3, · · ·

x3(k − 1) + τ4
2 (k − c4

p(k)) + v4
)
,

x2(k) ≥ max
(
x1(k) + τ1

2 (k) + τ1
3 (k) + v1 , x1(k) + τ2

2 (k) + τ2
3 (k) + v2, · · ·

x1(k) + τ3
2 (k) + τ3

3 (k) + v3, x1(k) + τ4
2 (k) + τ4

3 (k) + v4, · · ·
x2(k − 1) + τ1

4 (k − 1) + v1, x2(k − 1) + τ2
4 (k − 1) + v2, · · ·

x2(k − 1) + τ3
4 (k − 1) + v3, x2(k − 1) + τ4

4 (k − 1) + v4
)
,

x3(k) ≥ max
(
x1(k) + τ1

2 (k) + v1, x1(k) + τ2
2 (k) + v2, x1(k) + τ3

2 (k) + v3, · · ·

x1(k) + τ4
2 (k) + v4, x2(k − c1

p(k) + 1) + τ1
4 (k − c1

p(k) + 1) + v1, · · ·
x2(k − c2

p(k) + 1) + τ2
4 (k − c2

p(k) + 1) + v2, x2(k − c3
p(k) + 1) + · · ·

+ τ3
4 (k − c3

p(k) + 1) + v3, x2(k − c4
p(k) + 1) + τ4

4 (k − c4
p(k) + 1) + v4,

)
,

x4(k) ≥ max
(
x3(k) + τ1

2 (k − c1
p(k) + 1) + τ1

5 (k − c1
p(k) + 1) + v1, · · ·

x3(k) + τ2
2 (k − c2

p(k) + 1) + τ2
5 (k − c2

p(k) + 1) + v2, · · ·
x3(k) + τ3

2 (k − c3
p(k) + 1) + τ3

5 (k − c3
p(k) + 1) + v3, · · ·

x3(k) + τ4
2 (k − c4

p(k) + 1) + τ4
5 (k − c4

p(k) + 1) + v4
)
.

(7-4)

By this method, when certain paper size is selected, let the corresponding max-plus binary
variable be 0 and others become ε, the state equation given in (7-4) will become the same as
what we derived in Equation (5-3).

We can further apply the same method to the other two modes and convert them to the
Max-Plus-Linear (MPL) form, which will provide us with a compact form of both mode and
paper size selection.
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Chapter 8

Optimal Control for Single Mode
Printers in Stochastic Case

In this chapter, we will take the disturbance/noise into account, and assume the rolling
speed of the rollers in each module becomes stochastic and following a normal distribution
Probability Density Function (PDF), which will lead to a stochastic processing time in each
module. We will try to analyze what requirements are needed to make the methods dis-
cussed in the previous chapters still be able to achieve optimal scheduling with overlapping
probability satisfying the principle of 3σ.

8-1 General Introduction

Recall the Switching Max-Plus-Linear (SMPL) system defined in Equation (5-11) in Chapter
5:

x(k) = A
`(k)
0 ⊗ x(k)⊕A`(k)

1 ⊗ x(k − 1)⊕A`(k)
cp ⊗ x(k − cp(k) + 1)⊕B`(k)

0 ⊗ ū(k) (8-1)

with matrices A and B consists of printer capacity cp and the processing time of each module
τ in the printer.

If the system becomes stochastic, the processing time for each sheet may be different. In
order to avoid overlapping of sheets, a larger buffer distance is required. In other words, the
input time of each cycle u(k) should be delayed a little bit compared with the deterministic
case. To create and solve a stochastic optimal scheduling problem, the basic ideas of this
chapter are as follows:

1. For a certain printer system, obtain the processing time τ of each module and the
movement distance d in modules in deterministic case;

2. Calculate the paper speed c in each module in deterministic case (which is the sloop of
each section in the position time profile in Figure 5-3);
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3. Assuming that the speed of each mode becomes stochastic, with the mean value c̄ = c.
A normal distribution PDF will be applied. Let the stochastic value c̃ be the actual
moving speed of paper in each module.

4. Recalculate the processing time of each module τ̃ by d/c̃, and use τ̃ in the system
matrices in each module.

5. Solve the stochastic Mixed-Integer Linear Programming (MILP) problem with the
method discussed in previous chapters.

8-2 Construct the Stochastic Speed and Time Profile

In the following sections, we assume that we already know the processing time τ and the
movement distance d in each module in the deterministic case. Then the deterministic paper
speed is c = d/τ . We will consider a series of zero mean noise sequences that satisfies ε ∼ (0, I).
The noise sequence is somewhat correlated to ensure that the moving speed of adjacent sheets
will not suddenly change greatly. Then the corresponding stochastic speed is:

c̃ = c+ ε, ∼ (c, I).

Note that in the simulation, this noise sequence can be generated by a series of zero-mean
white noise signals passing through a low-pass filter.

Then the stochastic processing time for each section can be calculated by:

τ̃ = d

c̃
= d

c
(
1 + 1

c ε
) . (8-2)

Let f(ε) = 1
1 + 1

c ε
, then we have:

∂f(ε)
∂x

= −

1
c(

1 + 1
c ε
)2 .

Since ε is a small value with the mean of zero, f(ε) can be approximated by a first-order
Taylor expansion around 0 as follows:

f(ε) ≈ f(0) + ∂f(0)
∂x

(ε− 0) = 1− ε

c
.

Substituting the result back into Equation (8-2), we can finally get the approximate stochastic
processing time, which is given as:

τ̃ = d

c
(
1 + 1

c ε
) ≈ d

c

(
1− ε

c

)
. (8-3)
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8-3 Stochastic Case for Steady Modes

In this section, we will consider the stochastic case for steady modes (simplex and duplex
printing). We will see what happens compared to the deterministic situation.

8-3-1 Simplex Mode

As discussed in Section 8-2, in order to prevent the moving speed of adjacent sheets from
suddenly changing greatly, the disturbance is designed to be somewhat correlated. Therefore,
the speed curves of the two adjacent sheets are similar. In other words, the difference between
the acceleration and deceleration process of the two sheets of paper is small, almost negligible.
In summary, this kind of random signal disturbance has little effect on the single-sided printing
mode and can be ignored.

8-3-2 Duplex Mode

Similar to the previous sub-section, the influence of stochastic interference on the adjacent
paper in the printer is almost negligible. But for double-sided printing, the merging of the
green circle and the separation of the blue circle in the Figure 8-1 requires special attention.

PIM POM

IM

RM

ITSτ̄1 + ξ̃1

τ̄2 + ξ̃2

τ̄5 + ξ̃5

τ̄3 + ξ̃3τ̄4 + ξ̃4

Figure 8-1: A Schematic of the Paper Path in a Stochastic Case

Consider the green circle first. There are four critical time instants in the merging process,
as shown in the following figure. Suppose that the k-th paper reaches the merging point at
time tma(k), and the time at which it leaves the merging point is tml(k). According to the
figure, in order to prevent overlap, we need to meet the following conditions:

{
tml(k − 1) ≤ tma(k − cp)
tml(k − cp) ≤ tma(k)

(8-4)
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(a) Paper k − 1 Leaves the Merge Point (b) Paper k− cp Arrives the Merge Point

(c) Paper k − cp Leaves the Merge Point (d) Paper k Arrives the Merge Point

Figure 8-2: A Schematic of Critical Time Instants in the Merging Process

The actual time when the new incoming k-th paper arriving at the merging point is:

tma(k) = y1(k)
= u(k) + τ̃k,1

= u(k) + τ̄1 + ξ̃k,1, (8-5)

where τ̄i represents the mean of processing time τ̃i, ξ̃k,i represents the deviation between
stochastic processing time of the k-th sheet and average processing time for i = 1, 2, 3, 4, 5.
Due to the accumulation of stochastic interference, the actual time when the (k−cp)-th paper
in Re-entry Module (RM) arriving at the merging point can be calculated as:

tma(k − cp) = y3(k − cp)
= y2(k − cp) + τ̃k−cp,4

= y2(k − cp) + τ̄4 + ξ̃k−cp,1 + ξ̃k−cp,2 + ξ̃k−cp,3 + ξ̃k−cp,4. (8-6)

Suppose the length of the paper is l, and the stochastic speed of the k-th paper in section
i is c̃k,i for i = 1, 2, 3, 4, 2r, 5, where 2r represents the second movement of the paper in the
Image Transfer Station (ITS). Then we have:

tml(k − 1) = y1(k − 1) + l/c̃k−1,2

= u(k − 1) + τ̄1 + ξ̃k−1,1 + l/c̃k−1,2, (8-7)

tml(k − cp) = y3(k − cp) + l/c̃k−cp,2r

= y2(k − cp) + τ̄4 + ξ̃k−cp,1 + ξ̃k−cp,2 + ξ̃k−cp,3 + ξ̃k−cp,4 + l/c̃k−cp,2r. (8-8)

Substitute Equation (8-5), (8-6), (8-7) and (8-8) into the constraints in (8-4), we obtain new
constraints for stochastic cases. Use the set Qm to represent the constraints from the merging
point.
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Since the movement of the paper in the ITS part is still disturbed by stochastic noise, it is
only a necessary condition that the paper does not overlap at the merging point (the part of
the green circle in Figure 8-1). In order to make it necessary and sufficient, we also need to
consider the separation point (the part of the blue circle).

There are also four critical time instants in the separation process, as shown in the following
figure. Suppose that the k-th paper reaches the separation point at time tsa(k), and the time
at which it leaves the separation point is tsl(k). According to the figure, in order to prevent
overlap, we need to meet the following conditions:{

tsl(k − 1) ≤ tsa(k − cp)
tsl(k − cp) ≤ tsa(k)

(8-9)

(a) Paper k − 1 Leaves the Separation
Point

(b) Paper k − cp Arrives the Separation
Point

(c) Paper k − cp Leaves the Separation
Point

(d) Paper k Arrives the Separation Point

Figure 8-3: A Schematic of Critical Time Instants in the Separation Process

The actual time when the k-th paper arriving at the separation point is:

tsa(k) = y1(k) + τ̃k,2

= u(k) + τ̄1 + τ̄2 + ξ̃k,1 + ξ̃k,2. (8-10)

And the actual time when the (k − cp)-th paper arriving at the separation point can be
calculated as:

tsa(k − cp) = y3(k − cp) + τ̃k−cp,2r

= y2(k − cp) + τ̄2 + τ̄4 + ξ̃k−cp,1 + ξ̃k−cp,2 + ξ̃k−cp,3 + ξ̃k−cp,4 + ξ̃k−cp,2r. (8-11)

In addition, the actual time for the k-th and (k − cp)-th sheet to leave the separation point
can also be calculated as:
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tsl(k − 1) = tsa(k − 1) + l/c̃k−1,3

= u(k − 1) + τ̄1 + τ̄2 + ξ̃k−1,1 + ξ̃k−1,2 + l/c̃k−1,3, (8-12)

tsl(k − cp) = tsa(k − cp) + l/c̃k−cp,5

= y2(k − cp) + τ̄2 + τ̄4 + ξ̃k−cp,1 + ξ̃k−cp,2 + ξ̃k−cp,3 + ξ̃k−cp,4 + ξ̃k−cp,2r + l/c̃k−cp,5.

(8-13)

Substitute Equation (8-10), (8-11), (8-12) and (8-13) into the constraints in (8-9), we obtain
new constraints for stochastic cases. Use the set Qs to represent the constraints from the
separation point.

To satisfy the principle of 3σ, we have the final constraints:

P (Qs ∩Qs) ≥ 99.7% (8-14)
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Chapter 9

Conclusions and Future Work

9-1 Conclusion

In this thesis, we give a comprehensive introduction to max-plus algebra and Switching Max-
Plus-Linear (SMPL) system. Then we model the printer system of three modes and discuss
the optimal scheduling problem, which can be finally transformed into a Mixed-Integer Linear
Programming (MILP) problem and solved by linear programming. Next, we design interme-
diate modes for different types of switching, and analyse the impact of stochastic systems on
scheduling when noise is introduced. We find that max-plus algebra is competitive in printer
scheduling.

We can now answer the questions posed in the first chapter.

Q1. How to convert the printer system to SMPL system?
The working status of the printer can be divided into three modes. We use the max-plus
algorithm to model the three modes separately, and then convert them into a compact
form through the max-plus binary variable.

Q2. How to achieve optimal scheduling of printers with max-plus algebra?
The optimal scheduling can be converted into a MILP problem. All pre-set constraints
can be converted into the form of mixed-integer linear constraints, and then the optimal
scheduling can be obtained through solving a linear programming problem.

Q3. How to order the system when mode/paper size switching happens?
Some unnecessary ordering can be eliminated by designing an ordering matrix. The
ordering matrix can be merged with the original system matrices by the max-plus
algebra to obtain new system matrices. In terms of mode/paper size switching, because
of the complexity of scheduling, we need to pre-design the intermediate modes. In the
report, the intermediate modes corresponding to the mutual switching between the two
papers sizes and the two working modes are designed.
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Q4. What happens to the optimal scheduling problem when the system is disturbed?
When the system is disturbed, the paper moving speed and processing time in each
module become stochastics. We need to recalculate the stochastic processing time of all
modules and substitute them back to the original system matrix. Then we can apply
the method to deterministic situations and convert the problem to a MILP problem.

In addition to these research questions, we have also discussed the following parts in the
report:

1) How to find the places where the paper overlap is most likely to occur?
In the absence of noise interference, adjacent papers will not overlap due to the buffer
distance between the papers. In this case, what needs to be paid attention to is the
sorting issue between the paper that enters Image Transfer Station (ITS) from Re-entry
Module (RM) and the new incoming papers from Paper Input Module (PIM). When
noise is present, in addition to the paper merging point, we also need to pay attention
to the paper separation point, because the processing time of the paper in the ITS part
is also stochastic. After this part of the noise is accumulated, the constraints designed
at the paper merging point may not be able to ensure that the paper will not overlap
before the separation point. Therefore, in this case, some new additional constraints
need to be designed at the separation point.

2) How to design intermediate modes?
When the printer’s working mode and paper size change, we have to design intermediate
modes. When the working mode of the printer changes, we have to consider whether
the new working mode involves double-sided printing. In this case, the paper in RM
that needs to be printed twice will be inserted between the newly input paper. We,
therefore, need to increase the spacing between papers in PIM. When the paper size
changes, if the paper changes from large to small, we need to use the larger parameter in
the system matrix to ensure that the paper does not overlap. And if the paper changes
from small to large, we need to gradually increase the gap between the papers in the
loop to ensure that the new large paper can be inserted into the gap between the two
smaller papers.

9-2 Future Work

Regarding the research in this report, there are several topics that can be further explored,
which are:

• Restructure the matrix to speed up the optimization: The system matrix in
this report has 4 state variables, but some of them are in a coupled state. An excessive
amount of states in the optimization process will slow down the calculation speed.
Therefore, we can reconstruct the system matrix in the state equation, and combine
and convert it into a form that is easy to optimize, such as the following triangular
matrix. It may greatly reduce the constraints required for optimization and improve
computational efficiency.
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• Consider a more complicated paper input situation: In this report, we mainly
considered the two paper sizes of A3 and A4. However, in the actual process of using
the printer, more types of paper sizes and paper types of different materials may be
involved. These factors may affect the system processing time of each module, resulting
in more complex optimization problems. In addition, due to different types of paper
input, the printer’s working modes may also increase accordingly, and the increase in
the number of switchable modes will result in a more complicated SMPL system, which
can also be studied in the future.

• Smarter ordering: In this report, we first introduced three working modes of the
printers. During the modelling process, we fixed the ordering of the printers, and
then introduced the use of an ordering matrix to eliminate the previous setting in the
following chapters. But this process requires manual operation. A smarter way is for
the controller to automatically modify the ordering matrix according to the sequence
of the input paper.
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Glossary

List of Acronyms

ITS Image Transfer Station
PIM Paper Input Module
POM Paper Output Module
RM Re-entry Module
IM Invert Module
DESs Discrete Event Systems
SMPL Switching Max-Plus-Linear
MILP Mixed-Integer Linear Programming
MPL Max-Plus-Linear
MC Monte Carlo
MPC Model Predictive Control
RSMPL Randomly Switching Max-Plus-Linear
JDF Joint Density Function
PDF Probability Density Function
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