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Soft mechanical metamaterials working on the basis of instability have numerous potential applications
in the context of “machine materials.” Controlling the onset of instability is usually required when
rationally designing such metamaterials. We study the isolated and modulated effects of geometrical design
and material distribution on the onset of instability in multimaterial cellular metamaterials. We use
multimaterial additive manufacturing to fabricate cellular specimens whose unit cells are divided into void
space, a square element, and an intermediate ligament. The ratio of the elastic modulus of the ligament to
that of the square element ½ðELÞ=ðESÞ� is changed by using different material types. Computational models
are also developed, validated against experimental observations, and used to study a wide range of possible
designs. The critical stress can be adjusted independently from the critical strain by changing the material
type while keeping ½ðELÞ=ðESÞ� constant. The critical strain shows a power-law relationship with
½ðELÞ=ðESÞ� within the range ½ðELÞ=ðESÞ� ¼ 0.1–10. The void shape design alters the critical strain by
up to threefold, while the combined effects of the void shape and material distribution cause up to a
ninefold change in the critical strain. Our findings highlight the strong influence of material distribution on
the onset of the instability and buckling mode.

DOI: 10.1103/PhysRevApplied.9.064013

I. INTRODUCTION

Mechanical metamaterials [1,2] are usually designed to
exhibit unusual mechanical behavior such as negative [3,4]
or ultrahigh [5] values of mechanical properties. Most
mechanical metamaterials are architectured [6], meaning
that their large-scale properties originate from the design of
their small-scale architecture.Rational design [7] techniques
based on computational and analyticalmodels are often used
to devise the small-scale architectures that give rise to the
desired set of mechanical properties. The geometrical basis
for designing such architectures may be lattice structures
[5,8,9], origami [7,10,11], or kirigami [12–14], among
others.
The very concept of “architectured” metamaterials

implies the presence of more than one material, as geomet-
rical patterns, particularly those relevant for metamaterial
design, generally require at least two types of material
properties. In cellular or lattice structures, those materials
include the matrix material with finite properties and the
“voids” with negligibly low properties. The rational design
of cellular structures then reduces to devising a plan for

spatially distributing the matrix material and leaving the
remainder of the space for the voids. Milton and Cherkaev
have shown that any thermodynamically admissible elas-
ticity tensor can be realized by combining a matrix material
with a void material [15]. When dealing with large defor-
mations of soft matter, the void material plays an important
role in guiding the deformation path. The soft metamaterials
working on the basis of buckling instability [16–18] are
perhaps the best examples for showcasing the role of the
voids. Voids enable local buckling, control the instability
threshold, and guide the postbuckling behavior of such
materials [19–21].
Additive manufacturing has enabled arbitrarily complex

spatial distributions of the matrix and void materials for
several years. Recent advances in multimaterial additive
manufacturing techniques have, however, enabled us to go
much further and spatially distribute practically an unlimited
number of materials in a single-step manufacturing process,
thereby opening many novel avenues for the design of
architectured materials [22]. In this study, we explore how
the spatial distribution of multiple materials can be used to
rationally design soft cellularmetamaterials that work on the
basis of buckling instability. Thosematerials have numerous
potential applications in the context of “machine materials”
[23,24] that span areas as diverse as soft robotics, flexible
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electronics, and medical implants. In particular, we consider
multiple void geometries and different types of material
distributions to study the isolated and modulated effects of
geometrical design and material combination on the insta-
bility behavior of such materials.

II. MATERIALS AND METHODS

The cellular structures are based on square unit cells
whose void geometry is described using the following
relationship [20]:

VðθÞ ¼ c½ð1þ rÞ − dð−1Þðnþ2Þ=2ðr − 1Þ cosðnθÞ�; ð1Þ

where c ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð3þ 3r2 þ 2rÞϕ

p
P�=½πð3þ 3r2 þ 2rÞ�,

0 ≤ θ ≤ 2π, ϕ denotes the void fraction per unit-cell area,
r determines the fold sharpness, d ¼ �1 defines the xy
symmetry style, n regulates the number of folds, andP is the
length of the unit cell. Three types of void shapes including a
circular [ðϕ; r; d; nÞ ¼ ð0.45;−;−;−Þ], fourfold type 1
[ðϕ; r; d; nÞ ¼ ð0.45; 0.7;þ1; 4Þ], and fourfold type 2
[ðϕ; r; d; nÞ ¼ ð0.45; 0.7;−1; 4Þ] are considered (Fig. 1).
The unit cells are partitioned symmetrically into liga-

ments and square-shaped elements [Fig. 1(a)]. Three differ-
ent ratios of ligament length a and square sides b are
considered: ða=bÞ ¼ 4

6
, 5
5
, 6
4
. For each of the threevoid shapes,

two different types of specimens [Fig. 1(d)] are additively
manufactured using a multimaterial 3D printer (Stratasys
Objet 350 Connex3, U.S.) that works on the basis of jetting
UV-curable photopolymers. During the printing process, all
specimens are oriented such that the printing direction is in
parallel with the loading direction. In the first series of
specimens, the ligamentmaterial (TangoPlus, nominal shore
hardness A ¼ 27) is softer than the square material (digital
combination of Vero and TangoPlus, nominal shore hard-
ness A ¼ 60). The opposite is held for the ligament (digital
combination of Vero and Agilus, nominal shore hardness
A ¼ 60) and square (Agilus, nominal shore hardness
A ¼ 30) materials in the second set of specimens. The
specimens include 8 × 8 crosslike unit cells and are
designed with equal lengths of the ligament and square
(i.e., ða=bÞ ¼ 5

5
). Two hard clamps (Vero) are printed at both

ends of the specimens to ensure consistent load application.
A nominal unit-cell length P of 10 mm and an out-of-plane
thickness of 15 mm are considered for the design of the
specimens. The specimens are mechanically tested under
compression using a Lloyd test bench (LR5K) equipped
with a 100-N load cell. A constant deformation rate of
1 mm=min is used. Two acrylic plates are placed on both
sides of the specimens to preserve the plane strain con-
ditions. Both sides of the specimens are polished and
sprayed with a lubricant (Multi Spray 1000, Innotec) to
minimize their friction with the acrylic plates. A digital
camera (Sony a7R with a Sony FE 90 mm f=2.8 macro
OSS lens) captures the deformations of the specimens
during the mechanical tests. In addition, tensile strips with
rigid rectangular end clamps are produced to obtain an
initial estimation of the mechanical properties of the differ-
ent types of polymers used in this study. A neo-Hookean
hyperelastic model is fitted to the results of the tensile test
experiments and fine-tuned using the results of the com-
pression tests. The following material parameters are
obtained: Csoft

10 ¼ 0.13 MPa, Chard
10 ¼ 0.23 MPa for the first

series of specimens andCsoft
10 ¼0.07MPa,Chard

10 ¼ 0.20 MPa
for the second series of specimens. The superscripts “soft”
and “hard” refer to the softest and hardest materials among
the ligament and square materials.
The instability behavior of the designed metamaterials is

also analyzed computationally. The computational models
are first validated against the experimental results and are
then expanded to analyze the effects of material choice and
ða=bÞ values on the instability behavior of the specimens.
The geometry of the computational models includes 8 × 8
unit cells and is discretized using six-node triangular hybrid
plane strain elements (CPE6H, Abaqus/Standard). The poly-
mers are considered to be nearly incompressible. The
computational models are solved using an implicit solver
(Abaqus/Standard, version 6.13). The full Newton’s method is
used (default option) as a solution technique in Abaqus/

Standard. A convergence study is performed to determine the
size of the elements, resulting in an average density of 995
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FIG. 1. (a) The geometry of the unit cells used in the design of
the metamaterials and the division of the unit cells into ligaments
and square elements. (b),(c) Comparison between experimentally
determined and computationally predicted stress-strain curves for
two different combinations of material properties and three
different void shapes. (d) The instability modes of two different
types of multimaterial metamaterials with three different void
shapes. Series 1 and 2 represent the structures in which the
ligament material is softer and stiffer than the square material,
respectively.
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to 1017 elements per unit cell. The buckling modes are
determined using linear buckling analysis, and a small
imperfection of 0.01 from the buckling analysis is introduced
into the models. The top and bottom nodes of the models are
constrained to move together with their respective reference
points, thereby ensuring consistent deformation of the
clamped nodes. The elastic modulus E and neo-Hookean
material parameter C10 for an incompressible elastomer are
assumed to be related through the following relationship:
E ¼ 6C10 (because of the consistency with linear elasticity
G ¼ 2C10 in which G is the initial shear modulus of
hyperelastic rubber and the relationship E ¼ 3G). Five
different ratios of the elasticmodulus of the ligamentmaterial
EL to that of the square material ES within the range of
0.1 to 10 are considered for performing the instability
analyses. To evaluate whether a computational analysis with
8 × 8 unit cells is sufficient to predict the behavior of cellular
structures with a larger number of unit cells, additional
analyses are performed using 16 × 16 unit cells.

III. RESULTS AND DISCUSSION

The onset of instability can be clearly seen as a local
maximum in the stress-strain curves of the specimens from
both categories [Figs. 1(b) and 1(c)]. The instability patterns
of all specimens are either compaction or side buckling
[Fig. 1(d)]. For all designs, the computational models can
accurately predict the linear part of the stress-strain curve,
the onset of instability, and the type of instability [Figs. 1(b)
and 1(c)]. The analysis with 16 × 16 unit cells confirms that
the use of 8 × 8 cellular structures is sufficient to predict the
behavior of cellular structures with a larger number of unit
cells [Figs. 1(b) and 1(c)]. For all void shapes, the critical
strain is higher when the ligament material is harder than the
square material (i.e., the critical strains are higher in the
second series of the specimens compared to the first series)
[Figs. 1(b) and 1(c)]. Numerically estimated maximum
stress and the critical strain values for the structures with
the void shape of fourfold type 1, regardless of the ratio
½ðELÞ=ðESÞ�, deviates from those observed in the experi-
ments [Figs. 1(b) and 1(c), the stress-strain curves high-
lighted in red]. The mismatch between the numerical and
experimental results may be partly attributed to the friction
between the samples and acrylic plates preventing out-of-
plane buckling, use of an idealized material model in
simulations without consideration of imperfection from
production process, but mismatch is expected to be mainly
due to viscosity effects during the fast pattern transformation
coincident with the onset of instability. The geometrical
design of the experimentally studied structureswith fourfold
type 1 voids results in general buckling (i.e., side buckling)
happeningwith faster deformation rates compared to the two
other types of structures. Viscosity consequently resists the
rapid pattern transformation and postpones the occurrence
of peak in the stress-strain curves and increases the strain at

which the local maximum stress happens [see the red curves
in Figs. 1(b) and 1(c)].
Computational analyses show that as long as the ratio of

the elastic modulus of the ligament material to that of the
square material ½ðELÞ=ðESÞ� is constant, the critical strain
remains constant regardless of the absolute values of the
elastic modulus of both materials (Fig. 2). That same
observation holds for all types of void shapes and for all
considered values of ½ðELÞ=ðESÞ� between 0.1 and 10
(Fig. 2). The only difference is the altered critical stress
values, i.e., the stress values at which instability commences
(Fig. 2). This implies that the critical stress values can be
adjusted independently from the critical strain simply by
changing the absolute values of thematerial properties while
keeping their ratio constant. From the practical viewpoint,
the multimaterial additive manufacturing technique used
here allows for a combination of up to three materials at the
voxel level to achieve several hundreds of different material
properties. It is, therefore, perfectly feasible to change the
absolute values of the material properties while satisfying
additional constraints such as a constant ½ðELÞ=ðESÞ� value.
The critical strain of the metamaterial increases with

½ðELÞ=ðESÞ�, while the ratio of the elastic modulus of the
metamaterial to that of the ligament material ½E�=ðELÞ�
decreases with ½ðELÞ=ðESÞ� (Fig. 3). In the range of
½ðELÞ=ðESÞ� values between 0.1 and 10, the trend line of
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FIG. 2. The stress-strain curves of metamaterials based on
circular (a), fourfold type 1 (b), and fourfold type 2 (c) void
shapes. The different values of the elastic modulus do not change
the critical strain as long as ½ðELÞ=ðESÞ� remains constant.
Critical stresses are, however, scaled by the changes in the
absolute values of the elastic moduli.
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the changes in the critical strain and ½E�=ðESÞ� can be
described using a power law (Fig. 3). The power-law
exponents are different for the different void shapes
considered here. While studying the change in the critical
strain, the fourfold type 2 shows the highest power-law
exponents, and the fourfold type 1 shows the lowest
exponents (Fig. 3). This suggests that geometrical features
such as void geometry modulate the effects of material
distribution on the critical strain of multimaterial metama-
terials. The plots in Figs. 3(a)–3(c) show the strain
distributions in four unit cells at the middle part of each
structure for the lowest and highest values of ½ðELÞ=ðESÞ�.
The contours indicate that the vertical ligaments, the

vertical ligaments aligned along the compressive load
directions, experience high strain when the stiffness of
the ligaments is considerably lower than the squares
(½ðELÞ=ðESÞ� ¼ 0.1). In contrast, the squares experience
high strains when the ligaments are stiffer. However, the
results for the structures with fourfold type 2 voids illustrate
that the slenderness of the ligaments can highly influence
the level of strains in the ligaments even when the ligaments
are stiffer than the squares. The Supplemental Material
Videos V1–V3 [25] display the strain evolution and the
precedence of instability in the studied structures while
½ðELÞ=ðESÞ� ¼ 0.1, 1.0, 10. When the shape of the liga-
ments can preserve the mode of buckling in the structures
with voids fourfold types 1 and 2 (i.e., respectively, side
buckling and symmetric compaction), increasing the stiff-
ness ratio (½ðELÞ=ðESÞ�) can transform the mode of buck-
ling from symmetric compaction to side buckling in the
structures with circular voids. Figure 3(d) depicts the
buckling modes for the given ratios of material properties
(½ðELÞ=ðESÞ� ¼ 0.1, 0.32, 1, 3.2, 10) and void shapes. The
influence of geometrical imperfection in the transition from
symmetric compaction to side buckling in the structures
with circular voids is proposed in the form of a color ramp
in Fig. 3(d).
Quantitatively speaking, void shape alone can change the

critical strain by up to threefold, while up to ninefold
difference in the critical strain is achieved when the effects
of void shape are combined with those of material
distribution.
To better understand the changes in the critical strain

with ½ðELÞ=ðESÞ�, we use the first-order approximations
available from the linear theory of stability [26,27]. There
are two competing modes of instability, namely, symmetric
compaction and side buckling. Symmetric compaction is
caused by the buckling of individual ligaments and is, thus,
a specific type of local buckling. Side buckling, on the other
hand, is the global buckling of the cellular structures as
a whole.
The critical load of individual ligaments is given by

Pcr;L ¼ π2ELw3t
12ðkLaÞ2

; ð2Þ

where w is the equivalent width of the ligament, t is the
thickness of the ligament, a is the length of the ligament,
and kL is a factor dependent on the boundary conditions.
The critical load of the entire cellular structure per unit

cell P�
cr is

P�
cr ¼

π2E�L3t
n12ðk�LÞ2 ; ð3Þ

where L is the length of the cellular structure, E� is the
elastic modulus of the cellular structure, t is the thickness of
the cellular structure, n is the number of the unit cells along
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instability modes for different void shapes are presented in (d).
The color ramp highlights the influence of geometrical imper-
fection in the transition from symmetric compaction to side
buckling in metamaterials with circular voids.
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each edge of the specimen, and k� is a factor dependent on
the boundary conditions of the cellular structure.
Replacing n ¼ 8 and L ¼ 16a in Eq. (3) and assuming

kL ≈ k�, the ratio of the side-buckling critical load P�
cr to

that of symmetric compaction Pcr;L can be written as

P�
cr

Pcr;L
≈ 2

�
E�

EL

��
a
w

�
3

: ð4Þ

It can, therefore, be concluded that either side buckling
or symmetric compaction can occur depending on the
stiffness of the cellular structure as compared to that of the
ligament and the shape of the voids. Considering the fact
that for the circular void shapes w ≈ a for fourfold type 1
w > a (due to the barrel-like shape of the ligaments), and
for fourfold type 2, w ≪ a (due to the cutouts in the
ligaments) and replacing for ½E�=ðELÞ� from the values
found in Fig. 3, we find that the predicted buckling modes
based on Eq. (4) are in agreement with those found
computationally [Fig. 3(d)]. To put Eq. (3) in perspective,
the term ða=wÞ3 represents the effects of the geometrical
design on the onset of the instability and instability mode.
The cubic nature of this term highlights the strong effects
that small changes in the geometrical design can have on
the instability behavior of the metamaterial. The term
½E�=ðELÞ�, on the other hand, represents the effects of
material distribution on the instability behavior. The power-
law relationship between ½ðELÞ=ðESÞ� and ½E�=ðELÞ�
(Fig. 3) shows that the spatial distribution of the different
materials can also strongly influence the instability behav-
ior. As is clear from the different power-law exponents
found for different void shapes, there are also modulations
between the effects of geometrical design and those of
material combination that cannot be captured by the
simplified analytical models available from the linear
theory of stability.

IV. CONCLUDING REMARKS

In summary, the presented design of multimaterial
metamaterials allows for adjustment of both critical stress
and critical strain. Critical stress can be changed independ-
ently from the critical strain by keeping the ratio of the
elastic modulus of the ligament material to that of the
square material constant while changing the absolute values
of the elastic moduli. A power-law relationship between
½ðELÞ=ðESÞ� and critical strain is found for ½ðELÞ=ðESÞ�
values between 0.1 and 10. We also find that geometrical
features such as void geometry not only affect the
critical strains themselves but also modulate the effects
of the parameters describing material distribution (e.g.,
½ðELÞ=ðESÞ� and a=b). To put those effects in perspective,
geometrical features can change the critical strain up to
threefold, while up to ninefold change in critical strain can
be achieved by combining the effects of geometrical
features with those of material distribution.
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