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Summary
Submerged floating tunnels (SFTs) represent a novel solution for challenging water cross-
ings, particularly in locations where traditional structures such as bridges or immersed
tunnels are not feasible. Despite their potential, no SFT has been built yet except for a 100
m-long prototype in Qingdao Lake, China. This lack of experience regarding the design,
construction, and operation of SFTs poses significant challenges giving rise to a variety of
uncertainties, especially given complex loading conditions and the potential of “cascading”
failure scenarios, where multiple hazard events can lead to structural failure.

To address this gap, this dissertation seeks to investigate the application of probabilis-
tic models such as copulas, vine-copulas, and Bayesian Networks to characterize the joint
probability distribution of traffic loading, environmental conditions, and to analyze haz-
ard scenarios. With a specific focus on a case study of a hypothetical submerged floating
tunnel to be located in the Qiongzhou Strait, China, this research explores metocean loads
such as wave height, wave period, and current velocities, alongside traffic loads derived
from Weigh-in-Motion (WIM) data.

Regarding traffic loading, amethodology that combines copula-basedmodels and struc-
tural models is presented to conduct a reliability analysis on a SFT (Chapter 4). The anal-
ysis focuses on how traffic loads can induce bending moments that can potentially cause
structural failure in the submerged floating tunnel (SFT). Copula-based models with a fo-
cus on autocorrelation are used to characterize inter-vehicle distances, enabling the sim-
ulation of traffic flow through the SFT. This simulation, executed within a defined time
frame, generates a sequence of vehicles known as a “train” of vehicles. This train includes
data on axle weights, inter-axle distances, and inter-vehicle distances.

Chapter 5 presents a joint probability distribution analysis to characterize the pairwise
dependence between wave height, wave period, and current velocities, employing copulas.
This copula-based approach is able to capture both the linear and non-linear behavior of
the data. This analysis was performed across the entire dataset and for extreme conditions.
The results yield a synthetic time series of hourly values and extreme values for bothwaves
and currents.

In the following chapters, the focus shifts to exploringmultivariate probabilisticmethod-
ologies applied to the reliability and risk of an SFT. In Chapters 6 and 7, the dependence
between the metocean loads and the hydrodynamic forces as a result of their combined ac-
tion is investigated by using vine-copula models and Bayesian Networks respectively. The
focus is on extreme values of six variables, wave height, wave period of wind waves and
swell waves, and current velocities at 1 and 15 meters below the water surface. This anal-
ysis was carried out to evaluate different SFT configurations, with varying submergence
depths and tube ratios.

Chapter 8 investigates the reliability of SFTs under different hazard scenarios and their
potential impact on the failure of this structure. A methodology is introduced to identify
and quantify scenarios that can lead to the failure of the SFT by using a discrete Bayesian
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network (BN) model. The methodology adapts fault trees from previous studies related
to SFTs and maritime accidents. By quantifying the conditional probability tables (CPTs)
with the incorporation of data on human errors, fire occurrences, terrorist attacks, and en-
vironmental factors, we assess the probability of SFT failure under various combinations
of hazard events, known as scenarios. For example, this analysis reveals that environ-
mental loads with a 500-year return period increase the risk of failure by 40%. A similar
analysis is possible for other scenarios.

This research demonstrates the importance of taking into account the complex depen-
dence on environmental and traffic variables, among others that are of interest to an SFT.
As a result, it is possible to better estimate the occurrence of extreme events and the fail-
ure of a SFT to assist decisions regarding its design. This makes it possible to support a
safe and stable structure. Moreover, the primary factors contributing to the SFT failure
can be identified. The flexibility of the models presented in this thesis allows them to be
updated as new data is found, including information from various regions if other areas
are under consideration for SFT construction. In this way, a process of continuous safety
assessment can be ensured.

In summary, the applicability of copulas, Bayesian Networks, and vine-copulas to as-
sess the reliability of an SFT can be used to make decisions that will lead to the improve-
ment of the design of an SFT and to avoid significant damage to the structure, injuries, or
loss of lives. This dissertation contributes to advancing the understanding of SFT reliabil-
ity and safety, offering valuable insights for engineers and decision-makers in planning
and designing stable SFT structures.
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Samenvatting
Drijvende tunnels (Submerged Floating Tunnels, SFT) zijn een innovatieve oplossing voor
verbindingen over water, met name op locaties waar traditionele constructies zoals brug-
gen of afgezonken tunnels niet realiseerbaar zijn. Ondanks hun potentie is er tot op heden
geen enkele SFT gebouwd, behoudens een prototype van 100 meter lang in het Qingdao-
meer, China. Het gebrek aan ervaring met het ontwerp, de bouw en de exploitatie van
SFT’s vormt een grote uitdaging, met name vanwege de complexe belasting scenario’s
en de mogelijkheid van voortschrijdende faalscenario’s, waarbij meerdere gevaarlijke ge-
beurtenissen tot constructief falen kunnen leiden. Om deze hiaat in kennis te verklei-
nen, onderzoekt dit proefschrift de toepassing van probabilistieke modellen zoals copula’s,
vine-copula’s en Bayesiaanse netwerken om de gecombineerde waarschijnlijkheid van
verkeersbelasting, omgevingsomstandigheden en gevaarscenario’s te karakteriseren. Met
een specifieke focus op een casestudie van een hypothetische SFT in de Qiongzhou-strait,
China, bevat dit proefschrift onderzoeken naar metoceaanse belastingen zoals golfhoogte,
golfperiode en stromingssnelheden, naast verkeersbelastingen afgeleid vanWeight in Mo-
tion (WIM) data.

Met betrekking tot de verkeersbelasting wordt in hoofdstuk 4 een methodologie gepre-
senteerd die copula-gebaseerde modellen combineert met constructieve modellen om een
betrouwbaarheidsanalyse uit te voeren op een SFT. De analyse richt zich op de vraag hoe
verkeersbelastingen buigmomenten kunnen veroorzaken die mogelijk constructief falen
van de SFT kunnen veroorzaken. Copula-gebaseerde modellen met een focus op autocor-
relatie worden gebruikt om onderlinge voertuigafstanden te karakteriseren, waardoor de
simulatie van verkeersstromen door de SFT mogelijk wordt. Deze simulatie, uitgevoerd
binnen een gedefinieerde tijdsperiode, genereert een reeks voertuigen die gecategoriseerd
wordt als een ”trein”van voertuigen. Deze trein bevat gegevens over asgewichten, asaf-
standen en voertuigafstanden.

Hoofdstuk 5 bevat een analyse van de gezamenlijke kansverdeling om de paarsgewijze
afhankelijkheid tussen golfhoogte, golfperiode en stromingssnelheden te karakteriseren
met behulp van copula’s. Deze copula-gebaseerde benadering is in staat om zowel het
lineaire als het niet-lineaire gedrag van de gegevens vast te leggen. Deze analyse is uit-
gevoerd over de gehele dataset en voor extreme omstandigheden. De resultaten leveren
een synthetische tijdreeks op van uurwaarden en extreme waarden voor zowel golven als
stromingen.

In de volgende hoofdstukken verschuift de focus naar het verkennen van multivaria-
bele probabilistieke methodes toegepast op de betrouwbaarheid en risico’s van een SFT.
In hoofdstukken 7 en 6 wordt de afhankelijkheid tussen de metoceaanse belastingen en
de hydrodynamische krachten als gevolg van hun gecombineerde werking respectievelijk
onderzocht met behulp van Bayesiaanse netwerken en vine-copulamodellen. De focus
ligt op extreme waarden van zes variabelen: golfhoogte, golfperiode van windgolven en
deining, en stromingssnelheden op 1 en 15 meter onder het wateroppervlak. Deze analyse
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is uitgevoerd om verschillende SFT-configuraties te evalueren, met verschillende aanleg-
dieptes en buisverhoudingen.

Hoofdstuk 8 onderzoekt de betrouwbaarheid van SFT’s in verschillende scenario’s en
hun potentiële impact op het falen van deze structuur. Er wordt een methode geïntro-
duceerd om scenario’s te identificeren en kwantificeren die kunnen leiden tot het falen
van de SFT met behulp van een discrete Bayesiaans netwerk (BN) model. De methodo-
logie past foutenbomen toe uit eerdere studies met betrekking tot SFT’s en maritieme
ongevallen. Door de ‘conditional probability tables’ (CPT) te kwantificeren met daarin
verwerkt de gegevens over menselijke fouten, branduitbraken, terroristische aanslagen
en omgevingsfactoren, beoordelen we de waarschijnlijkheid van falen van SFT’s bij ver-
schillende combinaties van accidentele gebeurtenissen, bekend als scenario’s. Zo blijkt uit
deze analyse dat omgevingsbelastingen met een terugkeerperiode van 500 jaar het risico
op falen met 40% verhogen. Een soortgelijke analyse is mogelijk voor andere scenario’s.
Dit onderzoek toont aan hoe belangrijk het is om rekening te houden met de complexe
afhankelijkheid van onder andere omgevings- en verkeersvariabelen die van belang zijn
voor een SFT. Hierdoor is het mogelijk om de waarschijnlijkheid van extreme gebeurte-
nissen en het falen van een SFT beter in te schatten om beslissingen te ondersteunen met
betrekking tot het ontwerp. Dit maakt het mogelijk om een veilige en stabiele construc-
tie te realiseren. Bovendien kunnen de belangrijkste factoren die bijdragen tot het falen
van een SFT worden geïdentificeerd. De gepresenteerde modellen in dit proefschrift zijn
flexibel en dat maakt het mogelijk om deze te aan te passen naarmate er nieuwe gegevens
beschikbaar komen, inclusief informatie uit lokale bronnen als andere gebieden worden
overwogen voor de bouw van SFT’s. Op deze manier kan een continu proces van veilig-
heidsbeoordeling worden gewaarborgd.

Samenvattend, de toepasbaarheid van copula’s, Bayesiaanse netwerken en vine-copula’s
om de betrouwbaarheid van een SFT te beoordelen, kan worden gebruikt om beslissingen
te nemen die leiden tot verbetering van het ontwerp van een SFT en tot het vermijden
van aanzienlijke schade aan de constructie, verwondingen of verlies van levens. Dit proef-
schrift draagt bij aan een beter begrip van de betrouwbaarheid en veiligheid van SFT’s en
biedt waardevolle inzichten voor ingenieurs en besluitvormers bij het plannen en ontwer-
pen van stabiele SFT-structuren.
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1
Research Context

1.1 The Submerged Floating Tunnel
In civil engineering, waterway crossings are one of the most challenging structures. In
the last few decades, the traffic demand and growing development of cities has increased
the necessity of longer waterways that require new and more advanced technologies. One
structure has already been proposed to give a solution to this problem: The construction
of a submerged floating tunnel (SFT). The idea of the SFT was born in Norway in the first
decades of the 1900s [6]. However, just in the last years, several preliminary designs and
feasibility studies have been proposed worldwide [6–11].

An SFT is also known as Archimedes’ Bridge. It is a tubular structure suspended above
the sea floor and anchored by pontoons on the water’s surface or by tethers by the seabed
[12] (Fig. 1.1). It is based on the idea of using the load-carrying capacity of water due to
Archimedes buoyancy [13].

In a tethered SFT, the main structural features of an SFT are i) the tunnel cross-section,
ii) the anchoring system, iii) structural joints, and iv) the foundations [6]. The dimensions
of the SFT and other key features of the SFT may depend on national codes and are be-
yond the scope of this research. However, design codes of similar structures can be used
as a reference to define the structure’s overall dimensions and target reliability. A critical
structural variable to take into consideration for designing an SFT is the buoyancy-weight
ratio (BWR). The BWR is defined as the ratio of Archimedes’ buoyancy (B) due to the dis-
placed water volume (W) of the self-weight of the structure (Fig. 1.2). This ratio influences
the vertical stability of the SFT and governs the geometrical and material properties of the
tunnel and the cables [14]. Therefore, its contribution to the safety of the SFT cannot be
neglected.

When compared to traditional structures such as immersed tunnels or bridges, an SFT
has the advantage of i) better environmental adaptability ii) less influence of surroundings
and navigation, iii) the unit cost of an SFT is constant regardless of its total length, in the
case of a suspension bridge or a submarine tunnel, their price will increase rapidly as the
span increases. [15].

Parts of this chapter have been published within [1], [2], [3], [4] and [5].
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Pontoon Tube

Tethers

Figure 1.1: Pontoon and tethered type SFT.

B

W

Figure 1.2: Tether type SFT.

Furthermore, the SFT shares many similarities with immersed tunnels, and offshore
structures. Inside the SFT, the loads are almost the same as in any other tunnel (Table
1.1). However, as an underwater bridge, the SFT is expected to be 30m below the water’s
surface. This could induce further movements of the structure. Forces that can cause these
movements are tides, currents, waves, traffic, or changes in water level. It is critical to con-
sider accidental loads, for example, explosions, ship collisions, and submarine collisions.
Additionally, other loads depend on the region where the SFT is located. For example,
earthquakes or volcanic activity. Therefore, an SFT is subjected to a large number of loads
(1.1) and the consequences regarding possible damages can be significantly different for
an SFT. Consequently, it is essential to take an integrative approach to understand how
different hazard scenarios could affect the behavior of the SFT.
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Loads Offshore Structures Immersed Tunnels SFT
[16] [17] [7]

Permanent loads
Self-weight x x x
Permanent ballast x x
Marine Growth x x
Weight of permanent Pavement x x
Equipment x x
Weight of water absorbed by concrete x
Hydrostatic loads x x x
Deck load x
Variable loads due to vehicles
Traffic x x
Environmental Variables
Tide x
Current x x x
Wave induced loading x x x
Wave + Current loads x x x
Wave slamming load x
Breaking wave load x
Wave run-up load x
Internal waves x x
Wind x
Snow loads x x
Ice loads x x
Accidental loads
Ship impact x x
Forces generated by a passing ship x x
Compartment flooding x x
Loss of support x
Falling and dragging anchor x
Fire x x
Explosion x x
Deformation loads
Creep and shrinkage x
Post-tensioning x
Temperature loads x x

Table 1.1: Relevant loads for offshore structures, immersed tunnels, and SFTs.
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1.2 Knowledge gaps
Several challenges result from a lack of knowledge when studying the reliability of a sub-
merged floating tunnel. These challenges were identified and addressed in the paragraphs
below.

1.2.1 Lack of experience
Except for a prototype in Qingdao Lake in China, no SFT has been constructed to date [13].
At the same time, there are no unique features or elements in an SFT that have not been
encountered in bridges, tunnels, or offshore structures. However, specific combinations
of materials, design techniques, and construction methods may be required [18]. Different
models to estimate the structural response of the SFT are associated with large uncertain-
ties that are, in turn, a consequence of the lack of experience [19]. This lack of knowledge
limits the assessment and validation of models, therefore it is necessary to gather informa-
tion from laboratory tests on prototypes [20–25] and apply knowledge already available
from similar structures to investigate the reliability of an SFT.

The first SFT to be constructed and operated may require higher acceptable risk levels
compared to similar structures because of the novelty of the SFT concept and new safety
issues may need to be taken into account [26]. These limitations highlight the need for
further research on the safety and reliability of SFTs and suggest the need for innovative
methodologies specially designed for this structure. These methodologies may combine
probabilistic tools with known structural or hydrodynamic models.

1.2.2 Complex loading conditions
As mentioned in Section 1.1, the SFT is a complex structure that combines elements from
other structures such as bridges, tunnels, or offshore platforms. Moreover, its particular
placement within the water depth leads to complex load conditions. SFTs can span differ-
ent types of waterways, for example, estuaries, rivers, fjords, lakes, straits, etc [18], and
although SFTs are often focused on their use for road traffic, other applications like service
or pedestrian tunnels are also of interest. Site and use-specific conditions play an impor-
tant role in design choices due to their impact on the feasibility of the project and also on
the behavior of the SFT under different loading/accident scenarios. Critical design condi-
tions that are relevant for SFTs are, among others [26]: i) extreme design environmental
conditions (waves, currents, tides, seismic loads, etc), ii) geology at the entrance and foun-
dations, iii) operational conditions, iv) situations where one or more SFT elements fail or
deteriorate, v) mitigation strategies and accessibility in case of repairs, etc

Different load scenarios such as the simultaneous action of traffic, currents, and waves,
or the possibility of submarine accidents, lead to load combinations that rarely occur in
other structures [19]. Moreover, in the design of hydraulic structures, the design values of
the variables of interest are assumed to be independent and their dependence relationship
is often ignored. Reliability analyses for SFTs would benefit from taking into account the
dependence between variables (accidental, environmental, etc), providing, in this way, a
more realistic characterization of the SFT and its surrounding environment. The need
for multivariate models that can quantify the occurrence of hazard/extreme scenarios is
paramount for the development of research related to SFTs. In this way, the uncertainties
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relating to the combined action of the variables relevant to an SFT and undesired scenarios
should not be overlooked

1.2.3 “Cascading” scenarios
SFTs have different consequences linked to when relevant limit states are surpassed, or
when the structure fails to fulfill its intended function. Consequently, different safety costs
influence selecting an optimal safety level (defined as the safety level that minimizes the
total expected cost) [19]. For example, a traffic accident inside the SFT can cause leakage in
the tunnel and an imbalance in the Buoyancy weight ratio (BWR).This can lead to slacking
or snapping of the tethers and finally to loss of the SFT. Another example is when there
is a crack opening that can lead to flooding of the structure or to corrosion of the re-
bars. The lack of experience combined with the complexity of this structure regarding its
loading conditions and limit states could enhance the risk perception in owners, investors,
or drivers about the tunnel being lost in case of undesirable scenarios causing substantial
economic damage and fatalities. It is crucial to have a design that could guarantee localized
repairable structural damage. Thus, owners would bemore prone to proceedwith a project
of this nature [27].

The safety objective is to achieve a probability of failure below an established limit. In
the case of an SFT, this must be met by combining applicable standards and specific reli-
ability analyses that consider these “cascading” scenarios. Guidelines of bridges, tunnels,
or offshore structures can also be used as a reference for the design and safety assessment
of SFTs, but it is crucial to consider that particular safety limits and limit states must still
be developed for SFTs [19, 28].

Given the challenges described previously, it is critical to conduct thorough reliability
studies to forecast the failure of an SFT and its elements before implementing this struc-
ture on a large scale. Reliability and risk studies can help identify potential factors that
can lead to the failure of an SFT. Moreover, these studies can offer important information
for the design and maintenance of SFTs, which can also result in increased safety and
cost-effectiveness. Continued research and development in the field of submerged float-
ing tunnels are necessary to improve the reliability of these structures and ensure their
successful implementation in the future.

1.3 Motivation
Submerged floating tunnels (SFTs) are an innovative solution for waterway crossings that
can potentially revolutionize transportation infrastructure. However, to this day, no SFT
has been constructed yet. One of themain reasons is that its potential design, construction,
and operation are not sufficiently known and understood. Moreover, given the complexity
of the underwater environment, many uncertainties and risks arise about the reliability
and safety of these structures. In this research, it is of interest to show the applicability
of probabilistic models to study the complex dependence between the different conditions
that are of importance for an SFT. This is to gain insight into the expected safety and
reliability of the SFT and its elements by identifying potential risks and failure modes.
Such information can be used to assist engineers and decision-makers in planning and
composing a stable SFT design.
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1.4 Research Objectives
In order to contribute towards a stable and safe submerged floating tunnel design, the
main objective of this research is to investigate and develop probabilistic-based models
using copulas, vine-copulas, and Bayesian networks to quantify the probability of failure
of the SFT during operation under different loading conditions and hazard scenarios.

More specifically, this objective is divided into the following:

1. Identify methods that can properly characterize the dependence between loading
variables that are of interest to an SFT. These variables are:

(a) Environmental variables (waves, currents, water levels, and earthquakes).
(b) Traffic variables.
(c) Calamities (fire and terrorism).

2. Assess different SFT configurations to assist decision-making.

3. Compare different hazard scenarios and identify the main contributors to the failure
of the SFT in the specific case presented in this thesis.

1.5 Thesis Outline
This thesis is divided into four main parts. Part I and Part IV are the introduction and
conclusion. Parts II and III represent themain body of this dissertation. Part II presents the
methodology and application of copula-based models to simulate traffic data passing over
the SFT, as well as the simulation of normal conditions and extreme values of metocean
data (waves and currents). Part III discusses methods and applications for the reliability
and risk of an SFT using vine-copula models and Bayesian Network models. Part II and III
comprise two and three chapters respectively. All the chapters in this thesis are based on
scientific manuscripts (some published and others yet to be published) where the author
of this thesis is the main author

Part I is made up of three chapters. The SFT concept and research context are pre-
sented in Chapter 1. In Chapter 2, the theoretical background to the probabilistic models
employed throughout this dissertation is described. Followed by the presentation of the
case study (Chapter 3).

Part II is formed by Chapter 4 and 5. Specifically, Chapter 4 is based on [3] and presents
a methodology to produce a synthetic time series for traffic. Chapter 5 presents a copula-
based methodology to simulate hourly and extreme values of metocean variables (waves
and currents). Models for auto-correlation are also developed using copulas. This chapter
is based on [1].

Part III consists of Chapter 6, 7, and 8. Chapter 6 is based on [4]. This chapter presents
a methodology using vine-copulas for simulating metocean variables and their resulting
hydrodynamic forces acting on an SFT. The model is also used to examine nine different
configurations of the SFT (i.e. different variations of diameters and submerged depth). A
similar application is presented in Chapter 7 using a methodology with bayesian networks.
This chapter is based on [2]. Chapter 8 is based on [5] and presents a methodology to
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identify the main contributing factors to the failure of the SFT and its elements, through
a discrete Bayesian network methodology.

The chapters of this dissertation do not include the entire research output of the author.
The remaining research output, in which the author was also involved, is summarized in
a list of publications in the section List of Publications.

1.6 Research Context
This dissertation is part of the larger Submerged floating tunnel (SFT) technical research
team. This joint industry project was initiated in 2018 by the Chinese engineering and
construction company China Communications Construction Co., Ltd. (CCCC) as a global
collaborative research project together with CCCC Highway Consultants Co., Ltd, CCCC-
FHDI Engineering Co., Ltd., CCCC Third Harbor Engineering Co., Ltd, Tianjin Research
Institute for Water Transport Engineering, M.O.T, Tunnel Engineering Consultants (TEC),
and Delft University of Technology (TU Delft).

The SFT project aims to solve key technical issues in the design and construction of
submerged floating tunnels. TU Delft’s research for the CCCC-led SFT project is split
over 11 work packages (Table 1.2). Three Ph.D. projects are identified in the fields of
hydrodynamic effects, and risk and reliability assessments.

Code Description
WP-01 Structural design and research
WP-02 Hydrodynamic and structural model analysis research
WP-03 Risk evaluation
WP-04 Numerical model development
WP-05 Anchoring system research
WP-06 Joints and shore connection structure research
WP-07 Construction methods and equipment assessment
WP-08 Material research
WP-09 Design and construction guideline
WP-10 Survey systems
WP-11 Physical model experiments guideline

Table 1.2: Work packages. SFT project.

This dissertation is part of the Risk evaluation work package (WP-03) and is focused on
the application of probabilistic methods, specifically, multivariate probability distributions
to provide a more realistic description of the complex dependence between the various
loads and hazard scenarios that are of relevance for the design and reliability of SFTs.
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2
Probabilistic Preliminaries

The main focus of this research, as introduced in Chapter 1, is the applicability of prob-
abilistic models to study the complex dependence between the loads acting on an SFT
to support a safe and stable SFT design. Three methodologies, copulas, vine-copulas, and
Bayesian networks (BNs), have been selected for this purpose. This chapter aims to provide
the theoretical basis for these methodologies so that they can be applied in the remaining
chapters of this thesis. A brief description of marginal and conditional distributions is
presented in section 2.1, and the basics of copula theory are discussed in section 2.3. Vine-
copulas are introduced in section 2.4 and Bayesian Networks are addressed in section 2.5.

2.1 Marginal and Conditional Distributions
Probability distributions for random variables encompass both marginal and conditional
probability distributions. The cumulative distribution function (cdf) of a continuous ran-
dom variable 𝑋 is defined as the integral of its probability density function 𝑓𝑋 :

𝐹𝑋 (𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫
𝑥

−∞
𝑓𝑋 (𝑡)𝑑𝑡 (2.1)

Where 𝑃(𝑋 ≤ 𝑥) represents the probability that 𝑋 takes on values less than or equal
to 𝑥 . A definition that is necessary to understand the concepts of marginal and condi-
tional probability is the joint probability. The joint cumulative distribution function of
two random variables 𝑋 and 𝑌 is defined as:

𝐹𝑋𝑌 (𝑥,𝑦) = 𝑃(𝑋 ≤ 𝑥,𝑌 ≤ 𝑦) (2.2)
The conditional probability density function of 𝑋 given 𝑌 is:

𝑓 (𝑥|𝑦) = 𝑓 (𝑥,𝑦)
𝑓𝑌 (𝑦)

(2.3)

provided that 𝑓 (𝑥,𝑦) is the joint probability density function, 𝑓𝑋 (𝑥) and 𝑓𝑌 (𝑦) are the
marginal probability density functions and that 𝑓𝑌 (𝑦) > 0. This concept can be generalized
Parts of this chapter have been published within [1], [2], [3], [4] and [5].
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to 𝑓 (𝑥1, ...𝑥𝑛) in case of more than two variables. The conditional probability distribution
is the distribution function that provides the probability that a variable will occur given
the value of another variable and is usually represented as 𝑓 (𝑥|𝑦) and the conditional
cumulative distribution function of 𝑋 , given 𝑌 = 𝑦 is defined as:

𝐹𝑋|𝑌 (𝑥|𝑦) = 𝑃(𝑋 ≤ 𝑥|𝑌 = 𝑦) = ∫
𝑥

−∞
𝑓𝑋|𝑌 (𝑢|𝑦)𝑑𝑢 (2.4)

The marginal probability density function can be computed from the joint probability
distribution of several random variables, in this case, we focus on the bi-variate case. For
continuous distributions, the marginal probability density function is obtained by integrat-
ing all possible outcomes of the variable, as follows:

𝑓𝑋 (𝑥) = ∫𝑓 (𝑥,𝑦)𝑑𝑦 (2.5)

𝑓𝑌 (𝑦) = ∫𝑓 (𝑥,𝑦)𝑑𝑥 (2.6)

2.2 Extreme Value Analysis
In multivariate cases, sampling methods such as the peak-over-threshold (POT) can help
identify extreme values within time series. In this method, one variable of the multivari-
ate set is designated as the dominant variable, and any values that exceed a predefined
threshold are labeled as extreme values. For each of these extreme values, we also extract
the accompanying values of the remaining (concomitant) variables. It is important to rec-
ognize that these concomitant values do not necessarily have to be extreme themselves.
The goal is to explore the relationship between the extreme events in the dominant vari-
able and their accompanying values in the other variables. This approach ensures that
the interdependence between the variables remains intact, delineating what constitutes
an extreme event.

This methodology is specifically applied in this dissertation to metocean variables, in-
cluding significant wave height, wave period, and current velocity, for two distinct wave
systems: wind waves and swells. Additionally, current velocity data is collected at depths
of 1 and 15 meters from the water’s surface. A detailed description of this approach is
presented in Chapter 6.

Understanding the frequency and magnitude of extreme events is crucial for risk as-
sessment and infrastructure planning. This is often quantified using the concept of return
period (𝑇𝑅), which provides a quantitative measure of the probability that a particular
extreme value will occur. Return period analysis provides valuable insights into the fre-
quency and impact of extreme events. Suppose that an extreme event occurs if the extreme
value random variable 𝑋 is greater than or equal to some magnitude 𝑥 , then the return
period (𝑇𝑅) is defined as:

𝑇𝑅 = 1
𝑃(𝑋 > 𝑥) (2.7)
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Here, 𝑃(𝑋 > 𝑥) represents the probability of observing an extreme event. The longer
the return period 𝑇𝑅 , the less frequent the event (𝑃(𝑋 > 𝑥)), and the larger the magnitude
of the random variable 𝑥 . Equation 2.7 assumes that the probability of the event is inde-
pendent of past events and does not vary over time. In other words, it is defined as the
average time interval between the occurrence of a specific event or phenomenon. For ex-
ample, if an event has a probability 𝑝 of 0.01 (or 1%), it suggests that on average, 1/𝑝 = 100
trials would need to be conducted before experiencing that event once. Note that this does
not mean that this event will occur every 100 years or only once in 100 years. It means
that a 100-year event may occur once, more than once, or not at all in any given 100-year
period.

In this dissertation, the return period for the dominant variable is computed using
Eq. 2.7. However, this concept can not be applied directly to the concomitant variables
because they may not follow an extreme value distribution.

Consider a case with three continuous random variables 𝑋 , 𝑌 , and 𝑍 . Where 𝑋 is
the dominant variable, and 𝑌 , and 𝑍 are the concomitant variables. Let 𝑢 represent the
threshold value. The cumulative distribution function (CDF) 𝐹𝑢 of 𝑋 over the threshold 𝑢
for the dominant variable is defined as:

𝐹𝑢(𝑥) = 𝑃(𝑋 −𝑢 > 𝑥|𝑋 > 𝑢) (2.8)

The random variable 𝑋 − 𝑢 is the “excess” over the threshold 𝑢. In this context, the
CDFs of the concomitant variables 𝑌 and 𝑍 , given the dominant variable 𝑋 exceeding a
threshold 𝑢, can be expressed as:

𝐹𝑌 |𝑋 (𝑦|𝑥) = 𝑃(𝑌 ≤ 𝑦|𝑋 > 𝑢) (2.9)

𝐹𝑍|𝑋 (𝑧|𝑥) = 𝑃(𝑍 ≤ 𝑧|𝑋 > 𝑢) (2.10)

These equations capture the relationship between the concomitant variable and the
extreme values of the dominant variable.

2.3 Copulas
Variables such as significant wave height, wave period, and current velocity, alongside
traffic loads, collectively shape the operational conditions of submerged floating tunnels.
Copulas provide a flexible framework for modeling the joint distribution of these variables,
capturing dependencies that may exist beyond simple linear correlations. By applying
copulas in SFT studies, engineers and researchers can gain a deeper understanding of how
environmental conditions and traffic patterns interact to influence the structural integrity
and safety of the structure.

Despite the potential of these models, their application in submerged floating tunnels
remains largely unexplored. Usually, copulas are commonly applied in bi-variate cases
across various fields. In hydrology, [29] used copulas to estimate the annual instanta-
neous maximum flows at three tributaries in the Euphrates River Basin, Turkey. Similarly,
in [30, 31], the authors characterized floods by modeling flood event properties such as hy-
drograph duration and volume and peak discharge. In transportation and traffic studies,
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[32] suggested a copula-based model to investigate the relationship between vehicle type
choice and usage (miles traveled). The effects of travel behavior are examined in [33] by
studying the dependence between residential neighborhood choice and daily household
vehicle miles per travel (VMT). Additionally, [34] employed a copula-based model to de-
scribe the relationship between vehicle speed, headway, and length.

In structural engineering, copulas find application in diverse contexts. In [35] copulas
are used to characterize corrosion growth for the assessment of steel girder bridges. Envi-
ronmental load modeling is another area of interest as evidenced in [36], where a copula
model is used to characterize the joint distribution of wind speed and rain intensity to per-
form a failure analysis of a transmission line. The relationship between wind speed and air
temperature is studied to assess long-span bridges [37]. Copulas have also been applied
to describe spatial correlation in estimating wave height records [38] and to capture the
asymmetric dependencies between met ocean data [39]. Similar dependencies have been
used for the design and risk assessment of offshore engineering applications [40]. Finally,
[41] presented an application of copula-basedmodels and reliability analysis to investigate
the failure of a dike by overflow.

Sklar’s theorem [42] states that any multivariate joint distribution of continuous ran-
dom variables can be written in terms of a set of univariate marginal distribution functions
and a copula that describes the dependence between the random variables. For the case
of two random variables, the bi-variate copula (𝐶) is defined as:

𝐻𝑋𝑌 (𝑥,𝑦) = 𝐶 (𝐹𝑋 (𝑥),𝐺𝑌 (𝑦)) (2.11)

Here, 𝐻𝑋𝑌 (𝑥,𝑦) is the joint distribution of the two continuous random variables
(𝑥,𝑦) ∈ ℝ with marginal distributions 𝐹𝑋 (𝑥) and 𝐺𝑌 (𝑦) in the interval [0,1]. The copula
takes values from the unit square 𝐼 2 = ([0,1] × [0,1]), such that for all (𝑥,𝑦) Eq. 2.11 is
satisfied. If 𝐹 and 𝐺 are continuous, then 𝐶 is unique. For a complete overview of copula
modeling the reader is referred to [43] and references therein.

Furthermore, it is of interest to consider the auto-correlation of a particular set of vari-
ables. By examining the transition distribution between consecutive observations, we can
assess the temporal dependence of the variables. This analysis is particularly relevant
when dealing with metocean variables and traffic loads to assess their impact on the struc-
tural integrity of SFTs. For instance, autocorrelation in traffic loads may help identify
patterns of heavy vehicle traffic, that can lead to fatigue and structural degradation over
time. For a random variable 𝑋 with distribution 𝐹𝑋 , where the associated time series is
𝑋𝑡 , 𝑡 ∈ ℕ. The transition distribution is given by equation 2.12.

𝐻(𝑥𝑡 |𝑥𝑡−1) = 𝑃(𝑋𝑡 ≤ 𝑥𝑡 |𝑋𝑡−1 = 𝑥𝑡−1) =
𝐶 (𝐹(𝑥𝑡 )|𝐹 (𝑥𝑡−1))

(2.12)

Where 𝐶𝜃𝑋 (𝑢|𝑣) is the conditional copula. Notice that the parameter 𝜃𝑋 would model
the auto-correlation of order 1 for the time series of interest. This procedure is performed
to characterize the correlation of the variables over a determined time domain that allows
the generation of a synthetic time series that more accurately reflects the actual temporal
patterns. The application of copulas for the context of the SFT is described in more detail
in chapter 4 and 5.
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Copulas can be powerful tools to characterize multivariate distributions. However,
for the n-dimensional case (𝑛 ≥ 3) this can be a difficult task because there are no sim-
ple extensions to such cases. In [44–46] the problems associated with the construction
of n-copulas are treated in detail. However, copulas can be used as building blocks for
multidimensional probability distributions such as vine-copulas and Bayesian networks.
In the following sections, a brief introduction to vine-copulas and Bayesian networks is
presented.

2.4 Vines
Particularly with high-dimensional datasets, multivariate copulas often struggle to ade-
quately capture the full spectrum of dependency structures within a random vector to a
satisfactory level [47]. This limitation underscored the preference for vine-copulas over
multivariate copulas in such situations.

Vines are graphical tools used to model high dimensional distribution functions, in
which the variables involved have a complex dependence structure. Vines were first in-
troduced by [44] and further developed by [48–50].

A vine with 𝑛 variables 𝑉 = (𝑇1,…𝑇𝑛−1) is a nested set of trees where the edges of the
tree 𝑇𝑗 are nodes of the tree 𝑇𝑗+1 [51]. A regular vine (R-vine), is one where an edge in
𝑇𝑗+1 connects two edges from 𝑇𝑗 , only if they share one node in 𝑇𝑗 . If this condition is not
met, the vine is called a non-regular vine.

There are many kinds of regular vines but two main types, canonical (C-vines) and
drawable vines (D-vines). Each tree in a C-vine is a star (in the graph theoretical jargon)
while each tree in a D-vine is a line (Fig. 2.1). On each edge of a vine, there is a constraint,
conditioned and conditioning set [52]. The constraint set of an edge is the nodes on the
first tree reachable from a given edge via the membership relation. The conditioning set
is the intersection of the constraint sets of two edges on 𝑇𝑗 that are joined by another
edge on 𝑇𝑗+1. Finally, the conditioned set of that edge is the symmetric difference of the
constraint sets [52]. The label of each edge denotes the conditioned and conditioning sets
as shown in Fig. 2.1. For example, in 𝑇2 the edges 1,2, and 2,3 form the constraint set of
edge 1,3|2 while the symmetric difference is {2}. For more details, the reader is referred to
[51, 52].

T₁

T!

T"

1 2 3 4

13|2 24|3

14|23

12 23 34

Figure 2.1: A 4-variable D-vine with its corresponding conditioned and conditioning sets. For example, for
edge 13|2, the conditioned set is 1,3 and the conditioning set is given by node 2.

In many applications, especially in engineering, it is crucial to understand the phys-
ical properties of variables and how they relate to each other. This knowledge can help
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determine the first tree of a regular vine. However, selecting the subsequent trees and
ultimately defining a regular vine structure to characterize multivariate data sets can be
challenging. To fully define a vine-copula model, three things are required [53, 54]: i) se-
lection of a regular vine structure. In other words, selecting which (un)conditioned pairs
to use, ii) determining the bivariate copula families for each pair copula chosen in (i), and
iii) estimating the parameters for the copulas selected in (ii). Thus, selecting a regular vine
structure for a dataset would involve fitting all possible regular vines to the dataset. How-
ever, the number of possible regular vines on 𝑛 nodes increases substantially as shown by
[55]:

(𝑛2)× (𝑛 −2)! × 2
(𝑛−22 ) (2.13)

In their work, [55] introduced a catalog classifying regular vines based on their tree
equivalent class. Subsequently, in [56] this catalog is made accessible as datasets, provid-
ing all regular vine structures up to 8 nodes, in the form of matrices. The data sets are
compatible with R, MATLAB, and Python. Additionally, the catalog’s potential is demon-
strated by fitting all regular vines to synthetic data. For further details into the catalog’s
construction and use, readers are directed to [55–57].

In contrast, [54] introduced a sequential “top-down” methodology for selecting the
tree structure of regular vine-copulas. The term “top-down” means that the method starts
with selecting the first tree 𝑇1 and continues tree by tree up to the last tree 𝑇𝑛−1. Each tree
is chosen in a way that prioritizes modeling the strongest pairwise among the variables.
Since each tree is examined separately, there is no guarantee of finding a global optimum,
for example in terms of model fit metrics like the Akaike Information Criterion (AIC) or
the Bayesian information criterion (BIC). This approach acknowledges that the copula
families specified in the first tree of the regular vine have a significant influence on the
model fit. For further details on this methodology, the reader is referred to [53, 54].

The goodness of fit for regular vines is often assessed with likelihood-based measures
such as Akaike’s Information Criterion (AIC), the Bayesian Information Criterion (BIC),
and the negative log Likelihood (NLogL). Throughout this research, we use the AIC [58]
coefficient as a goodness of fit (GOF) measure because it considers the number of param-
eters and the likelihood of the model where models with fewer parameters are preferred.
Visual inspection is also used to assess the goodness of fit.

Vine-copulas have gained popularity in a variety of different fields. Vines are fre-
quently employed in hydrology to simulate rainfall [59–61] or tomodelmultivariate return
periods [62]. In [63], models to predict water flow discharge in locations like George Is-
land in Antarctica are presented. In the North Sea, large series of wave heights and periods
have been produced using vines [64]. In [65], a vine-copula model was applied to generate
a maintenance plan for offshore infrastructure considering variables such as wave height
and period, wind speed, and current velocity. In this dissertation, vine-copulas are used to
investigate the dependencies between waves, currents, and their corresponding resulting
hydrodynamic forces (Chapter 6). A regular vine on six nodes is proposed, resulting in
23040 possible regular vines that can characterize the data set. Fitting 23040 regular vines
poses a significant computational challenge, especially on a standard laptop computer. In
this research, both approaches, the sequential methodology from [54] and fitting all pos-
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sible vines as per [56] were applied to select a vine for describing the data. This analysis
is further expanded to study nine different SFT configurations, defined by combinations
of different tube diameters and submergence depths.

2.5 Bayesian Networks
In risk and reliability analyses, Bayesian networks offer a viable alternative to fault trees
or event trees. Since the introduction of fault trees by [66], they have found applications
in a variety of fields. However, their applicability is limited, particularly when modeling
complex systems [67]. Bayesian Networks allow for a comprehensive assessment of how
intervention impacts a system or how changes in variables influence each other. This
transparency in representing dependencies enhances the understanding of safety analy-
ses. Additionally, Bayesian Networks facilitate the incorporation of prior knowledge or
expert opinions through prior distributions, a feature not present in fault trees. More-
over, when dealing with systems with numerous variables and dependencies, Bayesian
Networks offer computational efficiency advantages over fault trees. The choice between
the two techniques depends on the study’s nature, system complexity, and data availabil-
ity. Given these considerations, Bayesian Networks emerge as a valuable tool for studying
the safety of submerged floating tunnels.

BNs have been used in the study of emergency scenarios. For example, [68] presents a
dynamic BN framework to simulate emergency events such as the 2011 Fukushima nuclear
accident and the COVID-19 pandemic, supporting rapid decision-making. In hydrology,
BNs were used to predict monthly regional rainfall with local meteorological drivers in In-
dia [69]. In [70], a BN model is introduced to estimate extreme river discharges in Europe.
Regarding risk and reliability analyses, [71] implemented a non-parametric Bayesian net-
work (NPBN) model based on Gaussian copulas, to generate synthetic storm events for as-
sessing flood risk in a coastal watershed. [72], applied a BN approach to study urban risks,
including food security, water availability, landslides, and floods, in developing cities fac-
ing climate change with limited information. [73] modeled multi-hazard hurricane dam-
ages by linking hazards to observed building damages in New York. [74]. [75] and [76]
provide a thorough explanation of BN theory and how it applies to risk assessment. In
water management, [77] provides a comprehensive literature study about the extent of
applying Bayesian Networks to water management issues in South Africa. Another field
of application of BNs is the study of the influence of human errors [78] and waves [79]
in the occurrence of ship accidents. In cases where boolean variables are not sufficient to
perform an adequate risk analysis, hybrid BNs (formed with continuous and discrete vari-
ables) can be effective tools, especially in situations where data is scarce. However, eval-
uating these networks can be challenging [80]. [81] presents a hybrid methodology that
combines the modeling flexibility of continuous BNs with the fast-updating algorithms
of discrete BNs. For example, this methodology has been applied in [82] to simulate hy-
drological dynamics to forecast the maximum daily river discharge in catchments in the
United States.

Bayesian Networks (BNs) are directed acyclic graphs (DAG) formed by nodes and arcs
that represent the joint distribution of a set of variables [83, 84]. The nodes represent
random variables that can be either continuous, discrete, or functional and the arcs rep-
resent the probabilistic dependence between the variables. No direct arcs between nodes
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represent a set of (conditional) independence statements.
The direct predecessors and successors of a node are called parents and children re-

spectively. Each node with no parents is characterized by a marginal distribution while
nodes with parents are represented by conditional distributions [84]. The conditional and
marginal distributions provide quantitative information about the strength of the depen-
dencies between the variables. The main advantage of BNs is that they allow to update
distributions given observations, this is known as inference. A Bayesian Network 𝐺 on
𝑋1, ...,𝑋𝑛 defines a joint probability density function 𝑓𝐺 as [85]:

𝑓𝐺(𝑥1, ..., 𝑥𝑛) =
𝑛
∏
𝑖=1

𝑓 (𝑥𝑖 |𝑝𝑎(𝑋𝑖)). (2.14)

Where 𝑛 is the number of variables and 𝑝𝑎(𝑋𝑖) is the set of parents of 𝑋𝑖 . This dis-
sertation explores the application of Gaussian copula-based Bayesian Networks (GCBN)
for investigating continuous random variables (Chapter 7) and discrete BNs for discrete
random variables (Chapter 8).

Gaussian copula-based Bayesian Networks (GCBNs) associate nodes with random vari-
ables, and arcs with one-parameter conditional copulas, which are parameterized by rank
correlations (𝑟 ). This correlation describes the strength of the monotonic relation between
the variables. Let 𝑋1 and 𝑋2 be two random variables, with cumulative distributions 𝐹𝑋1
and 𝐹𝑋2 , then 𝑟 is computed following Eq. 2.15:

𝑟(𝑋1,𝑋2) = 𝜌 [𝐹𝑋1(𝑋1),𝐹𝑋2(𝑋2)] (2.15)

where 𝜌 is the product-moment correlation of the random variables. While any copula
with the zero-independence property (i.e., zero correlation implies independence) could be
employed to represent the arcs, only the Gaussian copula can reduce computation and in-
ference times when working with large and complex problems [84]. Thus, in [81], GCBNs
were further developed to use Gaussian copulas to capture the dependence structure de-
fined by (conditional) rank correlations. The reader is referred to [84] and its references
for a comprehensive description of BNs based on Gaussian copulas.

Once the DAG of the Bayesian network is established, the marginal distributions of the
variables and the (conditional) rank correlations must be quantified. This can be achieved
using data (from physical models or observations) or via structured expert judgment.

In discrete BNs, the nodes represent discrete random variables. Marginal distributions
are specified for nodes without parents, while conditional probability tables (CPTs) are
used for child nodes [84]. This dissertation focuses on binary nodes, where each node
has two states (Chapter 8). For example, in the BN shown below (Fig. 2.2), 𝑋1 has an
edge adjacent to 𝑋2. Both 𝑋1 and 𝑋2 take values on the set {𝑇 ,𝐹 }. The quantification of
such a simple model would require one marginal probability for 𝑋1 and four conditional
probabilities for 𝑋2. Notice that only two of these four probabilities need to be specified
since the remaining may be computed by difference since conditional probabilities must
add to one.
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Figure 2.2: Example of a BN

CPTs are typically quantified with data or expert judgment. However, the size of CPTs
(2𝑘 ) grows exponentially with the number of parent nodes (𝑘), posing challenges, espe-
cially in complex problems with sparse data. Quantifying the correlations becomes more
complex with large CPTs and multiple parents [86].

In this dissertation, a Gaussian copula-based Bayesian Network (GCBN) consisting of
seven nodes is used to model the multivariate joint distribution between significant wave
height and period for two wave systems (wind waves and swell waves), as well as current
velocities at two different depths below the surface (1m and 15m), and the resultant forces
acting on the SFT due to the combined action of waves and currents. Additionally, a dis-
crete Bayesian Network consisting of 51 nodes is employed to quantify potential scenarios
that can lead to the failure of the SFT. This involves estimating the conditional probability
of failure of the SFT given different combinations of hazard events referred to as scenar-
ios. Details of the implementation of these Bayesian Networks are found in Chapter 7 and
Chapter 8.
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3
Case study: The Qiongzhou Strait

This chapter presents a comprehensive overview of the proposed site for an SFT and the
data that were used throughout this dissertation. In this dissertation, we pay attention
to an SFT that is planned to be built at the Qiongzhou Strait in China. The relevant data
include wind waves, swell waves, currents, and traffic. Wind waves are formed by local
winds that blow over the water surface, whereas swell waves are waves that have traveled
out of their area of origin [87]. Wind and swell waves are characterized by their significant
wave height and mean wave period. Currents are characterized by the speed at two levels
from the water surface (1m and 15m). Traffic at the SFT is described using WIM (Weigh-
in-motion) data from heavy vehicles (heavier than 3.5 tons).

This chapter is organized as follows: Section 3.1 introduces the proposed location for
the SFT. Next, a description of the metocean data (waves and currents) is presented in
Section 3.2 followed by a description of traffic data in Section 3.3.

3.1 The Qiongzhou Strait
Possible locations to build an SFT are divided into inland and coastal regions. Regarding
inland regions, an SFT is an attractive proposition for crossing lakes. While in coastal
regions, an SFT can be used to cross fjords, and straits, or as a way to connect islands. One
location for an SFT is the Qiongzhou Strait in China (Fig. 3.1), which connects the Gulf
of Beibu (Gulf of Tonkin) on the west and the northeastern South China Sea Basin on the
left. The goal of this SFT is to connect mainland China to Hainan Island. The strait has a
length of 70 Km and a width that ranges from 20 Km to 40 Km. The average depth of the
strait is 40 m and the deepest central trough is 120 m.

Hainan Island is part of the Guangdong province and forms the extreme southern
limit of the People’s Republic of China. This island lies between longitudes 108°30’ and
111° east and latitudes 18° and 20°31’ north. This region is very dynamic and characterized
by complex physical processes and it is frequently affected by tropical cyclones [88]. The
wet season from May to October has an annual precipitation of 1500 ml, and from May

Parts of this chapter have been published within [3], and [4]
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Figure 3.1: Overview of the area of study.

to November is typhoon season, especially in September [89]. These extreme events can
jeopardize the construction and operation of an SFT in this location.

Since the 1980s, research to assess the feasibility of building a water crossing at the
Qiongzhou strait started, and it keeps going today [89]. For this purpose, the Ministry of
Transport and former Ministry of Railways, Guangdong province, and Hainan Province
have collected a great number of data on social economy, transportation, meteorology,
hydrology, landform, geology, earthquakes, and other aspects [90].

At the moment, tourists travel to Hainan Island via plane or ferry. Congestion usually
peaks during the Spring Festival or summer holidays. For example, due to bad weather
conditions during the 2018’s Spring Festival, services were shut down causing week-long
traffic jams and delays [91].

The need for a cross-sea passageway at the strait is urgent and much needed. Accord-
ing to [90], by 2050, the number of passengers in the area will be 3 times larger than in
2018. The purpose of building an SFT in the region is to solve the bottleneck problem of
travelers and cargo traffic flow volume and to ensure the all-day navigation safety of both
shores under bad conditions [90].

Several locations within Qiongzhou Strait are proposed for the SFT. They are catego-
rized into 3 main lines: east, central, and west [89, 90] (Fig.3.2). This dissertation is focused
on the central line. The main advantages and disadvantages of this alignment are further
discussed in [89].
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Figure 3.2: Line’s proposal for the SFT project. Adapted from Jiang, Liang, & Wu (2018).

3.2 Metocean Data
Hourly values of significant wave height and wave period, and 3-hour values for current
velocity are available for the Qiongzhou Strait. The data were retrieved from ERA5 [92]
and the Copernicus Marine Environment Monitoring Service [93], for waves and currents
respectively. Both sources provide climate reanalysis data sets. Table 3.1 presents a de-
scription of the data sets. As mentioned previously, two types of waves are considered, i)
wind-sea waves (WW), and ii) total swell (TS). The term total includes all the swell par-
titions that occur at a specific location. Current velocity data is also classified into two
sets, the current velocity at 1 meter (𝑈1𝑚) and 15 meters (𝑈15𝑚) below the water surface.
Current data is retrieved as vectors of velocity, i) the zonal velocity (Velocity along the
latitudinal circle East-West direction), and ii) the meridional velocity (velocity along the
longitudinal circle North-South direction). These vectors were transformed into the re-
sultant current velocity and direction. The nomenclature used throughout this thesis is
presented in Table 3.2 and illustrated in Fig. 3.3.

Different temporal and spatial resolutions are present in the wave and current data
sets, as well as different temporal coverage (Table 3.1). As a result, the date of observation
was used to match the temporal coverage between the data sets. In this way, the same
number of observations were obtained for both waves and currents. Only dates where all
variables were available were considered in this study. The total amount of observations
spans from January 2000 to February 2019.

To address the disparity in spatial resolution, the grid for currents was resized tomatch
the grid from waves. The resample function from the “raster” package [94] in R [95] was
used to do this. This resulted in geographic coverage for both data sets between 20°0’-
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Waves: Wind & Total Swell Current Velocity [m/s](𝐻𝑠[𝑚] , 𝑇 [s])

Product Name ERA5 hourly data on MULTIOBS_GLO_PHY_REP_015_004single levels (1979-present)
Geographical Coverage Global Global
Observation/models Reanalysis Numerical model

Satellite-Observation
Spatial resolution 0.5x0.5 Degrees 0.25x0.25 Degrees
Vertical coverage - From -15m to 0.0m (2 levels)(number of vertical levels)
Coordinate reference system WGS 84 (EPSG 4326) WGS 84/ Simple Mercator (EPS41001)
Feature type Grid Grid
Temporal coverage 1979-01-01/2019-06-30 1993-01-01/ 2019-10-15
Temporal resolution Hourly 3-Hourly
Original file format NetCDF-4 NetCDF-4

Table 3.1: Product description for waves and currents data

Variable Standard This
Name thesis

Wave height (WW) [m] 𝐻𝑠 𝑋 (1)
Wave period (WW) [s] 𝑇 𝑋 (2)
Wave height (TS) [m] 𝐻𝑠 𝑌 (1)
Wave period (TS) [s] 𝑇 𝑌 (2)
Velocity (1m depth) [m/s] 𝑈1𝑚 𝑍 (1)
Velocity (15m depth) [m/s] 𝑈15𝑚 𝑍 (2)

Table 3.2: Name and description of the variables

20°50’N and 108°25’-112°75’E. This area includes a total of 9 grid points (Fig. 3.4) that
cover the entire strait and the area just outside the strait. The SFT is aimed to be located
on grid point 4 [15].

To ensure the quality of the data sets, the time series were checked for outliers. Ac-
cording to [96], an outlier is an observation that i) deviates more than 7 times the standard
deviation of the monthly data from its mean, or ii) more than 3 times the standard devi-
ation of the monthly data from the previous observation. These two approaches were
applied to the data. A total of 800 outliers were identified and removed.

Furthermore, data availability is not consistent for all grid points. This is the case of
grid points 4, 5, and 6. Gridpoint 4 has no data for waves while grid points 5 and 6 have
no information on currents. Focus is on grid point 4 because this area covers the SFT’s
central line proposal (Fig. 3.2) [15]. For this purpose, a “hybrid” grid point 4 is formed by
combining the data of currents at that location and wave data from point 5. This results
in a total of 7 grid points available for analysis (grid points 1-4 and 7-9).
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Figure 3.3: Scheme of the SFT and relevant variables.

Figure 3.4: Overview of the grid at the strait.
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3.3 Traffic Data
Traffic data is formed by two data sets, namelyWIM and VH.TheWIM (Weigh-in-Motion)
data set, consists of measurements of heavy vehicles at the National Highway A12 (km
42) in Woerden (The Netherlands) for two lanes (RW-12-L-2 and RW-12-L-3) [97]. These
measurements include the time of measurement, vehicle category, lane, speed, the total
length of the vehicle, the total weight of the vehicle, axle weight, and inter-axle distance.
This data is available for 27 days in the month of April 2013 (from the 3rd to the 30th) with
a total of 157.000 vehicles approximately divided into 26 vehicle categories (Appendix A.1).
For details regarding the accuracy of the data, the reader is referred to [97].

In this thesis, all vehicle categories are considered for analysis. The proportion of each
vehicle category in the data set serves as the foundation for traffic simulation. In this data
set, congestion was filtered automatically. In other words, measurements were neglected
if the traffic had a velocity lower than 40[km/h]. This specific WIM data set was chosen
because is used as an input for the model developed by [98] from where the second data
set (VH) is obtained.

The second data set (VH) is the result of a Bayesian Network-based (BN) model devel-
oped by [98]. The BN was implemented in Python with the toolbox BANSHEE [99]. The
data set is a collection of approximately 300.000 vehicles with their corresponding axle
weights and inter-axle distances (that consequently define the number of axles per vehi-
cle) that were randomly generated using the BN model. The VH data set and procedure
used to generate it are further discussed in Chapter 4.

WIM data is defined by four variables, i) Axle weight, ii) inter-axle distance iii) inter-
vehicle distance and, iv) number of axles per vehicle (Fig. 3.5). In Fig.3.5, 𝐷𝑡 refers to the
inter-vehicle distance (in kilometers). 𝐴𝑋1 and 𝐴𝑋2 are the weights of axles 1 and 2 [KN].
𝐷𝑇𝐹1, 𝐷𝑇12, and 𝐷𝑇𝐿𝐴𝐸 are the distances between axles (in meters).

1AX2AX

1DTF12DTDTLAE

t
D

Figure 3.5: Traffic variables

The inter-vehicle distance is used to simulate the traffic variables that define the traffic
passing through the SFT. This is done through a copula-based model. A detailed descrip-
tion of this process is presented in Chapter 4.
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4
Simulating traffic loads

To this day, no SFT has been constructed yet. One of the key reasons is that not enough
is known about the structural reliability of this structure. This chapter presents a method-
ology to assess traffic loads and the structural response of a pontoon-type SFT (Fig. 1.1).
This methodology proposed an innovative approach to combine copula-based models and
structural models to obtain a more realistic structural response of an SFT. The methodol-
ogy consists of two parts, i) a copula-based model to characterize traffic loads and sim-
ulate traffic on an SFT (axle weight, inter-axle distance, and inter-vehicle distance), and
ii) a structural model to assess the structural response and derive stresses. The structural
model is outside the scope of this dissertation and it is not the main emphasis of this chap-
ter. In this chapter, the focus is on the copula model to simulate traffic loads. For further
information on the structural model, see [3].

This chapter is organized as follows: Section 4.1 provides a brief introduction to this
study. This is followed by a description of the methodology to perform traffic simulations
(Section 4.2). Next, in Section 4.3 the processing of the traffic data is presented. Section 4.4
shows the results of the copula-basedmodel and frequency curves of the resulting bending
moments and shear forces. These results are further discussed in Section 4.5. The chapter
closes with the conclusions and areas of future work (Section 4.6).

4.1 Introduction
A submerged floating tunnel is situated in a marine environment and, thus is subjected to
different loads (Table 1.1), for example, environmental loads, operational loads, deforma-
tion loads, and accidental loads [90]. In this chapter, the focus is on the relation between
traffic loads and a pontoon-type SFT’s resistance to leakage due to cross-sectional failure.
Therefore, attention is on failure due to bending caused by traffic. Other loads and failure
mechanisms are beyond the scope of this study.

The methodology uses WIM data (Weigh-in-Motion data) from large trucks (heavier
than 3.5 tons) to simulate traffic in the tunnel. This data set includes measurements for ve-
Parts of this chapter have been published within: G.A. Torres-Alves, C.M.P. ’t Hart, O. Morales-Nápoles, and
S.N. Jonkman. ‘Structural reliability analysis of a submerged floating tunnel under copula-based traffic load
simulations’. Engineering Structures, 269:114752, 2022.
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hicle type, lane, speed, vehicle length and weight, axle weight, and inter-axle distance. In
this thesis, WIM data fromThe Netherlands is used because similar data was not available
in the region. The WIM data was retrieved from the National Highway A12 in Woerden,
The Netherlands (For more details see Chapter 3.3 and [97]).

The traffic load varies over the structure in terms of magnitude, occurrence, and po-
sition. In a pontoon-type SFT, the weight loads are larger than the buoyancy load of the
structure and the traffic loads act in the same vertical downward direction as the resulting
forces of the permanent loads. Thus, the traffic loads will add to the resulting forces caused
by the permanent and buoyancy loads. An SFT must have sufficient reserve capacity to
carry the traffic load [100].

The methodology presented in this chapter consists of i) simulating the traffic passing
through the SFT using a copula-based model applied to WIM data and ii) performing a
reliability analysis on the bending moments obtained from the structural model. More
details of this methodology are presented in the following sections.

A similar approach was developed by [101] to investigate bridges under traffic and
earthquake loads. Whereas [102] employed empirical copulas to characterize WIM data
to assess the load effect of heavy trucks on bridges.

Due to the unique characteristics of submerged floating tunnels, there is limited em-
pirical data available on their performance and behavior. Thus, evaluating the safety
of these structures is challenging. The flexibility of the copula-based methodology pre-
sented herein permits investigating many SFT designs (tethered or supported by under-
water piers) and understanding the dependence relationship that may exist between traffic
variables. It is important to note that while correlationmeasures the linear relationship be-
tween variables, dependence encompasses all types of relationships, including non-linear
ones, which copulas are capable of modeling. Copulas also make it possible to create syn-
thetic data that captures the statistical characteristics of the observed traffic data. This
methodology can be extended and applied to other relevant variables, including environ-
mental loads like waves and currents, among others. Such flexibility is key in cases where
there is limited or incomplete data. In this way, engineers, researchers, and decision-
makers can make informed decisions regarding the design, operation, and safety of these
structures.
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Figure 4.1: From top to bottom: (a) SFT scheme, (b) Structural system, (c) Bending moments due to a unit force
load, (d) Bending moments due to buoyancy weight ratio (BWR) load.
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4.2 Modeling Approach
4.2.1 General Overview
In this section, the methodology to perform a reliability analysis of an SFT using a com-
bination of copula-based models and structural FEM models is presented. The reliability
analysis is conducted by the definition of the Limit State Function. An SFT structure is a
buoyant structure where leakage will cause an unbalance of the structure and could initi-
ate a progressive collapse. The limit state function is based on leakage caused by bending
moments as a result of traffic loads. Other failure modes or the influence of other loading
variables are considered beyond the scope of this research. The following steps make up
the methodology used in this work (Fig. 4.3):

• First, simulation of traffic passing through the SFT is carried out by using a copula-
based model that characterizes the distance between vehicles (also known as inter-
vehicle distance. Fig. 3.5).

• The simulation of traffic is carried out for a determined “period of time” based on
an average number of vehicles per unit of time (i.e. one year). The result is a “train”
of vehicles that includes the number of axles, axle weights, inter-axle distances, and
inter-vehicle distances (Fig. 4.2).

t1
D

t2
D t3

D

Figure 4.2: Train of vehicles. 𝐷𝑡𝑖 refers to inter-vehicle distances [m].

• Then, the resulting time series of traffic is used as input in a FEMmodel, based on the
Direct Stiffness Method (DSM) and the Differential Equation Method (DEM), to test
its effect on the structure of the SFT in terms of cross-section results, like bending
moments, shear forces, and displacements.

• From the bending moments, a stress distribution is derived to validate the compres-
sion zone of the section.

• Finally, a reliability assessment is performed on the limit state (leakage failure mech-
anism due to bending moments in the longitudinal direction). Findings on the as-
sessment can lead to adjustment or optimization of the water-tightness of the SFT
section.

The specifics of the structural model are not covered in this study; only the resulting
bending moments and shear forces are discussed in the context of the SFT’s reliability.
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Figure 4.3: Modeling overview flowchart.

4.2.2 Modeling traffic
As mentioned in the previous section, a copula-based model is developed to simulate the
traffic passing through the submerged floating tunnel. Copula-basedmodels are important
in simulating the distance between vehicles because they allowmore accurate simulations
of daily and hourly traffic patterns that are valuable for transportation planning. For ex-
ample, to estimate the maximum traffic capacity in the tunnel. Other applications of these
models can be used to analyze potential safety hazards, identify critical areas prone to
congestion or accidents on highways, and plan effective strategies to mitigate such risks.

The traffic load passing through the tunnel is defined by four main variables (Fig. 3.5),
i) Axle weight (𝐴𝑋1,𝐴𝑋2), ii) inter-axle distance, (𝐷𝑇𝐹1,𝐷𝑇12,𝐷𝑇𝐿𝐴𝐸) iii) inter-vehicle
distance (𝐷𝑡 ) and, iv) the number of axles per vehicle. For characterizing traffic variables,
copulas are used to model the auto-correlation among inter-vehicle distances (𝐷𝑡 ). The
distinction between inside and outside congestion hours is also considered for this analysis.
For a sequence of inter-vehicular distance, the formulation in Eq. 2.12 is used to simulate
values for the distance between vehicles. The graphical representation of this process is
presented in Fig.4.4.

… 𝐷𝑡−1 // 𝐷𝑡 // 𝐷𝑡+1 …

Figure 4.4: Graphical representation of the process for inter-vehicle distance.

This model has been proposed before in [103] and [104] for traffic loads modeling
in bridge reliability and for modeling time series of hydrological variables in [41]. The
VineCopula package [105] implemented in R (language for statistical computing) [95] is
used to choose an appropriate copula model, estimate its parameters, and produce simu-
lations. Copulas including Gaussian, Gumbel, Clayton, t, Joe, BB1, BB6, BB7, and BB8 are
included in the package, along with their respective rotated versions. The copula families



4

34 4 Simulating traffic loads

were chosen using Akaike’s information criteria, and the parameters were estimated using
pseudo maximum likelihood (AIC).

To simulate traffic over the SFT, an algorithmwas developed. This algorithm’s primary
objective is to preserve the proportion (number) of cars per traffic scenario (congestion
and free flow. Section 4.3) and vehicle category while capturing the daily characteristics
of different traffic scenarios. This is crucial because the number of vehicles and the inter-
vehicle distance are two factors that have an important influence on congestion and free
flow hours. The simulation consists of 4 main steps, i) simulating the number of vehicles
(per day, lane, traffic scenario, and vehicle category), ii) simulation of inter-vehicle dis-
tances (𝐷𝑡 ) using a copula-based model (per traffic scenario), iii) random sampling of axle
weights and respective inter-axle distances from a vehicle database (VH) and, iv) combin-
ing the results from the previous steps to form a “train” of vehicles.

The algorithm starts by loading the required variables and the fitted copulas corre-
sponding to each traffic scenario. The simulation is performed daily, where the number of
vehicles per lane is randomly sampled from its corresponding empirical cumulative distri-
bution function (ecdf). Then, the number of vehicles per traffic scenario and category is
obtained by multiplying the total number of vehicles per lane by its corresponding vehicle
proportion. This operation is carried out until the desired number of days to simulate is
reached.

Next, for each traffic type, the simulation of inter-vehicle distances is executed from its
corresponding fitted copula. And, since the vehicle category proportion per traffic type is
known, the random extraction of axle weights and inter-axle distances from the VH data
set is carried out.

Finally, the inter-vehicle distances (𝐷𝑡 ), axle-weights, and inter-axle distances are put
together in a vector to form a “train” of vehicles (Fig. 3.5) that is used as input for the
structural model. A simplified flowchart of the traffic simulation algorithm is presented
in Fig. 4.5.
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Figure 4.5: Traffic simulation algorithm.

4.3 Processing traffic data
In this section, the relationship between the WIM data set, the VH data sets, and the
copula-based model is explained. This link is depicted in Fig. 4.6 and is discussed in the
following sections.

WIM Data - Inter-vehicle distances
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vehicle’s category

BN Model
- Axel weight

- Inter-axle distance

- Number of axles per vehicle

Traffic Simulation

“Ideal” Day

data

Copula-based

Model

VH Data

Figure 4.6: Data Overview for simulation of traffic.

RegardingWIM data, weekends and national holidays were excluded from the analysis.
The remaining days are considered as “regular” days and were analyzed in three different
time scales, hourly, daily, and monthly.
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4.3.1 Hourly Analysis
Histograms were used to illustrate the data set so that it could be examined on an hourly
time frame. This makes it possible to discern periods of congestion (when there are more
vehicles) and periods of free flow (when the number of vehicles is lower). The data were
divided into three groups: i) free flow before congestion hour (Free Flow A), ii) congestion
hour, and iii) free flow after congestion hour (Free Flow B). See Fig. 4.7 for April 4ᵗʰ. Re-
sulting in six different traffic scenarios: 3 groups for 2 lanes, namely, C_L2, C_L3, F_L2_A,
F_L2_B, F_L3_A, and F_L3_B. The definition of this nomenclature is presented in Table
4.1
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Figure 4.7: Hourly classification of traffic of WIM data [97]. April 4ᵗʰ, 2013.

Nomenclature Traffic type and lane
C_L2 Congestion lane 2
C_L3 Congestion lane 3
F_L2_A Free flow A lane 2
F_L2_B Free flow B lane 2
F_L3_A Free flow A lane 3
F_L3_B Free flow B lane 3

Table 4.1: Nomenclature for hourly classification of traffic.

For these six traffic scenarios, the corresponding inter-vehicle distances {𝐷𝑡 } are ob-
tained as shown in Eq. 4.1 [97].

𝐷𝑡 = 𝑆𝑡−1 ∗ (𝑖𝑡 − 𝑖𝑡−1) (4.1)
Where,

• 𝐷𝑡 : Inter-vehicle distance at discrete time 𝑡 [km].



4.3 Processing traffic data

4

37

• 𝑆𝑡−1: Vehicle’s speed at time 𝑡 − 1 [km/h]. It is assumed that the vehicle travels at a
constant speed.

• 𝑖: Discrete-time indices of the variable of interest (Not calendar time) [h].

4.3.2 Daily Analysis
On a daily scale, two variables are analyzed, i) the daily distribution of vehicles per lane,
and ii) the daily amount of vehicles per category per traffic scenario. Empirical cumulative
distribution functions (ecdfs) are constructed to describe the daily volume of traffic at
lanes 2 and 3 over the course of the month. This is done in order to understand the daily
variation in vehicle numbers on normal-condition days. Because there are not many days
with normal conditions, these ecdfs were not fitted to parametric distribution functions.
Fig. 4.7 shows that the number of vehicles in lane 2 is much smaller than in lane 3 at any
time of the day. The average daily number of vehicles for lanes 2 and 3 is approximately
460 and 5150 vehicles respectively.

4.3.3 Creating the “ideal” day
One single day was selected to represent the entire month for calculating the daily amount
of vehicles per traffic scenario. This decision was made by comparing data from each
day under normal conditions, considering factors such as the daily vehicle count and the
existence of measurement errors. Errors are defined as instances where the gap between
two consecutive vehicles exceeds 10 hours; these data points were deleted from the data
set. The chosen day, April 10th, had the highest vehicle count and the fewest measurement
errors. Thus, the number or percentage of vehicles per traffic scenario was determined
based on data from this selected day (refer to Appendix A.2). Using this percentage, the
estimation of vehicles per category and per traffic scenario is conducted based on the daily
vehicle count. Appendix A.1 provides definitions for the vehicle categories.

In summary, an ideal day is defined by combining i) the daily amount of vehicles per
category and traffic type and, ii) the fitted copulas characterizing 𝐷𝑡 per traffic type. This
ideal day is a representation of the entire month and is the basis of the traffic simulation
algorithm.

The inter-vehicle distances (𝐷𝑡 ) of all traffic scenarios (of every normal-condition day)
were fitted to bi-variate copulas. This process characterizes the dependence of the inter-
vehicle distance and its lagged version (𝐷𝑡 ,𝐷𝑡+1). As a result, the auto-correlation of this
variable is obtained.

Following a similar approach as for the number of vehicles, the copula that character-
izes the ideal day was selected by comparing the fitted copulas (and their parameters) of
every normal-condition day among the 6 traffic scenarios. The criteria for choosing an
appropriate copula include:

• The selected copula is the best fit for most of the normal-condition days of a given
traffic scenario.

• The Spearman’s rank correlation coefficient obtained from the simulated data (gen-
erated by the fitted copula) is similar to the coefficient computed from the observa-
tions.
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As a result, each traffic scenario is characterized by different copulas, each one of them
belonging to different days of the month (Section 4.4.1).

4.3.4 Monthly Analysis
In this section, the number of vehicles per category and its corresponding proportion (%)
in relation to the monthly number of vehicles were computed. The monthly proportion
of vehicles is very similar to the daily proportion. This classification was applied to the
entire data set with no distinction between lanes.

The monthly proportion (Appendix A.3) is used as input for the BN model developed
by [98] (Fig. 4.6). This model keeps the same vehicle proportion as the input while gen-
erating a data set (VH) of vehicle characteristics for each category. In other words, the
BN model gives information about the vehicles’ number of axles, axle weights, and inter-
axle distances based on their category. For a complete overview of the BN model, the
reader is referred to [98]. In this study, the VH data set contains 300.000 passing vehicles
characterized by the category proportion presented in Appendix A.3.

4.4 Results
4.4.1 Copula-based model for inter-vehicle distances
As mentioned in section 4.3, traffic is characterized by six different traffic scenarios (Ta-
ble 4.1). By combining the fitted copulas of each traffic scenario with the selected daily
proportion of vehicles, an “ ideal-day” data set is formed. This data set is the basis for the
simulation of traffic through the SFT.

Table 4.2 presents the copulas that were selected for each scenario and their corre-
sponding parameters (See Table 4.1 for nomenclature). Note that copulas from different
days characterize each one of the traffic scenarios. The VineCopula package in R (lan-
guage for statistical computing), developed by [105] was used to fit the copulas to the data
sets (Section 4.2.2). The parameters were estimated by pseudo maximum likelihood and
the copula families were selected based on Akaike’s Information Criterion (AIC).

Scenario Copula Day Parameters
C_L2 Gaussian 25 𝜌 =0.148
C_L3 Frank 10 𝜃 =-0.304
F_L2_A Joe 17 𝜃 =1.519
F_L2_B BB8 17 𝜃1 =1.717,𝜃2 =0.900
F_L3_A Gumbel 17 𝜃 =1.137
F_L3_B Joe 11 𝜃 =1.160

Table 4.2: Selection of copula and corresponding parameters for each scenario.

Table 4.3 shows the Spearman’s correlation value for the observations (𝐷𝑡 ,𝐷𝑡+1). Note
that the correlation values are relatively low, especially for C_L2 and C_L3. Nevertheless,
the selected copulas are able to capturewell the characteristics of the inter-vehicle distance
for the simulation of traffic.

For the case of C_L3, Spearman’s correlation coefficient is negative. This means that
the inter-vehicle distance at time 𝑡 increases the inter-vehicle distance at time 𝑡 + 1 de-
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Correlation
C_L2 0.103
C_L3 -0.093
F_L2_A 0.414
F_L3_A 0.289
F_L2_B 0.054
F_L3_B 0.10

Table 4.3: Spearman’s Rho correlation value for observations of traffic scenarios.

creases or vice versa. Physically, this means that when vehicles are far apart there is a
tendency for them to reduce the distance between them. The vehicles are attempting to
close gaps or catch up with faster-moving traffic. In such situations, higher traffic loads
are expected. Similarly, a positive correlation means that the inter-vehicle distance behind
a vehicle increases as the distance behind it also increases. In other words, when inter-
vehicle distances are already large they tend to increase further. This behavior is expected
during free-flow hours due to the presence of fewer vehicles.

Fig. 4.8 shows the simulated inter-vehicle distances together with the observations
for each traffic type. The data is presented as standard normal, this means that both the
simulated inter-vehicle distances and the observed data have been transformed to follow
a standard normal distribution 𝑁(0,1) (a mean of 0 and a standard deviation of 1). This
transformation does not alter the dependence structure between 𝐷𝑡 and 𝐷𝑡+1. Thus, the
margins are standardized but the dependence structure between the variables is preserved.
The plots from both simulations and observations are very similar. Notice that the obser-
vations for congestion traffic scenarios (Fig. 4.8a-4.8b) are clustered mostly in the center
with their shape resembling a circle. Although the plots for the free flow scenarios (Fig.
4.8c-4.8f) are clustered in the center, they present a slight asymmetry in the upper right
corner of the plots. Nevertheless, the dependence structure of these copulas does not
show great asymmetry, and the correlation values of the observations and simulations are
very similar to each other despite being relatively small. This is confirmed by the results
presented in Appendix A.4.

Modeling inter-vehicle distances can capture the behavior of the dependence structure
of inter-vehicle distance and provides insight into the behavior of drivers and how they
adjust their spacing under specific situations. The resulting simulated traffic series has
an extent of 1 year (365 days) and it represents traffic under weekday conditions since
weekends and national holidays were ignored in the analysis. This time series is used as
input for the structural model.
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Figure 4.8: Observations and simulations for inter-vehicle distances (𝐷𝑖 ,𝐷𝑖+1) for all traffic scenarios from (a)
Gaussian Copula, (b) Frank Copula, (c) Joe Copula, (d) BB8 Copula, (e) Gumbel Copula and (f) Joe Copula;

parameters are estimated via maximum likelihood. The data is presented in standard normal units.

4.4.2 Structural model: An overview
In this section, a general summary of the structural model is provided. For a detailed
description of this model and its respective equations, the reader is directed to [3].

For this particular chapter, the SFT is modeled as a monolithic structure with equal
spans and symmetric supports, with a total length of 600 m. It is loaded with traffic loads
representing the axle weights of vehicles driving through the structure (Fig. 4.2), meaning
that the axle loads can be positioned anywhere on the SFT. For this reason, a grid size
of 1m is defined throughout the structure resulting in a total of 600 individual positions
along the entire SFT. A unified axle load is used to calculate individual influence on the
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system’s cross-section results (bending moments, shear forces).
In this chapter, leakage of the SFT is considered as the limit state function. The su-

perposition principle is used to gather the results of a single-point load, resulting in 600
individual unit load cases. The cross-sectional results for each situation are combined with
the response caused by the Buoyancy Weight Ratio (BWR). The BWR load is a constant
over the length of the system, and the resulting distributed force (BWR) has a downward
direction that coincides with the traffic loading (Fig. 4.1).

The axle loads and their corresponding inter-vehicle distance are treated as a long
train of axle loads, with each axle load having a different magnitude. Sub-trains (smaller
portions of the train of axle loads) can be derived by moving the 600 m model over the
train of vehicles. The resulting envelopes of the bending moments and shear forces (𝑀𝑚𝑎𝑥 ,
𝑉𝑚𝑎𝑥 ) are found from the cross-section results and displacements for each sub-train. If
the traffic model generates a longer data set, different distributions for the envelopes are
found.

4.4.3 Reliability Analysis
In this section, the focus is on the reliability analysis of the SFT using the resulting bending
moments (𝑀𝑚𝑎𝑥 ) and shear forces (𝑉𝑚𝑎𝑥 ) from the structural model.

The probability of failure (𝑃𝐹 ) of the SFT was tested for bending failure of the tube in
the longitudinal direction (leakage of the SFT) and is defined in Eq.4.2:

𝑃𝐹 = 𝑍 = 𝑃(𝑀𝑚𝑎𝑥 > 𝑀𝑐𝑎𝑝) (4.2)

Where𝑀𝑚𝑎𝑥 is the maximum bending moment from the structural model and𝑀𝑐𝑎𝑝 is
the bending moment capacity derived from a given SFT design (Table 4.4). It is considered
failure when the maximum bending moment exceeds the moment capacity 𝑀𝑐𝑎𝑝 because
such scenarios could lead to leakage of the SFT. These limit values are directly dependent
on the asymmetric post-tensioning design.

Item Center of span Tether location
# Axial tendons 9 17
# Asymmetric tendons 5 4
Spread angle [degrees] 125 94
𝑀𝑐𝑎𝑝 [MNm] 108.4 -141.6
𝑀𝐵𝑊𝑅 [MNm] 42.0 -84.0
𝑀𝑡𝑟 [MNm] 66.4 -57.6

Table 4.4: Post tension specification and capacity

Where𝑀𝐵𝑊𝑅 and𝑀𝑡𝑟 are the bending moments due to the buoyancy weight ratio and
traffic respectively. In this study, the reliability analysis focuses on fitting the resulting
daily bending moments and shear forces to theoretical probability distribution functions.
From which their corresponding annual maximum frequency curves are derived. For a
given SFT design, the limit bending moments are found. Consequently, the probabilities
of exceeding these limit values are found through the annual maximum frequency curves.
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The structural analysis was performed for different buoyancy-weight ratio (BWR) val-
ues ranging from 1.1 to 1.5. The relationship between the permanent loads and the buoy-
ancy load is described as the Buoyancy Weight Ratio (BWR) and can be influenced by
changing the ballast of the structure. The resulting distributed force (BWR load) has a
downward direction that coincides with the traffic loading. For simplicity, the BWR is
considered constant over the length of the system. From a design point of view, a BWR
close to 1.0 is the most economical. The BWR ratio results in a distributed load. By appli-
cation of a lower BWR, the spans used in the structure can be larger. If larger spans can
be used, fewer supporting pontoons are needed. Although other elements such as load-
ing or stability requirements might cause the need for a larger BWR, these are considered
beyond the scope of this study.

4.4.4 Frequency Curves
The resulting daily values of bending moments (𝑀𝑚𝑎𝑥 ) and shear forces (𝑉𝑚𝑎𝑥 ) obtained
from the structural model [3] were fitted to probability distribution functions. The results
are shown in Table 4.5.

BWR 𝑀𝑚𝑎𝑥 𝑉𝑚𝑎𝑥
[MNm] [MN]

0 Gamma Lognormal
1.1 G.E.V. ¹ G.E.V.
1.2 G.E.V. G.E.V.
1.3 G.E.V. G.E.V.
1.4 G.E.V. G.E.V.
1.5 G.E.V. G.E.V.

Table 4.5: Distribution Fitting for bending moments and shear forces.

BWR 𝑀𝑚𝑎𝑥 [MNm] 𝑉𝑚𝑎𝑥 [MN]
Shape Scale Location Shape Scale Location

0 25.88 0.95 - -0.15* 0.22* -
1.1 -0.17 4.50 106.60 -0.09 0.17 3.32
1.2 -0.17 4.50 176.64 -0.09 0.17 5.42
1.3 -0.17 4.50 235.91 -0.09 0.17 7.20
1.4 -0.17 4.50 286.71 -0.09 0.17 8.72
1.5 -0.17 4.50 330.74 -0.09 0.17 10.05

Table 4.6: Parameters of the fitted distributions. *For the Lognormal distribution, the parameters are mean and
standard deviation

The criteria for selecting an appropriate probability distribution function was made
based onmaximum likelihood estimation (MLE) and by visual inspection. Table 4.6 presents
the parameters of the fitted distributions.

¹Generalized Extreme Value Distribution
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The corresponding annual maxima frequency curves for the bending moments and
shear forces for a BWR of 1.1 are shown in Fig. 4.9. From these plots is possible to de-
termine the return period (or probability of exceedance) of particular values for bending
moments and shear forces. The corresponding𝑀𝑚𝑎𝑥 ,𝑀𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 , and 𝑉𝑚𝑖𝑛 values for dif-
ferent return periods (or probability of exceedance) and BWR magnitudes are depicted in
Table 4.7. The results appear to be sensitive to the choice of BWR. As the BWR increases,
the values for the maximum bending moments and maximum shear forces also increase.
This highlights the importance of the choice of BWR when designing an SFT.
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Figure 4.9: Frequency curves for (a) 𝑀𝑀𝑎𝑥 [𝑀𝑁𝑚] and (b) 𝑉𝑀𝑎𝑥 [𝑀𝑁] for a 1.1 BWR

BWR Variable
Return Period & 𝑃𝐹

5 10 20 50 100 200 500
0.2 0.1 0.05 0.02 0.01 0.005 0.002

0 43 43 44 44 44 44 44
1.1 128 130 132 134 136 140 142
1.2 𝑀𝑚𝑎𝑥 198 200 201 204 205 207 208
1.3 [MNm] 257 259 261 262 264 265 266
1.4 308 310 312 313 314 316 319
1.5 352 354 356 358 359 360 364
0 2 2 2 2 2 2 2
1.1 4 4 4 4 4 5 5
1.2 𝑉𝑚𝑎𝑥 6 6 7 7 7 7 7
1.3 [MN] 8 8 8 8 8 8 8
1.4 10 10 10 10 10 10 10
1.5 11 11 11 11 11 11 11

Table 4.7: Extreme values of 𝑀𝑚𝑎𝑥 , and 𝑉𝑚𝑎𝑥 for different return periods and a BWRs

For the particular SFT design presented in Table 4.4, the corresponding values of𝑀𝑐𝑎𝑝
at the center of the span and tether location are respectively 108.4 MNm and -141.6 MNm.
If we place these values at the frequency curves corresponding to bending moments for
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a BWR of 1.1, their respective return periods are 139 and 439 years. This corresponds to
probabilities of failure of 0.01 and 0.005.

4.5 Discussion
The inter-vehicle model methodology presented in this study combines uni-variate and
multi-variate models (copulas). This not only allows the simulation of the inter-vehicle
distance but also models the number of vehicles per lane per day and their classification
according to the different vehicle categories (Appendix A.1). Each vehicle category is
defined by its axle weight and inter-axle distance. The selection of each one of the passing
vehicles is random. In this way, it is possible to obtain a “train” of vehicles that is closer to
reality. One of the main advantages of this model is its flexibility. The model can be used
for any number of vehicle categories, lanes, and traffic scenarios. In this case study, the
model was developed on the basis of one single “ideal day”, nevertheless, the inter-vehicle
model can be extended to encompass specific daily conditions (weekends and holidays) or
seasonal conditions.

In the setup presented in this article, the geometry of the cross-section and the span
length are arbitrary choices. Larger BWR values lead to higher bending moments and
shear forces as shown in Table 4.7. This can influence other design decisions such as
shorter spans or larger tether sections that could affect the stability of the system. In
this study, the resulting bending moments and shear forces were computed for different
BWR values. However, a BWR of 1.1 was chosen for further analysis. In any case, a
design should be optimized for different circumstances. Possibilities to consider are (but
not limited to):

• Using larger BWR values. This will lead to larger bendingmoments and shear forces.
Consequently, other requirements for pontoons, tether systems and foundations
will be affected. However, a higher BWR could contribute to the stability of the sys-
tem. Moreover, a longitudinal variation of the BWR might be applicable depending
on local situations or specific designs.

• Although the SFT design presented in this study consists of a single tubular tube,
the proposed methodology is applicable to different designs of SFT (double tubes or
different cross-section geometries as presented in [106]).

4.6 Conclusions
In this study, a methodology to study the reliability of a pontoon-type SFT is presented.
Considering that this structure has not been built yet, the variables of interest must be
characterized as close to reality as possible. For the purpose of this study, traffic loading
is the variable of interest. The methodology focuses on the simulation of traffic using
a copula-based model. The reliability of the structure is investigated under the failure
mechanism of leakage due to the bending of the SFT tube in the longitudinal direction.

From the original data set (WIM), several characteristics were extracted. Namely, i)
the inter-vehicle distance, ii) the daily proportion of vehicles per lane, per category, and
per traffic type, and iii) the monthly proportion of vehicles. The first is used as input for
the copula-based model, the second is used to create an “ideal” traffic day, and the third
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is used to create a large data set of vehicles per category. All of these were combined to
finally simulate traffic flowing through the SFT.

The results from the copula model showed that the selected copulas are able to char-
acterize the inter-vehicle distance. Although the correlation of the inter-vehicle distance
from the WIM data set is relatively small, the probabilistic model provides a great advan-
tage: with just over a month of measurements it was possible to simulate a total of 1 year
of data. Although longer data sets can be produced. The combination of the inter-vehicle
copula model and random sampling from the VH data set (which provides the vehicle’s
characteristics) resulted in one vector that characterizes daily traffic at the SFT.This vector
was used as input for the structural model.

Results from the structural model provided the maximum and minimum bending mo-
ments and shear forces under the traffic loading for different BWR values. From these
results, the annual distribution of these variables was obtained and, consequently, their
extreme values for several return periods. The values of 𝑀𝑐𝑎𝑝 at the center of the span
and at the tether location were obtained. These values define the limit state function for
failure due to the bending of the tube in the longitudinal direction (Section 4.4.3). In other
words, failure could only occur if the resulting bending moments from the envelopes are
larger than 𝑀𝑐𝑎𝑝 . The return periods for both 𝑀𝑐𝑎𝑝 of 108.4 MNm and -141.6 MNm, are
139 and 439 years at the center of the span and tether location respectively. Their corre-
sponding probabilities of failure are 0.01 and 0.005. These probabilities can be considered
very high when compared to international safety standards. For example, a structure with
an RC3 reliability level (𝛽=4.3) has an estimated probability of failure equal to 8.5 × 10−6
[107] assuming that the lifetime of the structure is 50 years. In the case of an SFT, the con-
sequences of failure are much more severe compared to regular buildings. For this reason,
bending moments with larger return periods are needed. In such a case, design changes,
such as different BWRs could be appropriate.

Therefore, the combination of probabilistic modelingwith structural analysis offers the
possibility to study the design choices of this structure. This study shows an effective way
to use probabilistic modeling through copulas to simulate traffic and to study their effect
on the structure. This methodology offers great flexibility to test the reliability of the SFT
considering other loading variables. For example, external environmental variables such
as waves, currents, and their simultaneous action on an SFT. Moreover, this methodology
is not restricted to being used only on an SFT. It can be applied to other civil structures
where the data is scarce.
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5
Simulating metocean data

There are uncertainties related to the environmental variables relevant to the construction
and operation of an SFT. Wave and current data will be considered for this study. In this
chapter, a joint probability distribution analysis is proposed to characterize waves and
currents and their dependence. This analysis was carried out using a copula-based model.
In this way, the design conditions for the SFT can be modeled more realistically. Copula-
based models capture the linear or non-linear behavior of the data because they model
dependence structures separately from the marginal distributions. For example, using
Archimedean copulas, tail dependence can be modeled, essential for capturing extreme
non-linear behavior. The results are several synthetic time series of hourly values and
extreme values of all the variables involved.

This chapter is structured as follows: a brief introduction is presented in Section 5.1.
The probabilistic model for hourly and extreme values is described in Section 5.2. The
findings of this research are detailed in section 5.4, followed by the main conclusions and
recommendations (Section 5.5).

5.1 Introduction
In civil engineering, waterway crossings are one of the most challenging structures. In
the last few decades, the traffic demand and growing development of cities have increased
the necessity of longer waterways that require new and more advanced technologies. One
structure has already been proposed to give a solution to this problem: The construction
of a submerged floating tunnel (SFT).

However, an SFT has not been built yet, mainly due to the lack of experimental data
and knowledge about its actual behavior. In this study, we focus on the simulation of meto-
cean loads that could act on the SFT. This is the first step in estimating the reliability of an
SFT aimed to be located at the Qiongzhou strait. The methodology presented in this study
considers the combined action of metocean loads acting on the SFT, these are waves and

Parts of this chapter have been published within: G.A. Torres-Alves, O. Morales-Nápoles, & S.N. Jonkman. Simu-
lation of hydrodynamic loads for a submerged floating tunnel using a copula-based model. Bridge Maintenance,
Safety, Management, Life-Cycle Sustainability and Innovations - Proceedings of the 10th International Confer-
ence on Bridge Maintenance, Safety and Management, IABMAS 2020.
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currents. It is essential to study waves and currents in the context of submerged floating
tunnels to optimize their design, ensure their structural integrity, and address safety and
operational concerns. This information can aid engineers in creating solutions for con-
structing and operating SFTs in various marine environments. A copula-based approach
is proposed to characterize 3-hourly values of metocean variables (waves and currents).
The resulting synthetic simulations represent hourly conditions and extreme events. This
study shows how copulas are used as a powerful probabilistic tool to characterize these
loads and to generate a synthetic time series (of a thousand years) of the variables under
investigation. The results of this study can be incorporated into risk or reliability analyses
for an SFT.

5.2 Modeling approach
As mentioned in Chapter 3, wave data are classified into two sets: wind waves (WW) and
total swells (TS) whereas currents (C) are classified into currents at 1m and 15m below the
water surface. The variables of interest are paired together to form five groups for analysis:
Wind waves, total swell, wind waves-currents, and total swell-currents (WW, TS, WWC,
TSC, and C). See Table 5.1. In this study, we follow the same nomenclature as in Table 3.2.

Each pair in the second column of Table 3.2 is modeled with a copula. GroupWW and
TS are divided into two pairs while groups WWC, TSC, and C have one pair of variables
each. In group WW, the first pair (𝑋 (1)

𝑡 ,𝑋 (2)
𝑡 ) aims to model the dependence relationship

between wave height and wave period. The second pair within this group focuses on
the order 1 auto-correlation of wave height (𝑋 (1)

𝑡 ,𝑋 (1)
𝑡+1). Group TS is analogous to group

WW. For groups WWC and TSC, the focus is on the dependence relationship between
wave height (wind waves and total swell respectively) and current velocity at 1m below
the water surface (𝑍 (1)

𝑡 ). Finally, group C focuses on the dependence between current
velocities at 1m and 15m below the surface (𝑍 (2)

𝑡 ).

Group Variables Approach
ID POT

-Wind waves (WW) (𝑋 (1)
𝑡 ,𝑋 (2)

𝑡 ) * *
(𝑋 (1)

𝑡 ,𝑋 (1)
𝑡+1) *

-Total swell (TS) (𝑌 (1)
𝑡 ,𝑌 (2)

𝑡 ) * *
(𝑌 (1)

𝑡 ,𝑌 (1)
𝑡+1) *

-Wind waves &
Currents (WWC) (𝑋 (1)

𝑡 ,𝑍 (1)
𝑡 ) * *

-Total swell &
Currents (TSC)

(𝑌 (1)
𝑡 ,𝑍 (1)

𝑡 ) * *

-Currents (C ) (𝑍 (1)
𝑡 ,𝑍 (2)

𝑡 ) * *

Table 5.1: Datasets groups for analysis

The five groups are processed under two different approaches of wave’s long-term
statistics: i)The initial-distribution approach (ID) and ii) the peak-over-threshold approach
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(POT). The ID approach considers all observations, conserving the continuity of the data,
while the latter consists of modeling the excess values over a high level (or threshold)
within a time series [108]. The main challenges in a POT approach are i) making sure that
the extracted values are independent of the original time series, and ii) choosing appropri-
ate threshold values [109]. The application of POT models is very popular in hydrology,
for example, for the estimation of floods [110].

The choice of threshold is defined by a graphical approach, specifically, by parameter
stability plots. With this approach, the selection of the shape and scale parameters are
defined at the lowest value where the plots are approximately constant [111]. For more
details about ID and POT approaches refer to [112]. Table 5.1 shows the data pairs that
were processed with an ID or POT approach.

5.3 Simulating waves and currents
In order to select the copulamodel, estimate its parameters, and simulate data, the VineCop-
ula package [105] in R [95] (language for statistical computing) was used. The parameters
are estimated by pseudo maximum likelihood and the copula families were selected based
on Akaike’s information criterion.

For the case of ID data, the analysis also includes the computation of the auto-correlation
of the variables (Table 5.1). This procedure was applied to wave height and current veloc-
ity to characterize their hourly fluctuation, enabling the generation of a more realistic
synthetic time series.

Eq.2.12 is applied to simulate values for significant wave height). Hourly values of
wave period (𝑋 (2)) are generated from the copula 𝐶𝜃 (𝐹 (𝑥(1)𝑡 ),𝐺(𝑥(2)𝑡 )) where 𝐺 is the dis-
tribution of hourly wave period and 𝜃 summarizes the dependence between hourly wave
height and wave period.

Finally, for current velocities at 1m (𝑍 (1)), the formulation in Eq.2.12 is used to char-
acterize the time series given wave height observations (𝑋 (1)) and current velocity at 15m
depth (𝑍 (2)) given velocities at 1m depth. The graphical representation of this process is
presented in Fig.5.1. The analogous process is applied for total swell.
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Figure 5.1: Process for wind waves. ID data

A similar process to that used for ID data was used for POT data. The distinction is
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that each of the values of wave height in the time series is generated randomly from the
extreme-value marginal distribution (Thus, no arrows between 𝑋 (1)

𝑡 and 𝑋 (1)
𝑡+1). Simula-

tions of the remaining variables are obtained in the same way as the continuous synthetic
time series. This process is illustrated in Fig.5.2.
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Figure 5.2: Process for wind waves. POT data

In summary, the simulation process consists of following the approaches represented
in Fig. 5.1 and Fig. 5.2 to generate larger time series of i) 3-hourly wave height, wave
period, and current velocities, and ii) extreme values of wave height, wave period and
current velocities. Each simulated “year” is 184 days long because only the wet season is
being modeled. The synthetic time series spans a thousand years.

5.4 Results
The data is analyzed for the entire strait and is divided into 9 grid points that cover the
strait from left to right (Figure 3.4). Moreover, the analysis of the data is limited to the wet
season which spans from May 1st to October 31st in the region of the Qiangzhou Strait.
Fig. 5.3 shows a scatter plot of wind wave data (significant wave height 𝑋 (1) and wave
period 𝑋 (2)) at grid point 4. The figure displays a second data cluster (at 𝑋 (2) ∼ 4𝑚) as well
as a few data points that might qualify as outliers. However, to keep continuity in the time
series, the ID data was not further divided into different wave climates, nor outliers were
removed.

The analysis of the joint distribution of waves and currents usually involves an addi-
tional variable: the mean direction. In this study, the data is not conditioned to a predomi-
nant wave and current direction. Figure 5.4 illustrates wave and current roses for the grid
points situated at the Qiongzhou Strait. A wave or current rose is a graphical representa-
tion of the distribution of wave and current directions. It consists of a circular diagram
segmented to represent specific compass directions, such as north, northeast, east, etc. ID
data (Left column in Fig. 5.4) shows that waves have a wide range of directions during
the wet season, while currents are mostly directed towards the southwest and northeast.
For POT data (Fig.5.4 right column), currents have the same direction as ID data, and
waves are predominantly directed towards the southwest. Conditioning the analysis on
wave/current direction is recommended for further studies.

During the wet season, there are strong serial correlations for the wave height as well
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Figure 5.3: Scatter plot of group WW. ID data. Grid point 4.

as the wave period time series. The serial correlation for wind waves at grid point 4 is
depicted in Fig.5.5 in terms of Spearman’s rank correlation coefficient. See how correlation
values decline with increasing hour intervals, reaching 0.1 after roughly 60 hours. Overall,
the serial correlation of all the variables in this study appears to be pretty comparable.
Nevertheless, rather than steadily declining, the serial correlation for grid point 4 oscillates
up and down. This variation is periodic, in the order of 24h, which could be due to the
effect of the tidal cycle at the strait. The grid points outside of the strait do not present
this periodic fluctuation. It is then clear that the effect of the tidal cycle becomes more
relevant at the strait. However, in this study, the effect of the tidal cycle is not considered
for further analysis.

5.4.1 Univariate Fitting

To choose the probability distribution that might most accurately characterize the data
sets, the empirical wave and current distributions were compared to several theoretical
univariate distributions. However, not all variables could be fitted to theoretical distri-
butions since distribution candidates did not provide a reliable fit. For such cases, the
empirical distribution was chosen instead. For example, Fig.5.6a shows the difference
between the empirical cdf (cumulative distribution function) and the theoretical distribu-
tions, especially at larger values. This can be evidenced further in the corresponding Q-Q
(Quantile-Quantile) plot (Fig. 5.6b). The reference line in the Q-Q plot represents the ex-
pected distribution, for the case of Fig. 5.6b, that is a G. Pareto distribution. This reference
line indicates how the data points would look like if they would perfectly follow such dis-
tribution. Table 5.2 to 5.4 show a summary of the best fit for each variable at each grid
point (Grid points are depicted in Fig. 3.4).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.4: Wave and current roses for ID data (left column) and POT data (right column) at the grid points of
the Qiongzhou Strait: (a), (b) Wind waves wave height (𝑋 (1)), (c), (d) Total swell Wave height (𝑌 (1)), (e), (f)

Currents at 1m (𝑍 (1))and (g), (h) Currents at 15m (𝑍 (2)).

5.4.2 Copula fitting
The paired data (Table 5.1) was fitted to copulas using the VineCopula R package. A total
of 12 data pairs were compared to several theoretical copulas and finally fitted to the ones
that described best their dependence. The results of this process are presented in Table 5.5
(ID data) and Table 5.6 (POT data), with the latter also including the respective number
of extreme values identified. The copula’s parameters were estimated through maximum
likelihood and the selection of copula families was based on Akaike’s information crite-
rion.

Next, a total of a thousand wet seasons were simulated for all the variables of inter-
est. The selected copulas generated synthetic data sets that were able to capture the main
features of the dependence structure between the variables. An example of a visual com-
parison between the observations and the simulated points is presented in Fig. 5.7. Table
5.7 and Table 5.8 presents Spearman’s rank correlation coefficients from the observations
and simulations.
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Figure 5.5: Serial correlation for wind waves. ID data. Grid point 4.

Gridpoint Wind Waves Total Swell
ID POT ID POT

1 to 4 Gamma Empirical GEV¹ Empirical
6 to 9 Gamma Empirical GEV G. Pareto²

Table 5.2: Univariate fitting for significant wave height.

Overall, ID data (Fig. 5.7) have a higher degree of dependence than POT data (Fig.
5.8). ID data shows a strong positive dependence between wave variables (Fig. 5.7), being
stronger for the pairs 𝑋 (1)

𝑡 ,𝑋 (1)
𝑡+1 & 𝑌 (1)

𝑡 ,𝑌 (1)
𝑡+1. While the correlation between current ve-

locity and wave height pairs, 𝑋 (1)
𝑡 ,𝑍 (1)

𝑡 & 𝑌 (1)
𝑡 ,𝑍 (1)

𝑡 is low, being approximately 0.13. The
correlation between current velocity at different depths is low for both ID and POT data
(𝑍 (1)

𝑡 ,𝑍 (2)
𝑡 & 𝑍 (1),𝑍 (2)).

¹GEV: Generalized extreme value distribution
²G. Pareto: Generalized Pareto distribution
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Gridpoint Wind Waves Total swell
ID POT ID POT

1,3,4 GEV Empirical GEV Empirical
2, 6-9 LogNormal Empirical GEV Empirical

Table 5.3: Univariate fitting for mean wave period.

Gridpoint 1m depth 15m depth
ID POT ID POT

1 to 6 Gamma Empirical Weibull Empirical
7 to 9 Weibull Empirical Weibull Empirical

Table 5.4: Univariate fitting for current velocity.
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Figure 5.6: CDF (a) and QQ (b) plots for significant wave height for total swell (POT data. Grid point 4)

Copula Family Parameters
𝐶𝑋 (1)

𝑡 ,𝑋 (1)
𝑡+1

Joe 𝜃=9.7411
𝐶𝑋 (1)

𝑡 ,𝑋 (2)
𝑡

t 𝜌= 0.9178 , 𝜈=2
𝐶𝑌 (1)

𝑡 ,𝑌 (1)
𝑡+1

t 𝜌= 0.9473 , 𝜈=2
𝐶𝑌 (1)

𝑡 ,𝑌 (2)
𝑡

BB6 𝜃1=1.0839 , 𝜃2=1.4174
𝐶𝑍 (1)

𝑡 ,𝑍 (2)
𝑡

Gauss 𝜌=0.1461
𝐶𝑋 (1)

𝑡 ,𝑍 (1)
𝑡

BB8 𝜃1=1.1793 , 𝜃2=0.9965
𝐶𝑌 (1)

𝑡 ,𝑍 (1)
𝑡

BB8 𝜃1=1.1045 , 𝜃2=0.9953

Table 5.5: Copula families and parameters for grid point 4. ID data.
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Copula Family Parameters Num. observations
𝐶𝑋 (1),𝑋 (2) Frank 𝜃=4.9228 205
𝐶𝑌 (1),𝑌 (2) Joe 𝜃= 1.2949 62
𝐶𝑍 (1),𝑍 (2) Gaussian 𝜌= 0.2939 234
𝐶𝑋 (1),𝑍 (1) Frank 𝜃= 1.0901 205
𝐶𝑌 (1),𝑍 (1) Frank 𝜃= 0.9463 62

Table 5.6: Copula families, parameters, and number of identified extreme values for grid point 4. POT data.

Copula Observations Simulations
𝐶𝑋 (1)

𝑡 ,𝑋 (1)
𝑡+1

0.94 0.95
𝐶𝑋 (1)

𝑡 ,𝑋 (2)
𝑡

0.69 0.89
𝐶𝑌 (1)

𝑡 ,𝑌 (1)
𝑡+1

0.89 0.93
𝐶𝑌 (1)

𝑡 ,𝑌 (2)
𝑡

0.48 0.47
𝐶𝑍 (1)

𝑡 ,𝑍 (2)
𝑡

0.14 0.14
𝐶𝑋 (1)

𝑡 ,𝑍 (1)
𝑡

0.14 0.13
𝐶𝑌 (1)

𝑡 ,𝑍 (1)
𝑡

0.07 0.08

Table 5.7: Spearman’s rank correlation for observations and simulations. ID data. Point 4

Copula Observations Simulations
𝐶𝑋 (1),𝑋 (2) 0.63 0.64
𝐶𝑌 (1),𝑌 (2) 0.12 0.21
𝐶𝑍 (1),𝑍 (2) 0.25 0.28
𝐶𝑋 (1),𝑍 (1) 0.17 0.18
𝐶𝑌 (1),𝑍 (1) 0.13 0.16

Table 5.8: Spearman’s rank correlation for observations and simulations. POT data. Point 4.
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It is evident from Fig. 5.7b that the data has outliers. However, they were not removed
from the sample to maintain the continuity of ID data. On the other hand, these points
might indicate the presence of different wave climates in the area. To test this hypothesis,
these points would need to be separated and analyzed in different clusters but this process
is out of the scope of this study.
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Figure 5.7: Data vs. simulated points from copulas (Table 5.5).WW-ID data. Point 4.

Finally, the data sets were converted into their real units by using the inverse of their
correspondingmarginal distribution and thenwere plotted together with the observations.
Fig. 5.9 illustrates the results of the ID approach for wind waves. The figure shows the
average of the observations and the simulations over a period of 100 years, along with the
corresponding 95% confidence interval for the simulations. In general, the simulations are
visually very similar to the observations, however, ID current velocity fluctuates much
more than their corresponding observations. This is not the case for POT’s current data.
To improve ID current data, a vine-copula model could be implemented. This model could
include the serial correlation of both current velocities to generate the synthetic time series.
In other words, adding a copula conditionalized on the serial correlation of 𝑍 (1) and 𝑍 (2),
for example, 𝐶(𝑋 (1)

𝑡+1,𝑍 (1)
𝑡+1)|𝑍 (1)

𝑡
and 𝐶(𝑍 (1)

𝑡+1,𝑍 (2)
𝑡+1)|𝑍 (2)

𝑡
.
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Figure 5.8: Data vs. simulated points from copulas (Table 5.6).WW-POT data. Point 4.
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Figure 5.9: Simulated time series of wave height 𝑋 (1), wave period 𝑋 (2) and current velocities 𝑍 (1),𝑍 (2). ID
approach wind waves
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5.5 Conclusions
This chapter presented a copula methodology to create a synthetic time series of wave
height, wave period (Wind waves and total swell), and current velocities (At 1m and 15m
depth) at theQiongzhou Strait in China. To perform such a task, the VineCopula R package
was used.

The univariate fitting of the POT data did not provide a reliable fit to theoretical distri-
butions, which resulted in using the empirical distribution for all the variables. This does
not allow extrapolation to larger values and therefore limits the study of extremes in the
region, which is key to determining the reliability of the SFT. For this reason, future re-
search should involve fitting extreme data to multi-modal distributions or other complex
models.

To develop the copula-model approach, some simplifications were made. ID wave
height data (𝑋 (1)) was not clustered and analyzed in different wave climates because it
was important to preserve continuity. Moreover, the influence of the tidal cycle on the
variables was not investigated in this study, this factor can be included as part of an ex-
panded vine-copula model. Nevertheless, the copula model was able to capture the main
features of the dependence between the variables resulting in a synthetic time series sim-
ilar to the observations in the area, evidenced by the correlation coefficients between the
observed and the simulated values. This characterization could be used to estimate the
reliability of the SFT under daily conditions (ID data) and extreme conditions (POT data).

In summary, this chapter demonstrates how modeling the dependence between the
variables that represent the loads can be used to determine the joint probability of ID
data and extreme data. Once a copula model has been fitted to the data it is possible to
calculate the joint probability of the loads. This involves determining the probability of
one variable given the other. This enables the assessment of the likelihood of specific load
combinations which is valuable for decision-making and SFT design.
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6
Vine-Copulas for waves, currents,

and hydrodynamic forces
As mentioned in previous chapters, an effect that should be further investigated for the
design and construction of an SFT is the simultaneous action of waves and currents and
their resulting hydrodynamic forces. For this study, we propose vine-copula models be-
cause they offer great flexibility and take into account complex relationships by capturing
different possible dependencies between pairs of variables. The analysis between meto-
cean variables and their corresponding resulting forces is further expanded to study nine
different SFT configurations of different diameters and submergence depths. The results
show that larger Froude-Krylov forces are obtained for SFT configurations that place the
SFT closer to the water surface.

This chapter is organized as follows: Section 6.1 provides a brief introduction to the
application of vines on metocean loads for an SFT. This is followed by a description of the
modeling approach that combines extreme value analysis with vines (Section 6.2). Section
6.3 presents the results of the univariate and multivariate analysis. The procedure to es-
timate the hydrodynamic forces is shown in Section 6.4 followed by a discussion of the
findings 6.5. The chapter closes with the conclusions and areas of future work (Section
6.6).

6.1 Introduction
Many preliminary designs and feasibility studies have been proposed worldwide as pos-
sible locations to build an SFT [6–11]. One of these locations is the Qiongzhou Strait
in China (Fig. 3.1). This narrow ocean passage is very dynamic and characterized by
complex physical processes and it is frequently affected by tropical cyclones [88]. These
extreme events can jeopardize the construction and operation of an SFT in this location.
Usually, when designing structures, extreme values of environmental loads are assumed

Parts of this chapter have been publishedwithin: G.A. Torres-Alves, andOswaldoMorales-Nápoles. Vine-Copula
model for simulation of extrememetocean loads and estimation of hydrodynamic forces for a submerged floating
tunnel at the Qiongzhou Strait’. Marine Structures. Under Review.
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to be independent. However, probabilistic models such as vine-copulas take into account
the dependence relationship between variables, providing, in this way a more realistic
characterization of the environment surrounding the SFT.

Vine-copulas are graphical multivariate models that use bivariate copulas as building
blocks to capture more complex dependence structures (Chapter 2.4). There are uncertain-
ties related to the metocean variables (and their combined action) relevant to the construc-
tion and operation of an SFT. In general, the dependence between these variables is not
taken into account. In this study, therefore, we present a vine-copula approach to char-
acterize the joint action of wind waves, swell waves, currents, and their resulting forces
acting on the SFT at the Qiongzhou Strait. Wind waves are generated by local winds that
blow over the water surface, while swells are waves that have traveled out of their area
of origin [87]. Wind and swell waves are characterized by their significant wave height
and mean wave period. Currents are characterized by the velocity at two levels from the
water surface (1m and 15m). All these variables are considered in this study.

6.2 Modeling Approach
Themethodology presented in this study consists of i) an univariate extreme value analysis
(EVA), and ii) a multivariate analysis (Vine-copula modeling).

6.2.1 Extreme Value Analysis
An extreme value analysis (EVA) is applied to the metocean (wave and currents) data sets.
For this purpose, a peak over threshold (POT) approach is used. Selecting the appropriate
thresholds follows the same graphical approach used in Chapter 5.2.

In this study, an additional step is added after the threshold has been established to
extract the extreme values. The data is divided into “clusters of exceedance” that are de-
termined as follows [113]:

• The first exceedance in the data set initiates the first cluster.

• The first observation below the threshold ends the current cluster.

• The next exceedance initiates a new cluster. This is repeated throughout the entire
data set (the clusters are represented as grey areas in Fig. 6.1).

Next, the maximum value within each cluster is extracted forming an extreme value
time series. This process is called “declustering”, where only the highest (peak) observa-
tions within the clusters are retained [96].

In this study, the values of significant wave height, wave period, and current velocity
are further classified into dominant and concomitant variables. A dominant variable is the
one selected as the most relevant variable for the analysis, while the concomitant variables
are the ones that remain. The POT approach presented previously is applied to the selected
dominant variable. The concomitant variables are those whose clusters are not defined by
their own thresholds, instead, the dominant variable defines their clusters. Fig. 6.1 shows
an example of the POT selection process. Note that only the cluster maxima are extracted.
The gray areas indicate the clusters that correspond to the dominant variable and how
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Figure 6.1: Peak over threshold methodology.

they are applied to the concomitant variables. For both the dominant and concomitant
variables, the extreme time series are formed by the maximum values in each cluster.

The significant wave height for swell waves is selected as the dominant variable, while
all the remaining variables are considered concomitant variables. For this study, the clus-
ters are considered storms and their peaks are the maximum recorded value of the signif-
icant wave height of each storm (cluster). Thus, the purpose of applying this approach
is to ensure that the extreme values of all the variables correspond to the same storms
(depicted as red dots in Fig. 6.1).

The extracted extreme values are assumed to follow a Generalized Pareto distribution
with parameters 𝑘 (shape),𝜎 (scale), and 𝜃 (threshold). The values corresponding to the
concomitant variables are fitted to theoretical distribution functions. The selection of the-
oretical distribution is based on Akaike’s Information Criterion (AIC) and by visual inspec-
tion of the cumulative distributions (CDFs).

To compute the return periods of the extreme values obtained from the POT approach,
it is necessary to include the rate of occurrence of the clusters [96, 114]. Thus, the prob-
ability of exceeding a certain value of, for example, 𝑌 (1), in a specified return period is
given by [115]:

1−𝐹(𝑌 (1)) = 1/(𝜆 ∗𝑇𝑅) (6.1)

Where,

• 1-𝐹(𝑌 (1)) is the probability of exceedance.

• 𝜆 is the yearly cluster rate.

• 𝑇𝑅 is the return period in years.
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The yearly cluster rate is defined as the average number of storms per year (number
of clusters per year). In section 6.3, further details on the application of extreme value
analysis and their respective return periods is provided.

6.2.2 Vines
Copulas can be powerful tools to characterize multivariate distributions. However, their
application in n-dimensional cases (𝑛 ≥ 3) can be challenging as there are no straightfor-
ward copula extensions for such circumstances. Nevertheless, Vine-copulas are an appro-
priate option to characterize the dependence between more than two variables. Vines
offer great flexibility in capturing complex dependence structures compared to copulas.
Multiple bi-variate copulas are used as building blocks to construct a vine, this allows for
more realistic modeling of the variables involved. For theory on copulas and vine-copulas,
see Chapter 2.

When using vine-copulas, selecting the best regular vine to characterize a data set
can be a difficult task. This is because the number of regular vines increases substantially
given the number of nodes 𝑛 in the model (Eq. 2.13-Chapter 2).

Currently, there are two approaches for selecting the best vine for a given data set. i) In
[116] the vine model is chosen by selecting the first tree, followed by iteratively selecting
vines for the subsequent trees, ii) the vine model is selected by comparing the fit of all
possible vines. The latter is based on the work of [57], where the exact number of vines
possible is estimated given that the first tree is known. Resulting in a catalog that classifies
regular vines according to their graphical structure [56].

In this study, both methodologies were applied to find a vine to characterize the data
sets. The fit is assessed with likelihood-based measures such as Akaike’s Information Cri-
terion (AIC), the Bayesian Information Criterion (BIC), and the negative log Likelihood
(NLogL). For this study, the focus is on the AIC [58] coefficient.

6.3 Results
This section presents the results of the extreme value analysis and themultivariate analysis
(vines). Seven of the nine grid points presented in Figure 3.4 are considered for univariate
analysis (grid points 1-4 and 7-9). This is to investigate the possible similarities or differ-
ences in data at the different areas along the Qiangzhou strait and the area just outside of
it. The multivariate analysis is only applied to grid point 4 because this area is proposed
for the SFT’s central line (Fig. 3.2).

The focus is on Qiongzhou Strait’s wave and current data sets, more specifically on
wave height, wave period, and current velocity that spans 19 years approximately. The
data includes wind-sea waves (WW) and total swell (TS) data, with current velocity data
classified into two sets: 1 meter and 15 meters below the water surface.

6.3.1 Univariate Analysis
The approach used for the univariate analysis consists in extracting the extreme values of
a dominant variable based on a given threshold (Peak over threshold approach in section
6.2.1). The total amount of observations that surpassed the given threshold is equal to
30 (approximately 2 extreme events per year in a period of 19 years). Although only the
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threshold of the dominant variable (significant wave height of swell waves, 𝑌 (1)) is used
for the E.V.A, Table 6.1 presents the resulting thresholds of each variable at each grid point.

Grid Point Wave height and period (WW) Wave height and period (TS) Currents at 1m and 15m
𝑋 (1) [m] 𝑋 (2) [s] 𝑌 (1) [m] 𝑌 (2) [s] 𝑍 (1) [m/s] 𝑍 (2) [m/s]

1 4 5.3 1.5 5.3 0.61 0.76
2 3.2 4.7 1.3 5.4 0.65 0.85
3 2.3 4.4 1.3 5.9 0.65 1.03
4 1.6 5 1.4 7.8 0.75 0.88
7 3.8 6.1 2.1 7.4 0.8 0.95
8 3.7 6.4 2.5 7 0.76 0.48
9 4.1 6.3 2.7 7.3 0.76 0.51

Table 6.1: Threshold Values. WW: Wind waves, TS: total swell.

The extracted data sets were fitted to theoretical probability distribution functions.
This was done for all grid points with available data at the strait (1-4 and 7-9). Table 6.2
shows the selected theoretical probability distribution functions and their respective pa-
rameters at grid point 4. The results from the other grid points (1-3 and 7-9) are similar to
the ones shown in Table 6.2. All the theoretical distributions were selected according to
the smallest Akaike’s information criteria (AIC) and by visual inspection of the CDFs (cu-
mulative distribution functions) and their respective Q-Q plots. An example is presented
in Fig 6.2 for the fitting of significant wave height (wind waves) to a Generalized Pareto
distribution at grid point 4.

Variable Distribution Parameters
𝑋 (1) Generalized Pareto (𝑘,𝜎 ,𝜃) =(-0.80,2.33,−1.78×10−15)
𝑋 (2) Inverse Gaussian (𝜇, 𝜆) =(5.01,68.42)
𝑌 (1) Generalized Pareto (𝑘,𝜎 ,𝜃) =(0.59,0.09,1.40)
𝑌 (2) Inverse Gaussian (𝜇, 𝜆) =(9.91,881.22)
𝑍 (1) Generalized Pareto (𝑘,𝜎 ,𝜇) =(-0.24,0.43,0.07)
𝑍 (2) Generalized Pareto (𝑘,𝜎 ,𝜃) =(-0.21,0.40,0.07)

Table 6.2: Univariate fitting of extreme values when 𝑌 (1) is the dominant variable. Grid point 4.

6.3.2 Multivariate Analysis
Regular vines (R-vines) are used to characterize the joint dependence of the variables of
interest where 𝑌 (1) (significant wave height corresponding to swell waves) is the dominant
variable. In total, 6 variables are considered (wind and swell wave variables: 𝑋 (1), 𝑋 (2),
𝑌 (1),𝑌 (2), and current velocities 𝑍 (1),𝑍 (2)). Thus, the R-vine has 6 nodes. Because the SFT’s
central line is proposed to pass across grid point 4, we focus on the data set corresponding
to that area.

Two strategies are explored to find the best vine fit of themultivariate joint distribution,
a) a six-node regular vine proposed by the VineCopula package in R [54, 105] (language for
statistical computing) and b) the vine with the lowest AIC (Akaike information criterion)
value from fitting all possible vines of 6 nodes. The AIC value is a measure of the relative
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Figure 6.2: QQ plot of univariate fitting for significant wave height of wind waves [m] (𝑋 (1))

quality of a statistical model for a given set of data [117]. The regular vine matrices for all
regular vines on 6 nodes were found with the algorithms proposed in [57] these matrices
are presented in [56]. For simplicity, the proposals are referred to as Proposal A and
Proposal B respectively. Figure 6.3 depicts a graphical representation of the first tree of
both proposals.

Proposal A is obtained through the VineCopula package in R [105]. The package im-
plements an algorithm where the trees of the vine are selected in such a way that the
chosen pairs model the strongest pairwise dependencies [54]. Proposal B is the vine with
the lowest AIC value from fitting the data set to all the possible vine structures available
when the number of variables of nodes is equal to 6. This results in a total of 23040 vines
to be fitted to the data. This is because the number of possible vines for a given number
of nodes n is defined by Eq. 2.13 presented in [55]. In this case, proposal B is defined as a
T13 R-Vine.
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Figure 6.3: Vine proposals: (a) VineCopula package’s, (b) Vine with lowest AIC value. Resulting from fitting all
possible vines of 6 nodes.

Once Proposal B is defined, it is compared to Proposal A. The AIC value was used for
this purpose (𝐴𝐼𝐶𝐴 = −136.61, 𝐴𝐼𝐶𝐵 = −140.75). According to [118, 119], the suitability of
a model should be analyzed by rescaling the AIC values to:



6.3 Results

6

69

Copula Family Parameters Spearman’s
correlation

𝐶𝑍 (2),𝑌 (1) Joe (180∘) 𝜃 = 1.94 0.51
𝐶𝑌 (1),𝑋 (2) Clayton (180∘) 𝜃 = 1.40 0.60
𝐶𝑋 (2),𝑍 (1) Gaussian 𝜃 = 0.76 0.76
𝐶𝑋 (2),𝑋 (1) Frank 𝜃 = 21.26 0.96
𝐶𝑋 (2),𝑌 (2) Joe 𝜃 = 2.57 0.66
𝐶𝑍 (2),𝑋 (2) |𝑌 (1) Clayton (180∘) 𝜃 = 0.20 0.14
𝐶𝑌 (1),𝑍 (1) |𝑋 (2) Clayton (90∘) 𝜃 = −1.03 -0.51
𝐶𝑍 (1),𝑋 (2) |𝑋 (2) Joe (90∘) 𝜃 = −1.39 -0.28
𝐶𝑋 (1),𝑌 (2) |𝑋 (2) t 𝜌 = 0.03,𝜈 = 2.00 0.03
𝐶𝑍 (2),𝑍 (1) |𝑌 (1),𝑋 (2) Gaussian 𝜃 = −0.26 -0.26
𝐶𝑌 (1),𝑋 (2) |𝑍 (1),𝑋 (2) Gaussian 𝜃 = −0.01 -0.01
𝐶𝑍 (1),𝑌 (2) |𝑋 (1),𝑋 (2) Joe (180∘) 𝜃 = 1.22 0.17
𝐶𝑍 (2),𝑋 (1) |𝑌 (1),𝑍 (1),𝑋 (2) Clayton 𝜃 = 0.16 0.11
𝐶𝑌 (1),𝑌 (2) |𝑍 (1),𝑋 (1),𝑋 (2) Gumbel 𝜃 = 1.26 0.32
𝐶𝑍 (2),𝑌 (2) |𝑌 (1),𝑍 (1),𝑋 (1),𝑋 (2) Joe (180∘) 𝜃 = 1.10 0.08

Table 6.3: Copula families and parameters obtained from the VineCopula R package (Proposal A).

Δ𝑖 = 𝐴𝐼𝐶𝑖 −𝐴𝐼𝐶𝑚𝑖𝑛 (6.2)

where𝐴𝐼𝐶𝑚𝑖𝑛 is the minimum of the different𝐴𝐼𝐶𝑖 values. In this way, the best model
has Δ = 0 and the rest of the vine models have positive values. The larger the Δ𝑖 , the less
suitable the fittedmodel 𝑖. [119] suggest a simple rule of thumb for assessing the suitability
of the fitted models: Models where Δ𝑖 is in the 2–7 range have some support and should
rarely be dismissed and implausible models are Δ𝑖 > 14.

Consequently, Δ𝐴 = 4.14 and Δ𝐵 = 0. Thus, both models are suitable for characterizing
the data. However, we chose the model with the lowest AIC value. Figure 6.4 presents the
empirical cumulative distribution function (ECDF) of the AIC values for the 23040 vine
models, with a vertical dashed line indicating the AIC value corresponding to Proposal
A. The figure suggests that Proposal A’s AIC is relatively low compared to most other
vine models, implying it is among the better-fitting models. However, as mentioned previ-
ously, proposal A does not have the lowest AIC value. The copula families and respective
parameters for proposals A and B are presented in Table 6.3 and Table 6.4 respectively.

A total of 15 unique bivariate copulas were estimated to quantify the selected proposal
and are presented in Table 6.4. Each of these copulas was selected by fitting the copula data
to several copula families (For details about the copula families, refer to [105]). The AIC
value was used as the criteria for copula selection and the parameters of the copulas were
obtained by maximum likelihood. These copulas are able to capture the dependence struc-
ture of the variables of interest. Fig. 6.5a depicts the observations of all the variables as a
scatter matrix plot. All the variables are positively correlated except the pair {𝑍 (1),𝑍 (2)}.
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Figure 6.4: Empirical cumulative distribution function of the AIC values from the fitted 23040 vine for proposal
A. Vertical Line corresponds to the AIC of proposal A

Copula Family Parameters Spearman’s
correlation

𝐶𝑍 (2),𝑍 (1) Frank 𝜃 = −0.18 0.03
𝐶𝑍 (1),𝑌 (1) Joe 𝜃 = 1.37 0.27
𝐶𝑍 (1),𝑋 (2) Gaussian 𝜃 = 0.76 0.76
𝐶𝑋 (2),𝑌 (2) Joe 𝜃 = 2.57 0.66
𝐶𝑍 (1),𝑋 (1) Gumbel 𝜃 = 1.97 0.7
𝐶𝑍 (2),𝑌 (1) |𝑍 (1) Clayton 𝜃 = 1.22 0.56
𝐶𝑌 (1),𝑋 (2) |𝑍 (1) Frank 𝜃 = 7.04 0.77
𝐶𝑍 (1),𝑌 (2) |𝑋 (2) Clayton 𝜃 = 0.24 0.17
𝐶𝑌 (1),𝑋 (1) |𝑍 (1) t 𝜌 = 0.66,𝜈 = 30 0.66
𝐶𝑍 (2),𝑋 (2) |𝑌 (1),𝑍 (1) Joe 𝜃 = 1.40 0.29
𝐶𝑌 (1),𝑌 (2) |𝑍 (1),𝑋 (2) Frank 𝜃 = 2.73 0.43
𝐶𝑍 (2),𝑋 (1) |𝑌 (1),𝑍 (1) Joe 𝜃 = 1.31 0.23
𝐶𝑍 (2),𝑌 (2) |𝑌 (1),𝑍 (1),𝑋 (2) Gaussian 𝜃 = −0.09 -0.08
𝐶𝑋 (2),𝑋 (1) |𝑍 (2),𝑌 (1),𝑍 (1) Frank 𝜃 = 11.85 0.89
𝐶𝑌 (2),𝑋 (1) |𝑋 (2),𝑍 (2),𝑌 (1),𝑍 (1) t 𝜌 = 0.10,𝜈 = 2.58 0.10

Table 6.4: Copula families, parameters and Spearman’s correlation coefficients for vine proposal B.

Notice that the pair {𝑋 (1),𝑋 (2)} is highly correlated, thus, their respective observations are
distributed closer to the main diagonal.

After fitting the data to the vine-copula model, 300 simulations were produced. Fig.
6.5a and Fig. 6.5b depict the scatter matrix plots for both the observations and the sim-
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ulations of each variable in [0,1] margins. These plots display the pairwise relationships
between the variables in the data set and provide a comprehensive view of the correlations
and scatter patterns between the variables. Certainly, larger samples can be simulated
from the vine model. However, in this study, the number of simulations was restricted
to 300 because of computational feasibility (Section 6.4). The scatter plots from the sim-
ulations are very similar to the observations presented in Fig. 6.5a. This is confirmed by
the correlation values in both figures. However, there are some differences. At the pair
{𝑋 (2),𝑌 (1)}, the correlation from the simulations is slightly lower (0.50) than the observa-
tions (0.63). Similar results can be shown for the pairs {𝑋 (2),𝑌 (2)} and {𝑍 (1),𝑌 (2)}. While
for the pair {𝑍 (1),𝑍 (2)}, the model estimates a correlation of 0.03 while the observations
have a correlation of -0.03.

In summary, the proposed vine copula model provides a good characterization of the
joint distribution of the metocean variables. This is confirmed by examining the scatter
plots between the data and the simulations and the shared similarities between them. Also,
by comparing the Spearman’s rho from the simulations it is shown that this dependence
measure aligns well with the observed values.

The resulting simulations were transformed from the [0,1] margins to their original
space (real units) by applying the inverse of their respective marginal distribution func-
tions (Table 6.2).

6.4 Estimating thehydrodynamic forces acting on an SFT
As shown in the previous section, vine-copula models provide a good representation of
the multivariate dependence between metocean variables. Thus, enabling the simulation
of longer and more reliable data sets that can support the estimation of extreme loads.
This is particularly important when data is scarce as in the case of the Qiongzhou Strait.
In Fig. 6.5a it is shown that the number of observations is limited to a total of 30 points
(this represents an average of 2 extreme events per year within a period of 19 years). In
cases where the reliability of a structure under extreme conditions is investigated, larger
amounts of data are preferred. Therefore, the vine-copula model presented in the previous
section is used to simulate three hundred values of each variable. This data set is used as
a base for a new vine-copula model: Froude-Krylov (FK) vine-copula model (Section 6.4.2)
that aims to characterize the combined action of metocean variables acting on an SFT and
their resulting hydrodynamic forces.

The hydrodynamic forces acting on the SFT (introduced by the combined action of
waves and currents) are estimated using the Froude-Krylov (FK) equation [16] (Section
6.4.1. Eq. 6.3 and 6.4). This equation provides a reasonable approximation of the hydrody-
namic forces acting on the SFT (𝑓𝑦 , 𝑓𝑧 ) in terms of a simple expression and also computes
a new estimation of wave heights due to the presence of currents (𝑋 (1)𝑐 or 𝑌 (1)𝑐 ). Input
metocean variables of this equation are the significant wave height, wave period, and cur-
rent velocity. Other input variables are related to the SFT configuration (Fig. 6.6), such as
the diameter of the SFT (𝐷), submergence depth (ℎ), and the distance from the center of
the SFT to the seafloor (𝑧). A more detailed description of this equation can be found in
Section 6.4.1.

A total of 9 SFT configurations are evaluated based on different combinations of 𝐷, ℎ,
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and 𝑧. These configurations are depicted in Table 6.5. The SFT studied in this study is
aimed to be constructed at the Qiongzhou Strait. The corresponding total water depth (𝑑)
at this particular location ranges between 40 and 120m. For the remainder of this study,
the total water depth is assumed constant and equal to 120 m. Furthermore, the SFT is
simplified as a submerged horizontal cylinder with no tethers or pontoons.

Config. 𝐷 [m] ℎ [m] 𝑧 [m]
1 20 20 90
2 20 30 80
3 20 40 70
4 25 20 87.5
5 25 30 77.5
6 25 40 67.5
7 30 20 85
8 30 30 75
9 30 40 65

Table 6.5: SFT Configurations.

In this study, two wave systems and current velocities at different depths are studied,
where 𝑌 (1) (significant wave height of swell waves) is the dominant variable. To compute
the resulting FK forces, the variables of only one wave system (swell) and one current
velocity (15m from the water surface) are used as input. In other words, the simulations
of 𝑌 (1),𝑌 (2), and 𝑍 (2) together with their respective resulting hydrodynamic forces and
new estimation of wave height due to the presence of currents (𝑓𝑦 , 𝑓𝑧 , and 𝑌 (2)𝑐 ) are the
nodes of the FK vine-copula model (Section 6.4.2).
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6.4.1 Froude-Krylov (FK) force
The Froude-Krylov (FK) force is the force that acts on an ideal water cylinder that has
the same radius as the tunnel and is located at the same depth. It is assumed that the
pressure field is not affected by the presence of the tunnel and can be determined from
the incident wave potential by itself [120]. The horizontal and vertical components of the
Froude-Krylov force per unit length (𝑘𝑁 /𝑚) are estimated as follows [121]:

𝑓𝑦 = Φ𝜋𝑅2𝑎𝑦 (6.3)

𝑓𝑧 = Φ𝜋𝑅2𝑎𝑧 (6.4)

Where 𝑎𝑦 and 𝑎𝑧 are given by:

𝑎𝑦(𝑦,𝑧, 𝑡) =

𝑔 𝐻2 𝑘𝑐
𝑐𝑜𝑠ℎ(𝑘𝑐𝑧)
𝑐𝑜𝑠ℎ(𝑘𝑐𝑑)

𝑠𝑖𝑛(𝑘𝑐𝑦 −𝜔𝑡) (6.5)

𝑎𝑧(𝑦,𝑧, 𝑡) =

−𝑔 𝐻2 𝑘𝑐
𝑠𝑖𝑛ℎ(𝑘𝑐𝑧)
𝑠𝑖𝑛ℎ(𝑘𝑐𝑑)

𝑐𝑜𝑠(𝑘𝑐𝑦 −𝜔𝑡) (6.6)

Where Φ is the density of ocean water (1030 [kg/m3]), 𝑅 is the radius of the SFT in
[m], 𝐻 is the wave height in [m] (𝑋 (1) or 𝑌 (1)), 𝑔 is the acceleration of gravity equal to
9.81 [m/s2], 𝑘𝑐 is the wave number that depends also on the current velocity in [rad/m],
𝑧 is the distance from the center of the SFT to the seafloor (Fig. 6.6), and 𝜔 is the angular
frequency [rad/s]. In this section, 𝐻 is used as a general term to depict wave height that
can be either from wind waves or total swell. As mentioned in the previous section, total
swell is selected as the wave system of interest.

It is assumed that waves and currents travel in the same direction. The resulting vari-
ables from the FK approach and its nomenclature are depicted in Table 6.6.

Result Variables Standard Name This article
FK component 𝑓𝑦 𝑓𝑦
(y-direction)
FK component 𝑓𝑧 𝑓𝑧
(z-direction)
New significant wave height 𝐻𝑐 𝑋 (1)𝑐 , 𝑌 (1)𝑐
(due to the presence of currents)
Wave number 𝑘𝑐 𝑘𝑐
(due to the presence of currents)

Table 6.6: Name and description of resulting variables from the FK approach.
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6.4.2 FK vine-copula model
The FK vine model considers as input the simulations of swell waves, current velocity
at 15m from the surface from the previous vine model, and their respective FK variables
(computed as in Section 6.4.1). The purpose of the FK vine model is to analyze the resulting
forces from swell waves and currents for the 9 SFT configurations presented in Table. 6.5.
Thus, there are 9 different variations of the FK vine model (where the metocean variables
remain the same but the magnitude of the forces change given each SFT configuration).
The univariate fit for the FK variables was also performed for the 9 configurations. The
fitted probability distribution for 𝑓𝑦 and 𝑓𝑧 is a t-location scale distribution (for all 9 SFT
configurations). Meanwhile, 𝑌 (2)𝑐 , was fitted to a generalized extreme value distribution
(G.E.V) with parameters 𝜇,𝜎 ,𝑘 = 0.24,0.09,1.40 respectively. The parameters for 𝑓𝑦 and 𝑓𝑧
are presented in Table 6.7.

Config.
𝑓𝑦 𝑓𝑧

t-location scale t-location scale
[𝜇,𝜎 ,𝑣] [𝜇,𝜎 ,𝑣]

1 [26.79,1.83,1.45] [26.74,1.77,1.44]
2 [18.08,2.53,2.16] [18.02,2.46,2.16]
3 [12.17,2.57,2.59] [12.07,2.47,2.63]
4 [37.95,3.24,1.64] [37.86,3.15,1.62]
5 [25.60,4.04,2.29] [25.48,3.91,2.30]
6 [17.23,3.94,2.67] [17.06,3.77,2.73]
7 [49.55, 5.15,1.83] [49.41,4.99,1.82]
8 [33.39,5.87,2.40] [33.21,5.67,2.42]
9 [22.48,5.54,2.74] [22.22,5.28,2.81]

Table 6.7: Parameters of the GEV distributions for 𝑓𝑦 and 𝑓𝑧 .

In Table 6.7, the parameters for 𝑓𝑦 and 𝑓𝑧 are very similar. Thus, from this point for-
ward, the analysis is focused only on 𝑓𝑦 . The vine proposal for the FK model corresponds
to a T10-type regular vine (Fig. 6.7) and is the same for the 9 SFT configurations. The vine
model proposal was obtained by fitting the data to all possible vines when n=6 (23040
vines), similar as in Section 6.3.2. The process of fitting 23040 vines for different 9 scenar-
ios is computationally expensive (in the order of magnitude of several days) in a regular
laptop computer (Processor: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz and
RAM of 8GB). Thus, a total of 207360 vines were fitted.

From the selected vine model (Fig. 6.7), a total of 500 thousand simulations were pro-
duced for each variable and for each of the 9 SFT configurations. Fig. 6.8a and Fig. 6.8b
show the matrix correlation plot of the input variables and the resulting simulations from
the FK vine model. The plots correspond to the SFT configuration 2 (𝐷 = 20m ℎ = 30m).

For the pairs {𝑓𝑦 ,𝑌 (1)}, {𝑓𝑧 ,𝑌 (1)}, and {𝑌 (1),𝑌 (1)𝑐 }, the correlation values between the
data and the simulations are very similar. However, the shape of the scatter plots differs
slightly. For the pairs {𝑍 (2),𝑌 (1)𝑐 }, {𝑓𝑦 ,𝑌 (1)𝑐 }, and {𝑓𝑧 ,𝑌 (1)𝑐 }, the correlation values from the
simulations are slightly higher than the observations, but the model is able to capture the
dependence between pairs that have low correlation values. Notice that in Fig. 6.8a, their
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Figure 6.7: Vine for swell wave and currents at 15m from the surface and their resulting hydrodynamic forces.

respective scatter plots have defined sharp edges (suggesting physical limits to these vari-
ables), while in Fig. 6.8b the scatter plots those edges are not correctly modeled. Similar
results were obtained for the remaining SFT configurations.

Table 6.8 (Columns 4 and 5), shows the correlation values for {𝑓𝑦 ,𝑌 (1)𝑐 }. Overall, the FK
vine model is able to capture quite well the dependence between the variables. Addition-
ally, the correlation values appear to decrease for increasing diameter and submergence
depths (𝐷 and ℎ). For example, when 𝐷=20m (Config. 1-3) the correlation value starts at
0.84, and for each increasing submergence depth ℎ, the correlation value decrease to 0.65.
The same occurs throughout the remaining SFT configurations. This trend is also present
in the correlation values of the simulations. This may be explained because water depth
acts as a damping factor for the forces acting on the SFT. Wave energy decreases deeper in
the water, therefore the resulting forces for deeper water have smaller correlations with
variables at the water’s surface.

Conditional distribution of FK variables
The new set of simulations (500 thousand values per variable) from the FK vine (Fig. 6.7) is
used to analyze the conditional distributions of the FK variables for the different configu-
rations of the SFT.The focus is on 𝑓𝑦 (𝑓𝑧 is not further investigated in this section given its
high correlation value with 𝑓𝑦 ). The conditional analysis is carried out to show how vine
copula models can be used to investigate 𝑓𝑦 given specific values of wave height, wave pe-
riod, or current velocities (𝑌 (1), 𝑌 (2), and 𝑍 (2)). In other words, the conditional marginal
distribution of 𝑓𝑦 is investigated. This distribution focuses on the 𝑓𝑦 values under specific
conditions of wave height, period, and current velocity.

The first step to obtain the conditionalized distributions of 𝑓𝑦 is to define the condi-
tional values of 𝑌 (1), 𝑌 (2), and 𝑍 (2). In this study, the values correspond to their 100-year
return period. However, as mentioned in section 6.2.1, in a POT approach, the return
period or probability of exceedance is calculated by taking into account the rate of oc-
currence of the clusters (Eq. 6.1). The yearly cluster rate (𝜆) is defined as the average
number of storms per year and is equal to 1.59. Thus, for a return period of 100 years, the
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respective probability of exceedance is 0.006 instead of 0.01 as it would be in an annual
maxima analysis (AMA). See section 6.2.1. The conditional values of 𝑌 (1), 𝑌 (2), and 𝑍 (2)
that correspond to a 100-year return period are 4.5 [m], 12.8 [s], and 1.3 [m/s] respectively.

The conditional distributions are defined by the values of 𝑓𝑦 that occur at the same time
when the 100-year values of 𝑌 (1), 𝑌 (2), and 𝑍 (2) are exceeded within the simulations. The
number of values that compliedwith such conditions ranges between 30 and 60 samples for
the nine SFT configurations. These conditionalized data are fitted to parametric probability
distribution functions and estimations of the variables of interest are drawn for a 100-year
return period. This processwas performed for all 9 SFT configurations. Table 6.8 shows the
resulting design values of the non-conditional distributions (NCD) versus the conditional
distributions (CD) for the 9 SFT configurations.

Config. D [m] h[m] {𝑓𝑦 ,𝑌 (1)𝑐 } 𝑓𝑦 [kN/m]
Obs. Sim. NCD CD

1 20 20 0.84 0.82 57 964
2 20 30 0.72 0.71 38 107
3 20 40 0.65 0.65 28 157
4 25 20 0.80 0.79 79 253
5 25 30 0.70 0.69 55 179
6 25 40 0.64 0.64 41 198
7 30 20 0.77 0.76 102 577
8 30 30 0.68 0.67 73 339
9 30 40 0.63 0.63 55 367

Table 6.8: Correlation values of the pair {𝑓𝑦 ,𝑌 (1)𝑐 } for 9 SFT configurations.

A non-conditional distribution (NCD) also known simply as a marginal distribution
describes the probabilities of the variable of interest (𝑓𝑦 ) without taking into account any
specific constraints or conditions regarding other variables. However, the conditional dis-
tribution (CD) provides the probabilities of 𝑓𝑦 under specific values of wave height, period,
and current velocity. In general, note that in Table 6.8 (Columns 6-7), for configurations
with the same diameter, shallower submergence depths are associated with larger forces.
For example, out of Config. 1-3 the largest force is found in Config. 1. The same can be
noted for Config. 4 and 7. This occurs for both the non-conditional (NCD) and conditional
distributions (CD). Moreover, 𝑓𝑦 decreases for an increasing submergence depth in cases
that share the same diameter. The forces decrease around 50% from a depth of 20m to
40m. For configurations that share the same submergence depth but different diameters
(For example Config. 4 and 7), note that for an increasing diameter, the forces are larger
(at the non-conditional values in column 6). The largest computed force for both the NCD
is found for Config. 7 and for the CD, the largest force is found in Config. 1. That has
the biggest diameter (30m) and shallower submergence depth (20m) respectively with 102
and 964 kN/m for the NCD and CD. The smallest forces for both CD and NCD are found
in configurations 3 and 2 respectively.

Overall, for all configurations, larger values are obtained for the CD (Column 7 Table
6.8) due to the conditionalization of the forces on high values of wave height, wave period,
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and currents. For example, the effect of conditionalizing 𝑓𝑦 can be appreciated in Fig. 6.9
where the mean of the distribution changes from 50 to 119 kN/m.

The values from the CD provide insight into the importance of taking into account the
dependence between variables when investigating the forces acting on the SFT. Addition-
ally, the case study presented in this study highlights the effect of different combinations
of diameters and submergence depths that can be considered for the design of an SFT.
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Figure 6.9: Cumulative probability distribution of 𝑓𝑦 (Unconditional and conditionalized). Configuration 7.

6.5 Discussion
In engineering, its common practice to define metocean variables as independent from
each other. These values usually represent extreme events. In this study, a vine-copula
model is presented as a novel methodology to characterize the joint distribution of meto-
cean variables by taking into account the dependence structure between them.

When using vine-copula models, a challenge arises as to choosing the best vine to
characterize the variables of interest. As shown in section 6.3.2, software such as the
VineCopula R package [105] can help to find the best vine model for a given data set.
Such tools can help reduce computational efforts but do not always provide the vine with
the lowest AIC value. Another approach is to fit every possible vine of 𝑛 nodes and use
the one with the lowest AIC value.

An additional application is presented as a case study to investigate the forces acting
on the SFT. These studies are important for engineers focused on designing the SFT. In
this study, the importance of taking into account the dependence between the metocean
variables and their respective hydrodynamic forces for different SFT configurations is il-
lustrated. In Table 6.8 we present the non-conditional (NCD) and conditional distribution
(CD) of 𝑓𝑦 as a direct consequence of conditionalizing the distributions to larger values of
𝑌 (1), 𝑌 (2), and 𝑍 (2). There are significant differences between both distributions. It is also
shown which SFT configurations result in the largest forces acting on the structure (Con-
fig. 7 and 1 respectively). This information is useful for engineers and decision-makers to
make informed choices for the design of the SFT.
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In general, the structure is subjected to horizontal and vertical forces. In this study,
only the horizontal component of the hydrodynamic force is taken into account. The ver-
tical force depends on the external diameter of the structure and the weight of ballast.
For the horizontal component of the hydrodynamic force, both the diameter and the sub-
mergence depth are factors that influence its computation. In Table 6.9 we present an
estimation of the uplift force (𝐹𝑢), the weight of the concrete (𝐹𝑐 ), the weight of ballast
(𝐹𝑏), and the resultant vertical force (𝐹𝑅) using the results from the conditional distribu-
tions. This was done assuming an SFT’s wall thickness of 1.3m for all configurations. The
amount of ballast used in the calculations has been determined in such a way that the
BWR is always 1.3 to ensure the stability of the structure.

Config. D h 𝑓𝑦 (CD) 𝐴𝑆𝐹𝑇 𝐴𝑐 𝐹𝑢 𝐹𝑐 𝐹𝑏 BWR 𝐹𝑅 𝐹𝑅/𝑓𝑦
[m] [m] [kN/m] [𝑚2] [𝑚2] [𝑘𝑁 /𝑚] [𝑘𝑁 /𝑚] [𝑘𝑁 /𝑚] [𝑘𝑁 /𝑚]

1 20 20 964 314 76 3174 1873 600 1.3 900 0.9
2 20 30 107 314 76 3174 1873 600 1.3 900 8.4
3 20 40 157 314 76 3174 1873 600 1.3 900 5.7
4 25 20 253 491 97 4960 2374 1500 1.3 1391 5.5
5 25 30 179 491 97 4960 2374 1500 1.3 1391 7.8
6 25 40 198 491 97 4960 2374 1500 1.3 1391 7.0
7 30 20 577 707 117 7142 2875 2700 1.3 2009 3.5
8 30 30 339 707 117 7142 2875 2700 1.3 2009 5.9
9 30 40 367 707 117 7142 2875 2700 1.3 2009 5.5

Table 6.9: Buoyancy weight-ratio (BWR) and vertical forces for different SFT configurations. 𝐴𝑆𝐹𝑇 :
Cross-section area of the SFT. 𝐴𝑐 : Area of concrete. 𝐹𝑢 : Uplift force. 𝐹𝑐 : Weight of concrete. 𝐹𝑏 : Weight of

ballast. BWR: Buoyancy-weight ratio. 𝐹𝑅 : Resultant vertical force.

Notice that for an SFT with an external diameter of 20m (Config. 1-3), the resultant
vertical force is approximately 900 KN/m ( First row of Table 6.9). This horizontal force
(𝑓𝑦 4th column in Table 6.9) is slightly larger than the corresponding vertical force 𝐹𝑅 .
For the case of an SFT with tethers, this can influence the way the tethers are arranged
to avoid large displacements. However, for diameters such as 25m or 30m, the resultant
vertical force is 3 to 8 times larger than the horizontal force (Column 12). In such cases,
the horizontal force is less likely to cause large displacements in the structure because the
resultant vertical force can compensate for it.

The choice of configuration for an SFT depends on many factors. In Table 6.9, it is
shown that varying diameters and submergence depths can lead to different estimations
of horizontal and vertical forces. At the same time, the thickness of the walls and the
amount of ballast are also aspects to take into account. Larger diameters will need more
ballast to keep the structure stable.

An optimum design must ensure an acceptable level of safety at the lowest cost pos-
sible. In the case of an SFT, a structure that has never been built before, there is a lack
of experience in its design and construction. An SFT combines elements of other civil
structures such as bridges, tunnels, offshore platforms, and even dike rings [122]. Thus,
from a safety perspective, the SFT also combines different aspects like structural safety,
risk of flooding, and length effect among others. An SFT is, therefore, a special structure
that does not meet the standards set by any other structure and requires its own reliabil-
ity validation. [122] proposed that this validation can be achieved by combining different
approaches described in ISO2394 [123] and JCSS 1999 [124]. The structural design and
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design decisions for an SFT could be evaluated by the risk-informed method (also known
as the level IV method). In this method, decisions are made based on minimizing the risks
and can provide an optimum design by considering the expected consequences in case
of failure. However, estimating the consequences and respective safety measures is out
of the scope of this study. Nevertheless, it is recommended that the SFT configurations
presented previously should be evaluated using the level IV method.

6.6 Conclusions
The methodology presented in this study uses vine-copula models to approximate the
stochastic processes that characterize the metocean variables at the Qiongzhou Strait and
their resulting hydrodynamic forces acting on different configurations of an SFT.

Specifically, this tool was used to characterize extreme events. Generally, extreme
events are rare, thus, having large data sets of extreme events is also rare. Vine-copula
models allow insight into the dependence structure of several variables. Thus, this study
aims to represent metocean variables as close to reality as possible by considering their
dependence structure. A total of 300 samples of wave height and wave periods (for wind
waves and swell waves), and current velocities at 1m and 15m depth (𝑋 (1), 𝑋 (2), 𝑌 (1), 𝑌 (2),
𝑍 (1), 𝑍 (2)) were simulated. These simulations were used as input for a second vine-copula
model to study the resulting forces produced by the simultaneous action of the metocean
variables for 9 SFT configurations. Then the simulated values for the force 𝑓𝑦 were con-
ditionalized on the 100-year values of significant wave height, wave period, and current
velocity. The results show that larger forces are obtained when conditional distributions
are used instead of considering the non-conditional distribution of the variables. This high-
lights the importance of dependence between variables when designing an SFT. Finally,
we presented an estimation of the expected resultant vertical force and BWR for the 9 SFT
configurations given a wall thickness and different amounts of ballast. A brief discussion
was presented to illustrate the importance of the ratio between the vertical force 𝐹𝑅 and
the horizontal force 𝑓𝑦 and their impact when choosing a configuration for future design.

This methodology can be extended to different sea states or to take into account the
direction of incoming waves and currents. Other variables may be used in addition to
those listed in this study. For example, internal waves, tsunami waves, earthquakes, or
the traffic passing through the SFT. For the case of a pontoon-type SFT, wind data could
be included in the analysis. However, increasing the number of variables 𝑛 in vine-copula
models involves some challenges (as described in Section 2.4). Moreover, the conditional
study of the forces acting on the SFT can be extended to investigate other scenarios or
other values of wave height, wave period, and currents. Nevertheless, the methodology
presented in this study is not restricted to a particular design of an SFT, its flexibility allows
to simulate different variables and use it to test any type of civil structure.

The findings of this research demonstrate that a multivariate approach can aid in the
design and evaluation of civil structures by considering more realistic extreme events.
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7
Bayesian Networks for waves,

currents, and hydrodynamic forces
The Qiongzhou Strait in China is a very dynamic region in terms of waves and currents.
It is thus of interest to study the forces acting on a hypothetical SFT due to the combined
action of these variables. It is crucial to consider the dependence between waves and
currents, especially during extreme events. In this chapter, we present a methodology that
allows representing the multivariate joint distribution between metocean variables, these
are a) wave variables such as significant wave height and period for two wave systems
(wind waves and swell waves), b) current velocities at two different depths below the
surface (1m and 15m), and c) the forces acting on the SFT due to the combined action of a
and b.

In this chapter, we present a BN model that evaluates twelve different configurations
of the SFT, with varying submergence depths and diameter sizes. The proposed method-
ology can be used to provide a realistic estimation of the forces on the SFT by considering
the dependence between the variables of interest. Moreover, this methodology can be
extended to test different configurations of the SFT and other hydraulic or maritime struc-
tures subjected to simultaneous loading. The inference process is less computationally
expensive for Bayesian Networks. One of the reasons is the assumption that the joint
distribution follows a Gaussian distribution. This allows for faster computations even for
high-dimensional problems. However, these models might not be able to capture non-
Gaussian or non-linear behaviors in the data. The choice between Bayesian Networks and
other probabilistic models such as vine-copulas relies on the nature of the problem, the
type of data, and the complexity of the dependencies.

This chapter is organized as follows. First, a brief introduction to this study is presented
in Section 7.1. Followed by a description of the modeling approach (Section 7.2). Next, the
results for the twelve SFT configurations are discussed in Section 7.3. Finally, Section 7.4

Parts of this chapter have been published within: G.A. Torres-Alves, O. Morales-Nápoles, & S.N. Jonkman.
Bayesian Networks for Estimating Hydrodynamic Forces on a Submerged Floating Tunnel. Proceedings of the
31st European Safety and Reliability Conference, ESREL 2021.
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concludes the chapter by presenting the conclusions and identifying the areas for future
work.

7.1 Introduction
There are several challenges remaining regarding the design and construction of an SFT
due to a lack of data and experience. One topic of interest is the effects of the combined ac-
tion of metocean variables. Usually, in the design of offshore structures, the simultaneous
action of design values is investigated under the assumption of independence [125]. For
example, the Norwegian practice assumes that the simultaneous action of the 100-year sea
state, the 100-year mean wind speed, and the 10-year current velocity represents the en-
vironmental conditions from where the extreme loads and effects can be calculated [125].
In such cases, a probabilistic model that takes into account the dependence between the
variables of interest could represent the surrounding environment more realistically.

In this chapter, we use a data set generated by the Vine-Copula model developed by [4]
(Chapter 6) as input for the BNmodel. This data set describes extreme events of significant
wave height (defined as the average wave height of the highest one-third of the waves) for
wind and swells waves (as the dominant variable) and their corresponding accompanying
values of wave period and current velocity (as concomitant variables). The choice of the
data set was made due to its larger size compared to the original extreme value data set.

Next, the hydrodynamic forces acting on the SFT (introduced by the combined action
of waves and currents) are computed through the Froude-Krylov (FK) equation [16] (Sec-
tion 6.4.1). The simplicity of this equation provides a reasonable approximation of the
hydrodynamic forces acting on the SFT in terms of a simple expression. Finally, both
the metocean data set and the resulting forces are used as input to a probabilistic model
(Bayesian Networks) that allows the evaluation of the conditional probability of the result-
ing forces subject to the simultaneous action of the variables mentioned previously. Differ-
ent SFT configurations (combinations of diameters and submerged depths) were subjected
to this approach. Due to the computational efficiency offered by Bayesian Networks, it
is possible to investigate more SFT configurations. Thus, 12 SFT configurations are intro-
duced in this chapter while Chapter 6 (which focuses on the application of vine-copulas)
investigates 9 configurations.

Bayesian Networks have been widely studied in the literature to analyze the depen-
dence between variables within a system and have been applied to several fields. For
example, [126] uses Bayesian Networks to assess the impact of climate change on water
quality, while [127] presents a risk analysis for reservoir regulation using BNs. Moreover,
BNs have been used to simulate environmental data sets. [69] models monthly regional
rainfall using local meteorological drivers in India. Another example is the work devel-
oped by [71], where peak storm surges and precipitation are simulated to determine the
hydraulic boundary conditions for a low-lying coastal watershed. In [70] a BN model was
used to estimate extreme river discharges in Europe. As mentioned in previous chapters,
submerged floating tunnels are relatively new and specialized structures. The application
of Bayesian Networks to investigate loading scenarios on this structure has not been ex-
plored yet due to a lack of specific domain expertise, data availability, and the complexity
of the structure.

The aim of this study is to shed light on a probabilistic methodology using continuous
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Bayesian networks to study the conditional distribution of the hydrodynamic forces acting
on an SFT under the simultaneous action of metocean variables (Section 3.2) for twelve
SFT configurations. This methodology can be extended to other andmore complex models
for describing the relation between metocean variables and testing different shapes, sizes,
and elements of the SFT.

7.2 Modeling approach
7.2.1 Overview of the model
The first part of the methodology consists of computing the components of the Froude-
Krylov forces acting on the SFT where the 12 SFT configurations (Table 7.1) and the meto-
cean data are used as input. Next, a BN model is constructed to study the resulting con-
ditionalized distribution of the forces based on the simultaneous action of the metocean
variables on the SFT (Fig. 7.1). In Bayesian Networks, a conditionalized distribution is the
probability distribution of a variable given the value of its parent variables within the net-
work (Section 2.5). This distribution represents the conditional dependence relationships
between the variables in the BN.

Config. 𝐷 [m] ℎ [m] 𝑧 [m]
1 10 30 85
2 10 40 75
3 10 50 65
4 20 30 80
5 20 40 70
6 20 50 60
7 25 30 77.5
8 25 40 67.5
9 25 50 57.5
10 30 30 75
11 30 40 65
12 30 50 55

Table 7.1: Case scenarios.

The analysis is divided into two main loading scenarios, i) wind waves and currents,
and ii) swell waves and currents. In the previous chapter, the dominant variable is the
significant wave height of swell waves. For each scenario in this chapter, the respective
significant wave height is used as the dominant variable, and the 12 SFT configurations
are evaluated. This approach ensures a comprehensive assessment of the loading scenar-
ios under different wave conditions. Each scenario is represented by its own Bayesian
Network (BN), specifically BN1 for wind waves and currents, and BN2 for swell waves
and currents (Section 7.2.2).

The general SFT configuration scheme is the same as in Chapter 6 (Fig. 6.6), where 𝐷
is the SFT diameter, ℎ is the submergence depth, and 𝑧 is the distance from the center of
the SFT to the seafloor. The total water depth at the strait (𝑑) is constant and equal to 120
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m. For this study, the SFT is simplified as a submerged horizontal cylinder with no tethers
or pontoons.

Metocean 

Data

Froude- Krylov Eq.

(12 scenarios for wind 

and swell waves)

Hydrodynamic

Forces

BN Model

Conditional

distributions

Vine Copula Model

Figure 7.1: Modeling approach

7.2.2 Building the BNs
Two BNs are presented, one for wind waves and currents (BN1) and the other for swell
waves and currents (BN2). Regardless of the type of waves, the order of the nodes for both
BNs is the same (Fig. 7.2).

To define the arrangement of the nodes, the physical relationship of the nodes needs
to be considered. In general, the construction of the BN structure was done by using
general knowledge of the variables and their relation with each other. Some relations are
expected, for example, significant wave height and wave period, as well as current velocity
and wave height. This is proved by their somewhat high correlation values (0.67 and 0.41
respectively). From the FK approach, a new estimation of wave height is derived (𝑋 (1)𝑐 )
(A wave height that results from its interaction with currents). Thus, it makes sense that
their parent nodes are the initial significant wave height and current velocity. Finally, the
force is computed from the new estimations of wave number and wave height, therefore
these variables are defined as parents of the force’s nodes.

In Fig. 7.2, the nodes are depicted as histograms with numbers representing the vari-
ables’ mean and standard deviation. The values on the arcs are the conditional rank corre-
lation coefficients. Each BN consists of 2 main categories, i) input values: wave height and
period, and current velocities (𝑋 (1),𝑋 (2),𝑌 (1),𝑌 (2),𝑍 (1),𝑍 (2)), and the resulting variables
from the FK approach: the force components, the new estimation of the wave height and
wave number (𝑓𝑦 , 𝑓𝑧 ,𝐻𝑐 , 𝑘𝑐 ).

The BN setup presented in Fig. 7.2 was derived by testing several configurations. The
position of the nodes shows their order relative to the force components (𝑓𝑦 and 𝑓𝑧 ). To
estimate the force components given certain conditions (i.e. a specific wave height and
period), the BN is updated. This means that the value of the node (or nodes) is defined
based on the observations of that particular node.
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Wave period X
⁽�⁾

Wave Height X
⁽�⁾

Current Vel. at 1m Z
⁽�⁾

New Wave Height X
c
⁽�⁾ Wave Number k

c

6.48 ± 0.584 2.2 ± 0.547 0.686 ± 0.27

1.93 ± 0.463 0.087 ± 0.014

3.51 ± 2.35 3.51 ± 2.34

 p

0.67 0.41

0.94 0.32 -0.54

-0.960.91
-0.96 0.91

FK component FK component

Figure 7.2: Uninet visualization of the Bayesian network (BN1) for metocean variables and Froude-Krylov
forces at the Qiongzhou Strait

TheBNmodelwas implemented using theMATLAB toolbox for Non-Parametric Bayesian
Networks: BANSHEE–A [128] and the Uninet software was used to visualize the model
(for more details see [129]).

In this study, it is of interest to conditionalize the BN on values that are out of the
range determined by the data. Thus, instead of using the empirical distributions of each
node, the data were fitted to univariate theoretical distributions to allow extrapolation to
larger values.

Finally, a total of 10.000 samples were generated each time the BNwas conditionalized.
This was done to estimate the force components for a given environmental condition (dif-
ferent values of wave height, wave period, or current velocities).

7.3 Results
7.3.1 Univariate Fitting
The metocean variables (wave height, wave period, and current velocities) and the 12 SFT
configurations were used as input to compute the FK forces acting on the SFT. As a result,
we obtain 12 different estimations of the FK force components. Then, the variables were
fitted to theoretical univariate distributions.

In the case of the metocean variables, all of them are best described by a Generalized
extreme value distribution. The univariate fit for the FK variables (𝑓𝑦 , 𝑓𝑧 ,𝐻𝑐 , 𝑘𝑐 ) for both
wind waves and swell waves was performed for each of the 12 configurations. The fit for
each of the FK variables in each configuration is described by the same distribution. The
corresponding fits are shown in Table 7.2.
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Variable Wind Waves Swell Waves
𝑓𝑦 Loglogistic Weibull
𝑓𝑧 Loglogistic Weibull
𝐻𝑐 Loglogistic Gamma
𝑘𝑐 G.E.V Inv. Gaussian

Table 7.2: Univariate fitting for the FK variables

7.3.2 Validation of the Bayesian Network Model
To validate the BNs, the dependence calibration (d-cal) score was computed. This score
measures the distance between the empirical rank correlation matrix (ERC), the BN rank
correlation matrix (BNRC), and the empirical normal rank correlation matrix (NCR) [128].
If the matrices are equal, the score is equal to 1. If one matrix has a pair of perfectly
correlated variables and the other one does not, the score is 0. The score tends to zero as
element-wise the bivariate correlations are equal in magnitude but different in sign [130].

Through this diagnostic test, two properties are checked, i) that the joint Gaussian
copula is adequate to represent the data, and ii) that the proposed BN is an appropriate
model for the saturated graph ( i.e. when all the nodes are connected to each other).

The resulting average d-cal score for all twelve scenarios of the BN1 is equal to 0.23,
while the d-cal score between BNRC and NRC is equal to 0.003. Similar results were ob-
tained for BN2. Thus, it is found that for both BNs the Gaussian copula does not represent
adequately the data, nor this copula is valid for the particular configuration of the BNs
presented in this study. This is because the original data comes from a vine-copula model
in which a variety of copulas (different from a Gaussian) were used to generate the data
set.

However, different d-cal scores may arise if the original observations are used instead
but such analysis is out of the scope of this study. The BNs presented herein were still used
to analyze the conditional distributions of forces acting on the SFT. This is done in order
to show how BNs can be used to study different variables when the dependence between
them is taken into account or what can be done if the empirical data were used instead.

Conditional distribution of force components To simulate the conditional distribu-
tion (CD) of the hydrodynamic forces, the BN is updated. This means that the resulting
conditionalized distribution is the probability distribution of the force component given
specific values of its parent variables (wave height, wave period, and current velocity).
This was done for all twelve case scenarios of both BNs in order to compute the design
values of the force from the conditional distributions. A conditional distribution repre-
sents the conditional dependence relationships between variables in the network.

In this study, we present an example where we conditionalize (or update) the BNs on
large values of waves and currents (𝑋 (1) = 15 m, 𝑌 (1) = 8 m, and 𝑍 (1) = 1 m/s). The design
values correspond to a probability of 1/100. Table 7.3 presents the design values of 𝑓𝑦
obtained from the conditional distribution (CD) and the marginal distribution (MD). The
marginal distributions represent the probability of a single variable within the network
without considering the values of any other variables.
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Config. BN1 (Wind waves) BN2 (Swell waves)
CD MD CD MD

1 106 12 21 7
2 123 8 20 5
3 59 5 7 4
4 459 38 82 24
5 537 24 81 18
6 346 15 30 14
7 779 53 127 35
8 844 33 125 26
9 656 21 54 20
10 1111 68 182 47
11 543 42 60 36
12 1176 26 97 27

Table 7.3: Design values of 𝑓𝑦 [kN/m] corresponding to a probability of exceedance of 0.01 for both BNs.

Table 7.3 shows that the design values obtained from the conditional distributions are
significantly larger than the ones from the marginal distribution of 𝑓𝑦 . In general, larger
diameters and shallower submergence depths (ℎ) lead to stronger forces. Thus, the largest
force for BN2 is found in case scenario 10 with 𝑓𝑦 = 182 kN/m. However, in BN1 the
largest force correspond to case scenario 12 (𝐷 = 30 m and ℎ = 50 m) with a 𝑓𝑦 = 1167
kN/m. Similar results were obtained for 𝑓𝑧 .

Overall, large design values are obtained from the CD as a result of updating the BN.
By conditionalizing the BN1 on high values of wave height and currents, the distribution
of 𝑓𝑦 shifted its mean from 14.5 to 265 kN/m (configuration 10). Fig. 7.3 depicts the effect
of conditionalizing the BN and reflects the updated probabilities of 𝑓𝑦 when the values
of the parent nodes are known. This allows us to investigate the variable’s (𝑓𝑦 ) behavior
given different values of wave height, wave period, and current velocities.

The resulting design values provide insight into the importance of considering the de-
pendence between the variables rather than studying them independently. Moreover, the
methodology also highlights the role of each variable when designing an SFT, for example,
the design values from BN1 are larger than those from BN2. Thus, in this particular case,
wind waves generate larger forces than swell waves.
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Figure 7.3: Cumulative probability distribution of force: unconditional and conditionalized on 1 node (wave
height) case study 10. BN1

7.4 Conclusions
In this study, we present a methodology to study the conditional distribution of the force
components acting on an SFT as a result of the simultaneous action of waves and currents.
The method focuses on taking into account the complex dependence structure between
metocean variables and the resulting forces.

Two Bayesian Networks (BN1 and BN2 for wind and swell waves respectively) were
used to characterize the joint dependence of the variables for twelve different configura-
tions of the SFT. The BNs were conditionalized on different values of significant wave
height and period for both wind waves and swell waves. The focus is on large values
of wave heights and fast current velocities to compute design values for the force com-
ponents 𝑓𝑦 and 𝑓𝑧 . The results show that stronger forces are obtained when conditional
distributions are used instead of considering the variables as independent. This highlights
the importance of dependence between variables when designing an SFT.

The methodology presented in this study can be extended for more complex models
(advanced physical models for structural response) and to analyze the SFT (or any of its
elements) under different environmental variables. Therefore, this methodology can be
used as a reference for other SFT configurations.
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8
Discrete Bayesian Networks for

Reliability of an SFT
There is a lack of knowledge and experience about the hazards that are most pertinent to
a submerged floating tunnel and how they can contribute to the failure of this structure.
This chapter aims to provide a methodology to identify and quantify scenarios that can
lead to the failure of the SFT by using a discrete Bayesian network (BN)model. Themethod
consists of 1. Identifying the hazards that are relevant for the SFT, 2. Constructing the BN,
3. Quantifying the marginal probabilities of the root nodes, the conditional probability
tables (CPTs), and the BN in general, 4. Estimating the conditional probability of failure
of the SFT given different combinations of hazard events called scenarios. For the case
presented herein, fire and terrorism were found to have the most impact on SFT’s failure.
Environmental loads with a 500-year return period had less of an impact, raising the risk
of failure by 40%.

This chapter is organized as follows: Section 8.1 provides an overview of the discrete
BN used in this research. This is followed by a description of the methodology and con-
struction of the BN (section 8.2). Section 8.3 presents the analysis of the results. Finally,
the conclusions and areas of future work are addressed in Section 8.4.

8.1 Introduction
Forecasting the failure of an SFT or its elements is critical to developing more complex
reliability studies for this type of structure. Analyzing the failure of an SFT over its lifetime
can be difficult and requires a multidisciplinary approach. This study aims to provide
engineers with a methodology to quantify the probability of failure of the SFT based on
predetermined scenarios to assist decisions regarding its design. This makes it possible to
support a safe and stable design. Moreover, investigating different scenarios (cases that
consider the occurrence or non-occurrence of specific events that could lead to failure) can
aid in identifying the primary contributing factors to the failure of the SFT or its elements.
Parts of this chapter have been published within: G.A. Torres-Alves, Oswaldo Morales-Nápoles, and S.N.
Jonkman. Bayesian Networks to assess the risk and reliability of a Submerged floating tunnel’. Risk Analysis.
Under Review.
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A methodology for assessing the reliability of the SFT using a discrete Bayesian Net-
work (BN) is developed. Bayesian Networks are probabilistic graphical models that con-
sist of random variables, either continuous or discrete, represented by nodes and condi-
tional probabilities between said variables represented as arcs [84]. Bayesian networks
may substitute fault trees or event trees in risk and reliability analysis [74]. Fault Tree
Analysis (FTA) was first introduced by [66] to facilitate analysis of the launch control sys-
tem of the intercontinental Minuteman missile at Bell Telephone Laboratories. Nowadays,
this methodology is widely employed in a variety of fields including nuclear engineering,
aerospace and aviation, telecommunications, chemical and industrial processes, and civil
engineering (See for example, [131–136]). However, FTA can have limitations when mod-
eling complex systems [67]. In these circumstances, Bayesian Networks are a suitable
option. The edges in a BN represent causal dependencies that make it possible to assess
the impact of interventions or changes in variables. The dependencies between the vari-
ables are clearly represented which enhances transparency and readability. In this way,
it is easier for stakeholders and decision-makers to comprehend and explain safety analy-
ses. Moreover, with BNs is possible to incorporate prior knowledge or experts’ opinions
through prior distributions. With fault trees, the inclusion of new evidence can be chal-
lenging. In cases of complex systems with a large number of variables and dependencies,
Bayesian Networks are more computationally efficient than fault trees. The choice of tech-
nique is dependent on the type of study, the complexity of the system, and the availability
of data. Due to the reasons previously mentioned, a Bayesian Network is a valuable tool
to study the safety of a submerged floating tunnel.

Although previous studies have utilized BNs for tunnel risk assessment [137, 138],
their application to floating tunnels remains unexplored. In this research, random vari-
ables that are of interest for the reliability analysis of an SFT have been grouped into five
main categories, i) environmental loads, which refers to waves, currents, water level, wind,
and earthquakes, ii) maritime accidents, iii) calamity events, iv) vertical stability factors
(related to the equilibrium between the weight and buoyancy of the structure); and v) SFT
elements.

TheBNmodel presented in this research is (to the author’s knowledge) the first attempt
to characterize the variables of interest of an SFT to quantify the conditional probability
of failure of the SFT under different scenarios. The scenarios combine the occurrence (or
non-occurrence) of specific events. In this study, the focus is on developing a discrete
Bayesian Network methodology applied to the SFT to assess its safety and investigate the
potential main factors contributing to the failure of this structure.

8.2 Methodology
The methodology is divided into two main parts, a qualitative and a quantitative part
(Fig. 8.1). First, the qualitative part aims to establish and classify the basic events (or root
nodes) that are relevant to the SFT. For this purpose, brainstorming and preliminary hazard
analysis (PHA) are performed to identify the main hazard events for an SFT. Then, the BN
is constructed by considering the relationship between the variables involved. Hakkaart et
al. [18] presented a proposal for a fault tree that can be used for probabilistic analysis of an
SFT. Any fault tree can be transformed into a BN [139] Therefore, the fault tree presented
by [18] is the foundation to construct the BN presented in this research. The BN’s category
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on maritime accidents (section 8.2.2) is based on the work of Uğurlu et al. [140], which
presents a fault tree to assess maritime accidents caused by collision and grounding. The
procedure for building the BN is described in Section 8.2.1.

Qualitative

Quantitative

Preliminary hazard 

analysis
BN construction

Calculate probabilities 
BN implementation 

(NETICA)

Analysis of scenarios 

Figure 8.1: Methodology Overview.

For the quantitative analysis, the marginal probabilities and conditional probability
tables (CPTs) of the nodes are defined in Section 8.2.2. The BN model is implemented
and quantified using the discrete BN software Netica from Norsys Software Corp [141].
Finally, the BN is used to estimate the conditional probability of failure of the SFT under
different scenarios that combine the occurrence (or non-occurrence) of certain events. Fig.
8.1 depicts the main parts of the methodology and their respective steps.

8.2.1 Construction of the BN
The proposed BN model is classified into four categories that could contribute to the over-
all failure of the SFT (Fig. 8.2), namely, (i) maritime accidents (blue), (ii) environmental
loads (green), (iii) vertical stability (purple), and (iv) calamities (yellow). In addition, one
category takes the SFT’s elements into account (orange).

The BN model was constructed by establishing relationships between the nodes. The
layout of some categories was based on the work from Uğurlu et al. [140], and Hakkaart et
al. [18], namely the sections on maritime accidents and SFT elements respectively. The re-
lationship between the rest of the nodes and categories is based on the author’s judgment.
The nodes are classified into two types, root nodes that depict the basic events (nodes
that have no parents), and functional nodes that depict the intermediate events (nodes
that have one or more parents). The target node is the general failure of the SFT (FL on
Fig. 8.2). In this chapter, the general failure of the SFT is defined as the collapse of the
structure.

The nodes of the discrete BN are expressed in two binary states. The occurrence/fail-
ure/exceedance of an event/value and the non-occurrence/failure/exceedance of an even-
t/value (Fig. 8.2). The marginal probabilities of the root nodes were computed using data
available at the SFT’s particular location [92, 142, 143] or were derived using information
from other studies [140, 144–147].
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However, it is appropriate to clarify that the main objective of this study is not the
computation of the marginal probabilities but to present a methodology that can allow
the analysis of different scenarios and their contribution to the general failure of the SFT
or any of its elements.

The functional nodes are characterized by conditional probability tables (or CPTs). The
CPTs reflect the conditional relationship between the connected nodes, and it is the basis
of the BN probability reasoning [148]. The “AND/OR” logic relationship, is usually based
on the two-state assumption of an event. For the “AND” gate, the upper-level event only
occurs when the basic events occur simultaneously. Regarding the “OR” gate, the upper-
level event occurs when any basic event or combination of basic events occurs [148]. This
is equivalent to the upper-level event not occurringwhen none of the basic events occur. In
this study, the “OR” logic relationship is used for all the functional nodes. A representation
of the CPT of an “OR” functional node with two parents is shown in Fig.8.3.

Once the BN is constructed and the CPTs have been quantified, the safety of the SFT
can be assessed to identify the possible main contributors to the failure of a tethered sub-
merged floating tunnel (SFT) and its elements. This was achieved by establishing different
scenarios that would consider the occurrence of different combinations of events (section
8.3).

8.2.2 Marginal probabilities and CPTs

Maritime accidents In this research, ship collisions are referred to as maritime acci-
dents. This BN category is depicted in Fig. 8.2 as blue nodes. The BN configuration is
based upon the ship collision fault tree presented in [140]. Maritime accidents are associ-
ated with mechanical errors and human errors (related to the ship officer on watch). An
overview of these nodes is presented in Table 8.1. In this study, the original fault tree was
modified and some of the nodes were excluded to reduce the total number of nodes of the
BN. The marginal probabilities of the root nodes were also obtained from [140], and the
functional nodes were estimated using the software Netica [141] (assuming an “OR” log-
ical relationship). The marginal distributions of the nodes in this category are defined as
the probability of occurrence/failure of a variable and its respective complement (section
8.2.1).

Environmental loads Wind, earthquakes, and hydraulic loads such as waves, currents,
and water levels are all relevant for an SFT and are included in this BN category. The
environmental loads are highlighted in green as shown in Fig. 8.2. The marginal distribu-
tions of the nodes, except for earthquakes (EL2), are described based on the probability of
exceeding each node’s 500-year return period value. The marginal distribution of earth-
quakes is based on their probability of occurrence. The current choice of variables for this
particular category is based on reviewing the literature [26, 149–152] and comparing the
loads that are relevant for the SFT and similar structures as shown in Table 1.1. Table 8.2
provides a summary of the nodes in this category.

Wind, wave, and current data (nodes EL11 to EL17) were retrieved from ERA5 [92, 142]
and the Copernicus Marine Environment Monitoring Service [93] respectively as climate
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BW12 (Operator error)

 100
.001

BW122 (Not trained EE)

 100
 0 +

BW121 (Op. distraction)

 100
 0 +

No Fail
Fail

No Fail
Fail

No Fail
Fail

BW121 BW122 BW12

No fail No fail No fail

No fail Fail Fail

Fail No fail Fail

Fail Fail Fail

Figure 8.3: Example of a “OR” functional node. Nodes: BW12-Operator error; BW121-Operator distraction;
BW122-Not trained employee.

Functional nodes Code Root nodes Code
Maritime accident MA Communication failure MA111
Submarine accident MA1 Interpretation failure MA1121
Perception failure MA11 Alcohol abuse MA1122
Individual failure MA112 Fatigue MA1123
Ship collision MA2 Procedure failure MA2111
Navigation maneuvering failure MA21 Inappropriate route selection MA2112
Navigation failure MA211 Inefficient use of bridge navigation equipment MA2113
Uncontrollable factors MA212 Machinery failure MA21211
Internal factors MA2121 Rudder failure MA21212
External factors MA2122 Bow thruster failure MA21213
Maneuvering failure MA213 Environmental restrictions MA21221

Tug failure MA2131
Piloting failure MA2132

Table 8.1: Nodes: Maritime accidents.

Functional nodes Code Root nodes Code
Environmental loads EL Wind speed EL14
Hydraulic loads EL1 Current speed 15m EL17
Significant wave height (swell waves) EL11 Earthquake EL2
Significant wave height (wind waves) EL12 Water level EL3
Wave period (wind waves) EL13
Current speed 1m EL15
Wave period (swell waves) EL16

Table 8.2: Nodes: Exceedance of loads.

reanalysis data with a 3 hourly frequency. This data was used to compute their respective
marginal probabilities.

The BN presented in this study is discrete. However, data of waves, currents, and
wind (EL11 to EL17) are continuous. Therefore, such data needs to be discretized into two
binary states (exceedance and non-exceedance of the loads). In this research, we used
the methodology presented in [81] to discretize the data and quantify the corresponding
conditional probability tables using continuous BNs. This procedure is further explained
in Appendix B and the resulting CPTs are presented in Appendix C.

For earthquakes (EL2), data from [143] was used. This data set consists of a record of
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all the earthquakes (larger than 5 Mw magnitude)¹ that occurred in the area surrounding
the Qiangzhou Strait between the years -193 and 2022. Although the data shows that there
have not been major earthquakes in the area of the Strait, it is important to consider them
and to show the implementation of this variable in the analysis of the failure of the SFT
and its elements. Thus, a Poisson distribution was used to model the occurrence of earth-
quakes. This discrete probability distribution function takes into account the frequency
of earthquakes in the past to calculate the probability of an earthquake occurring in the
future. The Poisson probability mass function on a discrete random variable 𝑄 is defined
as:

𝑓 (𝑘;𝜆) = 𝑃(𝑄 = 𝑘) = 𝜆𝑘𝑒−𝜆
𝑘! (8.1)

where 𝑃(𝑄 = 𝑘) is the probability that an event will occur 𝑘 times, 𝜆 > 0 is the number
of times an event occurs and 𝑘 is the number of occurrences.

The probability of exceedance for water level (EL3) was retrieved from [147] and this
probability is defined as the probability of exceeding its 500-year-return period value,
while the probability of non-exceedance is computed as its complement. In [147], a 60-
year water level data set (between 1960 and 2019) from the Xiamen tide gauge station
located at Gulangyu Island is used to study the extreme water levels related to astronom-
ical tides and storm surges. [147] used a Gumbel distribution to characterize the extreme
water level rise. In this research, the focus is on the total water level and we do not make a
distinction between water levels related to tides or storms. Additionally, Gulangyu Island
and theQiongzhou Strait have different geographical and topographic characteristics, thus
it is likely that the water level conditions differ from one another. Nevertheless, for this
study, the water levels at Qiongzhou Strait are assumed the same as at Gulangyu Island.

Vertical stability Including the buoyancy weight ratio (BWR) in the BN allows for as-
sessing its contribution to the failure of the SFT. This category combines nodes related to
human error and mechanical errors that could influence the vertical stability of the SFT.
There are two nodes on human errors (SFT operators/employees in charge of the vertical
stability monitoring system) and they consider distractions by the operators (BW121), and
not properly trained employees (BW122). See Table 8.3. The corresponding probability of
failure of these nodes was obtained from the study developed by [145] and is equal to
6.00×10−6 for both nodes. In the case of loss of power (BW11), the failure rate is equal to
0.0001, assumed as a mechanical error as described in [144]. This category is illustrated in
purple in Fig. 8.2, where the marginal distributions are defined by their respective proba-
bility of failure/occurrence.

Calamity Events In this category, two calamity events are considered: fire and terror-
ism (Table 8.4). Because no SFT has been constructed yet, databases for tunnels are used

¹The Mw magnitude is based on the moment magnitude scale and it is a measure of seismic energy (Valid values:
0.0 to 9.9). It provides an estimate of earthquake size that is valid over the complete range of magnitudes. The
magnitude scale is logarithmic. An increase of one in magnitude represents a tenfold increase in the recorded
wave amplitude. However, the energy release associated with an increase of one in magnitude is not tenfold,
but about thirtyfold [143].
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Functional nodes Code Root nodes Code
Buoyancy weight ratio BW Loss power BW11
Ballast control BW1 Operator Distraction BW121
Operator error BW12 Not trained employee BW122

Table 8.3: Nodes: Vertical stability

to estimate calamities in the SFT. For example, fire (F) is described as the probability that
a fire event would cause structural damage in the tunnel. This value was obtained from
the database presented in [153], which presents a record of accidents in tunnels around
the world. For terrorism, the minimum attack probability is 0.0001/building/year for high-
density occupancies, monumental or iconic buildings among others [146]. In Fig. 8.2,
calamity events are displayed in yellow. The functional node “Calamity in the tunnel”
(FL11) is the only node in the entire network that is not described by an “OR” relationship.
In this node, the presence of either fire or terrorism can result in a calamity in the tunnel,
different from maritime accidents, which do not always lead to calamities in the tunnel.

Functional nodes Code Root nodes Code
Calamity in tunnel FL11 Fire F

Terrorism T

Table 8.4: Nodes: Calamities.

SFT Elements This category of nodes of the BN is based on a fault tree presented in [18]
and consists of the key components of the SFT (orange nodes in Fig. 8.2). The original fault
tree was modified to a tethered SFT. Therefore, pontoon-related elements were neglected.
All the nodes in this category are functional nodes (Table 8.5).

Functional nodes Code
SFT failure FL
Tube failure FL1
Shore connection FL2
Joint failure FL3
Cable group fail FL4
Cable fail FL41
Cable connection fail FL42

Table 8.5: Nodes: SFT elements.

8.3 Results
Once the layout of the BN is defined and all the nodes have been populated with their
corresponding marginal probabilities and CPTs (conditional probability tables), the model
is used to study different scenarios. The probability distribution for all the nodes in the
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networks is shown in Fig. 8.2. This figure depicts the BN before any nodes are condition-
alized and this scenario is referred to as the “base” scenario for the remainder of this study.
In this research, the design life of the SFT is assumed equal to 100 years [18].

The lifetime failure probability (FL) of the SFT in the base scenario is 1.5×10−4 approx-
imately (Appendix D). As a result, the SFT elements have a failure probability of 0.0035,
except the joints (FL3) and cables (FL41), which have a probability of failure of 0.0034.
There is a probability of 0.0034 that the environmental loads are exceeded. This is de-
picted by the functional node EL. Calamities (C) have an occurrence probability of 0.0001,
and there is a probability of 0.0142 of failure due to a wrong buoyancy-weight ratio (BW)
(Fig. 8.2).

The joint distribution represented by the BN is then updated based on assuming the
occurrence of a particular state for a node or set of nodes. For each of those nodes, ei-
ther their non-occurrence/non-exceedance/non-failure, or occurrence/exceedance/failure
is assigned. In other words, the nodes are conditionalized or instantiated. In Netica, the
conditionalized nodes appear in gray, and the specific state chosen is assigned 100% prob-
ability (in Netica the probabilities are shown in percentages). Fig. 8.4 depicts an example
of when node EL is conditionalized on the assumption that the environmental loads are
exceeded. The changes that occur due to this conditionalization are displayed in the prob-
ability distributions of the other nodes in the BN.
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Figure 8.4: Example of scenario when EL is conditionalized on the assumption that the environmental loads are
exceeded.
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8.3.1 Root nodes
As a first analysis, the BN is conditionalized on each of the root nodes (one at a time).
The resulting probability of failure of the SFT was calculated and examined (Table 8.6).
Maritime root nodes are not displayed in this table as they did not affect the probability
of failure of the SFT. The rate is defined as the ratio between the probability of failure
given a specific scenario (𝑃(𝑆𝐹𝑇𝑓 𝑎𝑖𝑙 |𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)) and the probability of failure given the
base scenario (𝑃(𝑆𝐹𝑇𝑓 𝑎𝑖𝑙 |𝐵𝑎𝑠𝑒)).

Conditionalized node Code 𝑃(𝑆𝐹𝑇𝑓 𝑎𝑖𝑙 |𝑟𝑜𝑜𝑡𝑛𝑜𝑑𝑒𝑓 𝑎𝑖𝑙) Rate²
Fire F 1 6667
Terrorism T 1 6667
Earthquake EL2 1.43×10−2 95
Current speed (15m) EL17 1.43×10−2 95
Loss of power BW11 3.46×10−2 23
Distraction BW121 3.46×10−2 23
Not trained employee BW122 3.46×10−2 23
Water level EL3 3.46×10−2 23
Wind EL14 8.8×10−4 6

Table 8.6: Probability of failure of the SFT when the BN is conditioned on one root node at a time. The term
𝑟𝑜𝑜𝑡𝑛𝑜𝑑𝑒𝑓 𝑎𝑖𝑙 stands for exceedance/occurrence/failure of the selected root nodes.

The root nodes with the most influence on the probability of failure of the SFT and its
elements are calamity events (Fire and terrorism), with a resulting probability of failure
of 1. Followed by the environmental loads. These are earthquakes (EL2) and a current
speed at 15m below the water surface (EL17), resulting in the SFT’s probability of failure
being 95 times its base value. Considering failure at the nodes of vertical stability, the
probability of failure of the SFT increases by 23 times its base value (3.46× 10−2). Finally,
the BN was conditionalized on the assumption that the 500-year return period value of
wind is exceeded. In that case, the effect of fast winds on the probability of exceeding
the other environmental loads is investigated. The probability of currents at 1m (EL15)
exceeding its 500-year return value within the design life of the SFT is 0.033, while the
probability of exceedance for periods of wind waves and swells (EL13 and EL16) increases
to 0.052 and 0.0507, respectively. In the case of wave height of wind waves (EL12), the
probability of exceedance increases from 0.012 to 0.23. This large increase makes sense
because wind waves are highly correlated with wind speed. The resulting probability of
failure of the SFT is 8.8×10−4 which is 6 times its base probability of failure.

8.3.2 Scenarios
In this section, a total of 15 scenarios are considered. Table 8.7 presents a summary of
these scenarios and the nodes that were conditionalized for each one of them. Scenarios
are defined as a combination of events that lead to a certain probability of occurrence of
the target node (SFT failure). For simplicity, the corresponding updated BN figures are not

²𝑅𝑎𝑡𝑒 = 𝑃(𝑆𝐹𝑇𝑓 𝑎𝑖𝑙 |𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)
𝑃(𝑆𝐹𝑇𝑓 𝑎𝑖𝑙 |𝐵𝑎𝑠𝑒)



8.3 Results

8

101

shown. The probability of occurrence/exceedance/failure of each node for the 15 scenarios
is displayed in Appendix D.

The scenarios presented in Table 8.7 aim to provide insight into the effects of calami-
ties, environmental loads, and vertical stability on the SFT and its elements. Nevertheless,
the BN can be updated to assess as many additional scenarios as engineers and decision-
makers would render necessary.

Scenario Conditionalized nodes Code Node𝑁𝑜𝑓 𝑎𝑖𝑙 Node𝑓 𝑎𝑖𝑙 𝑃(𝑆𝐹𝑇𝑓 𝑎𝑖𝑙 |𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜) Rate²
Base - - - - 1.50×10−4 -
1 Exceedance loads EL 1 0 0 0

Water level EL3 1 0
Calamity FL11 1 0

2 Exceedance loads EL 1 0 1.00×10−4 0.67
Water level EL3 1 0

3 Exceedance loads EL 0 1 2.10×10−4 1.4
Water level EL3 1 0

4 Wave period (Wind) EL13 0 1 1.70×10−3 11
Wind speed EL14 0 1
Current speed (1m) EL15 0 1

5 Wind speed EL14 0 1 8.80×10−4 6
6 Wave period (Swells) EL16 0 1 1.40×10−2 93
7 Exceedance loads EL 0 1 1.40×10−2 93
8 Calamity FL11 0 1 1 6667
9 Marine accident MA 0 1 5.60×10−3 37
10 Buoyancy-Weight ratio BW 0 1 3.50×10−3 23
11 Buoyancy-Weight ratio BW 1 0 1.00×10−4 0.67
12 Tube failure FL1 0 1 1 6667
13 Tube failure FL1 1 0 0 0
14 Joint failure FL3 0 1 4.27×10−2 285
15 Joint failure FL3 1 0 0 0

Table 8.7: Scenarios. The terms Node𝑁𝑜𝑓 𝑎𝑖𝑙 and Node𝑓 𝑎𝑖𝑙 stand for the
non-exceedance/non-occurrence/non-failure and the exceedance/occurrence/failure of the selected nodes.

In scenario 1, the environmental loads (EL), water level (EL3), and calamities (FL11) are
assumed as non-exceeded/non-occurred. In other words, no load has been exceeded and
there are no calamities in the tunnel. According to this scenario, there are no significant
threats to the SFT.The SFT and its elements, therefore, have a probability of failure of zero.
However, it is key to keep in mind that zero-risk situations cannot always be ensured in
real life. Similar distributions are found for wave height and period for swells (EL11 and
EL16), current velocities at 15m (EL17), and earthquakes (EL2). See Appendix D.

In scenario 2 (Table 8.7), the BN is conditionalized on the assumption that the environ-
mental loads (EL) and the water level (EL3) are not exceeding their respective thresholds
(section 8.2.2). As a result, the SFT and its elements’ probability of failure is 1×10−4. This
is equivalent to a 33% decrease in the base probability of failure (1.5×10−4). For the third
scenario, all the environmental loads except the water level are exceeded, and their effects
are examined. The SFT (FL) base probability of failure increases by 40%, which is equiv-
alent to 2.1 × 10−4. The SFT elements (FL1, FL2, FL4, and FL42) all yield the same value,
except for the joints (FL3) and cables (FL41), whose respective probabilities of failure rise
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to 1. The probability of failure for the buoyancy-weight ratio (BW) drops from 0.00142 to
0.00011 (Appendix D).

We evaluate the implications of exceeding loads for scenarios 4, 5, and 6. The nodes
of wave period of wind waves (EL13), wind speed (EL14), and current speed at 1m (EL15)
are modified in scenario 4 to surpass their respective loads. As a result, the probability of
exceedance of the environmental loads (EL) is 0.112, and the probability of failure of the
SFT (FL) is 0.0017 as well for its elements. This probability is 11 times its base value (1.5×
10−4). In scenario 5, wind speed (EL14) is exceeded. Although wind might not directly
affect a tethered SFT, we use it to study its influence on wave height and wave period. The
probability of exceedance for the environmental loads (EL) is now updated to 0.055. This
represents an increase of 16 times its base value (3.40×10−3). The resulting probability of
failure of the SFT increases to 8.8×10−4 (6 times its corresponding base distribution).

In scenario 6, the 500-year return period value of wave period of swells (EL16) is ex-
ceeded. The probability of exceedance of the environmental loads (EL) rises to 1. This
increases the probability of maritime accidents by 1 (due to its connection to nodeMA2122-
External factors that is linked to maritime accidents) and the probability that the SFT will
fail by 0.0143.

In scenario 7, the model is conditionalized on the exceedance of node EL (environ-
mental loads) as shown in Fig. 8.4. The probability of failure of the SFT (FL) increases
to 1.43 × 10−2 which is 93 times the SFT’s base probability of failure. The same holds for
all SFT elements, except for the joints (FL3) and cables (FL41), which have a probability
of failure of 1 (see Appendix D). The changes in the probability distribution of the parent
nodes are also studied. For instance, the probability of experiencing fast winds rises to
2.95×10−3, which is 16 times higher than its base probability (1.8×10−4). Refer to Fig. 8.4.
A significant increase is noticed in the probability of exceeding significant wave height
(EL11) and period (EL16) of swells with 0.21 and 0.60 respectively.

It is crucial to research the impact of calamities on any tunnel, especially on an SFT. In
the previous section, the effects of conditionalizing the BN on fire and terrorism were eval-
uated. In scenario 8, the node calamity (FL11) is assigned to occur. Therefore, if a calamity
were to occur, there is a probability of 0.20, 0.99, and 0.0086 that it may be caused by fire
(F), terrorism (T), or maritime accidents (MA), respectively (Appendix D). This finding can
help the development of appropriate countermeasures that, if successfully applied, could
reduce such probabilities. For the SFT elements (FL1–FL4), the resulting likelihood of the
SFT failing is 1. This is to be expected as events that have a low probability of occurring
frequently represent increased risk.

Then, we focus on the effect of maritime accidents (MA) on the safety of the SFT (sce-
nario 9). The resulting probability of failure of the SFT is 37 times its base probability
and is equal to 0.0056, as well for its elements except for the joints and cables (FL3 and
FL41) which have a probability of failure of 0.391 (Appendix D). Changes are noticed on
the nodes that precede maritime accidents (MA). Piloting failure (MA2132), navigation
failure (MA21), interpretation failure (MA1121), and bow thruster failure (MA21213) with
corresponding probabilities of occurrence of 0.0026, 0.653, 0.155, and 0.0236 (Appendix D).
Additionally, the environmental loads (EL) have a probability of exceedance of 0.391 which
is 115 times higher than its base value (Fig. 8.2). This provides insight into the primary
causes of maritime accidents. This subject will not be covered in this study because it is
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further discussed in [140].

The effects of vertical stability or the buoyancy-weight ratio (BW) on the SFT are the
main focus of scenarios 10 and 11. According to Table 8.7, when the buoyancy-weight
ratio fails, the SFT and its elements’ failure probabilities rise to 3.5×10−3 when compared
to the base scenario. High water levels also play a significant role in the failure of the BW,
increasing its exceedance probability from 0.0114 to 0.992 (Appendix D).The probability of
distraction by an operator (BW121) and not having a properly trained employee (BW122)
increased to 4.20 × 10−4 which is 70 times higher than their respective base probabilities
(6×10−6). This highlights the importance of having adequate staff to monitor the vertical
stability of the SFT. On the other side, the probability of failure of the SFT (FL) is 0.001
when the buoyancy-weight-ratio (BW) does not fail, representing a 33% decrease in the
SFT’s base probability of failure.

In scenarios 12, 13, 14, and 15 (Table 8.7), the focus is on the behavior of the parent
nodes. The analysis is focused on identifying the nodes that may contribute the most to
the failure of the tube (FL1) and joints (FL3). In scenario 9, it is assumed that the SFT’s tube
(FL1) fails. The distributions of the remaining SFT elements change significantly, with a
probability of failure of 1. The probability of occurrence for calamities increases to 0.677
with terrorism (T) accounting for most of that probability (Appendix D). The probability
of failure of the buoyancy-weight ratio (BW) is 0.332, of which the main contributor is
water level (EL3) with 0.33. Similar numbers are found for the environmental loads (EL)
with a probability of failure of 0.325 of which the main contributor is the hydraulic loads
(EL1) with a probability of 0.324 (Appendix D). However, the probability of failure for the
joints and cables falls to values near zero when there is no tube failure (scenario 13).

When failure at the joints (FL3) is examined (scenarios 14 and 15). The probability
of failure of the SFT and its elements (tube, shore connection, and cables) increases to
0.042. Where the main contributor is the environmental loads (EL) with a probability of
exceedance of 0.971, the wave height (EL11) and wave period of swells (EL16) have the
highest probabilities of exceedance with 0.202 and 0.586 respectively (Appendix D). These
findings suggest that wave height and period for swells (EL11 and EL16) should be consid-
ered when formulating strategies to reduce the risk of failure of the SFT and its elements.
The probability distributions on the vertical stability nodes remain unchanged. Calamities
(FL11) have a resulting probability of failure of 0.028. Its main parent contributor is mar-
itime accidents (MA) with 0.971. If the joints (FL3) do not fail, the SFT and its components
have a probability of failure of close to zero.

In summary, for the particular SFT case presented in this research and the scenarios
examined, calamities (fire and terrorism) were discovered to have a significant impact on
the failure of the SFT and its elements. This is followed by scenarios where the environ-
mental loads are exceeded or when one of the SFT’s elements has failed (scenarios 12 and
14). This is an unwanted scenario as it could lead to a progressive collapse of the system.
Therefore, it’s crucial to contemplate repair strategies to guarantee that the SFT won’t
collapse under the failure of a single element. Consult Appendix D to view the resulting
occurrence/exceedance/failure probabilities of the nodes in the BN for all 15 scenarios.
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8.4 Conclusions
The main objective of this study is to provide engineers with a discrete Bayesian Network
methodology to assess the safety of the SFT and investigate the potentialmain contributors
to the failure of this structure and its elements. This was achieved by conditionalizing
the BN on different scenarios that would consider the occurrence of different events or
combinations of events (section 8.3).

The links depicted in the network (Fig. 8.2) serve as a model that characterizes the
scenarios that might be relevant for the SFT. One of the main advantages of Bayesian Net-
works is that the model allows the user to apply their knowledge of the world to determine
causal influences. In this way, the resulting graph is a compressed representation of the
system. The BN used in this study was built under this logic.

Without taking structural deterioration and maintenance strategies into account, the
base failure probability of the SFT over its lifetime is 1.5×10−4 (Fig. 8.2). In this research,
the base scenario is when the BN is not conditionalized on any node. The root nodes re-
lated to calamities (Table 8.4) are the dominant factors towards the failure of the SFT and
its elements (section 8.3). This contribution is higher for fire (F) and terrorism (T) because
if either of those scenarios occurred, the probability of failure of the SFT would be 1 (Table
8.6). Less significant effects are seen concerning environmental loads, earthquakes (EL2),
and current velocity at 15m below the water surface (EL17). However, they should not
be ignored. On the other hand, when exceeding loads and calamities do not occur, the
probability of failure of the SFT reduces significantly (close to zero). It is important to
take into account that the BN does not yet include policies or countermeasures to reduce
the risk of any of the scenarios presented in this research. Some examples of risk-reducing
measures include the i) development of a proper emergency response plan that combines
evacuation procedures, communication protocols, and coordination with authorities, ii)
implementation of automated monitoring and early warning systems in case structural ab-
normalities, leaks or extreme loads are detected, iii) installation of clear signs and proper
lighting inside the tunnel to prevent accidents and to ensure visibility during emergencies,
iv) implementation of fire safety measures such as fire detection systems, proper ventila-
tion (a key aspect in tunnel design), and fire-resistant materials, among others. The design
of the tunnel should also include a detailed plan for regular inspections and maintenance
to ensure the safety of the structure during its design life. Specific risk-reducing measures
may vary depending on the location, design, and intended use of the SFT.

Bayesian Networks are flexible models that can be used as a viable alternative when
little is known about a system. When modeling dependencies in a structure, Bayesian
Networks have significant advantages over conventional risk analysis techniques like fault
trees (FTs). While FTs can become confusing and difficult to handlewhen dependencies are
incorporated, BNs can effectively depict complicated probabilistic relationships between
random variables [67]. Another benefit is that any model can be extended thanks to the
flexibility provided by BNs. This is a crucial factor to take into account in the specific
situation of the SFT since it allows for the addition of new information as it becomes
available.

Themain limitation of this research is the lack of information, hence, the BN described
here was modified for this particular situation. For instance, water level data (EL3) were
obtained from the vicinity of Gulangyu Island, China [147] because water level data at the
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Qiongzhou Strait were not accessible. However, as mentioned previously, BNs can be up-
dated once new information is known. The main objective of this study is to demonstrate
the applicability of BNs in assessing the probability of failure of the SFT rather than the re-
trieval of data for each of the nodes in the BN.The methodology described in this research
can be utilized as an alternative to assist engineers and decision-makers in planning and
designing the SFT to prevent substantial structural damage, injuries, or loss of lives.

Future work should include the implementation of a BN that includes risk-reducing
measures, evacuation plans, and maintenance strategies that may lower the likelihood of
failure of the SFT. Moreover, detailed BNs that focus on specific failure modes or hazard
events such as fire, terrorism, vehicle or maritime collision, leakage, etc. would ensure a
more precise assessment of the failure of the SFT and its elements. This could be achieved
by adding information about the structural design of the SFT and the durability of its
materials.





107

IV
Epilogue





9

109

9
Conclusions and Recommendations

This chapter concludes the dissertation by readdressing the research objectives in Section
1.4 and summarizes the most important findings. Furthermore, to offer insights and po-
tential avenues for future research, recommendations arising from the research findings
and limitations are also explored.

9.1 Conclusions
Submerged floating tunnels (SFTs) are a promising solution for a wide variety of waterway
crossings. However, their design, construction, and operation require careful considera-
tion of site-specific conditions. Factors such as extreme environmental conditions, geolog-
ical features, operational requirements, and potential element failures must be addressed.
Probabilistic models can help to study the likelihood of extreme loads and failures, captur-
ing the complex dependencies between loading conditions, and offering a comprehensive
understanding of potential risks and failure modes. This information can be used to assist
engineers and decision-makers in planning and designing stable SFT designs. Thus, this
dissertation sought to:

Investigate and develop probabilistic-based models to quantify the probability of failure
of a SFT during operation under different loading conditions and hazard scenarios.

This objective was met by exploring bi-variate and multivariate probabilistic models
like copulas, vine-copulas, and Bayesian Networks. Chapter 4 describes traffic flow us-
ing copulas, while Chapter 5 analyzes pairwise dependencies among waves and currents.
Multivariate analyses in Chapters 7 and 6 examine the relationship between waves, cur-
rents, and their resulting hydrodynamic forces using continuous Bayesian Networks and
vine-copula models respectively. Additionally, Chapter 8 investigates hazard scenarios
and their impact on SFT failure probability. effectively capturing relevant dependencies.
The main findings from the research objectives outlined in the introduction (Section 1.2)
are given below.
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Objective 1: Identify methods that can properly characterize the dependence
among metocean variables, traffic loads, and hazard scenarios relevant to sub-
merged floating tunnels

The analysis in Chapter 4 demonstrates that copulas can be used to characterize the
autocorrelation in inter-vehicle distance. Correlation coefficients of 0.103 and -0.093 were
identified for congestion traffic scenarios in both lanes (C_L2 and C_L3), and are described
by Gaussian and Frank copulas respectively. Free-flow traffic scenarios exhibit correla-
tions ranging from 0.054 to 0.414 and are described by Gumbel, BB8, and Joe Copulas,
signaling upper tail dependence in free-flow traffic scenarios. Despite varying correlation
values and tail dependencies, the traffic scenarios were well represented by the fitted cop-
ula models due to their flexibility to accommodate wide dependence ranges. Refer to Table
4.2 for the copula parameters.

In Chapter 5, the investigation focused on understanding the dependence between
waves and currents in the Qiangzhou Strait during the wet season. Two perspectives
were considered: the entire dataset, and extreme values. In both approaches, the correla-
tions and fitted copula models remained consistent throughout all grid points within the
strait suggesting similar metocean conditions along the Qiongzhou Strait and its immedi-
ate vicinity.

Autocorrelation values for wave height were notably high for wind and swell waves
(0.94 and 0.89). Wave height and period showed moderately strong dependence, with a
correlation of 0.69 for windwaves and 0.48 for swells. The correlations between current ve-
locities and wave height exhibited lower values such as 0.14 and 0.07. Examining extreme
values revealed shifts in correlations. a notable 75% decrease in correlation was observed
between wave height and period of swells. However, the correlation for extreme current
velocities increased to 0.25, while the correlation between significant wave height of swell
waves and current velocity at 1m increased to 0.13.

Copula selection was crucial to characterize wave height autocorrelation. Joe and t
copulas were chosen for wind and swell waves, respectively. BB6 copulas were selected to
model upper tail dependence for wave height and period dependence in swells. Gaussian
copulas described the relationship between current velocities, while BB8 copulas described
the correlation between current velocity at 1m and wave height for both wind waves and
swells (Table 5.5). Extreme values were best described by a Frank copula for wind waves
and a Joe copula for swell waves (Table 5.6). These selections, based on the copula with
the lowest Akaike’s information criteria (AIC) a measure of goodness of fit (GOF), were
validated through data variability analysis and correlation comparisons with simulated
datasets (Tables 5.7 and 5.8).

Chapters 7 and 6 present multivariate analyses focusing on extreme values of six vari-
ables (wave height, wave period, current velocity, and resulting hydrodynamic forces)
and various SFT configurations encompassing a variety of submergence depths and tube
diameters. Chapter 8 investigates the reliability of SFTs under different hazard scenarios.

The statistical method used in this dissertation for the identification of extreme val-
ues is peak over threshold (POT), where the wave period of swell waves is chosen as the
dominant variable. Thus, all the values that exceed its selected threshold are considered
extreme events. The other variables are thought of as concomitant variables. These are



9.1 Conclusions

9

111

the values that accompany the dominant variable’s extreme values. The concept of return
period cannot be directly applied to concomitant variables in the same way it is to the
dominant variable. In such situations, the return period relies on the conditional proba-
bility distribution function of variables given that a specific condition is met (Section 2.2).
These conditional events are chosen depending on the matter under consideration.

In Chapter 7, a Bayesian Network is applied to characterize the dependence between
extreme values of waves (wind and swell), currents, and their resulting hydrodynamic
force components. It was found that the proposed configuration of this BN does not repre-
sent adequately the data nor that the Gaussian copula is a suitable choice to characterize
these variables. Nevertheless, the results presented in Chapter 7 showed stronger forces
are obtained when conditional distributions are used instead of considering the variables
as independent. For designers, accounting dependence allows the opportunity to develop
more robust designs by understanding how variables change under specific conditions and
their potential impact on SFT performance.

Chapter 6 introduces a vine-copula model, showing its applicability in characterizing
extreme values of significant wave height, wave period, current velocities, and their re-
sulting hydrodynamic forces at the Qiangzhou Strait. The fitted copulas, including Joe,
Gumbel, Clayton, and t copulas, are able to capture the interdependence among variables,
particularly tail dependence (refer to Figures 6.5 and 6.8). However, limitations were
observed in capturing asymmetries between hydrodynamic forces and significant wave
height. These copulas serve as the building blocks of the vine-copula models discussed
in Chapter 6, but they can also be used independently for studying bivariate and condi-
tional distributions. For a larger number of variables, the quantity of vine-copula models
expands significantly, as discussed in Section 2.4 (Eq. 2.13). This poses a challenge when
computational resources are limited. In this study, 23040 vine models were fitted for each
of the 9 SFT configurations, totaling 207360 vines. The goal was to identify the vine model
with the lowest Akaike Criteria (AIC), serving as a measure of goodness of fit (GOF).

Chapter 8 presents a Bayesian Network with 51 nodes used to understand the effect
of a variety of hazard scenarios on the failure probability of the SFT. In this dissertation,
it is shown that the application of BNs has a significant advantage: the incorporation of
user knowledge to determine causal influences, resulting in a solid representation of the
system. This model proves to have powerful advantages when compared to Fault Trees
(FTs). While FTs may face limitations when modeling complex systems. For example,
in FTs, basic events are considered independent from each other unless they are caused
by a common cause failure, or that FTs do not inherently account for uncertainty in the
variables of the system. BNs emerge as a suitable and flexible alternative for assessing
the safety of SFTs while offering adaptability, essential for high-dimensional and dynamic
scenarios like SFTs. Objective 3 (below) addresses the probability of failure of the SFT
under various hazard scenarios.

Computational efficiency played an important role in selecting the models presented
herein. Moreover, the asymmetries in the bivariate distributions are an important charac-
teristic of the data that we aimed to preserve. For this reason, copulas, and vine-copulas
prove to effectively capture complex multivariate dependencies and generate synthetic
data that exhibits similar dependence relationships as the observed data.

The approaches discussed in this dissertation produced large amounts of data that



9

112 9 Conclusions and Recommendations

could be useful to other researchers. All significant outputs were made available to the
public as a result. Data from Chapters 4-6 are accessible at 4TU.ResearchData.

Objective 2: Formulate a methodology to evaluate different SFT configura-
tions to assist decision-making

In Chapters 6 and 7, a methodology is developed to evaluate various Submerged Float-
ing Tunnel (SFT) configurations, considering different combinations of tube diameter and
submergence depth. The aim is to offer valuable insights to aid decision-making in the
design and construction of these unique structures. An important contribution of this
methodology is the integration of multivariate probability models with the analysis of
specific SFT configurations outlined for the Qiangzhou Strait. Further details are provided
below:

• In Chapters 6 and 7, vine-copula and BN models were applied to investigate the
dependence relationship between wave height, wave period, current velocities, and
hydrodynamic forces (Froude-Krylov FK forces) (Section 6.4.1). The FK force is the
force that acts on an ideal water cylinder that has the same radius and is located
at the same depth as the SFT. This framework is not fixed to the use of the Froude-
Krylov forces but its flexibility allows the use of other equations to compute the
hydrodynamic forces on SFTs.

• In Chapter 6, 500k simulations per variable were generated from the Froude-Krylov
(FK) vine model (Fig. 6.7). These simulations were used to investigate the condi-
tional distributions of horizontal force component, 𝑓𝑦 , across 9 SFT configurations.
The distribution of 𝑓𝑦 was conditionalized on specific values of wave height (4.5m),
period (12.8 s), and current velocity (1.3 m/s). Among the proposed SFT configura-
tions, The largest horizontal force was found in configuration 1 (𝐷 = 20m, ℎ = 20m)
and 7 (𝐷 = 30m ℎ = 20m).

• The analysis in Chapter 6 also considers the resulting vertical force 𝐹𝑅 , and the ra-
tio between the horizontal force and the vertical force, denoted as 𝐹𝑅/𝑓𝑦 . Despite
configuration 1 showing the largest hydrodynamic force 𝑓𝑦 , it was found that this
configuration exhibits the smallest 𝐹𝑅/𝑓𝑦 ratio. Therefore, it is less likely that this
configuration could lead to large displacements in the structure, as the resultant
vertical force has the potential to compensate for it (Table 6.9).

• The BN model proposed in Chapter 7, was used to simulate the conditional distri-
butions (CD) of the horizontal FK force component (𝑓𝑦 ), considering specific values
of wave height, wave period, and current velocity for 12 SFT configurations with
varying diameters, 𝐷, and submergence depths, ℎ. This analysis was carried out
with two BNs, one for wind waves (BN1) and the other for swell waves (BN2). Out
of the 12 configurations presented in this chapter, the largest force within BN1 is
found in configuration 12 (𝐷 = 30m, ℎ = 30m). Within the BN2 model, the largest
force is found in configuration 10 (𝐷 = 30m, ℎ = 50m). As a result, different wave
systems can impact the design choices of SFTs.
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This methodology contributes to advancing the state-of-the-art in submerged floating
tunnel studies. It provides a structured framework for evaluating various SFT configura-
tions by allowing researchers and engineers to explore different design options and their
potential implications. The integration of multivariate probability models enables a deeper
understanding of the complex interactions between variables. This not only enhances the
accuracy of predictions but also supports informed decision-making in the design and
construction phases.

Objective 3: Compare different hazard scenarios and identify the main con-
tributors to the failure of the SFT in the specific case presented in this thesis

Through a comprehensive analysis of various hazard scenarios (Chapter 8), this disser-
tation identified critical factors that could contribute to the potential failure of a submerged
floating tunnel (SFT). These contributors, considered for the specific context of this disser-
tation, range from extreme metocean events to human-induced errors and calamities.

Utilizing a discrete Bayesian network conditionalized on various nodes (variables), the
resulting causal inferences were explored. The base failure probability of the SFT over its
lifetime (100 years) was determined to be 1.5 × 10−4. Notably, nodes related to calami-
ties such as fire and terrorism emerged as dominant factors, closely followed by extreme
environmental loads and human errors.

Nonetheless, it is key to acknowledge that the model presented in this dissertation
does not incorporate risk-reducing measures, evacuation plans, or maintenance strategies.
The absence of these elements in the analysis implies that the current estimation of the
probability of failure under different scenarios might vary.

9.2 Recommendations for future work
In this section, a series of suggestions are presented concerning the utilization of proba-
bilistic approaches within the realm of submerged floating tunnels. The methodologies
presented in this dissertation play an important role in assessing the intricate interactions
of uncertainties pertinent to SFTs. These recommendations aim to propose potential av-
enues for additional research, exploration, or enhancement of the insights conveyed in
this dissertation.

The following paragraphs encapsulate the main recommendations formulated within
this dissertation, categorized across various themes:

About data:

• Prioritize the integration of experimental data to validate probabilistic models. For
instance, contrasting hydrodynamic forcesmeasured in laboratory experimentswith
those simulated by probabilistic models. This validation process is essential to en-
hance the reliability ofmodels, ensuring accurate predictions of hydrodynamic forces,
structural integrity, and overall SFT performance. The absence of experimental data
constrained the possibility of conducting validationwith probabilisticmodelswithin
the scope of this dissertation.
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• Extend the investigation to encompass additional influencing factors on SFTs, such
as storm surges, tsunamis, tide variations, and real-time buoyancy-weight ratio
changes. These aspects, not considered in this dissertation due to lack of data, merit
thorough exploration for a comprehensive analysis.

About SFTs

• A topic for future research is the assessment of SFT reliability by introducing addi-
tional critical limit states (compromised buoyancy due to leakage or damage, water
ingress, operational failures, etc) and coupling them with more sophisticated struc-
tural analysis techniques. Specifically, evaluate potential failure scenarios involving
tethers, foundations, and cross-sections both individually and in combinations.

• Future research on the effect of persistent loadings, such as the constant action of
waves, not necessarily extreme, has the potential to provide deeper insights into
stress, fatigue, deformation, and the long-term structural health of SFTs.

• Extend the application of the methodologies discussed in this dissertation to SFTs
in diverse regions beyond the Qiangzhou Strait. Validate these methods in regions
with varying traffic and environmental variables to ensure their applicability and
effectiveness in different contexts.

• Apply the methodologies presented here to assess the reliability of SFTs and com-
pare them with reliability index targets of the structures (i.e. bridges, tunnels, off-
shore platforms, etc.). This integration enhances objectivity, strengthening the ro-
bustness of SFT projects and ensuring their long-term success.

• The estimation of consequences and their corresponding safety measures, while not
within the scope of this study, is recommended for further consideration. The SFT
configurations previously presented should be subjected to evaluations that may
integrate principles of economic analysis under uncertainty.

About vine-copulas

• Explore higher-dimensional vine-copula models in the context of SFTs to handle
more than the six variables investigated in this dissertation. Including water level,
wind speed, water temperature, tides, etc., and their resulting hydrodynamic forces.
This research avenue would enhance the understanding of the dependence and tail
asymmetries between metocean loadings and forcings on SFTs in the Qiangzhou
Strait and other potential SFT locations. However, as noted in Chapter 6, higher
dimensionality can increase computational demands, especially if the vine-copula
model is selected based on the lowest Akaike criteria, leading to fitting all possible
vine models given the number of nodes. Nonetheless, algorithms like those devel-
oped by [54] would assist in efficiently selecting a vine copula model.
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About BNs

• Future research should be directed toward integrating hydrodynamic models and
Bayesian Networks. For instance, attention should be given to the inherent varia-
tions in tides and water levels resulting from the specific geographical location of
the Submerged Floating Tunnel (SFT) within the Qiongzhou Strait.

• Regarding the Bayesian Network presented in Chapter 8, it is advised to collaborate
with experts specializing in fields such as structural dynamics, and hydrodynamics.
These collaborations play a crucial role in identifying key variables contributing to
failures. Based on their expertise and knowledge, experts’ judgment can provide
important guidance on the main contributors.

• Future efforts should focus on developing a more comprehensive discrete Bayesian
Network (BN) that incorporates safety measures, evacuation plans, and mainte-
nance strategies adapted to submerged floating tunnels. These enhancements are
anticipated to contribute to a decreased probability of SFT failures.
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A
Vehicle characterization

A.1 Vehicle categories
Item Class Code
1 B2 B11 B2
2 B3 B111 B12 B3
3 O3 O3
4 O4 O4
5 O5 O5
6 O6 O6
7 O8 O8
8 O9 O9
9 O10 O=
10 O11 O>
11 R5 R11111 R1112 R1211 R122

12 R6 R111111 R11112 R11121 R1113 R11211 R1122 R12111
R1212 R123 R1311 R132

13 R7

R1111111 R111112 R111121 R11113 R111211 R11122 R112111
R124 R13111 R133 R2221 R223 R11311 R1123
R1132 R115 R121111 R12112 R1213 R12211 R1222
R11212 R11221

14 R8

R11111111 R1111112 R1111121 R111113 R111122 R1112111 R111212 R111221 R11123 R1121111 R112112 R112121
R11213 R112211 R11222 R1124 R113111 R11312 R11321 R1133 R1211111 R121112 R121121 R12113
R121211 R12122 R1214 R122111 R12212 R12221 R1223 R12311 R1232 R125 R131111 R1313
R13211 R1322 R134 R2123 R2213 R2222 R224

15 R9

R1112121 R1112211 R11124 R1121121 R112113 R1122111 R112221 R11223 R1125 R1134 R12111111 R1211112
R1211121 R121113 R1212111 R121212 R121221 R12123 R1221111 R122112 R122121 R12213 R1224 R123111
R12321 R1233 R126 R1314 R132111 R13221 R1323 R1332 R1341 R135 R1413 R144
R2214 R2223 R225 R234 R3312 R54

16 T3 T11O1
17 T4 T111O1 T11O11 T11O2 T12O1 T21O1 T2O2

18 T5 T111O11 T111O2 T11O111 T11O12 T11O21 T11O3
T12O11 T12O2 T21O11 T21O2 T2O21 T2O3 T3O2

19 T6 T111O111 T111O12 T111O21 T111O3 T11O1111 T11O112 T11O121 T11O13 T11O211 T11O22 T11O31 T11O4
T12O111 T12O12 T12O21 T12O3 T21O111 T21O12 T21O21 T21O3 T2O22 T2O4 T3O3

20 T7 T111O112 T111O121 T111O13 T111O22 T111O31 T111O4 T12O1111 T12O112 T12O121 T12O13 T12O211 T12O22
T12O31 T12O4 T21O211 T21O22 T21O4 T3O4

21 V2 V11
22 V3 V111 V11A1 V12 V21 V3
23 V4 V1111 V112 V11A11 V11A2 V121 V13 V211 V22 V4
24 V5 V111A11 V111A2 V11A111 V11A12 V12A11 V12A2 V21A11 V21A2

25 V6 V1111A11 V1111A2 V111A111 V111A12 V112A11 V112A2 V121A11 V12A111 V12A12 V12A21 V12A3 V13A11
V13A2 V211A11 V211A2 V21A12 V22A11 V22A2

26 V7 V1111A111 V1111A12 V1111A3 V112A111 V112A12 V112A21 V112A3 V121A111 V121A12 V121A3 V13A111 V13A12
V13A21 V13A3 V211A12 V211A3 V22A111 V22A12 V22A21 V22A3 V4A12

Table A.1: Vehicle categories of WIM observations.
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Sub-class Symbol

B11

B11A1

B11A2

B12

B12A1

B12A2

B21

T11O1

T11O11

T11O111

T11O1111

T11O2

T11O3

T11O4

T12O1

T12O11

Sub-class Symbol

T12O111

T12O111

T12O1111

T12O2

T12O3

T12O4

T21O11

V11

V111

V1111

V112

V11A1

V11A1

V11A11

V11A12

V11A2

Sub-class Symbol

V11A2

V12

V12A11

V12A12

V13

V21

V211

V21A2

V21A2

V22

V22A1

V22A1

V22A11

V22A12

Figure A.1: WIM Vehicle indexing. [97]
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A.2 Daily proportion of vehicles’ categories

Vehicle Category C_L2 F_L2_A F_L2_B C_L3 F_L3_A F_L3_B
B2 0.61 5.56 1.65 0.69 0.58 0.39
B3 1.83 0.00 3.31 0.61 0.17 0.33
O3 3.05 1.85 2.13 0.69 0.42 1.11
O4 15.24 3.70 4.96 4.59 1.83 2.66
O5 0.61 1.85 0.71 0.61 0.58 0.20
O8 0.00 0.00 0.00 0.17 0.25 0.09
O9 0.00 0.00 0.00 0.00 0.08 0.00
OT10 0.00 0.00 0.00 0.00 0.00 0.02
OT11 0.00 0.00 0.00 0.00 0.00 0.00
R5 0.00 0.00 0.00 0.00 0.00 0.07
R6 0.00 0.00 0.00 0.17 0.83 0.11
R7 0.00 0.00 0.24 0.26 0.42 0.30
R8 0.00 0.00 0.00 0.26 0.17 0.41
R9 0.00 0.00 0.00 0.09 0.08 0.07
T3 1.83 3.70 2.60 5.37 4.33 4.22
T4 10.98 16.67 14.89 15.34 19.83 18.35
T5 26.83 33.33 37.12 29.29 38.25 36.04
T6 2.44 7.41 2.60 6.07 6.25 6.81
T7 0.61 0.00 0.00 0.26 0.33 0.33
V2 14.63 9.26 15.37 14.99 9.92 12.80
V3 3.66 1.85 1.65 4.51 1.92 4.16
V4 14.02 5.56 5.91 8.23 6.67 6.03
V5 1.83 5.56 4.73 5.37 5.33 3.53
V6 1.22 3.70 1.89 1.65 1.67 1.61
V7 0.61 0.00 0.24 0.61 0.08 0.37

Table A.2: Daily proportion of vehicles’ categories. 10th April 2013.
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A.3 Monthly proportion of vehicles’ categories.
April 2013.

Vehicle Category Proportion [%]
B2 1.014
B3 0.779
O3 1.295
O4 3.116
O5 0.400
O8 0.128
O9 0.026
OT10 0.012
OT11 0.006
R5 0.047
R6 0.216
R7 0.264
R8 0.317
R9 0.054
T3 3.851
T4 17.795
T5 35.481
T6 5.871
T7 0.277
V2 12.801
V3 3.582
V4 6.902
V5 4.005
V6 1.445
V7 0.297

Table A.3: Monthly proportion of vehicles’ categories. April 2013.
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A.4 Copula Results-April 2013

Day C_L2 C_L3 F_L2_A F_L3_A F_L2_B F_L3_B
4 Joe Frank Joe BB8 Joe BB8
5 Gaussian Gaussian Clayton Frank Joe Joe
6 t Frank Joe t Joe Joe
7 Frank Frank Joe Frank Joe BB7
8 Joe Clayton Clayton Clayton Gaussian Gumbel
10 Gumbel Frank Joe BB8 Joe BB7
11 Gaussian Frank Joe BB8 Joe Joe
12 Gaussian Joe Joe t Joe Joe
13 Clayton Frank t BB8 Joe Joe
14 t Frank Joe Gaussian Joe Joe
15 t Frank Gaussian Clayton Joe Joe
17 Gaussian Gaussian Joe BB8 Gumbel BB8
18 Gumbel Frank Joe Frank Joe BB8
19 Frank Frank t Clayton Joe Joe
20 Gaussian Frank Joe t Joe Joe
21 BB7 Frank BB7 Frank Joe BB8
22 t Clayton Clayton Gaussian Joe Joe
24 Gaussian Gaussian t BB8 Joe Joe
25 Gaussian Clayton Joe BB8 Joe BB8
26 Joe t Gaussian BB8 Joe BB8
27 t Frank Gumbel BB8 Joe BB8
28 Joe Frank Joe BB8 Joe BB8
29 Gaussian Clayton Gaussian Frank Joe BB7

Table A.4: Copula fit for inter-vehicle distances per traffic type. April 2013.
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Day C_L2 C_L3 F_L2_A F_L3_A F_L2_B F_L3_B
Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim.

4 0.213 0.091 -0.039 -0.088 0.477 0.584 0.218 0.300 0.149 0.177 0.088 0.113
5 0.084 0.259 -0.010 -0.017 0.535 0.563 0.177 0.170 0.109 0.129 0.097 0.140
6 0.068 -0.014 -0.103 -0.088 0.153 0.312 0.157 0.156 0.140 0.208 0.089 0.186
7 -0.045 0.004 -0.121 -0.160 0.508 0.163 0.265 0.240 0.152 0.186 0.136 0.173
8 0.099 0.231 0.033 -0.022 0.500 0.350 0.116 0.172 0.210 0.060 0.179 0.177
10 0.114 0.048 -0.050 -0.038 0.154 0.857 0.281 0.256 0.131 0.188 0.117 0.171
11 -0.003 -0.037 -0.023 0.007 0.106 0.367 0.245 0.242 0.162 0.218 0.102 0.112
12 -0.021 -0.142 0.004 -0.031 0.486 0.097 0.222 0.177 0.054 0.069 0.090 0.150
13 0.036 0.040 -0.029 -0.046 0.202 0.398 0.245 0.313 0.112 0.294 0.104 0.110
14 0.124 0.303 -0.035 0.023 0.414 0.419 0.190 0.227 0.147 0.226 0.118 0.147
15 -0.333 -0.103 0.065 0.003 0.300 0.400 0.115 0.176 0.154 0.078 0.119 0.165
17 0.133 0.170 -0.019 -0.043 0.365 0.351 0.289 0.290 0.156 0.132 0.099 0.138
18 0.154 0.100 -0.054 -0.068 0.388 -0.159 0.177 0.129 0.086 0.165 0.085 0.114
19 0.259 0.184 -0.086 -0.116 0.060 0.414 0.216 0.222 0.211 0.323 0.086 0.096
20 -0.001 -0.008 -0.009 0.017 0.566 0.712 0.165 0.100 0.121 0.152 0.101 0.136
21 0.148 0.262 -0.093 -0.088 0.307 0.384 0.231 0.256 0.204 0.270 0.086 0.122
22 -0.355 -0.346 0.036 0.079 0.164 0.291 0.059 0.112 0.197 0.067 0.112 0.152
24 0.103 0.107 0.001 -0.045 0.102 -0.278 0.168 0.176 0.106 0.146 0.067 0.123
25 0.115 0.125 0.007 0.059 0.389 0.218 0.139 0.068 0.217 0.296 0.122 0.155
26 0.088 0.007 -0.044 -0.067 0.470 0.517 0.256 0.277 0.161 0.228 0.091 0.150
27 -0.049 -0.147 -0.006 0.013 0.535 0.348 0.284 0.288 0.105 0.220 0.113 0.148
28 0.002 -0.108 -0.055 -0.025 0.558 0.593 0.222 0.240 0.066 0.120 0.092 0.155
29 -0.257 -0.388 0.023 0.047 0.543 0.257 0.053 0.100 0.274 0.325 0.158 0.125

Table A.5: Spearman’s correlation coefficient for observations and simulations for inter-vehicle distance. April
2013.
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B
Discretization procedure

Discretizing continuous variables can lead to the quantification of large conditional proba-
bility tables (CPTs). The hybrid method developed by [81] can aid in reducing this burden
by following these steps.

1. Implement a continuous BNwhere the nodes are quantified as continuous univariate
random variables and the arcs as parent-child rank correlations.

2. Sample this structure creating a sample file.

3. Use the sample file to build conditional probability tables for a discretized version
of the continuous BN.

In this study, the continuous version of the BN of environmental variables was de-
veloped and implemented using the MATLAB toolbox for Non-Parametric Bayesian Net-
works, BANSHEE-A [128] (Fig. B.1). From this Bayesian network, a large sample of
300,000 simulations was generated. Finally, the conditional probability tables of each node
were computed based on their 500-year-return-period values. The resulting conditional
probabilities are presented in Appendix C.

EL13

(Wave Period. Wind)

EL12 

(Wave Height. Wind)

EL14 

(Wind speed)

EL15 

(Current speed 1m)

EL16 

(Wave period. Swell)

EL11

(Wave Height. Swell)

Figure B.1: Continuous BN for environmental variables.
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C
CPTs for environmental variables

(EL11-EL16)

EL11
EL16 EL12 non-exceedance exceedance
non-exceedance non-exceedance 0.999 0.001
non-exceedance exceedance 0.986 0.014
exceedance non-exceedance 0.912 0.088
non-exceedance exceedance 0.875 0.125

Table C.1: CPT for wave height. Swell waves (EL11).

EL12
EL14 EL15 EL16 non-exceedance exceedance
non-exceedance non-exceedance non-exceedance 0.999 0.001
non-exceedance non-exceedance exceedance 0.963 0.037
non-exceedance exceedance non-exceedance 0.998 0.002
non-exceedance exceedance exceedance 0.667 0.333
exceedance non-exceedance non-exceedance 0.773 0.227
exceedance non-exceedance exceedance 0.528 0.472
exceedance exceedance non-exceedance 0.818 0.182
exceedance exceedance exceedance 1 0

Table C.2: CPT for wave height. Wind waves (EL12)
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EL13
EL14 EL16 non-exceedance exceedance
non-exceedance non-exceedance 0.999 0.001
non-exceedance exceedance 0.962 0.038
exceedance non-exceedance 0.951 0.049
exceedance exceedance 0.885 0.115

Table C.3: CPT for wave period. Wind waves (EL13)

EL14
non-exceedance exceedance

0.997 0.003

Table C.4: CPT for wind speed (EL14)

EL15
EL14 non-exceedance exceedance
non-exceedance 0.998 0.002
exceedance 0.967 0.033

Table C.5: CPT for current speed at 1m below the water surface (EL15)

EL16
EL14 non-exceedance exceedance
non-exceedance 0.998 0.002
exceedance 0.949 0.051

Table C.6: CPT for wave period. Swell waves (EL16)
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