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Abstract

Context Reliable and efficient modelling of magnetic hysteresis in inhomogeneous and aniso-
tropic media is an important step in developing a state-of-the-art closed-loop degaussing system
for naval ships and submarines, to be developed by TNO and to be used by the Royal Nether-
lands Navy in an updated generation of naval vessels and submarines. Different models have
been proposed to describe the nonlinear and history-dependent nature of ferromagnetic hys-
teresis at a material level.

With a focus on three key differing aspects of models, namely linear versus nonlinear (hys-
teresis), isotropic versus anisotropic and homogeneous versus inhomogeneous, we attempt to
discriminate between the performance of models on the basis of these criteria. More specifically,
with increasing model complexity, we have combined Maxwell’s equations with four different
hysteresis models within the context of a prolate steel ellipsoid, whose ferromagnetic properties
evolve under the influence of a uniform applied background field. Among other aspects, the
hysteresis models differ in terms of physical motivation, complexity and parameter spaces. In
this research, we have analysed four hysteresis models in more detail: The Induced - Permanent
magnetization model, The Rayleigh model, the Jiles-Atherton model and an Energy-Variational
model, based on energy balances.

The thus derived forward models have subsequently been inverted in order to estimate ma-
terial hysteresis parameters. With increasing complexity also, twin experiments have been
performed. This increasing complexity temporally stems from the fact that the hysteresis mod-
els named previously, are stated in increasing order of complexity, and can all be modified in
order to model anisotropic material by generalizing model parameters to tensors. Spatially, the
increase in complexity is caused by the fact that in special cases, namely of uniform ellipsoid
magnetization, an analytical formula relating the magnetic field, the background field and the
ellipsoid magnetization exists by solving the Poisson partial differential equation on an infinite
domain using direct computation with Green’s functions.

When the problem conditions are relaxed by not requiring a uniform magnetization to be
present inside the ellipsoid, this analytical result fails and one has to resort to numerical
techniques. Using the Finite Element Method, we have approximated the solution to this non-
uniform problem and formulated model inversions that provide a framework to both estimate
the non-uniform magnetization distribution and the hysteresis parameters of the non-uniform
or inhomogeneous ellipsoid model. Our iterative-based models allow for the material hystere-
sis parameters to also be location and time-dependent and provide a possibility for perhaps
stochastic error analysis, data assimilation and in the end, a closed-loop degaussing algorithm.
However, these last three elements have not been implemented yet.
Moreover, using a physical measuring device setup CLAViS located at TNO Oude Waalsdor-
perweg, different models have been fitted to a real-world steel ellipsoid, providing experimental
validation of our models.
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Results Using genetic algorithms, three out of four homogeneous hysteresis models, with the
exception of the Energy-Variational model, have been successfully fitted to measured data. We
have quantified the prediction error that was made by approximating the magnetic behaviour of
the real ellipsoid by our simplified models. The homogeneous models, which have the property
of only requiring time integration, are able to describe the ellipsoid magnetization only up
to a uniform level. On the one hand, this makes estimating the magnetization ‘distribution’
very straightforward and overdetermined, on the other hand, it induces a larger prediction
error, since measurements indicate that the magnetization of the experimental ellipsoid is not
uniform. Using a signature-based mean squared error optimization algorithm, we have been
able to estimate the optimal ellipsoid parameters in several different models, although more
measurements are required to solidify our conclusions about these estimated parameters.
Resorting to the inhomogeneous models, which are able to describe non-uniform magnetization
distributions and their signatures, one has considerably more freedom to estimate the realistic
magnetization distribution, yielding a lower prediction error. By using a heuristic method of
regularization that effectively drastically reduces the number of unknowns but nevertheless is
able to model a wide range of magnetization distributions, we have estimated the magnetization
distribution through time that minimizes the global squared signature error. The hysteresis
parameters of inhomogeneous models have not been estimated and will be subject of further
research.

Conclusions and Recommendations From our results, we can conclude that the ellipsoid
exhibits all three aspects that were a priori established as interesting variations of models. This
is concluded on the basis of the signature prediction error decreasing with model complexity
increasing; indeed, the more flexible the model is in terms of both spatial and temporal range,
the more accurately it can describe the very complex behaviour of the experimental steel el-
lipsoid. It is interesting to note that the IPhomogeneous model has the smallest signature
error of the homogeneous models by far, while being a relatively simple model. Since the
hysteresis parameters of the inhomogeneous model have not been estimated, we cannot draw
conclusions on the performance of these models in a temporal sense. However, we can conclude
that homogeneous magnetization estimation is, in a certain sense, a subset of inhomogeneous
magnetization estimation. Therefore, it is the case that inhomogeneous models have a much
lower static inversion error than the simple homogeneous models. One might need to employ
inhomogeneous hysteresis parameter distributions to approximate the behaviour of the real,
measured ellipsoid optimally. Thereafter, data assimilation by combining the inverse mag-
netization distribution simultaneously with the temporal hysteretic evolution, yields a much
more complete description and prediction of the ellipsoid magnetization evolution. Lastly, an
outlook to closed-loop degaussing can be made by applying certain derived discretized opera-
tors to non-uniform applied magnetic background fields, which together with the prospect of
data assimilation, yield hopeful thoughts about the future of the prolate steel ellipsoid and our
understanding of it.
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Notation

This section defines the notation in the current report. Please note that this section only lists
general notation conventions. In case of deviation from these conventions, it will always be
indicated.

General conventions

In general, the following conventions are used for the notation of scalars, vectors, tensors and
matrices, as depicted in the table below. By ‘physical vector’ we always mean a vector from R3,
for example a location vector or a magnetic field. By ‘mathematical vector’, we mean a vector
of parameters or a solution to a system of equations in a finite element sense, for example.

Table 1: General notation conventions

x, µ0 scalar italic small or capital character
x, H physical vector bold-faced, straight, small or capital character
x, φ mathematical vector bold-faced, italic, small character
x, α tensor underlined bold-faced small character
X, Λ matrix straight, underlined capital character

In the field of mathematical modelling, different ideas are often denoted by the same symbols.
For someone working in a specific discipline, this can be self-explanatory, depending on the
context. However, in the research discussed in this report, a physical problem is analysed using
a variety of techniques and tools. For example, the magnetostatic scalar magnetic potential Φ
is, strictly speaking, a function Φ : R3 → R. In literature however, this value may refer to a
vector quantity related to the actual potential, it may refer to the numerical approximation of
the potential, or maybe a solution to a system of equations. All these notions are intimately
related to the magnetic potential, but in order to avoid confusion, we have chosen to refer to
different concepts by different symbols as much as possible.

List of Abbreviations

For magnetic quantities, we follow the standard work by Jackson [2]. In describing the various
hysteresis models, the notation of original papers [24, 21, 39] has been used as much as possible,
with some deviations which are indicated. The vectorial generalisations of these models are
all parametrised by vectors and tensors, which causes the model notation to differ from their
original introduction. The notation when discussing the Finite Element formulation of the
problem and related notions, are mostly taken from [18]. Some general abbreviations are used
throughout the report, explained below:

• IP: The induced - permanent magnetization model, which is somewhat linear in nature;
• RA: The Rayleigh hysteresis model;
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• JA: The Jiles-Atherton hysteresis model;
• EV: The Energy-Variational hysteresis model;
• FEA : Finite Element Analysis;
• FEM : Finite Element Method;
• ODE : Ordinary Differential Equation;
• PDE : Partial Differential Equation;
• BC : Boundary Conditions;
• HOM : Homogeneous ellipsoid model;
• LIH : Forward linear, isotropic, homogeneous ellipsoid magnetization model;
• LAH : Forward linear, anisotropic, homogeneous ellipsoid magnetization model;
• nLIH : Forward nonlinear, isotropic, homogeneous ellipsoid magnetization model;
• nLAH : Forward nonlinear, anisotropic, homogeneous ellipsoid magnetization model;
• LIiH : Forward linear, isotropic, inhomogeneous ellipsoid magnetization model;
• LAiH : Forward linear, anisotropic, inhomogeneous ellipsoid magnetization model;
• nLIiH : Forward nonlinear, isotropic, inhomogeneous ellipsoid magnetization model;
• nLAiH : Forward nonlinear, anisotropic, inhomogeneous ellipsoid magnetization model.
• i-LIH : Inverse linear, isotropic, homogeneous ellipsoid magnetization model;
• i-LAH : Inverse linear, anisotropic, homogeneous ellipsoid magnetization model;
• i-nLIH : Inverse nonlinear, isotropic, homogeneous ellipsoid magnetization model;
• i-nLAH : Inverse nonlinear, anisotropic, homogeneous ellipsoid magnetization model;
• i-LIiH : Inverse linear, isotropic, inhomogeneous ellipsoid magnetization model;
• i-LAiH : Inverse linear, anisotropic, inhomogeneous ellipsoid magnetization model;
• i-nLIiH : Inverse nonlinear, isotropic, inhomogeneous ellipsoid magnetization model;
• i-nLAiH : Inverse nonlinear, anisotropic, inhomogeneous ellipsoid magnetization model.

In order to completely specify a model, often notation such as ‘nLAiH - EV’ is used. In this
case, we refer to the forward nonlinear, anisotropic, inhomogeneous ellipsoid model, where the
hysteresis phenomenon is modelled using the energy-variational model.
In addition to the above list of abbreviation, a list of symbols should be included. However,
the authors think that all variables are clear from their respective context.
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Preface

It was December 2018, when a Skype conversation between The Hague and Waterloo (Canada)
established the first connection between ellipsoids and me. During this call, Eugene Lepelaars,
Aad Vijn and I talked about the possibility of doing my graduation project at TNO Oude
Waalsdorperweg, unit Defence, Safety and Security, at the department of Electronic Defence.
After some contemplation, we decided that is was a good match and two months after, the
research started. During the ten-month internship at the Oude Waalsdorperweg, it was my
task to improve existing models on the magnetic behaviour of a steel prolate ellipsoid. More
specifically, it was my task to quantify the influence of nonlinearity, anisotropy and inhomo-
geneity in the magnetic evolution of a real, physical steel prolate ellipsoid located at the Oude
Waalsdorperweg, with the help of a magnetic signature measuring device called CLAViS, built
by Eugene. The availability of such a real, existing object can be quite threatening to a math-
ematician, but in reality it is a great blessing, making the connection between the idealised but
possibly non-conforming world of mathematics, to the physical reality we inhabit. Accordingly,
‘fitting mathematical models to data’ is a deeply mysterious undertaking, the effectiveness of
which is not at all facile to predict beforehand. But, to quote a famous paper by Eugene Wigner
[1], the ‘unreasonable effectiveness of mathematics in the natural sciences’, proves again and
again that it can be done. But it is often a slow and laborious undertaking, where rewards
might only be found at the end.

The past ten months consisted of firstly conducting a literature study. The field of magnetic
modelling is extensive and consists of many different viewpoints and approaches. Different no-
tation exists to describe the same physical quantities. It requires time to distinguish between
ideas and formulations of ideas. However, it is very interesting to see how the sciences progress,
by often small steps and discussions, until a new model is introduced or certain bridges are
built between two seemingly unrelated concepts. This has taught me a lot.

After doing the three-month literature study, I started implementing different simplified mod-
els, describing the magnetic evolution of the steel ellipsoid under the influence of an applied
background field. Together with my supervisors, we formulated and implemented ellipsoid
models of increasing complexity, in order to be able to describe the ferromagnetic behaviour
and signature (that what can be measured about the ellipsoid behaviour) increasingly well.
This process required many iterative steps of model revision and re-implementation because of
new insights and flaws surfacing. Roughly speaking, we have looked at four different hysteresis
models (the ‘nonlinear’ part of the research objective), which can have anisotropic parameters,
describing anisotropy. When the ellipsoid magnetization is assumed uniform throughout the
material, the magnetic evolution can be modelled by solving three coupled nonlinear ordinary
differential equations. When the assumption of uniformity is loosened, the analytical result
underlying the homogeneous/uniform case can no longer be used. To analyse this case of in-
homogeneity, we have used the Finite Element Method, which is able to efficiently model local
variations in materials. The static, spatial Finite Element formulation then is combined with
the nonlinear, temporal aspect of hysteresis, yielding the most flexible formulation of the for-
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ward ellipsoid model, in the sense that the magnetic signature is generated by applying known
parameters, initial conditions and boundary conditions.

Thereafter, the various forward models are inverted, by which we mean that the initial condi-
tion of the forward models and the material parameters, need to be estimated on the basis of
signature data. The more complex the forward model is, the more ill-posed the inverse model
will become, requiring advanced mathematical modelling techniques to solve.

In the end, we thus combined the theory of electromagnetic physics with measurements to
contribute to a larger project: The development of a closed-loop degaussing system to be used
by the Royal Netherlands Navy, which purpose it is to firstly model the magnetic signature of
naval vessels, thereafter estimate the magnetization distribution in the vessel, and thereafter
to actively monitor and even control the signature. In that context, I follow in the footsteps
of many researchers at TNO, as well as my daily PhD-supervisor Aad Vijn and the the fellow
TU Delft students Olivier Baas, Marianne Schaaphok and Adia Lumadjeng.

All in all, the project at TNO was very challenging, both in the mathematical realm and in
the personal sphere, but extremely rewarding, again both in terms of being the apotheosis of
my six-year period of studying Applied Mathematics (and a bit Applied Physics) in Delft, as
well as one of the biggest personal challenges in my life.

This brings us to some personal comments. Doing academic research at this scale was quite
new to me. More specifically, working at an external location outside a university environment,
while simultaneously enjoying lots of freedom in approach and direction, required a steady vi-
sion and determination. It is now clear to me that the inhomogeneous (in effectiveness),
nonlinear (in time) and anisotropic (in direction) progression of academic research can only be
traced afterwards. This observation entails a big learning point for me personally: Often, one
has to make a leap of faith into the unknown, to pick one approach over the other. One has to
have sufficient courage to pursue such an idea, to keep one’s nerves and to be flexible in case
of setbacks. Perhaps this aspect of the graduation project has taught me the most. Moreover,
discipline and determination is absolutely necessary, which is a harsh lesson to learn, but a
necessary one in life. I have made many mistakes during the project in this respect, from which
I have hopefully learned my lessons, realizing that lessons have to be learned continuously in
life. For one thing, my mind was often very distracted during the project. I have not been able
to figure out why, by in some sense, the whole past MSc period of more than two years have
felt like I was only taking part in it, and not owning it. This is a very surreal experience and
was even more intense during the graduation project. I resorted to certain philosophers and
existential or even nihilistic ideas to justify my experiences, which sometimes caused my mind
to run ever more chaotic. This has impacted my research in a negative way, causing many
changes of plans, reductions of goals and personal dissatisfaction. I want to sincerely apologise
to the people I have let down during the previous period, but have come to the conclusion that,
regardless of the objective, measurable outcome of the mathematical part of my graduation, it
has in the end been a thoroughly good time in all aspects of my life.

Luckily, the research was far from solitary and my supervisors were extremely supportive. I
would like to thank dr. ir. Eugene Lepelaars greatly for supervising me from TNO. We have
had many great conversations, not only about the project but also about life and the future.
He was always very supportive and generous in commenting on my draft versions of the current
report. Our weekly meetings taught me a lot, as well as his general stance and humility in life.
On the same note, I would like to thank my PhD supervisor ir. Aad Vijn for always being

VI



ready to answer my (sometimes) confused questions and for keeping an eye on my progression.
He has taught me a lot and was very generous to include me on a paper that was presented
at the Marelec conference in Boston, for which I am very grateful. He was very supportive
and included me also in his experience as a PhD candidate by discussing the reality of a life
as a PhD candidate. I am very grateful to have known him better over the course of the last
ten months. Finally, I would like to thank the chair of the group Mathematical Physics and
my official supervisor Prof. dr. ir. Arnold Heemink for his professional and always positive
leadership. I always enjoyed the meetings with him and the discussions we had on several areas
of life. I am very grateful to have had him as my head supervisor.

Secondly, I would like to thank the professors and researchers that I had several meetings with
during the project. Among others, dr. ir. Fred Vermolen has helped me to formulate the
FEM framework of the current research, for which I would like to thank him greatly. Dr. ir.
Martin van Gijzen and dr. ir. Johan Dubbeldam, who contribute to the larger TU Delft - TNO
cooperation in the context of the degaussing project, have also commented on my progress in
several meetings, for which I would like to thank them. Prof. dr. ir. Mark Veraar has taught
me a lot on theoretical results concerning the Poisson equations which was encountered in the
current report, for which I thank him. Also, several TNO researchers shared their thoughts
with me over the course of the project, among others Bart Jan Peet and Reinier Tan, for which I
thank them. In a broader context, I also thank TNO and the department of Electronic Defence
for the pleasant working environment that was offered to me, which consisted of very friendly
colleagues, awesome activities and great fellow interns. I would recommend an internship at
TNO to anybody, given the possibility.

Moreover, I am grateful for Arnold, Eugene, Fred and Aad to be part of my thesis committee.

Lastly, I would like to thank my family, my father Geurt and mother Simone and my brother
Willem and two sisters Heidi and Brenda, as well as my grandma and uncles and aunts, for
being such a good and supportive family. I am very blessed in that respect. I would also like
to thank my dear roommates for supporting me, as well as my friends and a very special girl
that has come into my life during the last stages of the project, for which I am very grateful.
Especially during the finalisation of the project, you have all been of great help to me. Lastly,
I want to thank God for blessing me in this life.

Delft, December 13th, 2019
Hendrik Jongbloed
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Chapter 1

Introduction

1.1 Research Motivation

In order to minimize the risk of being detected in war situations, it is of the utmost importance
to minimize the signature of naval ships and submarines. The signature of such a vessel is the
set of all detectable physical quantities that differ with the presence of the vessel, relative to
the unperturbed situation without the vessel. Formulated this way, one can view the signature
of a ship as a source - perturbation problem: The signature of a vessel is a consequence of the
internal ‘production’ of physical effects, such as engine noise, but also a consequence of the
interplay between the vessel and surrounding media, such as in the case of the slow magne-
tization of a submarine in the Earth’s magnetic field. Today’s advanced mines are equipped
with a variety of sensors in order to measure the slightest changes in different physical quan-
tities: acoustic waves, electric fields, magnetic fields, pressure changes, temperature changes,
to name a subset of signature aspects. Upon measuring a certain set of deviations from the
unperturbed situation, the mine will detonate, causing great destruction, possibly of human
lives. Since an advanced mine is, however expensive in its own right, orders of magnitude
cheaper than a state-of-the-art modern naval vessel, stealth technology, signature monitoring
and minimization is both an important and necessary frontier in current Defence research.

Figure 1.1: A schematic depiction of many possible physical effects that make it possible to
detect a naval vessel or submarine. This figure was cropped from the thesis of Aad Vijn [80].

As can be observed from Figure 1.1, there exist many signature-generating mechanisms. A
good question could be: ‘Can all of those effects be minimized to a satisfactory degree?’. In
order to do this, one has to firstly predict or measure the signature accurately. However,
measuring the signature of a naval vessel sounds easier than it is. It is often an expensive and
time-consuming operation. Even when restricted to only the magnetic signature, the subject of
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the current research, measuring the signature is quite a challenge. This is why reliable physical
models have to be formulated in order to extrapolate relatively easy-to-get data, for example
from within the vessel, to the outside of the ship’s hull.

1.2 The magnetic signature of a vessel

Steel naval ships and submarines perturb the Earth’s magnetic field locally. Their ferromagnetic
properties induce a perturbation field, detectable by advanced modern mines using magnetic
sensors. This perturbation field is known as the magnetic signature of the ship and ultimately
is a function of the interplay between the ship’s steel properties, geometrical configuration, the
local Earth’s magnetic field, the motion of the ship and the electrical currents and phenomena
present in and around the ship. In order to minimize the risk of being detected in war situ-
ations, it is vital to minimize the magnetic signature of these ships. An advanced system of
electric coils on board is able to do just that: by Ampere’s law, electric coils generate a mag-
netic field aimed to cancel the magnetic signature of the ship. This is known as a degaussing
system: a (partially) self-regulating system, monitoring the motion and position of the ship
continuously and controlling the current through degaussing coils by means of an algorithm.
One encounters some complexities in this process. Firstly, in practice it is difficult and ex-
pensive to accurately measure the magnetic signature outside the ship, especially if it is large.
Another difficulty in this paradigm is the complexity of accurately determining which part
of the magnetization of the ship’s hull is permanent (not influenced by the Earth’s magnetic
field), and which part is induced (and thus, possibly nonlinearly, influenced by the Earth’s
field), furthermore, sensors measuring the actual magnetic field are inside the ship, while the
relevant minimization of the signature is at the location of expected mines. Moreover, the
field generated by degaussing coils also influence the magnetization of the ship’s steel. Under-
lying these problems is the fact that it is very difficult to model the magnetic behaviour of steel.

This is where the present project comes in. Due to the non-linear magnetic behaviour of
ferromagnetic steel, the ship’s degaussing system will decrease in performance after some time,
if the system is designed with the assumption of linearly reacting steel. Indeed, the present
systems use a linear approximation of the magnetic behaviour of the ship’s hull, while the
actual behaviour is non-linear and even history-dependent, a phenomenon known as hysteresis.
Now, commissioned by Royal Netherlands Navy, TNO is currently developing a closed-loop
degaussing system as part of a much larger project of procuring new naval ships and submarines,
including this nonlinear hysteresis component. A closed-loop degaussing system is, in some
way, the perfection of a sequence of consecutively more advanced systems in magnetic stealth
technology: Deperming, open-loop degaussing and closed-loop degaussing. Deperming has
been done for many years in history, and refers to a static procedure to remove permanent
magnetization from a naval vessel, visualized in the figure below.
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Figure 1.2: A naval vessel is being depermed at a harbour.

1.3 Towards ellipsoid modelling

Having discussed the broader context of the present research in terms of naval warfare and
signature minimization, we are ready to focus on the particular. As discussed above, it is
often very difficult to model the magnetic behaviour of a vessel’s steel, because of its nonlinear
and inhomogeneous (location-dependent) nature. As is often the case in science and applied
mathematics, experiments, data and observations must be included in the description and
modelling of these complicated phenomena. Combining models with data, opens up a whole
new horizon of techniques, theory and tricks. In combining physical models with data, one
encounters the notion of inverse modelling rather frequently. This is the case, because in a
multitude of realistic situations, one cannot directly observe the quantities of interest. Rather,
one assumes that measured data are generated by some pre-derived forward model. This
forward model must thereafter be inverted in order to draw conclusions about the quantities
of interest. In formal notation, let observed data be denoted by a vector y, let a (known)
parameter vector be given by θ and let physical quantities of interest (which, confusingly, may
also contain quantities that could be named ‘parameters’) be denoted by the vector x. These
are related formally by the forward model F :

y = F(x,θ) (1.1)

which can be loosely described as the data one observes, given the hidden quantity x and the
model parameters θ. The inverse problem is then roughly to estimate the hidden variables x
from the data y. Often times, there are many more unknowns to be estimated than knowns,
yielding an ill-posed inverse problem (here, we do not give a precise definition). Numerically,
this fact is often related to notions of high condition number, which in turn is related to high
noise-sensitivity and so on, resulting in the often very complex nature of inverse problems.
For example, in his MSc thesis, Aad Vijn [80] analysed inversion algorithms to estimate the
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magnetization distribution in a real-life steel specimen, which is certainly non-trivial.
This was before the CLAViS was built at TNO. The CLAViS, built by Eugene Lepelaars, is a
small-scale magnetic signature monitoring device that makes use of Helmholtz coils to generate
an uniform applied field. Inside the CLAViS, there is space to place an object above a sensor
array, providing the means to measure the effect of an uniformly applied background field on
that object.

Figure 1.3: The CLAViS with our ellipsoid inside.

Once the CLAViS was built to perform small-scale signature measurements on miniature ferro-
magnetic objects, a great variety of possible experiments was made possible at once, motivating
new research projects within the context of magnetic signature modelling and prediction. For
example, Marianne Schaaphok has performed research using the CLAViS at TNO, looking
into real-time data-driven model for magnetostatics. This allows us to now move from general
naval ships and submarines, towards a more manageable object that is easier to analyse using
measurements: A prolate steel ellipsoid located at TNO, Oude Waalsdorperweg.
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Figure 1.4: The prolate steel ellipsoid that was analysed during our research.

An ellipsoid is remotely comparable to, for example, a submarine, although many aspects differ.
This makes ellipsoids interesting objects from a far-field perspective. The main inspiration
for the current research is formed by an observation in the thesis by Olivier Baas [74], who
also conducted research at TNO during his graduation project. He eventually focussed his
research on a steel plate, and investigated the influence of external fields and stress on the
magnetization distribution of that plate. He also looked into the prolate steel ellipsoid that
is the focus of the current research, but did not fully analyse it. Baas conjectured that the
magnetization inside the ellipsoid has a non-uniform permanent component; this would explain
the measured discrepancy between the measured signature and theoretical results assuming a
uniform magnetization. Later, Eugene Lepelaars and Aad Vijn formulated the current project,
to analyse the prolate steel ellipsoid and focus specifically on three aspects, discussed below.

1.4 Research Goals

Using the prolate solid steel ellipsoid, owned by TNO, the goal of the project is to investi-
gate and quantify the significance of nonlinearity, anisotropy and inhomogeneity of the steel
constituting the ellipsoid; this is done by employing different models of nonlinear hysteresis.
These models differ, among other things, in terms of the number of parameters and physical
motivation. Using and comparing different hysteresis models has a number of benefits. A
forward model can be employed to generate artificial data, whereafter another model can be
used to be fitted to these data. In that way, a correspondence between different models can
possibly be created. The material hysteresis models are able to describe material non-linearity
and anisotropy, whereas the inhomogeniety in the ellipsoid itself is reflected in either assuming
non-uniform magnetization and initial conditions, or varying model parameters throughout the
ellipsoid, on a macro scale. Accordingly, the main research goal of this graduation project can
be formulated as follows:

‘Formulate, motivate, design, implement, verify and improve a model of the
magnetic behaviour of a ferromagnetic steel ellipsoid, taking into account

hysteresis, anisotropy and inhomogeneity, moreover, quantify the impact of these
three aspects.’
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We hope to achieve this goal by formulating the following sub-goals.

• Develop a flexible and general forward model

• Identify and understand the physical and mathematical significance of model parameters

• Investigate a flexible, general and reliable method of model inversion and parameter
estimation

• Quantify the impact of hysteresis, (an)isotropy and (in)homogeneity

From the subquestions above, it is essentially our main task to go from sensor data to magne-
tization prediction and estimation in time, roughly depicted in the figure below:

Figure 1.5: Our task is to go from the ellipsoid, to the sensor array, back to the ellipsoid. Will
it work out as planned in nonlinear, anisotropic and inhomogeneous circumstances, and are we
able to quantify relevant aspects?

1.5 Report structure

The structure of the report is as follows.
Firstly, we will present a short overview of the basic theory of electromagnetism, which is
then directed towards equations describing the field of magnetostatics. The resulting partial
differential equation, a nonhomogeneous Poisson equation with nonlinear coupling between its
solution and its nonhomogeneous term, is presented. Thereafter, we apply the obtained equa-
tions to a general steel ellipsoid. Prolate spheroidal coordinates are introduced and the forward
and inverse model are defined. At this point, only spatial aspects have been considered. How-
ever, in order to model the quasi-static evolution of the situation at hand, we need to describe
the behaviour of a magnetizable object in a changing magnetic field in time. This is where
material hysteresis models come in. The four material hysteresis models IP, RA, JA, and
EVare introduced and resulting equations are derived.
The second part of the report is concerned with modelling the magnetization evolution and
corresponding signature of the steel ellipsoid under one specific assumption: Homogeneity. In
this case, an analytic expression called ‘The Ellipsoid Formula’ can be derived as a solution
to the magnetostatic Poisson equation. This expression is of great importance and forms the
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basis of the homogeneous ellipsoid model. A nonlinear ordinary differential equation is capable
of describing the magnetic evolution of the system. The four hysteresis models are coupled
with this ODE in an incremental, iterative manner. Having derived the homogeneous forward
model, we proceed by inverting the model using a genetic algorithm. The influence of mea-
surement noise is analysed, though not too extensively.
Thirdly, we consider the Poisson equation derived in the first part of the report without the
assumption of homogeneity. The magnetostatic solution is analysed using a combination of
the analytic, homogeneous solution and the usage of finite element analysis.The finite element
matrices and vectors are derived and a specific Dirichlet solution method is described. An
incremental procedure is proposed to describe the evolution of both the magnetic field and the
magnetization inside the ellipsoid, coupled by the underlying hysteresis model. Subsequently,
the resulting stepping scheme is inverted by considering the measurement data as input to the
inverse model. This yields an ill-conditioned system of linear equations at each time step. Using
regularization, the magnetization distribution inside the ellipsoid is estimated. Thereafter, the
hysteresis parameters of the inhomogeneous ellipsoid are estimated using genetic algorithms.
Lastly, the influence of noise is considered.
The fourth part of the report is devoted to results, discussion, conclusions and recommenda-
tions. Results of both forward and inverse simulations are given with the help of noise-perturbed
twin experiments. A comparison of all discussed models is made on the basis of criteria such
as region of validity, computational cost and stability. Some of the assumptions underlying the
different models are analysed by comparing models of different complexity. Finally, the models
are fitted to real measurement data, obtained using the CLAViS at TNO. These results are
then discussed, conclusions are formulated and recommendations are given.
Finally, the appendices of the current report consist of more results and figures, more equa-
tions involved in modelling hysteresis and more equations involving the finite element method.
Lastly, the list of consulted literature is provided.

1.6 Software

Throughout the research, we have made use of the familiar scientific computing tool Matlab.
We have implemented our own ODE solvers to be able to enjoy an optimal degree of customiza-
tion and understanding. After generating a Finite Element mesh using the software Comsol,
we have imported these different meshes automatically in Matlab. Thereafter, we have used
our own derived Finite Element matrices to compute the forward and inverse inhomogeneous
model results. For the inverse estimation of hysteresis parameters, we have made use of the
built in ga() function, an implementation of a genetic algorithm.
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Part I

Magnetostatics, Hysteresis and
Ellipsoid Models
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Chapter 2

Magnetostatics

The current chapter will be foundational for the rest of the present research. The equations
governing different magnetic concepts will be stated, accompanied by short discussions on their
derivations and assumptions. The chapter is mainly based on Jackson [2], Coey [5], Jiles [8]
and Feynman [9].

2.1 What is Magnetism?

This section aims to get the reader familiar with the idea of magnetism. We will focus specifi-
cally on magnetostatics: Temporal effects will not be discussed. For example, electromagnetic
waves as solution of the Maxwell equations will not be touched upon.
From a historic point of view, magnetic phenomena have been studied for at least as long
as electric phenomena. Ever since the classical age, naturally magnetised objects known as
lodestones were studied; the 6th century Greek philosopher Thales of Miletus (624 B.C. - 546
B.C.) is believed to have been one of the first figures in written history to have discovered the
permanent magnetic properties of these naturally occurring materials.

Figure 2.1: Thales of Miletus (624 B.C. - 546 B.C.)

In fact, the name ‘magnet’ may come from lodestones found in Magnesia, Anatolia. The mag-
netic compass is a very old invention and has been an indispensable tool for millennia. The
Earth has been regarded as a giant magnet for centuries. However, the physical laws govern-
ing and describing the mysterious phenomenon of magnetism were discovered not so long ago;
with great difficulty and determination, the behaviour of magnetic phenomena was described.
It required the combined genius of many different great scientists, both experimentally and
theoretically, to arrive at the theory of magnetism presented in this chapter. In electrostatics,
the discovery of governing laws was more straightforward. This has to do with a fundamental
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difference between the two: In contrast to electric charges such as the elementary electron, there
are no free magnetic charges. Even so, it can be useful to use the concept of magnetic charge
mathematically. But one simply cannot make a piece of material, possessing a certain mag-
netic charge. How then to study magnetism? In this literature study, we have chosen to take
the classical approach to defining the relevant concepts. The reader must keep in mind that
equivalent concepts can be derived and defined, for example, by fundamental principles of ther-
modynamics or solid state physics. More on this approach can be found in Dunning-Davies [16]
(for the thermodynamic/energetic approach) or Simon [13](for the solid state physics/quantum
mechanical approach). The basic entity in the study of magnetic phenomena was the magnetic
dipole, relating rotational force to a measure of ‘magnetic strength’, which will be rigorously
defined later:

τ = m×B. (2.1)

This fundamental relation contains the quantities torque τ [N m], magnetic dipole moment
m[A m2] and the magnetic flux density B[T]. We will take this as our definition for the B-
field, which is also sometimes called the magnetic induction field. Please note that this is
an idealised situation involving a perfect dipole: its own field is assumed to not influence
the applied magnetic flux density. Derived from this elementary magnetic moment, is the
Magnetization M[A m−1], which is defined as the volume average over all microscopic magnetic
moments in a material.

2.2 Maxwell’s Equations and Constitutive Relations

One of the great scientific breakthroughs in science was achieved in the nineteenth century, by
the brilliant Scottish scientist James Clerk Maxwell (1831 - 1879).

Figure 2.2: James Clerk Maxwell (1831 - 1879)

He managed to combine the previously seemingly unrelated and mysterious phenomena of
electricity, magnetism and (what is now known as) electromagnetic radiation together in a very
elegant theory [20]. Four coupled partial differential equations, known as Maxwell’s Equations,

11



describe the behaviour of electric and magnetic fields in both vacuum and matter [2]:

∇ ·D = ρ (2.2)

∇ ·B = 0 (2.3)

∇× E = −∂B

∂t
(2.4)

∇×H = J +
∂D

∂t
. (2.5)

In these fundamental equations, the electric field E [V m−1] and magnetic flux density B are
furthermore related by charge, motion and force. A particle of charge q [C], moving at a
velocity of v [m s−1] experiences a Lorentz force given by

F = q(E + v ×B) (2.6)

which gives a fundamental recipe of determining both the electric field and magnetic flux density
in space. One observes two extra vector fields in the differential formulation of Maxwell’s
equations. These so-called auxiliary fields take physical matter into effect and are defined as
follows:

D = ε0E + P (2.7)

H =
1

µ0

B−M. (2.8)

The auxiliary fields are excellent tools for the macroscopic analysis of electromagnetic phe-
nomena in matter. The electric displacement field D [C m−2] is non-trivial in case of matter in
which the polarization P [C m−2] is non-trivial. Analogously, the magnetic field H [A m−1] is
an important field in ferro-, para- or diamagnetic matter. Here, we encounter the previously
defined magnetization M, then defined as volume-averaged dipole moments. Although the
following equation may seem like a rewriting of the previous one, the emphasis is different:

B = µ0(H + M). (2.9)

This equation always holds, per definition of H. The subtle connotation is found in the fact
that many in a wide class of problems, (partial differential) equations yield solutions in terms
of M and H, whereafter the B-field is computed by (2.9). The magnetostatic time-independent
Maxwell equations then reduce to the macroscopic equations

∇ ·B = 0 (2.10)

∇×H = J. (2.11)

Combining (2.9) with (2.10) and (2.11) yields an almost complete description of the magnetic
behaviour of matter. What is missing however, is a relationship between B and H, B and M
or H and M (thereafter, (2.9) can be applied to compute the third quantity). For the sake
of the present discussion, let us relate M to H inside a material. This constitutive relation is
material-specific, which originates in quantum mechanical and microscopic effects in matter.
This is where the concepts of magnetic permeability, magnetic susceptibility and hysteresis
come in. Indeed, in general, one can describe the nonlinear relation between the magnetic
quantities locally as 

M =M[H]

B = B[H]

B[H] = µ0(H +M[H])

(2.12)

12



where the square brackets indicate a complicated relationship, in general involving the history
of the magnetic field inside the material as well as highly specific and local material parameters.
It is therefore not trivial to formulate the domain of these operatorsM and B, so we will leave
it at here. Let us look at some examples of these operators.

Linear materials For linear materials, both M and B are linear mappings of the following
form {

B = B[H] = µH

M =M[H] = χH
(2.13)

where µ is, in general, a second-rank tensor, called the magnetic permeability [N A−2]. The
volume magnetic susceptibility (often simply called magnetic susceptibility) χ of a material is
a dimensionless quantity. Combining the various expressions above, yields the relation

µ = µ0(1 + χ) (2.14)

and via the constitutive relation (2.9), one obtains the expression of the relative magnetic
permeability, a dimensionless quantity:

µ
r

:=
1

µ0

µ = 1 + χ (2.15)

For linear, isotropic materials, µ = µ1, where µ ∈ R and δ is the unit tensor. Already encoun-
tered a few equations ago, the permeability of free space is given by µ0 := 4π × 10−7 N A−2.
So in free space, µ

r
= 1 and thus χ = 0{

B = µ01H = µ0H

M = χH = 0
(2.16)

Nonlinear ferromagnetic materials For nonlinear ferromagnetic media, the relations Equa-
tion 2.12 are more complicated. However, one can still speak of differential permeability and
susceptibility derived from the local linear approximation of the mappings M and B. Indeed,
we then define these two quantities by the respective Jacobiansµ

d
ij

:=
(
∂B[H]
∂H

)
ij

χd
ij

:=
(
∂M[H]
∂H

)
ij

(2.17)

where 1 ≤ i, j ≤ 3 represent the dimensions. Note that these quantities only make sense
locally, since the mappings B and M are no functions. Although the previous expressions are
somewhat loosely defined, they become clear in the application. In order to be mathematically
rigorous, one would have to define what ‘the history of the system’ really is, which is beyond
the scope of this research.

2.3 Solving problems in magnetostatics

Let us look at solving the magnetostatic Maxwell equations in the presence of material config-
urations and under bound current-free conditions (J = 0), namely

∇ ·B = 0 (2.18)

∇×H = 0 (2.19)

B = µ0(H + M). (2.20)

M =M[H] (2.21)
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Let us now consider a volume Ω ⊂ R3. Since we are in a setting of physics in this research, we
do not have to worry about fundamental mathematical aspects of geometry and manifolds; we
assume ‘everything works’. The interested reader is referred to literature on functional analysis
and partial differential equations. At the boundary of the object Ω, we can apply a ‘pill box’
method to deduce the boundary conditions on B and H. In the absence of bound currents,

(B2 −B1) · n = 0 (2.22)

n× (H2 −H1) = 0. (2.23)

Solving equations (2.10) and (2.11) together with the relation (2.9) and boundary conditions
(2.22) and (2.23) can be very difficult and is often analytically impossible due to the complexity
of geometrical configurations or a complicated relationship between B and H. Depending on
these factors, Jackson provides three main lines of strategy [2]. We will only discuss one of
them: solving the magnetostatic Maxwell equations using the scalar magnetic potential.

2.3.1 The Scalar Potential Φ

Let us specifically look at the equation

∇×H = 0. (2.24)

Now, this law allows for introducing the magnetic scalar potential Φ : R3 → R, defined by

H = −∇Φ, (2.25)

since substituting the above equation in Equation 2.24 yields, using formal determinant nota-
tion

∇×H = −∇×∇Φ (2.26)

= −

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

∂Φ
∂x

∂Φ
∂y

∂Φ
∂z

∣∣∣∣∣∣ (2.27)

= 0. (2.28)

The last step follows from the differentiability conditions of Φ. Again, one could make this
more precise using function spaces, strong and weak forms. For example, one can see that we
have not proven Φ ∈ C2(R) which would make the step Equation 2.28 to be immediate. Surely,
there are technical difficulties involved when boundaries are present or when geometric bodies
exhibit nonsmooth behaviour. Again however, we will not focus on these mathematical details.

2.3.2 The Poisson Equation

The introduction of the scalar potential allows one to derive the Poisson equation. This PDE
describes the local, spatial relation between H and M in space and will be the fundamental
equation in the current research. Taking the divergence of the constitutive equation Equa-
tion 2.9 yields

0 = ∇ ·B = µ0∇ · (H + M) (2.29)

= µ0(∇ ·H +∇ ·M) (2.30)

= µ0(−∆Φ +∇ ·M). (2.31)
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And so, one obtains the Poisson equation

∆Φ = ∇ ·M. (2.32)

The solution to the Poisson equation is widely discussed in all kinds of physical and mathe-
matical literature. In the following, let us now prescribe certain mathematical properties to
the equation above. Defining

f(r) = (∇ ·M)(r) (2.33)

we obtain the standard Poisson equation ∆Φ = f . Now, assuming the smoothness of f , the
Poisson equation has an analytic solution that can be obtained by Green’s function theory.
Examples of Green’s functions on different computational domains can be found in many
textbooks.
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Chapter 3

Modelling the Magnetic Ellipsoid using
the Maxwell Equations

The previous chapter was devoted to the introduction of the Maxwell equations, which unify
electricity and magnetism. The concept of magnetization was introduced as an averaged distri-
bution of nanoscale dipoles. Constitutive relations were derived, whereafter the local Poisson
equation was derived.

∆Φ = ∇ ·M (3.1)

This equation can be integrated using theory of Green’s functions, yielding an integral form,
allowing for the direct calculation of the magnetic field in the presence of a magnetization
distribution. In the current research however, we firstly attempt to solve the above Poisson
equation by means of a direct analytic treatment using simplifying assumptions, and later using
the Finite Element Method. But firstly, let us consider the properties of the above equation in
different circumstances.

3.1 Analysing the Poisson equation

Suppose one has a magnetization distribution in space, M = M(r), and let us suppose that
for all r ∈ R3 we have M(r) = M(r)1Ωe(r), where Ωe is some closed and bounded subset of
R3. This means that the nonzero magnetization distribution is limited to the set Ωe. We want
to compute the magnetic field H = H(r), such that the Maxwell equations are satisfied. As
discussed before, we need to find a scalar potential Φ(r), which solves the Poisson equation.
However, in concrete ferromagnetic situations, the terms Φ and M are interrelated, because
H and M are interrelated. Therefore, although the Poisson equation is linear (the Laplace
operator is a linear operator on certain function spaces), the resulting PDE is nonlinear in
general. Using the formal hysteresis relation M =M[H] (which can be highly nonlinear and
often implicit), the original Poisson equation

∆Φ = ∇ ·M (3.2)

is formally given by

∆Φ = ∇ ·M[−∇Φ] (3.3)

where the (generalized) boundary conditions have not been specified yet.

Example 3.1.1. To see that the Poisson equation with hysteresis is ‘very difficult’ in general,
let us look at a relatively simple (but unphysical) expression for M, namely, one that is non-
linear but history-independent. Suppose M = M[H] = M(H) = γ ‖H‖2 H for some γ > 0.
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Then the equation to solve is given by the nonlinear Laplace equation

∇ ·
((

1 + γ ‖∇Φ‖2)∇Φ
)

= 0 (3.4)

and the treatment of this equation is beyond the scope of the current research.

As the previous example shows, one cannot expect to derive an analytic solution to the Poisson
equation without making some simplifying assumptions. A common and highly simplifying
modelling choice is given by assuming the situation to be linear, isotropic and homogeneous,
in which case one has M = χδH = −χ∇Φ(r) for r ∈ Ωe, equivalently M(r) = −χ1Ωe(r)∇Φ =
−χ(r)∇Φ with χ(r) = χ1Ωe(r) and thus

f(r) = ∇ ·M = −∇ · (χ(r)∇Φ). (3.5)

Accordingly, the Poisson equation reduces to the Laplace equation with relatively simple ‘dif-
fusion coefficient’ µr(r) = 1 + χ(r)

∇ · (µr(r)∇Φ) = 0 (3.6)

Now, we are tempted to go into many details concerning theoretical properties, existence and
uniqueness of solutions to the above equations. We could go as far as analyzing the space
of solutions and so on, as can be done following Hunter [87]. However, let us just conclude
that the above equation is very difficult to solve in general and one has to employ numerical
techniques relatively quickly when contemplating it.

Now we have stated some properties of the simplified Poisson magnetostatic boundary value
problem, further categories of modelling choices will be made clear in the following section.

3.2 Classification of modelling choices

We distinguish eight different modelling choices, based on the three aspects of linearity, isotropy
and homogeneity of the material. These three aspects will by expanded upon further in the
current report. Roughly speaking, (non)linearity and (an)isotropy refer to the hysteresis oper-
atorM and the parameters therein, whereas the notion of (in)homogeneity refers to the spatial
distributions of magnetic quantities within the material in the broadest sense.

Linearity The assumption of linearity is defined by letting the magnetization operator take
a very specific form, namely

M(r) =M[H(r)] = χ(r)H(r). (3.7)

where χ only depends on the spatial coordinate. Clearly, M is linear in H. A material is
nonlinear if it is not linear, that is, if the M−H relation cannot be written in the form above.

Isotropy The assumption of isotropy is concerned with direction-dependent effects inside
materials, caused by molecular crystalline properties. Isotropic material can be modelled by
using scalar parameters, whereas anisotropic material requires using tensor parameters. The
parameter vector θ consists of only scalar parameters in the isotropic case. Moreover, there
are different gradations in anisotropy. One has uniaxial anisotropy, in which hysteresis param-
eters take the form of diagonal tensors. Fully anisotropic materials exhibit cross-directional
behaviour and are modelled by full second-rank tensors.
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Homogeneity The assumption of homogeneity has to do with the geometric nature of the
model. It may be the case that in the manufacturing process or during other events, the steel
of the ellipsoid was affected inhomogeneously. On the other hand, the material parameters
may be constant in space, but the magnetization distribution may be non-uniform in space.
This is the difference between homogeneity and uniformity. However, as we shall see in the
following, a slightly confusing deviation from this convention is used in the current report.

3.3 Physical Geometry: Applying the Poisson equation

to the ellipsoid

3.3.1 Defining the ellipsoid

Let us now describe the situation to be modelled in full detail. Consider three-dimensional
space R3. Centered at the origin, an ellipsoid is located, denoted by Ωe as a subset of R3. The
ellipsoid used throughout the whole of the current research, is prolate. In words, this means
that the ellipsoid has two equal semi-diameters, whereas the third semi-diameter is greater
than the other two. For convenience, we choose the three-dimensional axes parallel to the axes
of the ellipsoid and the x-axis parallel to the major axis of the ellipsoid. Ωe ⊂ R3 is then
described by

Ωe := {(x, y, z) ∈ R3 :
x2

a2
+
y2 + z2

b2
≤ 1} (3.8)

where a is the long semi-diameter, and b the small semi-diameter. Without axes, the ellipsoid
that was analyzed in our present research, is depicted below in one of our result figures.

Figure 3.1: An inhomogeneously magnetized ellipsoid, with signature on the sensor array.

3.3.2 Prolate Spheroidal Coordinates

An important tool in deriving analytical expressions for idealized situations involving magnetic
fields and prolate ellipsoids are prolate spheroidal coordinates [90]. In a Cartesian coordinate
system, one introduces the ellipsoid center point rc = (xc, yc, zc) and the focal length 2f > 0.
The ellipsoid focal points are thus located at

f± = rc ± fux. (3.9)
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An arbitrary position vector r = (x, y, z) can now be described using prolate spheroidal coor-
dinates (ξ, η, φ), where ξ ∈ [1,∞), η ∈ [−1, 1] and φ ∈ [0, 2π), defined by

r+ = ||r− f+||, (3.10)

r− = ||r− f−||, (3.11)

ξ =
r+ + r−

2f
(3.12)

η =
r+ − r−

2f
∈ [−1, 1], (3.13)

cosφ =
y − yc√

(y − yc)2 + (z − zc)2
, (3.14)

sinφ =
z − zc√

(y − yc)2 + (z − zc)2
, (3.15)

(3.16)

Observe that the ellipsoid domain Equation 3.8 is now simply described by

Ωe := {(x, y, z) ∈ R3 : ξ(x, y, z) ≤ ξ0} (3.17)

for ξ0 > 1. From the previously defined coordinates, it also follows that the ellipsoid length,
diameter and volume are given in both the Cartesian and prolate spheroidal system by

` = 2a = 2fξ0 (3.18)

d = 2b = 2f
√
ξ2

0 − 1 (3.19)

V = 4πab2/3 = πd2l/6 = 4πf 3ξ0(ξ2
0 − 1)/3 (3.20)

With these values obtained, the semi-focal length f and dimensions are related by

f =
√
l2 − d2/2 (3.21)

Another parameter m is introduced to simplify notation. Let m = l/d = ξ0/
√
ξ2

0 − 1, which
results in ξ0 = m/

√
m2 − 1.

The definition of prolate spheroidal coordinates allows for the derivation of an important equa-
tion later on.

3.3.3 Sensor Array

The ellipsoid domain is where the interesting physics and nonlinear processes take place; out-
side the ellipsoid, the magnetic field is a deterministic quantity which exclusively depends on
the location x ∈ R3 \ Ωe, the applied background field and the magnetization distribution.
Moreover, the magnetic field in free space is linear in both the magnetization distribution
and background field, as can be observed from the analytical solution to the Poisson equation
derived above. The applied magnetic background field Ha functions as driving force for the
magnetization distribution evolution inside the ellipsoid. We will denote the set of sensor loca-
tions by Ωs. In practice, we have 112 sensors that are placed 0.156 m below the ellipsoid and
are all capable of measuring the magnetic induction field in all three dimensions.

3.4 The Forward Model

Having defined all relevant quantities, we are ready to define the Forward Ellipsoid Model.
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Definition 3.4.1 (The Forward Model). The forward model, denoted by F is the mapping

F :
(
R3 × [0, T ], B(R3),θ

)
→ B(Ωs × [0, T ]) (3.22)

defined by

F(Ha(t),M0,θ) = Bs|Ωs(t) (3.23)

from the applied input signal Ha(t), the initial magnetization M0(r) and the governing vector
of parameters θ = θ(M), to the output signal Bs, the measured signature (magnetic flux
density) at the sensor locations Ωs.
One has

Bs|Ωs(t) = −µ0∇Φ|Ωs(t) (3.24)

where Φ is a solution to the formal Poisson equation Equation 3.3.

Schematically, the forward model is depicted by moving from the top picture to the bottom
(in space) and subsequently in time (via a nonlinear hysteresis model).

Figure 3.2: An inhomogeneously magnetized ellipsoid. In our formulation, the magnetization
of the ellipsoid functions as input to the forward, spatial model.
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Figure 3.3: The sensor signature, produced by the magnetized ellipsoid of the previous figure.

3.5 The Inverse Model

Definition 3.5.1 (The Inverse Model). Estimation of the hysteresis parameter vector θ as
well as the magnetization distribution M(r), based on knowledge of Ha(t), and data Bs|Ωs(t).
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Chapter 4

Material Hysteresis Models

In a previous chapter on basic electromagnetic theory, three basic magnetic quantities were
discussed. These three vector fields are related by the defining constitutive relation

B = µ0(H + M). (4.1)

Usually, only one of these fields is known. In order to model a physical situation, one thus needs
another relation to be able to uniquely determine the three fields. Throughout this report, the
second relation is called the hysteresis relation, and is most often noted by the operatorM. The
domain and codomain of this operator depends on the context. Also, a closed-form expression
is often impossible to give, since the outcome of the (in general) nonlinear operatorM depends
on the ‘history’. In general, one can write

M =MH [H, θ], (4.2)

where θ denotes a vector of all relevant material parameters, and the square brackets denote
the ‘history-like’ character of the equation. The subscript H is used to denote the different
hysteresis models.
The current chapter consists of brief derivations and vectorial generalizations of four common
hysteresis models discussed in literature:

• The Induced-Permanent Model (IP), with one permanent magnetization component and
one linear parameter χ;

• The Rayleigh Model (RA), with 2 hysteresis parameters: {µi, αR};

• The Jiles-Atherton Model (JA), with 5 hysteresis parameters: {Ms, a, α, k, c};

• The Energy-Variational Model (EV), with 3+2Nc hysteresis parameters: {Ms, a, α, ωc, kc}.

4.1 Physics of Ferromagnetic Hysteresis

Let us focus on the non-linear ferromagnetic behaviour of steel. This non-linear behaviour,
previously denoted by the relation F , is known as hysteresis, derived from a Greek word
meaning ‘to lag behind’. This name is fitting, since it describes the behaviour of ferromagnetic
material in an external field quite well, as can be seen in the following classic hysteresis loop
figure. One can see that the magnetization exhibits memory-behaviour: the magnetic field
already evolves while the magnetization lags behind.
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Figure 4.1: A classical hysteresis curve.

The microscopic and mesoscopic origins of hysteresis can be explained by magnetic domain
behaviour, which actually can be observed. Details on the material properties giving rise
to ferromagnetism may be found in Coey [5] and Chikazumi and Charap [17]. It has to
do with specific crystalline structures on the nano- and microscale, giving rise to material
anisotropy, whereas the manufacturing process of real-life materials involves complicated and
random processes, giving rise to a certain distribution of mesoscopic magnetic domains inside
a material. Even more fundamental theory on the occurrence of magnetism may be found in a
standard work on solid state physics [13].

Figure 4.2: Magnetic domains under a microscope.

From these material-specific properties, one has to derive a macroscopic or mean-field descrip-
tion of the relation between different magnetic quantities (technically, even the magnetization
M of a certain material is a wildly varying quantity on a nanoscale). Different hysteresis models
exist in literature, all describing a certain relation between B, H and M and thus all capable of
describing a hysteresis loop as depicted in ??. We have looked at the models described in their
original papers by Rayleigh [23], Preisach [22], Bouc-Wen [25], Bergqvist [37] and Harrison [65].
We will discuss three of these models in more detail, stating the main equations, considerations
and (dis)advantages as well as model parameter estimation techniques.
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4.2 Hysteresis Modelling

The modelling of magnetic hysteresis can be approached from different angles. Some models
are purely aimed at describing observed data as well as possible, often requiring elaborate
expansions and approximations. Other models start from the laws of physics and try to find
a reasonable set of simplifications to reach a formulation that is both capable of capturing
hysteresis behaviour as well as being relatively simple to use. In that respect, one can classify
the four hysteresis models by the following set of statements:

• The IPmodel is based on a first-order expansion of the magnetization as function of H;

• The RAmodel is a parabolic approximation to observed hysteresis curves;

• The JAmodel works from splitting the magnetization in a reversible and an irreversible
part and by using an anhysteric function;

• The EVmodel also works with a ‘mean’ anhysteric function, but is built up from energy
balances by splitting up the magnetic field in a reversible and an irreversible component.

The vectorial generalization of the Rayleigh and Jiles-Atherton model is aimed to incorporate
a number of things:

• It must be able to describe anisotropy;

• It must reduce to the scalar case if isotropic and one-dimensional material is modelled;

• It must show intuitive and reasonable behaviour, which can be made more rigorous when
compared to intrinsically vectorial hysteresis models.

The vectorial Jiles-Atherton model was firstly described by Bergqvist [40], but vectorial gen-
eralizations of the Rayleigh model have not been found in literature. The Energy-Variational
model is intrinsically multidimensional. Let us now discuss the development and aspects of the
three nonlinear hysteresis models.

4.3 The Induced-Permanent Hysteresis Model

This model is fully defined by the ‘affine linear relation’

M = Mper + χH (4.3)

and is therefore intrinsically vectorial. Because Mper cannot be measured directly in many
circumstances, it is regarded as a free parameter.

4.4 The Rayleigh Hysteresis Model

Since its original publication by Lord Rayleigh [23], the Rayleigh model has had few modi-
fications or improvements. The essential idea is to approximate the hysteresis loops by two
intersecting parabolic curves, valid only for low external field strengths.
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Figure 4.3: Lord Rayleigh

4.4.1 Original Model

The scalar equations of the Rayleigh model as described by Kachniarz and Szewczyk [24] read

Bdecr(H) = µ0

(
(µi + αRHm)H +

αR
2

(H2
m −H2)

)
(4.4)

Bincr(H) = µ0

(
(µi + αRHm)H − αR

2
(H2

m −H2)
)

(4.5)

where the first equation describes the upper, decreasing part of the hysteresis loop, whereas
the second equation describes the lower, increasing part.

-30 -20 -10 0 10 20 30

H [A/m]

-1.5

-1

-0.5

0

0.5

1

1.5

M
 [

A
/m

]

10
4 Rayleigh Material Hysteresis Curve

Figure 4.4: Behaviour of the Rayleigh hysteresis model under the influence of a gradually
decreasing but alternating magnetic field. One can see that all monotone parts of the curve
are parabolas. The extreme end points of these curves are located at specific magnetic field
strengths Hm.

Furthermore, the quantity Hm represents the (local) extremal value of the driving magnetic
field, in order to connect the two parabolic curves. The virgin curve, obtained when applying
an increasing magnetic field to the material starting from a demagnetized state, is described
by setting Hm = 0 and changing the nonlinear part:

Bvirgin(H) = µ0(µiH + 2αRH
2) (4.6)

which results in a connected hysteresis loop when combined with Equation 4.4 and Equa-
tion 4.5. The two parameters µi (dimensionless) and αR [T m2 A−2] are the only parameters
in the Rayleigh model, governing the linear and parabolic component of the hysteresis curve,
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respectively. Because of its simple and descriptive form, the Rayleigh model allows for the
analytical computation of many different magnetic quantities of interest. Among others, this
was done by Baldwin [63], who also criticised the Rayleigh relation for very small values of Hm

by proposing different logarithmic and exponential terms in the relation. Physical arguments
for the Rayleigh model in low field strengths were given by Magni et al. [64], who took a
stochastic approach to hysteresis and found a Rayleigh law in the low-field domain.

4.4.2 Vectorial Extension

The scalar Rayleigh model is of the specific form

B = B(H, Ḣ, θ) (4.7)

where θ denotes the Rayleigh parameters. Using the main constitutive relation Equation 2.9,
one is able to derive a M −H relation:

M = B/µ0 −H =⇒ M(H, Ḣ, θ) = B(H, Ḣ, θ)/µ0 −H (4.8)

Partially differentiating this expression with respect to H while inserting the Rayleigh B −H
relation yields for the increasing-decreasing phase:

∂M

∂H
= µi + αRHm ± αRH − 1. (4.9)

Now, this scalar equation needs to be vectorized. A straightforward choice would be to let all
parameters be symmetric tensors. However, one then runs into trouble with matrix and vector
dimensions, because one has to provide an interpretation of the square of a vector. We therefore
propose the vectorial Rayleigh model in its incremental formulation to be, where d = x, y, z :

dMd =

{
(χ dH)d + (2αR(σ(dH⊗H)) dH)d if (Hm)d = 0

(χ dH)d + (αR(Hm + σ(dH⊗H)) dH)d if (Hm)d > 0,
(4.10)

where ⊗ denotes the Kronecker or pointwise product between two vectors. χ = µ
i
− 1 can be

an anisotropic tensor, and we assume αR to be a diagonal tensor. Furthermore,

σ(dH) :=

sgn(dHx)
sgn(dHy)
sgn(dHz)

 (4.11)

The incremental expression ?? can be used to derive the Rayleigh incremental susceptibility

χd
RA

:=
∂M

∂H
(4.12)

which is in turn useful for modelling the magnetic behaviour of the ellipsoid, as will be demon-
strated later on.

4.4.3 Visualizing the Rayleigh Model

In order to investigate the behaviour of the vectorial Rayleigh model, a magnetic field H(t)
is prescribed and the incremental formulation ?? is used to obtain a material M −H-curve.
Below, one can observe the behaviour of the Rayleigh model in different settings and varying
applied magnetic fields.
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4.4.4 Strategies for parameter estimation

In [23], a recipe for the identification of parameters of different materials is proposed on the
basis of measuring different pairs of values (Hm, Bm), where

Bm = Bincr(Hm) = Bdecr(Hm) = µ0(µi + αRHm)Hm (4.13)

according to the Rayleigh model. Measuring different pairs of (hm, bm) (the small letter denotes
a measurement of the corresponding capital quantity) and fitting them to (4.13) using a least
squares approach, yields estimates for the parameters in the Rayleigh model [24].
Useful strategies for estimating the Rayleigh parameters in the vectorial case could be:

• Employing the approach above, under the assumption of sinusoidal driving field and
isotropy.

• Using a gradient and/or adjoint approach to obtain some form of gradient-based error
minimization.

• Using a smart genetic algorithm.

Since the Rayleigh model only has a relatively small number of parameters, the second approach
could still be feasible. Since the model is also relatively computationally efficient, the genetic-
algorithm approach could also result in a useful parameter estimation scheme.

4.5 The Jiles-Atherton Hysteresis Model

The Jiles-Atherton model was proposed by D.C. Jiles and D.L. Atherton in 1984 [21]. It is a
scalar model, widely used in modelling magnetic hysteresis over the years. The model is based
on already existing ideas of magnetic domain wall motion, including bending (reversible) and
translation (irreversible). Concise energetic balances lead to certain conservation equations,
giving rise to constitutive relations, as was demonstrated by Melo and Esteves Araujo [36].

Figure 4.5: David Jiles
Figure 4.6: David L. Atherton

The pinning of domain boundaries on certain locations is the cause of hysteresis: without these
pinning conditions, a Langevin-type of ‘anhysteretic’ curve describes the H−M -relation. This
anhysteretic curve is a fundamental idea of the Jiles-Atherton model. The main result of the
model assumptions is an ODE of the form

dM

dH
= f(M,H, dH/dt). (4.14)
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In that respect, it can be treated in the same way as a differential Rayleigh model. However,
the Jiles-Atherton model is more complex in the sense that the change in M is dependent
on M itself, while the Rayleigh model only relates it to the magnetic field itself. Moreover,
the Jiles-Atherton model makes use of the anhysteric curve, unlike the Rayleigh model but
similarly to the Energy-Variational model.
Many modifications, such as vectorial extensions and minor loop adjustments, have been made
following the original proposal of the model, which will be briefly discussed in this section. For
the total derivation of the Jiles-Atherton model, the reader is directed to the cited papers and
books.

4.5.1 Original Model

The original Jiles-Atherton ODE is given by
dM
dH

= 1
(1+c)

Man(He)−M
δk−α(Man(He)−M)

+ c
(1+c)

dMan

dH
,

Man(He) = Ms

(
coth

(
He

a

)
− a

He

)
,

He = H + αM

(4.15)

where the saturation magnetization Ms [A m−1], the anhysteric shape parameter a [A m−1], the
mean field parameter α (non-dimensional), the pinning energy parameter k [T] and the ratio
coefficient c (nondimensional) are the regular parameters in the Jiles-Atherton model. The
indicator variable δ ∈ {−1, 1} is defined as δ := sgn (dH/dt). Jiles and Atherton tested and
fitted their model to specific materials, which yielded good agreement in case of major loop
calculations. In the years following the publication of their paper, the model received some
criticism. For example, see Zirka et al. [50], who pointed out some non-physical ‘construc-
tions, explanations and patches’ in the original Jiles-Atherton model. They point out that the
model fails to account for accurate minor loop predictions. Moreover, a non-physical negative
susceptibility can be observed in the Jiles-Atherton model in specific situations, which does
not occur in nature. Modifications and extensions were proposed in order to make the model
more realistic, which can be summarized as ‘the susceptibility criterion’ and ‘the closed-loop
criterion’.

Susceptibility Criterion Firstly, in some cases, unphysical negative susceptibility values
are observed in the original Jiles-Atherton model. To counter this behaviour, different authors
have employed a susceptibility positivity criterion, sometimes reflected in a ‘positive part’
function, defined by

x+ :=

{
x, x ≥ 0

0, x < 0,
(4.16)

and sometimes by introducing an extra parameter δM ∈ {0, 1}. This modifies the Jiles-Atherton
ODE as encountered in (4.15), as is described by Szewczyk et al. [29].

Minor Loop Dissipation Criterion Leite et al. [41] has proposed to introduce another
parameter in the Jiles-Atherton model. This dissipation factor R (dimensionless) is a param-
eter that is not fixed but rather is dependent on the location within the hysteresis loop. It
complicates the model but offers the flexibility needed to account for physically realistic minor
loops. In the overview paper by Berkman [73], this modification is also discussed.
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4.5.2 Vectorial Extension

Secondly, a vectorial Jiles-Atherton model was proposed by Bergqvist [40]. He already notes
negative susceptibility issues in the original Jiles-Atherton model. He proceeds by making the
parameters c and k from the original ODE symmetric tensors, yielding the vectorial equation

dM =
χ
f

||χ
f
||

(χ
f
· dHe)

+ + cξ dHe (4.17)

where {
χf := k−1(Man(He)−M)

ξ
ij

:=
∂Man,i

∂He,j

(4.18)

and, for example,

Man(He) = Ms

(
coth

||He||
A
− A

||He||

)
He

||He||
(4.19)

From these two equations, any increment in M can be computed from an increment in H, the
driving magnetic field. However, the above equation is implicit in case α 6= 0. Indeed, since
dHe = dH + αdM, the quantity of interest dM appears on both sides of the equation and
should be solved in a ‘separation of cases’ or iterative way. Another approach to a vectorial
extension of the Jiles-Atherton model was given by Szymanski and Waszak [51]. Bergqvist does
not address anisotropic materials explicitly and only considers uniaxial anisotropic materials.
Szewczyk [29] does indeed give expressions for the computation of the fully anisotropic Jiles-
Atherton model.

4.5.3 Visualizing the Jiles-Atherton Model
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Figure 4.7: A depiction of the material Jiles-Atherton model.

The characteristic shape of hysteresis curves is visible, which has to do with the magnetizing
field reaching saturation strengths.

4.5.4 Strategies for parameter estimation

Many different methods of finding the Jiles-Atherton material parameters exist in literature.
The earliest parameter identification procedures were devised by Jiles and Atherton themselves.
Thereafter, Jiles [48] proposed a parameter estimation method to estimate the parameters
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a, α, k and c using readily available material properties. Based on the shape of experimental
hysteresis curves, he manages to estimate the parameters with an error of only a few percent.
Various intercepts and slopes (incremental susceptibility) were used in determining the param-
eters. However, this method relies on the choice of anhysteric curve and is only applicable to
material-isotropic materials.
Pop and Caltun [49] essentially perform the same procedure, with a very thorough description
of their approach. Leite et al. [41] employed a genetic algorithm to obtain the classical Jiles-
Atherton parameters. Thereafter, they used a set of inner minor loops to obtain a R− (H,B)
relation, which indicates the difficulty of estimating the ‘variable’ parameter R. They used
polynomial regression to obtain good results of the parameter fit.
Three other parameter estimation methods were found in literature. Firstly, a differential evo-
lution algorithm was employed by Biedrzycki et al. [61], which gave good and efficient results,
even in the anisotropic, vectorial case with 9 parameters. They describe their method in detail.
In his thesis, Olivier Baas [74] has fitted the Jiles-Atherton model to experimental data using
the so-called ‘Shuffled Frog-Leaping Algorithm’, introduced by [62]. This gave very promis-
ing results. Lastly, an adjoint method of finding the parameters of the Jiles-Atherton model
while incorporating the positive susceptibility criterion was proposed by Zaman et al. in 2016
[52]. This methodology allowed them to efficiently compute the gradient of the cost function
with respect to the Jiles-Atherton parameters, and by employing a conjugate gradient-type
algorithm, significantly lowered the computational time of arriving at optimal parameters.

4.6 The Energy-Variational Hysteresis Model

The Bergqvist Energy-Variatonal model for ferromagnetic hysteresis was first outlined by
Bergqvist in his original paper [37]. By looking at solid-state and thermodynamic energy
balances and perturbations in them, he derives a intrinsically vectorial model, reminiscent of
dry friction dynamics. For a thorough discussion of the energy balances involved in his model,
including notions as Helmholtz and Gibbs free energy, the reader may consult a standard work
on thermodynamics [16]. Starting from perturbations in the Helmholtz and Gibbs free energy
by applying distributed ‘pinning sites’ in a ferromagnetic material (akin to the Jiles-Atherton
model), he devises a forward algorithm for computing the magnetization in time. Later, he
considers an extension of the model by making use of pseudoparticles, an idea also prominent
in the Preisach model [22]. Bergqvist successfully fitted the model to different materials. Later
research however indicated that the forward step utilised by Bergqvist may introduce system-
atic errors in the vectorial and especially the anisotropic case [38, 39]. Francois-Lavet et al.
[38] therefore proposed an optimization-based approach to find the next magnetization state
as function of the applied signal. Prigozhin et al. [39] in turn have improved the optimization
scheme by employing some notions of constrained optimization.
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Figure 4.8: Leonid Prigozhin
Figure 4.9: Anders Bergqvist

4.6.1 Original Model

The Energy-Variational hysteresis model in its simplest form (without using the effective field
or pseudoparticles) consists of a central variational inequality. This inequality is numerically
discretized in time, which is thereafter proven to be equivalent to a discretized optimization
problem. A (generally unique) minimum is found by Newton’s minimization algorithm, using
the gradient and Hessian of the function to be minimized. The cost is a function of the (chosen)
anhysteretic curve and the previous magnetization of the system only. However, the allowed
domain for the new magnetization value is finite and determined by the driving field and friction
parameters. Let us quickly describe the derivation of the Energy-Variational model below.

Theoretical Derivation

Consider a ferromagnetic material. The magnetostatic field energy inside a material can be
written as the sum of the vacuum field energy plus the material magnetization energy as follows:

W =
1

2
µ0‖H‖2 + U(M) (4.20)

We now postulate (A1) a time derivative (denoted by ˙(...)) of the magnetostatic field energy
by introducing a dissipative expression:

Ẇ = H · Ḃ− ‖rṀ‖ (4.21)

where in general, r is a symmetric positive definite matrix with entries determined by the degree
of (an)isotropy in the material at hand. r can rightly be interpreted as a friction coefficient
matrix. Equating the time derivative of (4.20) to (4.21), we obtain the expression

(H− f(M)) · Ṁ = ‖kṀ‖ (4.22)

where we have used the chain rule, k = r/µ0 and f(M) := 1
µ0
∇MU(M). We now assume

(A2) the H-field to consist of two parts: A reversible part, defined by Hr := f(M), and an
irreversible part, Hi := H−Hr, which transforms the above equation into an equation relating
the irreversible magnetic field and the rate of change of magnetization.

Hi · Ṁ = ‖kṀ‖. (4.23)

Observe that in the isotropic case (k ∈ R+), (4.23) is satisfied by imposing the following
conditions on Hi and Ṁ: 

‖Hi‖ ≤ k

‖Hi‖ < k =⇒ Ṁ = 0

Ṁ 6= 0 =⇒ Ṁ ‖ Hi

(4.24)
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The implication (4.24) =⇒ (4.23) is trivial in the case of ‖Hi‖ < k. If ‖Hi‖ = k and Ṁ 6= 0,
we have Ṁ = aHi for some a > 0 and thus

Hi · Ṁ = aHi ·Hi = a‖Hi‖2 = ak2 = |k|‖aHi‖ = k‖Ṁ‖ = ‖kṀ‖. (4.25)

which proves the implication. The ‘dry friction conditions’ (4.24) can be cast into a more
convenient form with the help of some concepts from analysis.
Firstly, for n ∈ N define the Rn-closed ball K̃ := B(0, k) = {u ∈ Rn : ‖u‖ ≤ k}. Further,
define for any convex function f : Rn → R ∪ {∞} the subdifferential set of f at the point
x ∈ Rn

∂f(x) := {∂ ∈ Rn : f(y) ≥ f(x) + ∂(y − x) ∀y ∈ Rn} (4.26)

INCLUDE EXAMPLE
The subdifferential set of any convex function is always closed and convex. The subdifferential
set of the ‘modified’ indicator function on the compact set K̃, defined by

IK̃(x) =

{
0 if x ∈ K̃
∞ if x /∈ K̃

(4.27)

is given by

∂IK̃(x) =


{0} if x ∈ K̃o = {x ∈ Rn : ‖x‖ < k}
{ax : a > 0} if x ∈ ∂K̃ = {x ∈ Rn : ‖x‖ = k}
∅ if x ∈ K̃C = {x ∈ Rn : ‖x‖ > k}

(4.28)

Now, by (4.24) we have Hi ∈ K̃. The dry friction law (4.24) can thus be conveniently expressed
as

Ṁ ∈ ∂IK̃(Hi). (4.29)

It can be proven [85] that this characterization of the dry friction force follows from basic
thermodynamic principles of admissible irreversible fields, which in retrospect justifies our
postulation of the specific dry friction conditions (4.24). In the anisotropic case, k denotes
a symmetric positive definite matrix, which is invertible. The k-dependent ball K̃ is then
generalised to

K̃ := {u ∈ Rn : ‖k−1u‖ ≤ 1} (4.30)

With the above definition, (4.29) still holds in anistropic material. We postulate the dry friction
force conditions as follows: 

‖k−1Hi‖ ≤ 1

‖k−1Hi‖ < 1 =⇒ Ṁ = 0

Ṁ 6= 0 =⇒ kṀ ‖ k−1Hi

(4.31)

Using mathematical arguments, this yields the variational inequality, where Mp is the previous
magnetization state:

Find Hr ∈ K(t) : (∇S(Hr)−Mp) · (u−Hr) ≥ 0, ∀u ∈ K(t). (4.32)

This variational inequality is of certain type discussed in the mathematical paper by Peng [84].
The main theorem states that the above variational inequality is equivalent to an unconstrained
minimization

Hr(t) = arg min
u∈K(t)

{S(u)−
∨

M · u} (4.33)
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This minimization problem has a unique solution, provided that the derivative M ′
an > 0 on

its domain. This is the case for realistic anhysteric curves. Let us look more deeply into the
minimization problem (4.33). The unconstrained problem

Hr(t) = arg min
u∈R3

{S(u)−
∨

M · u} (4.34)

is at a point u ∈ R3 where ∇(S(u)−
∨

M ·u) = ∇S(u)−
∨

M = 0. For further reference, we refer
to the paper by Prigozhin et al. [39]. Summarizing, the parameters in the Energy-Variational
model are the two anhysteric curve parameters Ms [A m−1] and A [A m−1]. Later on in their
paper, the concept of effective field He = H + αM is introduced, bringing about an extra
parameter α. However, the most important parameters in [39] are the dry friction parameters
(tensors). In the simplest version of the model (N = 1, which means ‘no linear superposition
of pseudoparticles’), there is just one dry friction tensor k [A m−1]. For N > 1, one obtains the
total magnetization of the system as a linear superposition of pseudoparticle magnetizations.
Then, N weights ω1, ..., ωN as well as N pseudoparticle friction tensors k1, ...,kN are needed.
Denoting the total magnetization of the model by M, it can be written as

M =
N∑
l=1

ωlm
l (4.35)

where each ml is computed according to the minimization procedure, with different friction
tensors. The above model description is far from complete. For a more thorough description,
one should consult the original paper by Prigozhin et al. [39].

4.6.2 Vectorial Extension

In the EV model, the update is done as follows. One must keep track of several ‘friction
variables’ throughout the entire simulation. The new magnetization at each node is given by:


Mnew =

∑Nc

l=1 ω
lMl

c =
∑Nc

l=1 ω
lMan(||Hl

r||)
Hl

r

||Hl
r||

Hl
r = arg minu∈Kl(t){S(u)−Ml

c,old · u}
S(u) =

∫ ||u||
0

Man(s) ds

K l(t) = {u ∈ R3 : ||(kl)−1(u−Hl
eff )|| ≤ 1}

(4.36)

where the optimization step can be done by gradient descent or Newton minimization, by
first writing the problem differently using spherical coordinates. We have implemented this in
three dimensions, whereas the authors of the original model have done their derivations and
implementations in only two dimensions [39].

4.6.3 Visualizing the Energy-variational model

Below, one can observe the behaviour of the material EVmodel when using a different number
of elementary magnetization cells.
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Figure 4.10: The material EVmodel with 1 cell.
One can observe quite abrupt behaviour.
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Figure 4.11: The material EVmodel with 16
cells. Smoother model behaviour is visible.

Another interesting fact about the EVmodel is that it is intrinsically vectorial. This can for
example be observed in the following figure, which depicts a phenomenon known as ‘magnetic
leaking’, which is actually observed in experiments
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Figure 4.12: The phenomenon of magnetic leaking. Although all parameters are taken isotropic
in this simulation, the magnetization changes even when there is no net magnetic field in the
direction of change.

4.6.4 Strategies for parameter estimation

In the Energy-Variational model as described by Prigozhin et al. [39], parameter estimation
was performed as follows. Under the assumption of material isotropy, a known anhysteric
curve and a known distribution of N = 41 friction parameters k1, ..., kN , only the N = 41
weights ω1, ..., ωN had to be estimated. In their procedure, Prigozhin et al. used a cubic spline
function as an approximation to the anhysteric function. By performing several experiments,
the anhysteric curve and the coupling parameter α could be estimated. Next, a three-level
Matlab algorithm was implemented to estimate the weights ωi. In three nested algorithm
steps, a least squares-error was minimized using intrinsic Matlab functions. That way, the
anhysteric curve, the value of α and the weights were estimated using a set of experimental
‘FORCs’ (First-Order Reversal Curves). This is a promising and straightforward approach for
parameter estimation, it yielded excellent results on real material [39].
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4.7 Comparing the hysteresis models

Looking at the four discussed models, we disregard the IPmodel for now. It is clear that the
Energy-Variational model is the most complex out of the three, followed by the Jiles-Atherton
model. The Rayleigh model is the simplest, but also the most inflexible; it is furthermore only
applicable at low to moderate magnetic field strengths. The Rayleigh and Jiles-Atherton model
are both scalar in nature, whereas the Energy-Variational model is vectorial from the start.
In terms of parameter estimation, the Rayleigh model is also the simplest. The dissipative
R-factor in the modified Jiles-Atherton model poses a difficulty and potentially makes the
Jiles-Atherton model less attractive for our purposes, so a choice is made not to include the
R-factor in our Jiles-Atherton models. In terms of the exact number of free scalar parameters,
the following holds, where d is the number of spatial dimensions:

• The original Rayleigh model has 2 parameters. The multi-dimensional Rayleigh model
replaces the two scalar parameters by two (symmetric) tensors, increasing the number of
parameters to d2 + d. The number Hm is not really a parameter, but rather a property
and consequence of the applied field and the local magnetization.

• The original Jiles-Atherton model has 5 parameters. Not all these parameters are trans-
formed to vectors of tensors in the vectorial case. Bergqvist [40] indicates that in the
vectorial case, the parameters α, k and c become symmetric tensors, bringing the total
number of parameters to 2 + 3

2
(d2 + d). Furthermore, the minor loop closure parameter

R needs to be estimated for any minor loop, making it a ‘pseudo-parameter’, comparable
to but more complex than Hm in the Rayleigh Model.

• The Energy-Variational model has two anhysteric curve-parameters, just as the Jiles-
Atherton model. The effective field parameter α introduces another 1

2
(d2+d) parameters.

When N pseudoparticles are used in modelling the hysteresis behaviour, N weights and
N
2

(d2 +d) scalar friction parameters are needed, bringing the total number of parameters
to N + 2 + N+1

2
(d2 + d).

All three hysteresis models have their advantages and disadvantages. It is useful to make a
further practical comparison of the performances of the models, which will be done later on in
this research.
In the four previous chapters, we have seen the global overview of the present research, the
elementary Maxwell Equations, the geometry of the ellipsoid problem as well as problem defini-
tions, constitutive relations and non-linear dependencies between different magnetic quantities.
In cases of high symmetry or easy spatial configurations, one can derive analytic equations as
solutions to the Maxwell equations. In rare cases, analytic differential equations describing the
non-linear behaviour of ferromagnetic geometrical matter can even be derived (for example,
luckily, ellipsoidal bodies) [27]. The previous four chapters thus formed the introduction to the
research.
The next two parts will describe how local hysteresis relations and the Maxwell equations are
combined to yield a description of the actual inner behaviour of the prolate steel ellipsoid, in
increasing levels of complexity and (hopefully) accuracy.
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Part II

Homogeneous Ellipsoid Models
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Chapter 5

The Ellipsoid Formula

5.1 Demagnetizing Field

Let us consider material that internally reacts to an applied field. As was briefly discussed
in the chapter on magnetostatics, ferromagnetic material can be viewed as consisting of a
large collection of micro- or mesoscopic magnetic domains. Locally and averaged over time
(neglecting Barkhausen fluctuations), the magnetization due to an applied field can be assumed
constant over those subdomains. The net magnetization ‘creates’ small dipoles inside the
material, in turn causing a nonzero magnetic field. The magnetic field inside a magnetic
material, which is thus a consequence of the applied field and magnetization, is in general a
complicated function of the geometry of the object, the magnetization distribution and the
applied field itself. With this in mind, writing the magnetic field inside a material locally as a
sum of the applied field Ha(r) and the ‘magnetization-caused’ field HM(r), which is justified
by the superposition principle, one can write

H(r) = Ha(r) + HM(M(r), r) (5.1)

which always holds true. It is also true that (locally speaking) HM(z, r) = z. Now, expanding
the magnetization-caused field to first order in M(r) yields

HM(M(r), r) = HM(0, r) +
∂HM(0, r)

∂M
M(r) + h.o.t. (5.2)

=
∂HM(0, r)

∂M
M(r) + h.o.t. (5.3)

(5.4)

Defining the local demagnetization tensor as

N (r) := −∂HM(0, r)

∂M
, (5.5)

one observes that the magnetic field inside any magnetized material may be written out locally
as

H(M(r), r) = Ha(r) + HM(M(r), r) (5.6)

= Ha(r)−N (r)M(r) + h.o.t. (5.7)

(5.8)
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5.2 The Ellipsoid Formula

Having obtained the nomenclature ‘demagnetization tensor’, the following important result can
be stated.

Theorem 5.2.1 (The Ellipsoid Formula). If a (degenerate) ellipsoidal body is placed in a
uniform background field Ha and is uniformly magnetized with magnetization M, the demag-
netization field HM is also uniform. Furthermore, the demagnetization tensor is diagonal and
constant across the ellipsoid, with elements that can be calculated explicitly from the ellipsoidal
dimensions only:

H = Ha −NM (inside ellipsoid) (5.9)

The magnetic field inside the ellipsoid is thus uniform. Also,

H(r) = A(r)M (outside ellipsoid) (5.10)

where A(r) is a 3× 3 matrix with entries solely depending on the geometry of the problem and
r.

Remark. 1. Relative to the general demagnetization equation Equation 5.8, the above (degen-
erate) ellipsoid formula is exact (higher order terms vanish), and is moreover independent of
location inside the ellipsoid. This is a remarkable result and holds true only for (degenerate)
ellipsoidal bodies. 2. The word ‘degenerate’ in the above theorem is understood as follows.
A body is said to be degenerate ellipsoidal if one or more of its semi-diameters tend to either
zero or infinity. For example, this allows one to compute the magnetic field inside a long rod,
a plate or a disk using the general result on demagnetization tensors. The eigenvalues of the
demagnetization tensor are known as demagnetization factors.

Proof. See Lepelaars [90].

5.3 Extending the Ellipsoid Formula

Let us now look at the consequences of the important ellipsoid formula:

H = Ha −NM (5.11)

As is noted in the conditions in the derivation of the ellipsoid formula, this formula strictly
holds in the following circumstances: 1. The ellipsoid has to have a uniform magnetization,
an can thus be described by only one vector in R3, and 2. The background field has to be
uniform. Thus far, nothing has been said about the interplay between the magnetization M
and the internal magnetic field H. In order to incorporate this relation, linear or nonlinear
(hysteresis), one needs to prove that the ellipsoid formula is valid in nonlinear time-dependent
cases.

Theorem 5.3.1 (Time-dependent Ellipsoid Formula). If the material parameters of the mag-
netizable ellipsoid are constant across the ellipsoid, and the initial/permanent magnetization
of the ellipsoid is uniform, application of a continuous uniform background field Ha(t) results
in the time-dependent equation

H(t) = Ha(t)−NM(t), (5.12)

i.e. the magnetization and magnetic field inside the ellipsoid remain spatially uniform in time.

38



Proof. This is not a mathematical proof in the strict sense, rather, it is a sketch of a possible way
of proving the theorem. Looking at the quasi-static case, relaxation effects can be neglected.
Suppose one has the homogeneous equilibrium situation

H0 = Ha0 −NM0 (5.13)

Suppose now that the uniform background field of the ellipsoid is incremented by a small value
of δHa, so

Ha1 = Ha0 + δHa.

Assuming the demagnetization tensor formulation as discussed in the previous chapter, the
internal demagnetization relation can be written as

H1(r) = Ha1 −N 1(r)M(r). (5.14)

Subtracting the starting equation from the above equation, yields the incremental equation

H1(r)−H0 = δHa −N 1(r)M1(r) +NM0 (5.15)

Now, let us look a the local relationship between δM(r) := M1(r)−M0 and δH(r) := H1(r)−
H0. In order to prove the theorem, we have to prove that δM(r) = δM and δH(r) = δH,
which means that the increments are uniform inside the ellipsoid. As discussed in the previous
chapters, this relation is where a hysteresis model comes in. In general, one can write, if the
increments are small (linearisation of the hysteresis curve) :

δM(r) = χd[r,H(r),M(r), θ]δH(r) (5.16)

where χd is the incremental or differential susceptibility, provided by the hysteresis model.
Now, using the homogeneity assumptions of the theorem and using the assumption of small
increments, one can set

χd[r,H(r),M(r), θ]δH(r) ≈ χd[0,H0,M0, θ] (5.17)

which is constant throughout the material. Manipulating Equation 5.15, one obtains

(1 + χdN 1(r))M1(r) = χd(NM0 + δHa) (5.18)

Now, from Newell et al. [79], we can see that the demagnetization tensor in general media
and with non-uniform magnetization, is only a function of this non-uniform magnetization
and the geometric properties of the object. It follows that we have a situation of the form
f(g(r)) = C ∈ R3, a constant. Now, when looking at Equation 5.18, it is clear that f is
not a constant function, therefore, M1(r) has to be a constant function for all r ∈ Ωe. By
Equation 5.15, H1(r) is also constant in space. The result now follows. However, observe that
taking limits without careful analysis and using language such as ’small’ causes this ’proof’ to
not be a real mathematical proof, but rather an indication of a possible way of thinking.

One last ingredient to add to our theoretical foundation for homogeneous ellipsoid models, is
the following proposition. Namely

Proposition 5.3.1 (Anisotropic Ellipsoid Formula). The Ellipsoid Formula can also be used
in anisotropic, nonlinear media with uniform magnetization.
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Chapter 6

Forward Homogeneous Ellipsoid
Models

The theorem given above, gives one the hope of modelling the temporal evolution of the magne-
tization of the ellipsoid using relatively simple models. We accordingly define the homogeneous
ellipsoid model as follows.

Definition 6.0.1 (Homogeneous Ellipsoid Model). The Homogeneous Ellipsoid Model is de-
fined as the model resulting from combining the Ellipsoid Formula, a hysteresis model and the
linear signature mapping to obtain a mapping

Bs(t) = F(θ|Ha(t),M[M(t),H(t)],M0) (6.1)

Necessary conditions for an ellipsoid model to be called homogeneous are:

1. Both the magnetization and the magnetic field inside the ellipsoid have to be uniform,
and can thus be described using only one vector;

2. The material parameters relating H and M inside the ellipsoid have to be constant in
space across the ellipsoid;

3. Both the initial magnetization M0 and the (if existing) permanent magnetization Mper

have to be uniform inside the ellipsoid.

The above proposition also allows us to obtain a useful incremental formulation of the mag-
netization evolution inside a homogeneous ellipsoid. Indeed, differentiating the relation with
respect to the components of Ha yields the incremental equation

∂M

∂Ha

=
∂M

∂H

∂H

∂Ha

(6.2)

=
∂M

∂H

(
1−N ∂M

∂Ha

)
(6.3)

(6.4)

where the chain rule for partial differentiation has been used and 1 denotes the identity matrix.
Solving for the M−Ha Jacobian yields

∂M

∂Ha

=

(
1 +

∂M

∂H
N

)−1
∂M

∂H
(6.5)
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Finally, suppose the applied field Ha(t) is known and differentiable. By the chain rule, the
ODE for the uniform magnetization of a (generally) anisotropic ellipsoid becomes

∂M

∂t
=

((
1 +

∂M

∂H
N

)−1
∂M

∂H

)
∂Ha

∂t
(6.6)

M(0) = M0 (6.7)

H(0) = Ha(0)−NM0, (6.8)

where the second initial condition is often needed to set up the problem correctly in practice.
Solving the above system of three coupled ordinary differential equations is a possible way of
simulating the homogeneous ellipsoid model. The Jacobian ∂M

∂H
is provided for by the hysteresis

operator that is chosen in the model. A numerical integration method to solve ODEs can be
used to solve the above equations. In our research, we have implemented a number of such
integration algorithms, including Euler Forward and Runge-Kutta-type methods. However, the
nature of the above equations requires making use of a more stable, but also more expensive
type of solving method. This method will be discussed in the following sections. Firstly, let us
focus on the homogeneous IPmodel. Since this model is linear, no time integration is needed
and given a background field, initial magnetization and material parameters (in this case, only
the susceptibility or permeability tensor), the signature can be computed directly.

6.1 Forward Homogeneous Linear Ellipsoid Model

The simplest model of ellipsoid magnetization in an external field is in the case of perma-
nent magnetization, with a linear component superimposed, the IPmodel. It is based on the
assumption

M(t) = Mper + Mind(t). (6.9)

Whereas the permanent magnetization component Mper is assumed constant in time, the in-
duced component varies linearly with H:

Mind = χH = (µr − 1)H (6.10)

where, importantly, µr and χ are independent of location, time and magnetic quantities in
the linear material case. Substituting the ellipsoid formula in the above equation yields after
rearranging

(1 + χN )M(t) = Mper + χHa(t) (6.11)

It is convenient to define the ellipsoidal susceptibility tensor χ
a

as

χ
a

:=
(
1 + χN

)−1
χ (6.12)

which results in the final solution for M(t), instantaneously caused by Ha(t):

M(t) = χ
a

(
χ−1Mper + Ha(t)

)
. (6.13)

Perhaps contrary to intuition, M(t : Ha(t) = 0) 6= Mper in general. This is because a nonzero
Mper already implies a nonzero internal magnetic field. Indeed: M(t : Ha(t) = 0) = (1 +
χN )−1Mper. It is important to realize that in the linear model, all magnetic quantities can
be expressed explicitly in the known quantities. No forward time integration is required;
there exists an explicit relation between the magnetization in time, the geometry, the material
parameters, the applied field and the permanent magnetization. This is quite different in the
case of nonlinear hysteresis, as the next sections will demonstrate.
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6.2 Forward Homogeneous Hysteresis Ellipsoid Models

As was noted two sections before, simply applying an explicit integration method to solve
Equation 6.7 numerically, requires very small time steps and even then, stability is not guar-
anteed. This is mainly due to the demagnetization mechanism. Because of the wildly varying
magnitudes of the magnetic field and magnetization that are present in the ellipsoid, for-
ward integration tends to cause numerical instabilities and diverging behaviour in general. We
have therefore taken the approach of Prigozhin et al. [39], who used a stabilizing inner loop
mechanism to prevent divergence. The differential equation Equation 6.7 is thus solved in a
semi-implicit, semi-explicit way, similar to Crank-Nicholson methods. The approach is the
same for all three hysteresis models. Firstly, we derive the necessary equations, and thereafter
a pseudocode is provided. Lastly, details on the specifics of the hysteresis models that are used,
are given.

6.2.1 Incorporating Hysteresis in the Homogeneous model

We are now ready to describe the homogeneous models including hysteresis in more detail.
Define the discrete time steps

tn = n∆t, n ∈ N ∪ {0}, (6.14)

and since we are dealing with a quasi-static situation, one can as well take ∆t = 1 (the previous
remarks about ‘small time steps’ actually have to do with small increments in the applied field,
not in time per se). An applied background field Ha,n = Ha(tn) is associated to every time
step. We now attempt to obtain a time-discretized solution

Mn = M(tn), n ∈ N ∪ {0}, (6.15)

after which the internal field is given by employing the ellipsoid formula to yield

Hn = H(tn) = Ha,n −NMn, n ∈ N ∪ {0}, (6.16)

Depending on the hysteresis model that is being used, an extra parameter α is needed to
describe the Weiss effective field, which was discussed in a previous chapter. RAdoes not
include such a parameter, but JAand EVdo.
Having stated the relevant magnetic quantities, the effective internal magnetic field is given at
every time step by the superposition principle by

Heff,n = Ha,n + Hd,n +αMn (6.17)

where Hd,n is the demagnetization field. In the case of the ellipsoid, the demagnetization field
is given by the familiar Hd,n = −NMn, resulting in the relation

Heff,n = Ha,n + (α−N )Mn (6.18)

Hysteresis is incorporated in the above equations by requiring the general hysteresis operator
identity to be satisfied:

Mn =M[Heff,n], (6.19)

where the square brackets again indicate the nonlinear history-dependency of the operator.
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6.2.2 Solving the nonlinear system of equations

The situation is now as follows. Having initialised the problem by the conditions

M(0) = M0 (6.20)

H(0) = Ha(0)−NM0 (6.21)

Heff (0) = H(0) +αM0 (6.22)

we have to solve the simultaneous equations

Heff,n = Ha,n + (α−N )Mn (6.23)

Mn =M[Heff,n] (6.24)

To do this, we employ an idea by Prigozhin et al., who used a iterative inner loop scheme,
indexed by the iteration number k. It is based on the linearization of the hysteresis operator
around Heff,n:

Mk+1
n =M[Hk

eff,n] +D[Hk
eff,n]

(
Hk+1
eff,n −Hk

eff,n

)
(6.25)

where D[Hk
eff,n] is the 3× 3 matrix of partial derivatives of M[Hk

eff,n] with respect to Hk
eff,n,

that is for u = Hk
eff,n :

D[u] :=
∂M[u]

∂u
=

∂uxMx[u] ∂uxMy[u] ∂uxMz[u]
∂uyMx[u] ∂uyMy[u] ∂uyMz[u]
∂uzMx[u] ∂uzMy[u] ∂uzMz[u]

 (6.26)

Now, as one can see from following sections, this derivative is often very difficult to calculate
analytically (but certainly not impossible in the case of RAand JA). We therefore used central
differences to approximate the partial derivatives present in the definition of D. This requires
six extra evaluations ofM per iteration, but usually shows very stable behaviour. To be clear,
D can be approximated numerically column-wise by setting δ > 0 small and computing

D[u] ≈ 1

2δ

(
M[u + δex]−M[u− δex], M[u + δey]−M[u− δey], M[u + δez]−M[u− δez]

)
.

(6.27)
Now, substituting the linear approximation Equation 6.25 into Equation 6.23, rearranging and
solving for Hk

eff,n, one obtains the iteration formula for Hk
eff,n :

Hk+1
eff,n =

(
1 + (N −α)D[Hk

eff,n]
)−1 (

Ha,n − (N −α)
(
M[Hk

eff,n]−D[Hk
eff,n]Hk

eff,n

))
.

(6.28)
These iterations are repeated until convergence of Hk

eff,n with a given tolerance ε > 0. When
the iteration converges at the iterate kconv, one sets

Heff,n = Hkconv
eff,n (6.29)

Mn =M[Hkconv
eff,n] (6.30)

to obtain the solution of the problem at time n.
Finally, the following pseudo code contains the procedure to simulate the homogeneous models
with different underlying hysteresis models, simulated until a time value T . Choose ε, δ > 0
small and take a maximum iteration number kend. Then the following procedure yields a
numerical approximation to the evolution of the ellipsoid magnetization.
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Algorithm 1 Homogeneous Model simulation

1: procedure nLAH(M0, θ, Ha(tn) : n = 0, 1, 2, ...)
2: Heff,0 = Ha,0 + (α−N )M0

3: H0 = Ha,0 −NM0

4: for 1 ≤ n ≤ T do . Outer, real-time loop
5: H0

eff,n = Ha,n + (α−N )Mn−1 . Initialisation of inner iteration
6: for 1 ≤ k ≤ kend do . Inner, pseudo-time loop

7: Dk
n = 1

2δ

M[Hk
eff,n + δex]−M[Hk

eff,n − δex]
M[Hk

eff,n + δey]−M[Hk
eff,n − δey]

M[Hk
eff,n + δez]−M[Hk

eff,n − δez]

T

8: Hk+1
eff,n =

(
1 + (N −α)Dk

n

)−1 (
Ha,n − (N −α)

(
M[Hk

eff,n]−Dk
nH

k
eff,n

))
9: if

∥∥Hk+1
eff,n −Hk

eff,n

∥∥ < ε ∨ k = kend then
10: kconv = k
11: Exit inner loop
12: end if
13: end for
14: Heff,n = Hkconv

eff,n

15: Mn =M[Hkconv
eff,n]

16: Hn = Hkconv
eff,n −αMn

17: end for
18: end procedure

6.2.3 Proposing the hysteresis operators of the different models

Thus far, we have not touched upon the concrete definition of the hysteresis operator M in
different contexts and different hysteresis models. The operators are defined below.

The IPmodel

In the IPmodel, which can in principle be solved exactly, the ‘hysteresis’ operatorMIP is given
by

MIP [Heff ,θ] =MIP [H,χ] = χH (6.31)

which, when substituted in the procedure above, yields a temporal evolution that is equal to
the analytical solution provided before.

The RAmodel

Recall the incremental formulation of the Rayleigh hysteresis model, given in the chapter
on material hysteresis models. From this incremental formulation, we obtain an equivalent
definition of the hysteresis operator MRA, which takes as input the present magnetic field
(there is no Weiss tensor α), the previous increment of the magnetic field δH and the two
tensors µ

i
and the diagonal tensor αR. The maximum field vector Hm has to be kept track of

throughout the simulation.

MRA[Heff ,θ] =MRA(H, δH,Mp,µi,αR,Hm) = Mp + δM. (6.32)

where we have to discriminate between the Rayleigh virgin curve and the ‘adult’ curve on the
basis of the value of the elements of Hm. Denoting d = x, y, z as spatial dimensions, we have
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the condition to determine the magnetization increment δM as follows. Let χ = µ
i
− 1, then

δMd =

{
(χδH)d + (2αR(σ(δH⊗H))δH)d if (Hm)d = 0

(χδH)d + (αR(Hm + σ(δH⊗H))δH)d if (Hm)d > 0,
(6.33)

where ⊗ again denotes the Kronecker (pointwise) product between the two vectors. Substitut-
ing this increment in Equation 6.32 yields the expression for the Rayleigh hysteresis operator.

The JAmodel

The incremental susceptibility of the Jiles-Atherton model follows from the incremental formu-
lation, given in the chapter on hysteresis models. Recall that in the Jiles-Atherton model, we
have

δM =
χ
f

||χ
f
||

(χ
f
· δHeff )

+ + cξδHeff . (6.34)

where {
χf := k−1(Man(Heff )−M)

ξ
ij

:=
∂Man,i

∂Heff,j

(6.35)

using the anhysteric function

Man(Heff ) = Ms

(
coth

||Heff ||
A

− A

||Heff ||

)
Heff

||Heff ||
(6.36)

although other possibilities exist for modelling the anhysteric curve. The Jiles-Atherton hys-
teresis operator is thus given by

MJA[Heff ,θ] =MJA(Heff , δHeff ,Mp,k, c,Ms, A) = Mp + δM. (6.37)

where we substitute Mp for M in Equation 6.35 and substitute the expression of Equation 6.34
in the above equation to arrive at the definition of the operator.

The EVmodel

The Energy-Variational model is of a different character than the linear model (which does not
even need time integration if Ha is known at all times) and the Rayleigh and Jiles-Atherton
model, which are treated by means of a differential susceptibility tensor. In contrast, the
Energy-Variational model searches for a new value of the magnetization by minimizing internal
magnetic energy. The derivation of the EV model has been done in a previous chapter. In the
end, we obtained the system of equations

Mnew =
∑Nc

l=1 ω
lMl

c =
∑Nc

l=1 ω
lMan(||Hl

r||)
Hl

r

||Hl
r||

Hl
r = arg minu∈Kl(t){S(u)−Ml

c,old · u}
S(u) =

∫ ||u||
0

Man(s) ds

K l(t) = {u ∈ R3 : ||(kl)−1(u−Hl
eff )|| ≤ 1}.

(6.38)

Since the hysteresis operator framework in the current research was principally motivated by
the paper on the EVmodel, the EVhysteresis operator now follows simply by setting

MEV [Heff ,θ] = Mnew (6.39)

where Mnew is given by the EVsystem of equations above.
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6.3 Sensor Mapping

As has been noted before, the use of prolate spheroidal coordinates allows for the derivation
of an elegant expression to map the ellipsoid magnetization onto magnetic flux density at any
point (x, y, z) outside the ellipsoid. This mapping is linear in M and given by

B(x, y, z) = µ0ξ0(ξ2
0 − 1)A(x, y, z)M (6.40)

where A ∈ R3×3 is a transformation matrix with analytically derived entries, encountered in
the derivation and proof of the ellipsoid formula and written out in the Appendix. At any given
sensor point (xs, ys, zs) outside the ellipsoid therefore, the relation between the magnetization
M(t), the applied field Ha(t) and sensor measurement B(xs, ys, zs) is given by

B(xs, ys, zs, t) = µ0Ha(t) + µ0ξ0(ξ2
0 − 1)A(xs, ys, zs)M(t), (6.41)

and the magnetic signature of the ellipsoid is therefore given by subtracting the applied signal

Bs(xs, ys, zs, t) = µ0ξ0(ξ2
0 − 1)A(xs, ys, zs)M(t). (6.42)

Let us now consider an actual sensor array. Suppose {r1, ..., rNs} is the set of sensor locations,
measuring the external magnetic signature of the ellipsoid, where rs = (xs, ys, zs), 1 ≤ s ≤ Ns.
By defining the matrix Λ ∈ R3Ns×3 as

Λ = µ0ξ0(ξ2
0 − 1)


A(r1)
A(r2)

...
A(rNs)

 (6.43)

one obtains 3Ns equations Bs,n = ΛM. Now, since the forward ellipsoid models described in
the four sections above (IP,RA,JA,EV) all provide approximations of the magnetization M
at discrete time steps, the end result of applying a discretized signal Ha(tn) with 0 ≤ n ≤ T
yields

Bs,n = Bs(tn) = ΛMn (6.44)

which is the temporal evolution of the ellipsoid signature in time.

6.4 Summary and Outlook

In the present chapter, we firstly motivated the ‘temporal ellipsoid formula’, that is, the ellipsoid
formula is still valid in the case of nonlinear temporal incremental evolution under the influence
of a uniform applied field. This allowed us to derive a two-loop algorithm to solve for the
ellipsoid magnetization in time, where the hysteresis operator M played a fundamental role.
Lastly, the ellipsoid signature was related to the magnetization by a linear transformation,
finishing the formulation of the homogeneous forward models.
It is now time to look at inverse homogeneous models: Can we, given a uniform applied field
in time, and a measured signature in time, estimate the governing hysteresis parameters? This
question will be answered in the following chapter.
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Part III

Inhomogeneous Ellipsoid Models
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Chapter 7

Forward Inhomogeneous Ellipsoid
Models

In the previous chapters, we have formulated the homogeneous ellipsoid model under influence
of different material hysteresis models. The essential building blocks of the homogeneous
ellipsoid models were

1. The Ellipsoid Formula, which comes from the solution of the infinite-domain Poisson
Equation assuming uniform magnetization of an ellipsoid, together with the uniform
background field potential, which are added by the superposition principle;

2. The choice of a hysteresis model and corresponding parameters;

3. For the quasi static time-stepping formulation, we needed to assume that the material
hysteresis parameters were constant in time and space throughout the ellipsoid.

The homogeneous model then was defined as the time evolution of the signature of the ellipsoid
at certain external sensor locations, under the influence of a temporally incremented uniform
applied field.
Now, assumptions 1) and 3) are not assumed any more in inhomogeneous ellipsoid models.
We have chosen to go all the way back to the Poisson equation discussed in ?? and to build
our models from scratch using Finite Element theory. Some other methods are often applied
to magnetostatic field problems, such as Boundary Element Methods (BEMs), which do not
require a meshing of surrounding space, but are harder to combine with the notion of inhomo-
geneity. This is why we have chosen to use the Finite Element Method (FEM).
Firstly, let us briefly introduce some general concepts of the FEM where we specifically focus
on the Galerkin approach. Thereafter, we apply this theory to the Poisson equation at hand.

7.1 Very short introduction to the FEM

The Finite Element Method and more specifically the Galerkin approach, are described in
many textbooks. For a functional analysis - perspective, one can consult the lecture notes
by Hunter [87] which were used by Veraar, most notably chapter 6.4. For a more accessible
monograph, one can consult the book by Vermolen et al. [18]. There also exist many other
discussions of the FEM from a specific electromagnetism-perspective, such as [14]. It is a very,
very large research field with applications ranging from biology to electromagnetism, with solid
foundations in pure mathematics, theory of partial differential equations and approximation
theory.
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We will suffice here by loosely describing the FEM, which is by no means a sufficient mathe-
matical introduction. Suppose one has a linear PDE of the form

Lu = f (7.1)

where L is a linear differential operator acting on a certain function space Σ with functions
defined on a certain ‘nice’ domain Ω. Boundary conditions for u must also be provided. In that
case, several deep mathematical theorems such as the Riesz Representation and Lax-Milgram
Theorem, shed a light on the existence and uniqueness of solutions. Energy (norm) estimates
of the solution can be given, dependent on the function f and the form of the linear operator
L.
Now, associated to the operator L there (often, but not always, in our case it does) exist a
bilinear form such that the weak form of the above PDE can be written as: For all η in a
certain function space Σ2, we have

a(u, η) = (f, η) (7.2)

where (·, ·) denotes a type of inner product, which of course makes conditions on f necessary.
This is called the weak form, since the conditions on u are much more relaxed in order for
Equation 7.2 to make sense.
Now, one can choose a N -dimensional linear subspace of the space Σ, denoted by ΣN , wherein
one wishes to approximate the sought u ∈ Σ by some linear combination of ‘basis functions’ for
the space ΣN , in some norm that is associated to Σ. Indeed, now one wishes to find uN ∈ ΣN

such that for all ηN ∈ Σ2,N we have

a(uN , ηN) = (f, ηN) (7.3)

Now, the FEM approaches finding u from a standpoint of a finite number of ‘elements’, subdi-
viding the domain Ω. That is, the approximants un ∈ ΣN are often defined on a small number
of elements. The Galerkin approach is then to expand u in functions of ΣN , substitute this ex-
pansion in the weak form Equation 7.2 and also take η to be one of the basis functions from ΣN .
This way, one obtains a system of linear equations, with the possibility of boundary conditions
to cause extra terms. The linear system is solved in order to obtain optimal coefficients that
minimize ‖u− uN‖Σ. This way, the FEM solution uN is a finite dimensional projection of u on
the finite dimensional subspace ΣN . This whole paradigm can also be viewed in the context
of approximation theory, whereby the PDE Equation 7.1 is firstly written as a minimization
problem. Under certain conditions, these approaches are equivalent.

7.2 Applying FEM theory to the magnetostatic equa-

tion at hand

The situation in this section is as follows. Using the Galerkin method, we aim to solve the
forward, magnetostatic problem to find the magnetic field H(r) from the non-uniform ellipsoid
magnetization M(r). Our strategy is to firstly solve for the scalar potential Φ(r) and thereafter
deduce the magnetic field in both the ellipsoid and the surrounding air, in particular the sensor
locations.

7.2.1 Formulating the Poisson problem on a bounded domain

Firstly, we choose a FEM bounding box Ω = [−L,L]3 ⊂ R3 to define the scalar potential
boundary conditions on. This choice will be commented upon later on, but it is good to
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know that a great corpus of knowledge exists in literature on how to model essentially infinite-
domain problems by employing strategies to either map the infinite domain onto a finite one,
or to create a number of matching layers to create the impression of working on an infinite
domain. For examples, see CITE. However, one can also choose a number of relatively simple
different boundary condition formulations to model the static forward inhomogeneous problem,
most notably Dirichlet, Neumann and mixed-type or Robin boundary conditions. To model
the influence of the ‘incident’ applied field Ha in the case of the bounded airbox, where taking
the limit ‖r‖ → ∞ does not make sense, we have chosen to take inhomogeneous Dirichlet
boundary conditions. For r ∈ ∂Ω, we require

Φ(r) = −Ha · r, (7.4)

where Ha is the applied background field. Our main reason for employing these boundary
conditions is as follows. As we will see later on in this chapter, choosing Dirichlet boundary
conditions yields a dramatic decrease in condition number of the system to be solved, since
we are effectively adding many ‘knowns’ to the linear system. Moreover, choosing exactly
these boundary conditions gives rise to a ‘perturbation-interpretation’ of the problem at hand.
Indeed, choosing M(r) = 0 in the Poisson equation, yields the Laplace equation with inho-
mogeneous Dirichlet boundary conditions, with solution Φ(r) = −Ha · r, which exactly yields
the correct solution H(r) = H by taking minus the gradient of the potential. Now, letting
M(r) take a nontrivial value, perturbs the solution to the equation, which in turn perturbs the
resulting magnetic field. Finally then, we end up with the equation to solve using the FEM:{

∆Φ(r) = ∇ ·M(r)

Φ|∂Ω = g(r)
(7.5)

with
g(r) = −Ha · r|∂Ω (7.6)

7.2.2 Deriving the weak form

We are now ready to follow the Galerkin procedure (which we do not comment fully upon,
but will be discussed critically later on in the recommendations) as follows. Multiplying the
Poisson equation by −1, a test function η(r) ∈ H1

0 (Ω) and integrating over Ω yields

−
∫

Ω

(∆Φ)η dΩ = −
∫

Ω

(∇ ·M)η dΩ. (7.7)

Firstly, for the left hand side of the equation above, observe that we can integrate by parts to
obtain

−
∫

Ω

(∆Φ)η dΩ =

∫
Ω

∇Φ · ∇η dΩ−
∫
∂Ω

(∇Φ · n)η dΓ. (7.8)

Since η(r) ∈ H1
0 (Ω), the boundary integral vanishes, leaving only the volume integral.

Secondly, notice that M(r) = M(r)1(r ∈ Ωe), that is, M is restricted to the ellipsoid. Assuming
M is continuously differentiable on the interior of Ωe and continuous on the closure of Ωe, we
can write the right hand side of Equation 7.7 by firstly restricting the integral domain and
thereafter applying the Divergence Theorem to obtain

−
∫

Ω

(∇ ·M)η dΩ = −
∫

Ωe

(∇ ·M)η dΩ (7.9)

=

∫
Ωe

M · ∇η dΩ−
∫
∂Ωe

(M · n)η dS (7.10)
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where n is the normal vector, pointing outward from the ellipsoid. n(r) is known analytically,
as was demonstrated in the chapter on the Ellipsoid formula and ellipsoids. This yields the
final weak form of our problem: Find Φ ∈ H1(Ω) such that for all η ∈ H1

0 (Ω), we have∫
Ω

∇Φ · ∇η dΩ =

∫
Ωe

M · ∇η dΩ−
∫
∂Ωe

(M · n)η dS. (7.11)

We will now apply the Galerkin stratehy to find an approximation of Φ in a finite-dimensional
subspace of the Hilbert space H1, namely the space spanned by piecewise linear ‘hat’ functions
on a predefined mesh.

7.2.3 Defining piecewise linear basis functions and applying the
Galerkin procedure

In order to be able to use the Finite Element approach, Ω is subdivided in a finite number Ne

of tetrahedral elements ek : 1 ≤ k ≤ Ne, with Nn vertices xj : 1 ≤ j ≤ Nn. The Finite Element
basis functions ηj(x) : 1 ≤ j ≤ Nn will be piecewise linear on elements, with the usual ‘hat’
property: {

ηi(xj) = δij, for all i, j ∈ {1, ..., Nn}
ηi(x) linear per element

(7.12)

Now, expanding the sought solution Φ(r) in terms of these hat functions, we write

Φ(r) =
Nn∑
j=1

φjηj(r) (7.13)

where the summation includes the boundary node hat functions. These hat function satisfy
ηj ∈ H1, since their partial derivatives are piecewise constant functions on Ω. Their integrals as
well as their gradients can be calculated analytically using well-known theorems and convenient
formulas for tetrahedra. Since Dirichlet conditions are prescribed on ∂Ω, it is useful to partition
the set of nodes xj : 1 ≤ j ≤ Nn into two subsets of nodes, namely

Io = {i ∈ {1, ..., Nn} : xi ∈ Ω◦} (7.14)

Ib = {i ∈ {1, ..., Nn} : xi ∈ ∂Ω}, (7.15)

which allows us to write Equation 7.13 the following way:

Φ(r) =
∑
j∈Io

φjηj(r) +
∑
j∈Io

φjηj(r) (7.16)

where for j ∈ Io, the coefficients φj are known. Indeed, by combining Equation 7.4 and
Equation 7.12, these coefficients are given by

φj = −Ha · xj, j ∈ Ib (7.17)

Now, employing the Galerkin strategy by inserting the above expansion Equation 7.16 in our
weak form Equation 7.11 and choosing a basis function ηi with i ∈ Io, such that it is a test
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function in H1
0 (Ω), we transform the left hand side of the weak form Equation 7.11 to

−
∫

Ω

∆Φη dΩ =

∫
Ω

∇Φ · ∇η dΩ (7.18)

=

∫
Ω

∇

(
Nn∑
j=1

φjηj(r)

)
· ∇ηi(r) dΩ (7.19)

=

∫
Ω

∇

(∑
j∈Io

φjηj(r) +
∑
j∈Io

φjηj(r)

)
· ∇η(r) dΩ (7.20)

=
∑
j∈Io

φj

∫
Ω

∇ηj(r) · ∇ηi(r) dΩ +
∑
j∈Ib

φj

∫
Ω

∇ηj(r) · ∇ηi(r) dΩ (7.21)

=
∑
j∈Io

φj

∫
Ω

∇ηj · ∇ηi dΩ +
∑
j∈Ib

φj

∫
Ω

∇ηj · ∇ηi dΩ (7.22)

=:
∑
j∈Io

Kijφj +
∑
j∈Ib

Kijφj (7.23)

(7.24)

for i ∈ Io. Since φj is known for all j ∈ Ib because of Dirichlet boundary conditions, the
above No statements contain No unknowns, which will have te be solved by equating the above
statements to the right hand side of the weak form. We already notice the stiffness matrix K
appearing in the linear system above.
The right hand side is treated in the following way. Again, let η(r) = ηi be an interior basis
function, such that ηi ∈ H1

0 (Ω). Using integration by parts, we obtain

−
∫

Ω

(∇ ·M(r))η(r) dΩ = −
∫

Ωe

(∇ ·M(r))η(r) dΩ (7.25)

=

∫
Ωe

M(r)∇ · η(r) dΩ−
∫
∂Ωe

(M(r) · n(r))η(r) dS (7.26)

=

∫
Ωe

M · ∇ηi dΩ−
∫
∂Ωe

(M · n)ηi dS (7.27)

=: FM
i . (7.28)

We now observe the load vector F appearing.
Written out in components for readability, one obtains (by setting M(r) = (Mx(r), My(r), Mz(r))T ,
and the from Ωe outward pointing vector n(r) = (nx(r), ny(r), nz(r))T , and by omitting the
coordinate r, the elements of the load vector:

FM
i =

∫
Ωe

M · ∇ηi dΩ−
∫
∂Ωe

(M · n)ηi dS (7.29)

=

∫
Ωe

Mx
∂

∂x
ηi dΩ−

∫
∂Ωe

Mxnxηi dS (7.30)

+

∫
Ωe

My
∂

∂y
ηi dΩ−

∫
∂Ωe

Mynyηi dS (7.31)

+

∫
Ωe

Mz
∂

∂z
ηi dΩ−

∫
∂Ωe

Mznzηi dS (7.32)

for i ∈ Io.
By employing the Holland-Bell theorem to integrate the linear basis function over their domains
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and by employing a special case of Newton-Cotes quadrature to approximate the right-hand
side integral (namely, the trapezoid rule), one arrives at a familiar linear equation. Indeed, by
observing the above equations and by noting that the normal vector to the ellipsoid is known
analytically on ∂Ωe, the load vector with the elements above, is linear in M(r), and the full
system to be solved is given by

Kφ = FM (7.33)

= (DM − EM)M , (7.34)

where one observes the stiffness matrix K, containing the basis function gradient inner products
integrated, the unstructured divergence matrix DM , containing the linear coefficients of the vol-
ume integrals of Equation 7.29 and the unstructured ellipsoid boundary matrix EM , containing
the linear coefficients of the ellipsoid boundary integrals of Equation 7.29. These matrices are
sparse, K is even symmetric and positive definite, and we have

K ∈ RNn×Nn , φ ∈ RNn , DM ,EM ∈ RNn×3Nn , M ∈ R3Nn . (7.35)

where the vector M obeys the usual, node- and dimension dependent ordering

M :=



Mx(x1)
My(x1)
Mz(x1)

...
Mx(xNn)
My(xNn)
Mz(xNn)


(7.36)

One observes that because of the nature of the problem, but admittedly dependent on the
meshing of the domain, many elements of the vector M will be zero, because many of the xj
will be located outside the ferromagnetic domain of the ellipsoid. The precise elements of the
matrices involved, can be consulted by the author of this report.

7.2.4 Incorporating Dirichlet boundary conditions

The careful reader may have noticed that the matrices involved, give rise to Nn equations.
However, our original system consisted of only No equations. Indeed, the system above is not
finalized, because the equations of system Equation 7.34 still include the known coefficients
φj : j ∈ Ib. We eliminate the Dirichlet boundary conditions by employing an idea that is
equivalent to the procedure from Vermolen et al. [18], Chapter 6.2.7, but is more general in the
sense that the sets Io and Ib can be arbitrary, as long as they are disjoint and Io∪Ib = {1, ..., Nn}.
We start out by collecting the Dirichlet boundary values in one vector R of length Nb, ordered
consistently. That is, if in the ordered set Ib we have j ∈ Ib at ‘position’ 1 ≤ jb ≤ Nb, then

Rjb = −Ha · xj. (7.37)

Observe moreover, that even this expression is linear to a great extent, in the sense that for
j ∈ Ib, there exist a matrix Xb ∈ RNb×3 such that

−Ha · xj = (XbHa)j (7.38)

The existence of the first matrix is clear just by letting row jb of Xb be given by xTj . This way,
we can write the vector R from Equation 7.37 as

R = XbHa. (7.39)
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Next, we define the ‘selection’ matrix B ∈ RNb×Nn such that the boundary conditions are
implemented by the linear system

Bφ = R (7.40)

by letting row jb of B be given by the transposed Nn-dimensional unit vector ej such that
j ↔ jb.
Since, the matrix B has such a simple form, the next steps are straightforward. We continue
by forming the orthogonal complement-matrix Bo ∈ RNn×Nb and the nullspace-matrix Bn ∈
RNn×(Nn−Nb) associated to the matrix B. The columns of Bo are per definition all orthogonal
and even orthonormal to the rows of B and the columns of Bn are all contained in the kernel
of B, so {

BBn = 0 ∈ RNb×(Nn−Nb) (the zero matrix, observe Nn −Nb = No)

BBo = INb
(the identity matrix)

(7.41)

Having defined these matrices, we are ready to form the vector φb ∈ RNn such that the
‘unknown indices’ are still zero, while the boundary node indices are filled with their Dirichlet
values according to Equation 7.17. This vector is simply given by

φb = BoR (7.42)

= Bo (XbHa) (7.43)

7.2.5 Deriving and solving the final, forward linear matrix system

Having found a way to formulate the Dirichlet boundary conditions in a convenient manner,
we eliminate the known Dirichlet boundary values from the full system by defining the reduced
stiffness matrix and load vector

Ko = BT
nKBn ∈ RNo×No

F o = BT
n (FM −Kφb) ∈ RNo

= BT
n ((DM − EM)M −Kφb)

(7.44)

We now solve for the unknown coefficients by solving the system

Koφ
o = F o (7.45)

which, by elimination of the boundary condition, is a very well-conditioned system. We obtain
the complete solution, to be substituted in Equation 7.16 to find the FEM approximation to
the potential Φ by adding the Dirichlet boundary conditions in the following way:

φ = Bnφ
o + φb. (7.46)

Finally, the forward inhomogeneous system is written symbolically by the monstrous equation

φ = BnK−1
o F

o + φb (7.47)

= Bn

[
(BT

nKBn)−1(BT
n (FM −Kφb))

]
+ φb (7.48)

= Bn

[
(BT

nKBn)−1(BT
n ((DM − EM)M −Kφb))

]
+ φb (7.49)

= Bn

[
(BT

nKBn)−1(BT
n ((DM − EM)M −K(Bo (XbHa)))

]
(7.50)

+ Bo (XbHa) (7.51)
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7.3 Obtaining H from Φ

Having obtained the FEM approximation to the sought inhomogeneous static potential, we
have not arrived at our destination just yet. We are actually interested in the magnetic field
H(r) = −∇Φ(r) in space, which requires another operation.

7.3.1 Magnetic field expansion in hat functions

Similar to the formulation of the unstructured divergence matrix DM and the unstructured
ellipsoid boundary matrix EM , we would like to derive some kind of unstructured gradient
matrix G, such that H = −Gφ, where H obeys the same vector ordering as the familiar
magnetization vector M . In principle, this is possible by expanding the magnetic field itself
as a sum of hat functions. This yields a linear system for the values of H at the nodes of
the finite element mesh, and this way, one has obtained a full mapping M → H by firstly
solving the weak problem to find an approximation to Φ and thereafter solving another weak,
linear problem by means of a matrix inversion to find H, indexed in the vector H . This is
very elegant, however, we have not succeeded in doing this, which will be made clear in the
following. To make our attempted methodology clear, let us describe it very briefly here. We
will only treat the x component of the magnetic field, the rest is analogous. Similar to the
problem of finding φ, we are now looking for the vector gx, which also has some known values,
namely the bounding box boundary values. gx is defined as the vector containing minus the
magnetic field values in the mesh nodes, following the indexing of the mesh. That is, we define

gx(r) := −H(r) =
∂Φ(r)

∂x
(7.52)

which leads to the vector

gxj :=
∂Φ

∂x
(xj) =

∂Φ

∂x
(xj) = −Hx(xj) (7.53)

We can now integrate the x-derivative of Φ, after multiplying it by a test function η ∈ H1
0 ,

yielding by partial integration∫
Ω

gxη dΩ =

∫
Ω

∂Φ

∂x
η dΩ = −

∫
Ω

Φ
∂η

∂x
dΩ. (7.54)

Now, since Φ is given in terms of the element-wise linear basis functions and boundary condi-
tions by Equation 7.16, namely

Φ(r) =
∑
j∈Io

φjηj(r) +
∑
j∈Io

φjηj(r) (7.55)

we can substitute this expansion in Equation 7.54. Moreover, we also expand gx in terms of
these basis functions:

gx(r) =
∑
j∈Io

gxj ηj(r) +
∑
j∈Io

gxj ηj(r) (7.56)

Substituting the above expansions in equation (7.54), and picking the usual test function from
the set of basis functions indicated previously, leads to a system of equations similar as in
the previous section. Dirichlet boundary conditions for Hx can then be inserted to yield a
well-conditioned system. By forming the matrices{

Pij =
∫

Ω
ηiηj dΩ

Sxij =
∫

Ω
∂ηi
∂x
ηj dΩ

(7.57)
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for 1 ≤ i, j ≤ Nn and by incorporating the same Dirichlet boundary indexing as before in the
vector gxb (analogous to φb), the weak solution to finding the x-magnetic field at the nodes is
given by firstly defining 

Po = BT
nPBn

Gx = Sxφ

Gx
o = BT

n (Gx − P)

(7.58)

and thereafter, symbolically
Po = BT

nPBn (7.59)

The reason why this has not succeeded in the end, is because of the fundamental flaw in the
expansion Equation 7.56. It assumes that the magnetic field can be expanded in terms of hat
functions, while mesh nodes are located on the interface between ellipsoid and air. Because the
magnetic field is undefined there, the above procedure is invalid. However, it doe yield far-field
results that are reasonable. More on this will be provided in the recommendations.

7.3.2 Magnetic field computation via interpolation

Because of the difficulties concerning the magnetic field at the boundary of the ellipsoid, rational
thinking moved us in the following direction. Since the inhomogeneous models also have as
defined output the signature values of the magnetized ellipsoid, it is a seemingly enough to
calculate the magnetic field only there; in the remainder of the bounding box, it is of no
use to go to great lengths to get an estimate of the magnetic field. However, to model the
time evolution of the magnetization inside the ellipsoid using different hysteresis models, an
estimate of the internal ellipsoid magnetic field is required. This is also done by interpolation,
but extra caution must again be paid to the ellipsoid boundary. We thus propose the following
straightforward method to calculate the magnetic field from the scalar potential. Firstly, choose
a small number δ > 0 a node xj. Since there exists a list of adjacent elements to each node,
together with the tetrahedron domain that element inhabits, it is known which which element
ek satisfies the location xj ± δx̂ ∈ ek, and similarly with xj ± δŷ ∈ ek and xj ± δẑ ∈ ek. On
these elements, the gradient of the FEM solution is known, since the coefficients φ are known
and the gradients of basis functions on elements are known exactly. We thereafter distinguish
three different cases.

• If xj ∈ Ωo
e or xj ∈ Ω \ Ωe, we approximate the magnetic field at node xj by

H(xj) ≈ −
1

2δ

Φ(xj + δx̂)− Φ(xj − δx̂)
Φ(xj + δŷ)− Φ(xj − δŷ)
Φ(xj + δẑ)− Φ(xj − δẑ)

 (7.60)

• If xj ∈ ∂Ω, we have
H(xj) = Ha (7.61)

• If xj ∈ ∂Ωe, we take the magnetic field to be the average of all adjacent, internal ellipsoid
node magnetic fields. This heuristic measure has to be taken, because simply taking
the central difference approximation yields unstable results in the forward simulation
of the hysteretic evolution of the magnetization. Moreover, the magnetic field is not
even defined boundary of the ellipsoid, so we have the freedom to assign a value to it
there, provided that the result more or less resembles reality. Of course, there are formal
boundary conditions, namely the familiar

n× (H2 −H1) = 0, (7.62)
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where H1 and H2 are the magnetic fields in- and outside the ellipsoid, and n is the
ellipsoid surface normal vector. However, we have not been able to incorporate these
boundary conditions in a rigorous way in our equations, which is why we have chosen to
implement the averaging procedure above.

The above operations are denoted by the linear, global operation

H = −Gφ (7.63)

which, in our implementations, is a Matlab scatteredInterpolant() object rather than a
(sparse) matrix.

7.4 Towards inhomogeneous hysteresis: Deriving a time-

stepping scheme from the static formulation

In this section, we try to derive a time-stepping algorithm to obtain an approximation of the
quasi-static non-linear boundary value problem:

∆Φ(r, t) = ∇ ·M(r, t), r ∈ Ω

M(r, t) =Mhys[Heff (H,M)(r, t), θ(r, t)]

H(r, t) = −∇Φ(r, t)

Φ(r, t) = r ·Ha(t), r ∈ ∂Ω

(7.64)

Having explained the inhomogeneous magnetostatic problem in detail in the previous chapter,
we can transform it into a time-stepping scheme, analogous to the time-stepping case in the
homogeneous ellipsoid models. There are some key differences, however.

1. Since the Ellipsoid Formula cannot be used any more, there is no way of relating of
measuring the internal ellipsoid field by estimating M(r) when the hysteresis parameters
are unknown. Later on, this prevents us from estimating the hysteresis parameters at
an internal coordinate r0 by only looking at the H(r0) −M(r0) curve. Rather, H(r)
has to be found by solving the magnetostatic system of the previous section at each
time step. In short, rather than finding the internal ellipsoid magnetic field by comput-
ing H(t) = Ha(t) − NM(t) = He − αM(t), we have to solve the forward system to
yield the scalar potential, which then has to be converted to the magnetic field via in-
terpolation, keeping in mind the ellipsoid boundary effects that were discussed previously.

2. Since the magnetization vector is now defined on every ellipsoid node, inhomogeneous
models are much more expensive to simulate than homogeneous models. At every proper
time step, Ne magnetization updates have to be performed that are similar to the updates
in the homogeneous model, increasing the simulation time by a factor of at least Ne.
Moreover, to find the magnetic field, the system to find the scalar potential approximation
has to be solved at every inner iteration also, drastically increasing the computation time.
It is for this reason that the inverse inhomogeneous model is very expensive when using
a genetic algorithm-approach. We will comment on this fact later.

These considerations together, yield our approach of the time evolution of the inhomogeneous
steel ellipsoid under the influence of a uniform applied background field. The same way as in
the homogeneous model case, choose ε, δ small and define the time steps t0, ..., tT , on which the
applied uniform background field is defined beforehand.

57



Finally, the following pseudo code contains the procedure to simulate the homogeneous models
with different underlying hysteresis models, simulated until a time value T . Choose ε, δ > 0
small and take a maximum iteration number kend. Then the following procedure yields a
numerical approximation to the evolution of the ellipsoid magnetization. A Picard iteration,
similar to the one used in the homogeneous model, is used to model the nonlinear, hysteretic
magnetization steps through time. The forward model presented here, can incorporate location-
dependent parameters. The input of the inhomogeneous model is given by a function in space
M(r), a vector that indexes all (possibly location-dependent) variables and a list of applied
background field vectors. For readibility, we have chosen to formulate quite a number of steps
in words. Essentially, the main difference between homogeneous models and inhomogeneous
models is the absence of demagnetization factors in the inhomogeneous case. One therefore
needs to solve the static system Equation 7.45 at every time step.
Another very prominent difference is caused by the fact that in calculating the magnetic field,
the demagnetization field is already accounted for. This causes the necessary inner iterations of
the homogeneous forward model to be largely redundant in the inhomogeneous case; in the case
of the inhomogeneous Rayleigh model, no iterations are needed at all because of the absence
of the notion of the effective field.

Algorithm 2 Inhomogeneous Forward Model simulation

1: procedure nLAnH(M0(r), θ, Ha(tn) : n = 0, 1, 2, ...)
2: M0(r)→M0

3: Ha(t0)→ φb . Initialize boundary conditions
4: Find H(r, 0) by solving Equation 7.45 and interpolation
5: Find Heff (r, 0) by definition
6: for 1 ≤ n ≤ T do . Outer, real-time loop
7: Let Ha increment and calculate new boundary conditions
8: for Every ellipsoid mesh node do
9: for 1 ≤ k ≤ kend do . Inner, pseudo-time loop

10: Dk
n = 1

2δ

M[Hk
eff,n + δex]−M[Hk

eff,n − δex]
M[Hk

eff,n + δey]−M[Hk
eff,n − δey]

M[Hk
eff,n + δez]−M[Hk

eff,n − δez]

T

11: Hk+1
eff,n =

(
1−αDk

n

)−1 (
H(r, tn−1) +α)

(
M[Hk

eff,n]−Dk
nH

k
eff,n

))
12: if

∥∥Hk+1
eff,n −Hk

eff,n

∥∥ < ε ∨ k = kend then
13: kconv = k
14: Exit inner loop
15: end if
16: end for
17: end for
18: Heff,n = Hkconv

eff,n . At every mesh node

19: Mn =M[Hkconv
eff,n] . At every mesh node

20: Make updated magnetization vector M
21: Find H(r, tn) by solving Equation 7.45 and interpolation
22: end for
23: end procedure

It is important to notice from the above pseudo-code (and indeed, it is proper pseudo-code, since
many details are left out) that the inner iterations are performed per node until convergence.
One would expect the inner iterations also to require solving the main system Equation 7.45,
but this is not necessary if one assumes that the magnetization and thus magnetic field does
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not vary too wildly across the ellipsoid, which is a reasonable assumption.

7.5 Combining the FEM framework with analytical re-

sults

As will be apparent from the Results section, our implementation of forward inhomogeneous
models yields a systematic error, which could be traced back to several different factors. It is
for this reason that we have modified our forward finite element code by employing the linearity
of the problem. That is, we write the magnetization distribution as a sum:

M(r) = MHOM + MIHOM(r) (7.65)

which gives a much more stable magnetization evolution. Indeed, by linearity ΦHOM(r,MHOM)
is the potential of the homogeneous problem with homogeneous magnetization MHOM , which
automatically satisfies the applied field boundary conditions. In the heterogeneous case, we
will view the term MHOM as

MHOM =

∫
Ωe

M(r) dΩ (7.66)

which has to be understood component-wise. So in the inhomogeneous model, MHOM is viewed
as the mean magnetization vector.
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Part IV

Model Inversion
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Chapter 8

Inverse Ellipsoid Models

We now arrive at the subject of inverse modelling. That is, given certain measured model
output data, can we reconstruct the inner workings, parameters and general unknowns of the
forward simulation or experiment? This is a very large field in applied mathematics, with
many insights from functional analysis (is the inverse operator well defined? [80]), numerical
analysis, statistics and many other fields. More on inverse problems can be found for example
in the thesis by Vijn [80], or in the book by Ramm [6], who discusses inverse problems from
both a theoretical and applied standpoint.
In this chapter however, we will be very briefly touching upon theoretical considerations.
Rather, we will discuss essentially three fairly different components of Inverse Ellipsoid Models,
namely.

1. Estimating M(t) in the homogeneous case. This is an example of an overdetermined
inverse problem, which is very well-posed;

2. Estimating M(r, t) in the inhomogeneous case. Often, this is an example of an un-
derdetermined inverse problem, which is therefore ill-posed. There are less data than
parameters to be estimated, which makes a regularization step necessary, contrary to the
homogeneous model case;

3. Estimating the hysteresis parameters θ in both homogeneous and inhomogeneous mod-
els. Here, we consider one exception, namely linear and IPellipsoid models, for which the
‘hysteresis’ parameter estimation can be performed can be performed quite straightfor-
wardly. In the case of pure nonlinear hysteresis, we have to resort to genetic algorithms.

8.1 Estimating M in the homogeneous case

Firstly, let us consider the estimation of uniform magnetization in homogeneous models. As
we have seen, the analytical result which is a solution to the infinite-domain Poisson equation
assuming uniform magnetization, allows us to write

Bs(rs) = A(rs)M (8.1)

where rs ∈ Ω \Ωe. Now, inserting the real CLAViS sensor positions, we derived the expression
of the homogeneous M−Bs mapping by simply ‘putting the A - matrices on top of each other’,
where the ordering of the sensor positions is respected:

Bs = ΛSHM (8.2)

which gives us the output vector of the model, indexed in the usual x, y, z manner. It would
be tempting to just employ the Normal Equations on the above system. The above problem
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is very well-posed and convex, which yields the Normal Equations to exhibit stable behaviour.
However, we would like to minimize the static error

J2(Bs, B̂s) =
1

2

Ns∑
s=1

∥∥∥Bs(rs)− B̂s(rs)
∥∥∥2

2
(8.3)

which is different from just applying the normal equations to Equation 8.2. In this objective
function definition, we denote the model realisation by the ‘big hat’ notation, whereas the
signature to be approximated is denoted without superscript. Thus,{

B̂s = ΛSHM̂ Homogeneous Model Realisation

Bs Measured or Artifical Data
(8.4)

To be clear, the above norm is indeed equivalent to the norm

∼
J2(Bs, B̂s) =

1

2

∥∥∥Bs − B̂s

∥∥∥2

2
(8.5)

which indeed would be minimized by applying the Normal Equations to Equation 8.2, but
may exhibit different minimizing behaviour (and certainly has different numerical values in
experiments). To minimize Equation 8.3, we compute the gradient with respect to the to be

estimated homogeneous magnetization vector M̂ to obtain

∇MJ2 =
1

2

Ns∑
s=1

∇M

∥∥∥Bs(rs)− B̂s(rs)
∥∥∥2

2
(8.6)

=
1

2

Ns∑
s=1

∇M

∥∥∥Bs(rs)− A(rs)M̂
∥∥∥2

2
(8.7)

=
Ns∑
s=1

A(rs)
TBs(rs)−

(
Ns∑
s=1

A(rs)
TA(rs)

)
M̂. (8.8)

Setting the above expression to zero, one obtains(
Ns∑
s=1

A(rs)
TA(rs)

)
M̂ =

Ns∑
s=1

A(rs)
TBs(rs) (8.9)

with solution

M̂ =

(
Ns∑
s=1

A(rs)
TA(rs)

)−1 Ns∑
s=1

A(rs)
TBs(rs) (8.10)

= (ΛT
SHΛSH)−1ΛT

SHBs. (8.11)

This proves that J2 is minimized with respect to the uniform magnetization vector by applying
the Normal Equations to the combined system Equation 8.2. The above minimization is an
example of a very well-posed system. It is very stable with respect to measurement noise; there
are much more sensor data than unknowns to be estimated.

8.2 Estimating M(r) in the inhomogeneous case

In order to estimate the magnetization distribution in inhomogeneous ellipsoid models, one
could try to directly invert the global static FEM model directly. That is, one could try to
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estimate the vector M on the basis of measuring the vector Bs according to the forward
FE model described in a previous chapter. Indeed, in the chapter on forward inhomogeneous
models, we have derived a matrix ΛSF such that

Bs = ΛSFM (8.12)

where ΛSF ∈ R3Ns×3Nn . It is clear that Nn >> Ns, which makes the system above very ill-
conditioned in general. However, significant reduction in system size can be achieved by using
the fact that magnetization is only present on Ωe (so many elements of the vector M are zero
and do not need to be estimated), reducing the above system to

Bs = ΛSFeMe (8.13)

where now ΛSF ∈ R3Ns×3Nm , where Nm is the number of meshed ellipsoid domain nodes, and
Me is a vector containing the magnetization components of all ellipsoid mesh nodes. Still, the
above system is very ill-conditioned, because in realistic and accurate meshes, Nm >> Ns. For
example, in many of our computations we have Ns = 112 and Nm = 8500. Estimating 3×8500
free parameters using only 3×112 knowns, is an example of a classic underdetermined system.
To get a grip on the situation, we have done the following.

• Firstly, we have tried to regularize the above system using three methods in literature.
Classical Tikhonov regularization attempted as well as weighted Tikhonov regulariza-
tion. Thereafter, we attempted to obtain useful estimates of Me using iterated Tikhonov
regularization. Lastly, we attempted to use Truncated Singular Value Regularization.
However, there are simply too many free variables to be estimated. In common scenar-
ios, this was reflected in the condition number of the above system, which takes a value
of approximately 1× 1026.

• Since inversion of the above system is fairly impossible even when applying reliable meth-
ods of regularization, we haven chosen the path that was also taken by Baas [74]. This
method is described below.

Roughly speaking, the inversion of Equation 8.13 can be interpreted as an estimation of the
continuous field M(r), but parametrised as a superposition of ‘hat’ functions at every ellipsoid
mesh node. In a certain sense then, the Finite Element approach of solving the Poisson equation
consists of moving from a ‘fine grid’ (R3) to a coarser grid (our mesh). Suppose we move to
an even coarser grid, now departing from our mesh grid. That is, suppose we express the
components of M(r) in terms of basis functions that are capable of describing the magnetization
distribution to a sufficient degree. Indeed, let us propose the expansion

Mx(r) = c1MHx +
∑Nb

j=1 c3j+1f
x
j (rj, r)

My(r) = c2MHy +
∑Nb

j=1 c3j+2f
y
j (rj, r)

Mz(r) = c3MHz +
∑Nb

j=1 c3j+3f
z
j (rj, r).

(8.14)

This expansion is capable of producing a homogeneous ellipsoid magnetization by keeping only
the first three numbers in the vector c nonzero. Moreover, it is able to model local perturbation
in magnetization independently in the x, y, z components by requiring the functions {fxj , f

y
j , f

z
j }

to have small support or to be rapidly decaying around their Nb centers rj.
Continuing, we sequentially set the vector c ∈ R3+3Nb , consisting of the basis function expansion
coefficients cj, 1 ≤ j ≤ 3 + 3Nb to a unit vector. Sequentially then, we input the resulting
magnetization distribution into the forward inhomogeneous static model and compute the
signature. The signature vectors are collected in the matrix C ∈ R3Ns×(3+3Nb). By performing
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this ‘basis function impulse response’ technique, we effectively construct a system to obtain
the coefficients c back from measurements. This system can be viewed as a regularized, or
coarse grid system with respect to the original full system Equation 8.13. In fact, the matrix
C contains weighted sums of the columns of ΛSFe in such a way that the number of unknowns
is greatly diminished to Nc = 3 + 3Nb. Finally therefore, the regularized mapping is given by

Bs = Cc (8.15)

In the Results section, we provide and discuss several realisations of this approach to finding
the magnetization on the basis of the impulse response approach. We have proposed a variety
of different ‘blob’ centers rj as well as different blob shapes {fxj , f

y
j , f

z
j }.

The more blob centers one employs and the more spread out the blobs are, the more ill-
conditioned the system Equation 8.15 becomes. This is a very interesting phenomenon and
intuitively very clear. It is tempting to toy around with different numbers, locations and
distributions of blobs and, in general, even other basis functions such as linear or parabolic
components. However, one quickly runs into problems when adding to much blobs or gener-
ality in the expansion above. This is why we subsequently have used different regularization
approaches when estimating the vector c from a measurement Bs. These are presented below
and are inspired from [86].

Iterated Tikhonov In Iterated Tikhonov regularisation, we employ the iterative scheme{
c(0) = 0, r(0) = Bs

c(i) = c(i−1) + (CTC + h2D)−1CTr(i−1), r(i) = Bs − Cc(i)
(8.16)

for i = 1, 2, .... Depending on the regularization matrix D and the regularization parameter h >
0, one might achieve good estimates for c even when the original system is badly conditioned.
Several examples of chosen regularization matrices and parameters are discussed in the Results
section.

Truncated SVD In truncated singular value decomposition regularization, we assume that
a singular value decomposition of C exists:

C = UΣVT (8.17)

where U and V are orthogonal and Σ = diag (σ1, ..., σNc). For analytical derivations and proofs,
we refer the reader to [86], but in short, the truncated SVD procedure consists of modifying
the diagonal singular value matrix to a better behaved matrix by setting

Σh = diag (dj), dj =

{
1/σj ifσj ≥ h

0 otherwise
(8.18)

for a certain value of h > 0 to be determined (h = 0 yields the unregularized system, while
h large yields the zero solution for c). The regularized solution to Equation 8.15 is thereafter
given by

c = VΣhU
TBs. (8.19)

In the Results section, realisations and a discussion on the above regularization methods are
also provided.
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8.3 Hysteresis parameters estimation

In order to estimate the parameters of the hysteretic ellipsoid models, we employ genetic
algorithms, since nonlinear behaviour is present and the number of free parameters is not too
large in most cases. For a realization of a signature evolution, in the homogeneous case given
by

Bs(tn) = ΛSHM(tn) (8.20)

and in the inhomogeneous case given by (symbolically)

Bs(tn) = ΛSFM(tn) (8.21)

under the influence of a pre-defined applied field Ha(tn) according to the previously discussed
homogeneous models, we introduce an objective function to be minimized, denoted by JT2 ,
which is just the sum of the instantaneous sensor l2 errors.

JT2 (Bs(t0), ...,Bs(tT ), B̂s(t0), ..., B̂s(tT )) =
T∑
n=0

JT2 (Bs(tn), B̂s(tn)) (8.22)

=
1

2

T∑
n=0

Ns∑
s=1

∥∥∥Bs(rs, tn)− B̂s(rs, tn)
∥∥∥2

2
(8.23)

This objective function is called ‘global’ because of the summing over all times. Taking T = 1,
yields a prediction or incremental interpretation of the error. Having defined this error measure,
we can minimize the JT2 error with respect to the hysteresis parameters in time. That is: We
choose a hysteresis model. Given a model realisation or measured data Bs(tn), n = 0, ..., T
minimize JT2 with respect to θ and M0, where M0 can be estimated by applying the normal
equations on the measured data Bs(t0).
Let us firstly look into the inverse linear homogeneous model. In this case, direct estimation
of the hysteresis parameter (the fixed susceptibility) can be performed. Thereafter, we take
a look at the inverse nonlinear models. In that case, we employ genetic algorithms to obtain
estimates of the hysteresis parameters.

8.3.1 The Homogeneous Linear Case

A particularly simple case is formed by the Linear Model, in which case there is an exact
mapping from the applied background field to the sensor data. To derive the inverse model,
observe that the effective susceptibility tensor relation is conveniently inverted:

χ
a

=
(
1 + χN

)−1
χ ⇐⇒ χ = χ

a

(
1−Nχ

a

)−1

. (8.24)

Provided that inverse in the above equation is well-defined, the material susceptibility can thus
be deduced from the effective susceptibility via direct computation. To estimate the effective
susceptibility from sensor measurements, notice that

Bs = Λχ
a
Ha =⇒ (ΛTΛ)−1ΛTBs = χ

a
Ha. (8.25)

Now, the left had side of the right hand side equation above is known from the geometry of the
setup and sensor data. The applied field is also known. Denoting the right hand side by L, so

L := (ΛT
SHΛSH)−1ΛT

SHBs (8.26)

one needs to estimate the 3×3 matrix χ
a

from the two vectors Ha and ~L following the equation
L = χ

a
Ha. It is mathematically impossible to obtain all elements of a general χ

a
using only
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one value of Ha and L; one has to perform multiple measurements at different applied fields.
This is perfectly intuitive, since rotational (off-diagonal) anisotropy is only visible when rota-
tion of some sort is applied. In case of isotropic or diagonally anisotropic material however, one
measurement suffices to estimate the material susceptibility, since element-wise inversion can
be employed in that case. Contrary to the derivation in the diagonally (an)isotropic case, the
fully anisotropic and thus most general linear homogeneous inverse needs multiple measure-
ments along multiple directions. Moreover, in practice one does not know in advance whether
some material exhibits only diagonal (an)isotropy. The general anisotropic parameter estima-
tion procedure is discussed presently.
Consider applying 3 different external magnetic fields, which are supposed to be linearly in-
dependent vectors: H

(1)
a ,H

(2)
a ,H

(3)
a . One can calculate the 3 (hopefully different) values of

the sensor data vectors L(1),L(2),L(3) by measurements or running a forward simulation. One
obtains a system of equations, capable of correctly estimating the effective susceptibility tensor
under the conditions above, by forming the matrices X ∈ R3×3 and Y ∈ R3×3, defined by

X := [H(1)
a ,H(2)

a ,H(3)
a ], Y := [L(1),L(2),L(3)] (8.27)

to obtain an estimate of the effective susceptibility

Y = χ
a
X =⇒ χ

a
= YXT (XXT )−1 (8.28)

after which the right hand side of Equation (8.24) can be employed to arrive at the estimate
for the material susceptibility of the ellipsoid. The relative permeability can be calculated by
the relation µ

r
= χ+ 1.

The above procedure is possible, because all fields and unknowns can be expressed in terms
of each other analytically. In the nonlinear situation, this is no longer the case. Rather, we
have to employ algorithms that can estimate a limited number of parameters (less than 20)
to achieve at an estimate of the hysteresis parameter vector θ. This is achieved by employing
genetic algorithms.

8.3.2 The General Case

In order to minimize JT2 with respect to the free parameters, we essentially run the forward
models many times, and via the procedures of genetic algorithms (in Matlab), we keep the
evaluations with lowest error, we update the parameter pool and keep simulating many real-
izations of the homogeneous forward models until a satisfactory small error is obtained. There
are many possible choices in selecting genetic algorithms. For example, Baas [74] has employed
the so-called Shuffled Frogs Leaping Algorithm (at least, one can conjecture that the field of
nonlinear inverse modelling is a great inspiration for zoological nomenclature). In our research,
we have employed the intrinsic Matlab genetic algorithm ga() to minimize JT2 . The algorithm
was initialized by firstly estimating M0 from the data, using the Normal Equations. By running
the forward models many times, with parameters in a preselected domain, one can obtain an
increasingly good estimate of the hysteresis parameters. The algorithm stops when the error
stops decreasing for several iterations, or when a specific maximum iteration number is reached.
Different degrees of anisotropy can be allowed by increasing or decreasing the parameter space
and thus the dimension of θ.
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Part V

Results, Discussion, Conclusions and
Recommendations
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Chapter 9

Results and Discussion

The present chapter will provide a summary of results which were obtained using the models
described in previous chapters. To do this, we have used the research subquestions and the
order of model description throughout the report. We will provide a wide variety of figures,
mostly signature plots and hysteresis loops, to illustrate the behaviour of ellipsoid models and
their specific properties. The structure of the current chapter is as follows.
Firstly, we will take a look at real, measured signature data using the CLAViS.
Secondly, we will discuss the homogeneous models and their specific properties. Anisotropy
is illustrated using different models. Hysteresis model-specific results are analysed and we
compare the hysteresis models along different axes of performance. To communicate the per-
formance of our inverse algorithms, we follow the chapter by providing and discussing results
on a wide variety of (identical) twin experiments. We finish the part on homogeneous model by
looking at measured data and estimating the hysteresis parameters of the real ellipsoid, which,
after all, is the purpose of the present project.
Thirdly, we move to the heterogeneous ellipsoid models by discussing the performance of our
self-written Finite Element models. We compare these FE - based approximations of the el-
lipsoid signature and magnetization to the results of the homogeneous models and discuss the
added difficulties of not having an exact solution to the ellipsoid magnetization and signature
in the FE-case. We investigate a number of factors that could contribute to the observed
behaviour. Furthermore, one added difficulty in the FE-case is the intrinsic ill-posedness of
inverse problem: the ellipsoid magnetization is now described by a large vector (depending
on the mesh resolution, up to tens of thousands of semi-free real numbers), while the number
of sensors is limited to 112. This impacts the difficulty of the inverse algorithm severely, as
will be shown in the current chapter. After having discussed this, we turn to (identical) twin
experiments. Our forward heterogeneous models have the capacity to simulate the ellipsoid
magnetization with location-dependent, anisotropic parameters. Unfortunately, the number of
hysteresis parameters in such a case is too great a freedom for our inverse algorithms to handle
and for our twin experiments, we have taken the parameters to be constant and unchanging
throughout the ellipsoid. This means that the only cause of having a nonuniform magnetization
and thus magnetic field, is formed by the initial or permanent magnetization of the ellipsoid.

All of the before is needed to (partially) provide answers to our original subquestions or sub-
goals:

• Develop a flexible and general forward model

• Identify and understand the physical and mathematical significance of model parameters

• Investigate a flexible, general and reliable method of model inversion and parameter
estimation
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• Quantify the impact of hysteresis, (an)isotropy and (in)homogeneity

• Improve the model using data assimilation and real-time control

Now, let us commence by looking at signature measurement data. One thing to be noted in
the current chapter, is that the units of many parameters and quantities are not included to
increase readability.

9.1 Measuring the ellipsoid signature using the CLAViS

We have measured the ferromagnetic behaviour of the prolate steel ellipsoid in real life, using a
device built by Lepelaars. More information on the CLAViS can be found in the documentation
by Lepelaars. The calibration algorithms of the CLAViS convert raw data to measures magnetic
flux densities at the sensor array, previously described. A series of Helmholtz coils produces an
(almost) uniform background field. When measuring, we have used the following field, using
342 time steps.

Figure 9.1: The applied magnetic field that was used to obtain the CLAViS data.

Changing the background field according to the above figure and measuring the sensor signa-
ture, one obtains a sequence of signatures. These signatures are caused by the magnetization
distribution inside the ellipsoid only, since the background field is subtracted from the total
field that is measured. An example of a measured signature can be observed in Figure 9.2.
There, we plot the three components of the reduced flux density, which is the signature, to-
gether with the norm of the signature at the sensor locations. The figure was made at time
step 100 with the applied field above.
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Figure 9.2: The measured signature at using the CLAViS at time step 100. At that time, the
applied field was given by Ha(t100) ≈ (0, 80, 0)TA m−1.

In the present chapter, all builds up to one goal: Estimating all relevant quantities - magnetiza-
tion evolution, initial condition, and hysteresis parameters - that govern the process generated
by the above depicted signal Figure 9.1 and producing the signature output that is observed -
in one time instance - in the signature contour plot depicted above Figure 9.2.
Let us look in more detail at the raw data themselves. Can, for example, hysteresis be seen?
Below, two figures are placed to illustrate the ‘semi-raw’ data generated by the CLAVis.

Figure 9.3: A plot of the measured signature in
time, at sensor 60.

Figure 9.4: A semi-hysteresis curve, measured
at sensor 60.

The left hand side figure depicts the magnetic induction field measured by sensor 60 in time,
while the right hand side depicts the same measurement, but plotted against the applied field
Ha from Figure 9.1. Note that in that case, Bs is under the influence of the spatial mapping
to map M(r), the ellipsoid magnetization distribution, to the sensor array. This causes the
‘material to seem anisotropic’, because the spatial mapping when analysed, is not diagonal. In
fact, not much can be concluded about the right-hand side figure above. We need real model
inversion. But firstly, let us examine various homogeneous forward models and their properties.
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Figure 9.5: The applied magnetic field Equation 9.1 that was used in most or our homogeneous
forward simulations.

9.2 Results of specific homogeneous ellipsoid models

In order to provide figures, hysteresis loops and signature plots of realizations of the homoge-
neous ellipsoid models, we firstly have to choose an applied field that functions as the underlying
driving force. We have chosen this field to be the following:

Ha(t) =
400 µT

µ0

1

2

(t/T1)

sin (t/T1)
sin (t/T2)
sin (t/T3)

 (9.1)

where T1 = 360, T2 = 180 and T3 = 120, in seconds. We discretize this signal using 1500
equidistant time points. If an explicit ODE solver were used, this time step would have been
too large. But since we are employing an iterative method to obtain both the increments in
the magnetization and the (effective) magnetic field inside the ellipsoid iteratively, the process
is simulated stably. A plot of applied field in time can be observed in the following figure. The
reason that this field is used, is not for inversion purposes or reflection of realistic situations.
Rather, it is to show the behaviour of the hysteresis models in an as clear as possible manner.
If, in this section, another applied field is utilised, we will comment on it.
Furthermore, the initial condition of our simulation will, unless otherwise indicated, always be
the demagnetized state, that is,

M0 = 0. (9.2)

9.2.1 The Homogeneous IPEllipsoid Model

Below, two figures displaying the H versus M curve and the Ha versus M curve can be seen.
The simulations were done using an isotropic susceptibility of 99 and using Mper = 0.

71



Figure 9.6: nLIH - IPHa −M curve. Figure 9.7: nLIH - IPHa −M curve.

The nature of the IPmodel becomes apparent. The linear relation between M and H is
clear. The demagnetization tensor is apparent: Although the applied field is more or less
equal in maximum magnitude in all three directions, the Ha −M curve shows the difference
in magnetization response due to the easy x-axis of the ellipsoid. Now, adding anisotropy (the
left hand side figure) and furthermore setting Mper = (2 − 1 4)T , one observes the following
two ‘hysteresis’ curves, which were made using:

χ =

99 20 50
20 149 30
50 30 129

 . (9.3)

The curves are depicted below.

Figure 9.8: nLAH - IPHa −M curve.
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Figure 9.9: nLAH - IPHa −M curve.

The two above figures are interesting. One could mistake the IPmodel for a nonlinear hysteresis
model by just taking the above figures at face value. Furthermore, the inclusion of Mper, and
even a very small value compared to the actual magnetization, introduces wildly different
behaviour of the ellipsoid magnetization. The above behaviour is the case in very anisotropic
materials, which rarely occur in the field of ferromagnetism. However, the simulations show
the capacity of the IPmodel to model a wide range of curves.

9.2.2 The Homogeneous RAEllipsoid Model

Let us now take a quick look at the behaviour of the Rayleigh model in the homogeneous case.
Simulating the Rayleigh model using the applied field Equation 9.1, zero initial conditions and
isotropic parameters of χ = 99 and αR = 20, one obtains
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Figure 9.10: nLIH - RAH−M curve. Figure 9.11: nLIH - RAHa −M curve.

Under the influence of the ellipsoid demagnetization factors, the parabolic shape of the Rayleigh
curves is still present. The same behaviour as in the IPmodel is encountered when looking at the
Ha−M curves, although the x - curve exhibits a notable hysteresis gap even when ‘compressed’
by the demagnetization tensor. Introducing anisotropy by letting the linear Rayleigh parameter
be given by µ

i
= 1 + χ with the susceptibility as in Equation 9.3 and keeping αR unchanged,

one obtains the following figures.

Figure 9.12: nLAH - RAHa −M curve. Figure 9.13: nLAH - RAt−H curve.

One notices that the concentric parabolic shapes are still visible, but with slight distortion.
Also, the y and z components of the hysteresis curve exhibit more distortion than the x-
component, as can also be observed in Figure 9.13.
One fact that was noticed about the homogeneous RAmodels is the following. When ini-
tializing the process at a very ‘wild’ magnetization, the iterative solving of the ODE tends
to stabilize the magnetic field and magnetization evolution. For example, initializing above
depicted anisotropic model by letting Mper = (500 − 100 60)T , one obtains the following hys-
teresis curve: More on this can be found in the current chapter, on the section of modelling
choices in the homogeneous model.

9.2.3 The Homogeneous JAEllipsoid Model

Let us now turn to have a quick look at different realizations of the Jiles-Atherton ellipsoid
magnetization model in the homogeneous case. The JAmodel takes as input five parameters,
which can all be extended to include anisotropy. A sixth parameter used to close minor loops,
has been omitted in the present research. The reason that this parameter is needed, becomes
apparent in the current discussion. But firstly, let us look at some realizations of the JAmodel
in the case of perfectly normal isotropic parameters, namely some of the original parameters
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Figure 9.14: nLAH - RAH −M curve using an unrealistic initial condition. When time
progresses, the curve approximates the curve in Figure 9.12.

discussed in the original JAintroduction paper [21]. These are given by Ms = 1.6× 106 A m−1,
A = 1100 A m−1, the Weiss parameter α = 1.6× 10−3, k = 400 and k = 400. This yields the
following.

Figure 9.15: nLIH - JAH−M curve. Figure 9.16: nLIH - JAHa −M curve.

Again, one can observe the influence of the demagnetization tensor on the hysteresis curve.
The y and z components of the magnetization are much more ‘damped’ out. Now, adding
anisotropy by letting A = 1100, α = 1.6× 10−3 and letting the anisotropic parameters and
tensors be given by

Ms = 1.6× 106

0.1
1
1

 and k = 400

0.8 0.1 0.2
0.1 1 0.1
0.2 0.1 0.8

 and c =
1

100

2 0 0
0 1 0
0 0 1

 , (9.4)

one obtains the following anisotropic JAmodel curves.

Figure 9.17: nLIH - JAH−M curve. Figure 9.18: nLIH - JAHa −M curve.
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Again, it is apparent that the homogeneous, anisotropic ellipsoid models are capable of sim-
ulating ferromagnetic behaviour that appears to differ greatly from the classical JAmodel as
introduced by Jiles and Atherton themselves [21].

9.2.4 The Homogeneous EVEllipsoid Model

The homogeneous EVellipsoid model is the most complex of all models discussed in the present
section on homogeneous models. This is reflected in the simulation time and parameter space,
but also in the fact that the EVmodel appears to be the most stable of the models discussed
here. One can take large increments in the applied field, such that the RAand JAmodel would
diverge, but the EVmodel shows stable behaviour in most cases. In this short summary of
EVforward model results, we firstly show some general behaviour of the model. Thereafter,
we highlight specific properties of the model, discuss the influence of the number of cells Let us
firstly look at a realization of the isotropic EVmodel with Nc = 41 cells. The Weiss mean field
parameters was set to a value found in literature on the EVmodel, α = 8.8× 10−5. The model
weights ωi are all chosen equal, with varying isotropic weight tensors, linearly increasing from
0 to kmax = 2. One might be a bit surprised by the small magnitude of this kmax. However,
due to the strong internal ellipsoid demagnetization, the geometry of the ellipsoid itself can be
viewed as a ‘frictional force’, resisting magnetization increase along its axes.

Figure 9.19: nLIH - EVH−M curve. Figure 9.20: nLIH - EVt−H plot.

Secondly, we have simulated the EVmodel using anisotropic parameters. Keeping all other
parameters unchanged, we have set

ki =
kmax(i− 1)

3(Nc − 1)

3 1 1
1 3 1
1 1 3

 (9.5)

for 1 ≤ i ≤ Nc. This yields the following.
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Figure 9.21: nLAH - EVH−M curve. Figure 9.22: nLAH - EVH−M plot.

Comparing the two results above is interesting. In the JAmodel, the difference between a
H−M curve and a He−M is ‘very small’, even if the Weiss mean field parameter is relatively
large. In the EVmodel however, we observed that the Weiss mean field parameter is very
critical. Changing it by a small amount, leads to very different behaviour. We conjecture
that this has to do with the intrinsic nature of the EVmodel. Looking at the range of H
in the JAmodel versus in the EVmodel (see Figure 9.15 and Figure 9.19), we conclude that
using these sets of parameters, the incremental susceptibility is much higher in the case of
the EVmodel, even though the parameters that were used are in some sense ‘very normal’.
Very high susceptibility yields the αM term dominant in the Weiss effective field description,
behaviour which is very much related to the actual value of α.
All of this could be tweaked such that the models exhibit roughly the same behaviour. This
‘cross-over’ between hysteresis models will be commented upon in the section on homogeneous
(identical) twin experiments.

9.3 Empirical Comparison of the Homogeneous Ellip-

soid Models

So far, we have roughly observed that the ellipsoid models are cast in increasing order of
complexity and range as follows (where the anisotropic notation ‘A’ includes the isotropic
cases ‘I’) : LAH, nLAH-IP, nLAH-RA, nLAH-JA, nLAH-EV. This is true also in terms of
the number of parameters. Let us make these observations more precise in the following table.

IP RA JA EV
Orders of physics in-
cluded

1st order 2nd order ∞th order ∞th order

Temperature dependen-
cies

No No Yes Yes

Hysteresis behaviour No Yes Yes Yes
Anistropy extensions Yes Yes Yes Yes∗

Number of parameters
(scalar)

1 2 5 2 + 2Nc

Computational burden low limited high very high

Table 9.1: Assessment of the four models for ferromagnetic behaviour.

To illustrate this table, we have run the four forward homogeneous models (IP, RA, JA, EV)
many times with different parameters, driven by the background field Equation 9.1. In terms
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of computation time, we have found the following.

9.4 Homogeneous Sensor Mapping and Measurement Noise

In the homogeneous model, we solve for the magnetization evolution M(t) at discrete time
steps tn. As discussed earlier, the exact solution to the magnetostatic Poisson equation allows
for an analytical derivation of the magnetic flux density both in- and outside the ellipsoid,
and thus an analytical expression of the ellipsoid signature. As discussed before, the relation
between uniform ellipsoid magnetization and the signature outside the ellipsoid is given by the
equations

Bs(r, t) = B(r, t)− µ0Ha(t) = A(r)M(t). (9.6)

Now, since the number of sensors in the CLAViS is 112 and because of the ordering choice
discussed in ??, the above linear mapping can be extended to form one linear mapping for all
sensors. This yields for the discrete time stepping points

Bs(tn) = ΛM(tn). (9.7)

This formulation was chosen because in the end, it is in the same form as the (processed)
output of the CLAViS. Some typical signature plots can be observed in the figure below.

Figure 9.23: An ellipsoid signature plot, produced by an uniform ellipsoid magnetization of
M = (6000, 0, 0)T using equation Equation 9.7.

Another example is depicted in the next figure, which is an example of a signature plot with
off-axes uniform magnetization.
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Figure 9.24: An ellipsoid signature plot, produced by an uniform ellipsoid magnetization of
M = (600,−300, 200)T using equation Equation 9.7.

Now that the nature of the mapping Equation 9.7 has been made visible, we are ready to
introduce the concept of noise. One is obliged to admit that the field of noise modelling is an
entire research field on its own. We have looked at several causes effects that could be regarded
as system noise, such as

1. The uncertainty in sensor positions;

2. The intrinsic measurement error of sensors;

3. Barkhausen noise [5];

4. CLAViS calibration biases or imperfections;

5. Fundamental sensor imperfections and random extreme measurements;

6. Uncertainty in the uniformity or magnitude of the applied field;

7. Uncertainty in the position of the ellipsoid;

8. In the case of the homogeneous model, a very obvious source of something that could be
perceived as noise in the homogeneous model would be the non-uniformity of the ellipsoid
magnetization. This will be treated in more detail later on in the current report.

It is beyond the scope of the current research to model all these noise sources using rigorous
arguments. Rather, we have postulated that all the noise discussed above can be modelled by
perturbing the signature output of models and experiments by a normally distributed vector
ε ∼ N (0,Σ), where Σ is the covariance matrix of the noise. Having discussed perturbing
signature data, we continue by discussing various twin experiments that were performed during
our research.
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9.5 Homogeneous Twin Experiments

A twin experiment is essentially the following: We run a forward model and thereafter use the
output of that model to estimate the parameters that were used in the forward simulation.
Since the forward simulation was done on a computer, all real parameters are known. This
procedure can be extended to include measurement noise. Unfortunately, we have not been
able to devise new ideas to invert the hysteresis models. The genetic algorithms discussed in the
section on inverse homogeneous models, is a kind of ‘brute force’ approach, which maybe lacks
a bit of aesthetic value. Surely it is possible to derive incremental algorithms that estimate the
homogeneous hysteresis parameters by looking at the relation between dM and dH at each time
step. These are related by the incremental susceptibility, which in turn is directly related to the
hysteresis parameters. In the homogeneous case, the big advantage over the inhomogeneous
models is that the magnetic field is known through the ellipsoid formula, making these types
of inversion algorithms possible.
In short, our twin experiments demonstrate that the chosen forward models are stable and that
inversion is stable with respect to noise addition.

9.6 Homogeneous Parameter Estimation Using CLAViS

Data

Let us return to the CLAViS measurement, introduced at the beginning of the current chapter.
As discussed before, Equation 9.7 allows for finding the uniform magnetization estimate that
minimizes the 2-norm error of the signature within the homogeneous model, by employing the
normal equations. It is a severely overdetermined system, giving a very robust estimation of the
(in the homogeneous model assumed) uniform magnetization. Solving the normal equations
that are associated to Equation 9.7, we find the following estimation of the homogeneous
ellipsoid magnetization, magnetic field and hysteresis curves.

Figure 9.25: Estimation of the ellipsoid internal
magnetic field using the normal equations .

Figure 9.26: Estimation of the ellipsoid internal
magnetic field using the Ellipsoid Formula.

The estimations depicted above, lead to the following hysteresis curves.
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Figure 9.27: The CLAViS H−M loop. Figure 9.28: The CLAViS Ha −M loop.

We are now ready to fit several homogeneous forward models to the measured CLAViS data.
The table below represents the outcomes that were observed when running our genetic algo-
rithms with the applied field that was used in the CLAViS measurements.

Table 9.2: A subset of estimated hysteresis parameters using real measurement data.

Homogeneous Ellipsoid Models: Parameters
Isotropic Uniaxial Anisotropic Fully Anisotropic

Linear µr = 72.36 µ
r

=

81 0 0
0 0.82 0
0 0 1.49

 µ
r

=

 76 0.3 0.84
0.3 0.62 0.19
0.84 0.19 1.07


IP Mper =

 0.43
1.85
−2.86

 Mper =

0.27
2.1
−2.9

 Mper =

0.45
3.4
−2.4


µr = 72.36 µ

r
=

81 0 0
0 0.82 0
0 0 1.49

 µ
r

=

70 0.4 2.9
0.4 0.74 0.26
2.9 0.26 0.32


RA µr = 72.35 µ

r
=

73.23 0 0
0 0.82 0
0 0 1.49

 µ
r

=

 73 0.16 0.04
0.16 0.74 0.43
0.04 0.43 1.05


αR = 0.012 αR =

8× 10−5 0 0
0 0.05 0
0 0 1.5

 αR =

0.031 0 0
0 1.4 0
0 0 0.6


JA Ms = 1.1× 106

A = 1.3× 103

α = 4.8× 10−5

k = 592
c = 0.29

A wise question is now as follows: Do these parameter estimations actually mean anything?
We are obliged to say that the parameter estimation for Rayleigh and Jiles-Atherton models is
very unstable. That is, the scalar model approximation does arrive at consistent estimates of
parameters, and can thus be regarded as reliable. However, when anisotropic parameters are
used, our algorithms often end up at varying estimates. It is worth noting that the IPmodel
is capable of approximating measurements the best (by far). The Uniaxial IPmodel manages
to achieve a global sensor error of at least 10 times lower than all other models that have been
fitted. Moreover, one could say that the estimate of the linear part of the linear model, IPand
RAare very stable, even in anisotropic cases. We also point out that the anisotropic models
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arrive at a very low relative permeability in the y and z direction. This solidifies the conjecture
that more data are needed to fit anisotropic models, since the achieved estimates are just very
unrealistic in complex models.
The above estimates were all performed using ‘gene pools’ of 1000 parameter sets and by
running the homogeneous forward models for many epochs.
Unfortunately, we have not been successful in inverting the EVmodel, due to planning reasons.
In their original paper however, Prigozhin et al. provide a multi-step way of inverting the
EVmodel. However, this makes use of intrinsic Matlab functions such as fminunc(), which
is comparable to our current approach using ga(), in the sense that it requires many forward
model runs.

9.7 Results of specific inhomogeneous ellipsoid models

In the current chapter, we formulate our results for inhomogeneous Ellipsoid Models. The
sections within the current chapter are structured as follows:

1. Firstly, we take a short look at the performance of our magnetostatic Finite Element
implementation, and discuss some observations. We discuss the difference between the
full-FEM approach and the mixed-FEM approach and try to formulate possible explana-
tions for the discrepancy in results. This is combined with an analysis choices that were
made in our FEM-implementation, including computation time, mesh size, condition
numbers and boundary condition choices.

2. Secondly, we discuss the procedure to find H from Φ and compare it to the ‘weak form
gradient’ method.

3. Thirdly, we discuss the performance of our procedure to estimate the magnetization
distribution, based on sensor data. We compare several approaches in terms of reliability
and

4. Fourthly, we provide some results on inhomogeneous forward models, in particular the
inhomogeneous RAmodel. Since these models are quite complex to run on our stan-
dard PC’s, we have not been able to estimate the (possibly inhomogeneous) hysteresis
parameters. More on this will be said in the Recommendations section.

5. Finally, we again turn to our CLAViS data to see if there are ‘chunks’ of permanent
magnetization to be found. As said previously, we have not been able to obtain the
hysteresis parameters in the inhomogeneous case, which is mostly due to time limitation.

9.8 The static forward problem

We have run many static forward problems using our FEM implementation. In doing this, we
have made use of the following mesh sizes:
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Table 9.3: Summary of used Comsol mesh data, in ascending order of complexity.

Name Nodes Elements Condition number of Ko Mean system solving time
M1 1279 6729 1.44× 103 1.6× 10−2 s
M2 4654 25302 2.36× 103 4.4× 10−2 s
M3 10227 57341 6.06× 103 1.2× 10−1 s
M4 32707 189847 6.67× 103 5.5× 10−1 s
M5 38142 220895 4.02× 104 9.4× 10−1 s
M6 91527 530355 2.98× 104 5.8 s

The condition number of M5 is higher than the system condition number of M6, which is
interesting. In fact, M5 was manipulated to be very fine inside the ellipsoid, and less fine in
the airbox. We conclude that the domain-dependent meshing algorithms used by Comsol have
integrated features that attempt to minimize system condition numbers.
Let us firstly observe two inhomogeneous model realizations. However, we apply a homoge-
neous M distribution of (2000, 200,−300)TA m−1. This gives a measure of how well our FEM
implementation performs, since the homogeneously magnetized ellipsoid potential and field are
known analytically. We observe the following.

Figure 9.29: Homogeneously magnetized ellipsoid signature using the homogeneous sensor
mapping.
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Figure 9.30: Homogeneously magnetized ellipsoid signature using the purely FEM sensor map-
ping.

One can see that there is a difference in the signature of a homogeneously magnetized ellipsoid.
This difference is already caused by a fundamental difference in Φ and subsequently also for
the magnetic field, which is derived from the potential approximation via interpolation. What
is the cause of this? We have come up with several possible explanations.

• In discretizing the FE domain using tetrahedral elements, we introduce a fundamental
reduction of complexity.

• Scalar potential intrinsic instability in regions of high variation is often discussed in
literature. Indeed, on the boundary of the ellipsoid and in a neighbourhood thereof,
there exists wildly chaotic behaviour in the FEM solution.

• Newton-Cotes integration of ellipsoid boundary elements and normal vectors, might in-
duce an error that spreads out throughout the computation domain.

• The intrinsic Matlab backslash solver for large sparse linear systems, might produce errors
by for example having too high a tolerance.

Further research is required to investigate this behaviour of the inhomogeneous model. This
is the reason why we have chosen to modify our implementation according to the procedure
described in the FEM chapter of the current report. That is, the magnetization is always
written as a sum of a homogeneous part and an inhomogeneous perturbation. A cross-sectional
example of this inhomogeneous perturbation can be observed below.
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Figure 9.31: Cross-sectional depiction of a superimposed inhomogeneous magnetization com-
ponent.

Since the solution to the homogeneous problem is known analytically, FEM errors damp out
drastically if the inhomogeneous magnetization component is assumed to be small. Below,
we provide some figures that depict the signatures of both homogeneous and inhomogenously
magnetized ellipsoids. One can see that an inhomogeneously perturbed ellipsoid magnetization
carries with it a small effect on the sensor array, that needs to be estimated in the inverse static
inhomogeneous model.

9.9 The Inverse Static Problem

We now turn to the problem of estimating the inhomogeneous magnetization distribution
M(r) from measured data. As discussed before, we employ an impulse-response method by
expanding the magnetization into a homogeneous component with several ‘blobs’ superimposed,
functioning as imhomogeneous magnetization areas. An example of internal magnetization that
can be achieved this way, can be seen in the following cross-sectional plot:

Figure 9.32: An example of a possible internal inhomogeneous magnetization distribution. The
magnetization norm is plotted.

In the current section, it is our aim to ‘decompose’ variations of the above magnetization
distribution in components. We have performed the following experiments to achieve this.

• (E1) Trying to estimate the M-distribution directly using direct inversion and regular-
ization. This is practically impossible due to singular values of order 1× 10−26 in our
equations.

• (E2) Trying to estimate the M-distribution on the basis of sensor data, using more or
less homogeneously distributed ‘blob centers’ on the ellipsoid and by using generalized
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normal blobs on these centers as inhomogeneous basis functions. In this case, the basis
functions were of the form, for r = (x, y, z)T

fj(rj, r) = A exp

(
−1

2

(
x− xj
σx

)2px

− 1

2

(
y − y2

j

σy

)2py

− 1

2

(
z − zj
σz

)2pz
)
. (9.8)

We took σx = 0.01a, and σy = σz = 0.01b, where a and b are the semidiameters of the
ellipsoid, and we took p = 1 for all dimensions. Also, the coefficient A is chosen such
that fj(rj, rj) = 1.

• (E3) Trying to estimate the M-distribution on the basis of sensor data, using equally
spaced ‘blob centers’ along the x-axis and by using generalized normal blobs on these
centers as inhomogeneous basis functions. In this case, the basis functions were of the
same shape as in experiment (E2), but in this case we only used six equally spaced points
on the x-axis and took σx = σy = σz = 0.02a, where a is the x-semidiameter of the
ellipsoid. Moreover, we took px = 2 and py = pz = 1, together yielding a system size
with 21 unknowns to solve.

The ellipsoidal normal blob locations of experiment (E2) are chosen with the help of prolate
spheroidal coordinates in order to have a ‘nice’ distribution. Their locations can be observed
below.

Figure 9.33: Locations of the normal blob centers in experiment (E2).

To see the shape of a general blob function in experiment (E2), let us look at a cross-sectional
plot of the magnetization norm in the z plane, where the magnetization is given by only one
basis function. The basis function is centered on the ellipsoid major axis.

Figure 9.34: The magnetization caused by letting c7 = 40 in the coarse grid system. This
is equivalent to taking an ellipsoidal normal distribution of magnetization in the x-direction,
located at r7 = (0.18cm, 0, 0)T .
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The magnetization blob depicted above, yields the following signature:

Figure 9.35: The magnetization caused by letting c7 = 40 in the coarse grid system, combined
with the produced signature plot.

An example of the range of magnetization distributions (E2) can take is given below.

Figure 9.36: Nonuniform ellipsoid magnetization by initializing an inhomogeneoud Ellipsoid
Model using a homogeneous magnetization of MHOM = (1000, 100, 0)T an by using normally
distributed coefficients for the normal ellipsoidal blobs.

As stated previously, the system

Cc = Bs (9.9)

needs to be solved for the basis function coefficients c. Now, in (E1), the condition number
of the above system was of the order 1× 1019. For (E2), the condition number was roughly
1.6× 104 and for the third experiment, the condition number was given by 688. Since the
condition number of the second experiment is still quite large, even when using the coarse grid
approach, we have employed regularization techniques to solve the above system efficiently. To
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see the subtle difference in signatures to be accounted for in our inverse estimations, let us
compare the difference in sensor output between to magnetized ellipsoids. The first ellipsoid
is homogeneously magnetized, whereas the second ellipsoid is homogeneously magnetized but
given a small perturbation in magnetization on top. Below, the two signature outputs are
compared and the difference is visualized.

Figure 9.37: Signature norm of a homoge-
neously magnetized ellipsoid with magnetiza-
tion M = (2000, 200,−300)T .

Figure 9.38: Signature norm of a homoge-
neously magnetized ellipsoid with magnetiza-
tion M = (2000, 200,−300)T , perturbed with
a normal blob of amplitude 5 in the z-direction.

Figure 9.39: Difference between the two signatures above. Once one has grasped the vastly
different scales that are present in the model, one sees the need for regularization, which is
investigated in the next section of this Results chapter.

9.10 Estimating M(r): Regularization and Twin Exper-

iments

We now turn to the estimation of the ellipsoid magnetization using regularization. We also
analyze the robustness of our inversion when different levels of noise are added, and we look
at estimations of optimal regularization parameters. In our experiments, we observe that
truncated SVD regularization outperformed iterated Tikhonov regularization almost always,
an observation that is warranted also by Neumaier [86]. Using the SVD is intrinsically a more
‘complex’ form of regularization that is capable of capturing certain aspects of the inversion
problem and eliminating precisely the noise in the ‘difficult’ areas of the linear system.
Now, let us firstly solve

Cc = Bs (9.10)
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using a direct approach and SVD regularization using noise-contaminated measurements. From
now on, we only focus on truncated SVD as our regularization method. The results of esti-
mating c are depicted in the following figure. In that experiment, we have initialized a large
homogeneous magnetization and superimposed small perturbations.

Figure 9.40: Influence of SVD regularization on the estimation of c in experiment (E2) which
has quite a high condition number and 51 free blob amplitudes to estimate. We have found an
optimal value for the SVD regularization parameter by inspecting different error measures on
different parameters and by iteratively raising or lowering the parameter. In this experiment,
we have added noise to the signature data with 50 signal to noise ratio. One can see that the
homogeneous magnetization components are easily deduced by the inverse estimation.

Experiment (E3) is much better conditioned. This is reflected in the relative performance of
direct inversion and SVD inversion, as can be observed in the following left figure. The figure
on the right is visualizing the estimation of c on with a small homogeneous magnetization
component and a relatively large measurement noise to perturb the data (20 signal to noise
ratio). Although the SVD regularization procedure still performs better than direct inversion,
adding a lot of noise simply makes it impossible for any smart procedure to arrive at ‘the’ best
estimate.
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Figure 9.41: Estimating c in the well-
conditioned situation (E3), with 50 signal to
noise ratio.

Figure 9.42: Estimating c in the experiment
(E2), with 20 signal to noise ratio and a small
homogeneous component.

The right hand side figure above was also used to visualize the estimated magnetization and
signature using SVD and direct inversion, which yielded the following. The ‘real’ situation was
given by

Figure 9.43: Twin experiment reference situation.

After adding normally distributed noise at the sensor locations, with variance that equalled
0.05 times the norm of that particular sensor measurement, we inverted the (E2) model on
these perturbed data. SVD regularization clearly yields a more reliable inversion.
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Figure 9.44: Direct estimation in the perturbed
twin experiment.

Figure 9.45: SVD-regularized estimation in the
perturbed twin experiment.

From the three figures above, one can indeed conclude that the signature of the three situations
does not differ all that much. However, the magnetization distribution does, which is a typical
fact in ill-posed inverse modelling.
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Chapter 10

Conclusions and Recommendations

10.1 Conclusions

In the current Conclusions chapter, we attempt to formulate answers to the original goals and
questions of the research. To freshen up our memory a bit, these were given by:

‘Formulate, motivate, design, implement, verify and improve a model of the
magnetic behaviour of a ferromagnetic steel ellipsoid, taking into account

hysteresis, anisotropy and inhomogeneity, moreover, quantify the impact of these
three aspects.’

We attempted to reach this goal by formulating the following sub-goals.

• Develop a flexible and general forward model

• Identify and understand the physical and mathematical significance of model parameters

• Investigate a flexible, general and reliable method of model inversion and parameter
estimation

• Quantify the impact of hysteresis, (an)isotropy and (in)homogeneity

We have set up our research as follows. Firstly, we have examined a class of models known
as homogeneous ellipsoid models, which are very conveniently coupled to four different nonlin-
ear hysteresis models: The Induce-Permanent model, the Rayleigh model, the Jiles-Atherton
model and the Energy-Variational model. Using genetic algorithms, three out of four homoge-
neous hysteresis models, with the exception of the Energy-Variational model, have been fitted
to measured data. We have quantified the prediction error that was made by approximat-
ing the magnetic behaviour of the real ellipsoid by our simplified models. The homogeneous
models, which have the property of only requiring time integration, are able to describe the
ellipsoid magnetization only up to a uniform level. On the one hand, this makes estimating
the magnetization ‘distribution’ very straightforward and overdetermined, on the other hand,
it induces a larger prediction error, since measurements indicate that the magnetization of the
experimental ellipsoid is not uniform. Using a signature-based mean squared error optimiza-
tion algorithm, we have been able to estimate the optimal ellipsoid parameters, but not in all
cases; more data are required to fit more complex models to the measured data.

Resorting to the inhomogeneous models, which are able to describe non-uniform magnetization
distributions and their signatures, one has considerably more freedom to estimate the realistic
magnetization distribution, yielding a lower prediction error. By using a heuristic method of
regularization that effectively drastically reduces the number of unknowns but nevertheless is
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able to model a wide range of magnetization distributions, we have been able to estimate the
magnetization distribution through time that minimizes the global squared signature error.
Unfortunately, we have not been able to estimate hysteresis parameters in the inhomogeneous
case.

From our results, we can conclude that the ellipsoid exhibits all three aspects that were a priori
established as interesting variations of models. This is concluded on the basis of the signature
prediction error decreasing with model complexity increasing; indeed, the more flexible the
model is in terms of both spatial and temporal range, the more accurately it can describe the
very complex behaviour of the experimental steel ellipsoid.

Most of our knowledge in the current research, honesty compels us to say, has been experien-
tial. That is, by tweaking and modifying several classes of models bit by bit, we have been
able to get a thorough understanding of them and the role of underlying parameters. This is
why the ‘quantifiable’ aspect of our main research goal lacks a bit of substance. However, the
apparatus is there to perform many model simulations, twin experiments and model extensions.

This brings us to the subject of Recommendations.

10.2 Recommendations

During this research, we encountered many uncertainties and have made many choices leading
to this final report. It is hard to guess the evolution of such a research beforehand, which has
been a very sobering but also enlightening experience. Let us discuss our recommendations in
the same order as the topics covered in the current thesis.

10.2.1 Homogeneous models

Effectively, we have formulated and analyzed five different forward ellipsoid models, of which
one is linear and four are nonlinear (IP, RA, JAand EV). One aspect of the forward ho-
mogeneous models that has not received much attention, is the initialisation of these models.
Although unnecessary in the linear and IPmodel, the other three models all have some sort
of ‘compatibility criterion’ at the start: Indeed, in the real world, the start of an hysteresis
model is not really the starting point at all. Rather, the material at hand has probably al-
ready undergone several hysteresis loops. We have some thoughts on initialising homogeneous
models by applying a ‘negative-time’ applied field, such that the model arrives at a coherent
and physical situation, where the three interdependent quantities H, M and Ha are physically
realistically interrelated. In the EVmodel, we have already implemented this because of the
necessity of the EVmodel to build forth on realistic previous cell magnetizations.
We recommend investigating more efficient inversion algorithms for inverting homogeneous
models. Instead of minimizing the total sum of signature errors, one could employ an increments-
based procedure, which adjusts estimates real-time. Moreover, in all models except the EVmodel,
adjoint parameter estimation procedures have been proposed, since the gradient of the magne-
tization evolution with respect to the model parameters is relatively easily derived numerically
by incrementing parameters locally and computing the magnetization increment. We have
contemplated these routes, but nevertheless chose the relatively less efficient method of genetic
algorithms. However, these genetic algorithms have the big advantage of being able to escape
local minima. Further investigation is required.
Strictly speaking, we have not proven the validity of the incremental ellipsoid formula as well
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as the validity of the ellipsoid formula in anisotropic circumstances. Perhaps the proof is rela-
tively straightforward, but it would be reassuring to know that our approach is also warranted
mathematically.
The EVmodel has not been inverted, although over the course of the current project, some
ideas came up, which the original authors had not mentioned. The EVmodel is built on the
principle of a weighted superposition of elementary magnetized cells, which tempts us to think
that there should exist some kind of decomposition technique to estimate the weights and fric-
tion parameters of the EVmodel more directly.
The EVmodel was found to have great potential in terms of flexibility but also in terms of ex-
tendibility. That is, since the EVmodel starts from an energy balance, principally other energy
terms related to magnetism could be added, for example stress-related terms or temperature.
These could be related to material magnetization and magnetic fields, yielding different equa-
tions but perhaps very elegant model evolutions.

10.2.2 Inhomogeneous models

Our FEM implementation of the ellipsoid magnetization, exhibits a systematic error that would
not vanish. We recommend anyone familiar with the FEM to look at our procedure. Perhaps,
an interface boundary condition was neglected, or similar problems should be analysed using
the vector magnetic potential rather than the scalar potential. In the Results and Discussion
chapter, we also proposed some plausible explanations of this persistent annoyance.
Experiment with different basis functions in order to find a reliable set with good generalisation
properties.
Look into more complex regularization techniques.
Investigate more reliable solvers than the standard Matlab backslash solver.
Develop more realistic boundary conditions by matching the FEM boundary conditions to
infinite domain or multilayer techniques.
Use higher order elements or radically different elements to model the region that is close to
the ellipsoid boundary.

10.2.3 General recommendations

Investigate the use of another signature error objective function on the basis of real research
on concrete naval mines.
Perform research on magnetic meso-domains in order to propose a realistic set of inhomogeneous
magnetization basis functions to estimate the non-uniform magnetization.
Perform many more measurements using the CLAViS.
Rather than point estimates of optimal parameters, use the spatial linear and incrementally
nonlinear magnetization evolution to develop a Bayesian framework for parameter density
estimation.
In order to estimate a density of hysteresis parameters, employ adjoint approaches such as in
weather forecasting.

10.2.4 Outlook towards Data-Assimilation and Degaussing

The models that we have implemented, can be extended to include data assimilation and the
possibility of non-uniform background fields. Indeed, for an evolving magnetic signature, one
can estimate the hysteresis parameters based on previous increments. With knowledge of the
applied background field, an estimate can be made about the next system state. By using
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signature measurements, this same state can be estimated by inverse static magnetization
estimations. Combining these two approaches, yields a reliable way of predicting the magneti-
zation - and thus signature evolution of the ellipsoid. This way, incrementally improving the
estimation of both hysteresis parameters, magnetization distribution and thus the complete
state of the model, the data assimilation dream is reached.
Inhomogeneous background fields can be analysed by employing the discretized unstructured
divergence operator on the (then extra) term ∇Ha. This way, degaussing coils produce such
non-uniform fields that are included in the finite element computations. Then, a model predic-
tion can be performed using the previously described data-assimilation approach. This model
prediction can be internally corrected by applying a sequence of non-uniform applied fields,
which is a step towards active signature minimization.
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