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Abstract
Gravitational Wave detectors require low-noise sensors combined with high-
performance feedback loops to maximize the detector sensitivity in the low-
frequency detection range. Some feedback loops in the detector are strongly
coupled and their coupling varies over time, which is inherent to the optical
configuration and the optical readout scheme used to obtain error signals for
the feedback loops. This paper presents a control-based approach to deal with
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the time-varying interaction among three of the longitudinal degrees of free-
dom in the Advanced Virgo Plus detector, using the pre-existing infrastructure
of the detector. An intuitive Multiple-Input Multiple-Output stability criterion
is presented that illustrates how the time-varying coupling affects the stabil-
ity of the feedback loops, as well as a method that identifies the coupling
online and updates a decoupling matrix accordingly. Experiment results of the
proposed method on the Advanced Virgo Plus detector illustrate continuous
minimization of the coupling over time. Using the derived stability criterion,
it is furthermore shown that the coupling is sufficiently minimized such that
the interaction terms can be neglected in the control design, resulting in an
improved controller performance.

Keywords: gravitational waves, Advanced Virgo Plus, factorized Nyquist,
MIMO, decoupling, interaction

1. Introduction

Low-noise error signals for controlling the mirror positions of Gravitational Wave (GW)
detectors such as Advanced Virgo Plus (AdV+) (Acernese et al 2023) and Advanced LIGO
(Aasi et al 2015) are crucial for attaining the highest possible sensitivity in the low-frequency
detection range. A secondary requirement for these error signals is that they are ideally well
decoupled, that is, an error signal predominantly measures a single Degree of Freedom (DoF)
(Bersanetti et al 2022), since this avoids limitations on the performance of the feedback loops
and consequently the sensitivity of the detector (van Dael et al 2022). To obtain these error sig-
nals, the laser light sent into the interferometer is phase-modulated and subsequently demodu-
lated in the signals of the photodiodes at the various outputs of the detector (Black 2001,
Bersanetti et al 2022). Thus, obtaining the most suitable error signals consists of determining
the optimal combination of modulation frequency and photodiode that results in sufficiently
decoupled error signals with a desired noise floor (Bersanetti et al 2022, Valentini 2023). This
is typically done using simulations of the detector, which, in practice, often still leads to con-
siderable cross-coupling among the feedback loops.

These procedures are based only on simulations and are iteratively performed until sat-
isfactory error signals are obtained (Bersanetti et al 2022, Valentini 2023). However, there
are loops where sufficiently decoupled error signals are difficult to obtain due to mismatches
between the simulations and the real interferometer. Using the simulation process to find more
optimal error signals therefore quickly becomes a cumbersome process in terms of time and
effort. Beyond the standard simulation approach to deal with strongly coupled error signals,
an approach has been proposed in van Dael et al (2022) that deals with the problem of stability
due to coupling among the loops over time and how this affects the control design, given that
the coupling also varies over time. While it provides an effective design guide for the control-
lers, the proposed approach poses limitations on the performance of the feedback loops and
thus the sensitivity of the detector.

Although important developments have been made regarding feedback loops that exhibit
strong and time-varying coupling, a time-efficient control-based solution that does not pose
limitations on the performance of the feedback loops is presently not available. The aim of
this paper is to develop a control-based approach that exploits both model knowledge and
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Figure 1. Part of the optical configuration of Advanced Virgo Plus for the O4 sci-
ence run. The B1 photodiode measures the interference pattern between the two arms
(lW +LW and lN +LN), which change in length with opposite signs when a Gravitational
Wave passes.

experimental data to solve the limitations imposed by the time-varying couplings using the
pre-existing infrastructure of the detector.

The contribution of this paper is three-fold. First, a data-based approach that intuitively
illustrates how the time-varying interaction affects Multiple-Input Multiple-Output (MIMO)
stability of the system is derived. Second, pre-existing perturbations in the detector are used
in an algorithm to identify the coupling between the DoFs. Third, an algorithm is developed
that uses the identified coupling matrix to implement a decoupling matrix that combines the
sensor outputs to create new decoupled error signals, where the decoupling matrix is iteratively
updated to maintain a small coupling level over time without introducing large transients in
the system when updating the matrix.

In section 2, the control problem addressed in this paper is formulated after which the meth-
odology used to tackle the problem is presented in section 3. Experimental results using the
proposed method from the AdV+ detector are then presented in section 4 after which section 5
provides conclusions on this work.

2. Problem formulation

2.1. System description

The optical configuration of the AdV+ detector for the current science run is depicted in
figure 1. The two 3 km long orthogonal arms LW, LN fluctuate in length in opposing direc-
tions when a GW passes and therefore change the interference pattern, which is subsequently
measured on the B1 photodiode. The optical cavities constituting the detector have to be act-
ively controlled through feedback loops to keep the cavities on resonance and to be sensitive
enough to detect the fluctuations induced by a passing GW. A total of five so-called longitud-
inal Degrees of Freedom (DoFs) are actively controlled, which are defined as
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LDARM = LN−LW,

LCARM =
LN+LW

2
,

LMICH = lN− lW,

LPRCL = lP+
lN+ lW

2
,

LSRCL = lS+
lN+ lW

2
,

(1)

with DARM, which stands for Differential Arm, being the most important DoF as it contains
the GW signal. Each DoF except for CARM is controlled using a feedback loop that uses the
powers on the photodiodes in combination with the Pound–Drever–Hall method (Black 2001),
or a DC signal in the case of DARM, to obtain an error signal. The correction signal based
on these error signals is then applied to the actuators on a combination of mirrors to actively
control the length of the DoFs and reject disturbances. The CARM loop uses a more elaborate
control structure (van Dael et al 2025) and is not considered in this paper.

2.2. Time-varying coupling

The focus of this paper is on a problem concerning 3 of the 5 longitudinal DoFs, commonly
referred to as the Central Interferometer (CITF) DoFs, which are MICH, PRCL and SRCL.
These auxiliary DoFs to the DARM DoF are known to be strongly coupled due to a combin-
ation of the optical configuration and the used sensing mechanism, i.e. the sensors detect a
combined motion of the DoFs and the system input-output relation is thus strongly coupled
among the DoFs.

The MIMO frequency response of the CITF DoFs can be described by

H( jω) = GiA( jω) , (2)

with H( jω) ∈ C3×3 representing the frequency response of the plant from actuation on the
mirrors to the powers on the photodiode. The plant is split into two parts, the mechanical
response of the mirrors A( jω) ∈ C3×3 relating the voltage sent to the actuators to a change in
length of the DoFs, and the optical plant Gi ∈ R3×3 relating a change in length of the DoFs
to the Pound–Drever–Hall error signal. The subscript i in G refers to a realization of the time-
varying matrix G(t), which is assumed to be valid in a time window between ti and ti+1,

G(t)≈ Gi ∀ t ∈ [ti ti+1] . (3)

The time dependency in G stems from thermal transients and changes in the optical align-
ment, changing the optical response of the interferometer. Note here that the timescale of the
changes in Gi is orders of magnitude slower than the plant dynamics of H( jω). In figure 2, the
Frequency Response Matrix (FRM) of H( jω) is shown, where H( jω) is measured at three dif-
ferent time instances. While the diagonal terms, on which the controllers are designed, remain
the same, the off-diagonal terms vary in magnitude over time.

In figure 3, a stability criterion is presented based on the FRMs from figure 2, of which the
full criterion and its interpretation are derived in section 3.1. The dashed colored lines represent
a stability bound based on the off-diagonal terms of figure 2 and the black line represents the
SISO closed-loop transfer function for one of the loops, which has to remain below the stability
bound to guarantee MIMO stability. This SISO loop violates the criterion for two of the three
measured coupling instances, meaning MIMO stability cannot be guaranteed at all times.
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Figure 2. Magnitude of three different Frequency ResponseMatrix measurements ofH,
represented by ( ), ( ) and ( ), measured at least two weeks apart. The diagonal
terms remain the same, while the off-diagonal terms vary in magnitude over time due to
thermal transients and changes in the relative alignment between the mirrors.

Figure 3. Stability and robustness assessment using the Factorized Nyquist criterion,
with T̃M( jω) ( ) plotted against µ−1

T̃
(E( jω)), which are computed based on the FRFs

presented in figure 2 and represented by ( ), ( ) and ( ). Estimates of α are
represented by ( ), ( ) and ( ), by computing mean value of µ−1

T̃
(E( jω)) at fre-

quency bins with coherence higher than 0.8. It is shown that the condition of (17) is
violated for the present level of coupling and control design. The derivation and com-
plete interpretation of this figure are delineated in section 3.1.1.
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There are two possible solutions to the problem of large coupling. The first is to adjust
the controller design such that MIMO stability is guaranteed in the presence of all possible
interactions, i.e. reduce the peak of the black line in figure 3 such that it remains below the
stability bound for each time instance. The downside of the proposed method is however that
the control design requires large stability margins to reduce the peak, which goes at the expense
of the roll-off of the controller at high frequencies and therefore may introduce more noise in
the DARM loop due to the coupling between the CITF DoFs and DARM. The second solution,
which is pursued here, is to increase the stability bound such that there are no design restrictions
on the SISO loops anymore.

2.3. Reducing interaction through decoupling

To increase the stability bounds in figure 3, static decoupling (Lee et al 2005) is applied.
Static decoupling is typically the first tool in MIMO control designs to decouple the system
and obtain SISO loops. There are several methods to derive the decoupling matrices. A basic
approach is to use matrix decomposition methods (MacFarlane 1970, Owens 1978, Hung and
MacFarlane 1982), which decouples the system in a specific frequency range if the MIMO
system is not symmetric. Alternative approaches that aim to minimize the coupling across
the entire frequency band have also been proposed (Vaes et al 2004, Stoev et al 2017). The
approach taken in this paper is however much more straightforward as the specific structure of
the system is exploited to derive the decoupling matrix. Since the coupling is predominantly
present inGi, the interaction isminimized by applying a decouplingmatrix Ty that is the inverse
of Gi, i.e.

Topt
y = G−1

i . (4)

This decoupling matrix is optimal, hence the superscript opt, since the decoupled system
would then approximate A( jω) in the time window [ti ti+1], which is assumed to be diagonal
due to the assumed perfect decoupling of the actuation. The decoupled system would then be
free of any MIMO design restrictions on the controllers and thus can have arbitrarily small
stability margins to maximize the roll-off at high frequencies. This requires batch-wise updat-
ing of the decoupling matrix Ty since G varies over time. Note furthermore that an output
transformation is used, which is a conscious choice since the plant coupling stems from the
sensors. The proposed method is however also possible to implement using an input trans-
formation using the same mathematical derivations as presented in this paper.

2.4. Experimental conditions

The proposed method requires batch-wise identification of Gi. The frequency response identi-
fication ofGi is fairly straightforwardwhen there are no restrictions on the perturbation signals,
but it is undesired to continuously inject perturbation signals such as white noise or multisines
as this spoils the detector sensitivity. Only a single sinusoid per DoF is therefore used for the
identification procedure. This perturbation is permanently on as it is also used for monitoring
and calibration purposes and is thus readily available.

2.5. Problem formulation

The general problem addressed in this paper is how to deal with the time-varying interac-
tion in the system. To this end, a tool is first required that illustrates how the time-varying
aspect affects the MIMO stability criterion. This tool is furthermore required to address the
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effectiveness of the decoupling procedure and determine whether sufficient decoupling is
attained to render the interaction negligible. The second subproblem is how to perform the
identification given the available perturbation signal since the typical identification approach
for line perturbations does not suffice, as is shown in section 3.2.

3. Methodology

The first part of this section derives the MIMO design criterion used to identify how the time
dependency of the plant affectsMIMO stability and how this criterion can be applied to the par-
ticular control problem addressed in this paper. Second, an identification procedure is derived
which uses the readily available perturbation signals in AdV+ to identify the time-varying part
of the plant Gi, which is later used to derive the decoupling matrix Ty.

3.1. MIMO stability for time-varying interaction

There are several MIMO stability analysis tools available in the literature to assess closed-
loop stability, e.g. the Generalized Nyquist criterion (Desoer and Wang 1980), which provides
a necessary and sufficient condition for MIMO stability. The difficulty of these tools with
respect to the control problem in this paper is that it is not necessarily intuitive how to tune the
controllers to obtain MIMO stability and robustness given the time-varying interaction.

The method used in this paper to assess MIMO stability in view of the time-varying interac-
tion is the Factorized Nyquist criterion, originally presented in Grosdidier and Morari (1986).
A derivation of this criterion is presented next after which the criterion is applied to the control
problem in AdV+.

3.1.1. Factorized Nyquist criterion. Consider the system H as defined in (2), of which the
diagonal elements are denoted by

H̃= diag(H) (5)

and the coupling matrix E is given by

E=
(
H− H̃

)
H̃−1, (6)

such that the plant can be rewritten to

H= (I+E) H̃. (7)

Using (7), the MIMO sensitivity function can be factorized into two products

(I+HK)−1
=
(
I+ H̃K

)−1︸ ︷︷ ︸
S̃

(
I+ET̃

)−1︸ ︷︷ ︸
Interaction

, (8)

with

T̃= H̃K
(
I+ H̃K

)−1
(9)

the complementary sensitivity of the diagonal terms, K the diagonal MIMO controller and S̃
the MIMO sensitivity of the diagonal plant H̃, which is thus also a diagonal system since K
is diagonal. The MIMO closed-loop system is then stable if both MIMO transfer functions on
the right in (8) are stable. The first term S̃ is stable by design since the controller K is designed
such that the SISO loops are stable. Note furthermore that the time-varying effect does not
affect the diagonal elements and therefore also not S̃.

7
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The second term is referred to as the interaction term since the coupling matrix E only
contains the off-diagonal elements. The stability of the interaction term is analyzed using the
small-gain theorem (Zames 1966), i.e. the interaction term is stable if

I+E( jω) T̃( jω)> 0 ∀ω, (10)

which is equivalent to

σ̄
(
E( jω) T̃( jω)

)
< 1∀ω, (11)

with σ̄ the maximum singular value. Rewriting (11) to

σ̄
(
T̃( jω)

)
< σ̄−1 (E( jω)) ∀ω, (12)

then yields a criterion in which the left side is dependent on the control design K, while the
term on the right only depends on E which is a function of the system dynamics. The term
σ̄−1(E( jω)) can thus be computed based on the measured frequency response of H and the
controller K is then designed such that (12) is satisfied.

The stability condition of (12) will lead to a conservative control design, in part because
of the bound σ̄−1(E( jω)). This term provides the maximum gain of E at each frequency but
neglects the specific structure of T̃( jω), which in this case is diagonal. To increase the stabil-
ity bound and thus provide more freedom in the control design of K and therefore T̃( jω), the
Structured Singular Value (SSV), see Packard and Doyle (1993) for the mathematical deriva-
tion, is instead used. The SSV provides the maximum gain of E with respect to the diagonal
structure of T̃( jω), allowing to formulate the stability condition of (12) for each DoF as∣∣T̃i ( jω)∣∣< µ−1

T̃
(E( jω)) ∀ω, i, (13)

where µT̃(E( jω)) denotes the SSV of E with respect to the structure of T̃ and T̃i are the diag-
onal elements of T̃. The design criterion amounts to tuning the SISO loops such that their
complementary sensitivity function for all frequencies remains below the inverse of the SSV
µ, which is computed from a measured frequency response.

3.1.2. Factorized Nyquist criterion for AdV+. The Factorized Nyquist criterion is applied to
the CITF DoFs of AdV+. The specific plant structure of the CITF DoFs allows the simpli-
fication of the criterion. Since the Unity Gain Frequencies (UGFs) of the loops are in the 1
to 100 Hz range, stability analysis is of primary interest in this frequency range. The plant is
approximated in this frequency range by

H( jω) = A( jω)Gi ≈
1

( jω)2
Gi (14)

since the actuation dynamics A( jω) are approximately the same for all three loops and can be
approximated by a -2 slope in the frequency range of interest. Using this structure, the term E
then amounts to

E=

(
1

( jω)2
(
Gi− G̃i

))
( jω)2 G̃i

−1
=
(
Gi− G̃i

)
G̃i

−1
. (15)

The term E thus becomes frequency-independent given the specified structure of the plant
in (14). It therefore also follows that the SSV µ is frequency-independent, i.e.

µT̃ (E( jω)) = α ∀ω ∈ 2π [1 100] . (16)

8
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Figure 4. Block diagram of the control system used to control the longitudinal degrees
of freedom in AdV+.

The design criterion in (13) then reduces to

∥T̃i ( jω)∥∞ < α−1, (17)

where the H∞ norm is the maximum magnitude of the transfer function over all frequencies.
This provides an intuitive insight since the time dependency inG changes the termα, so robust-
ness is achieved by designing the controller such that the left-hand side of (17) is sufficiently
small against variations of α.

3.1.3. Assessment of criterion using AdV+ data. In figure 3, the Factorized Nyquist criterion
from (17) is depicted, plotting the µ values computed based on the FRF of figure 2 against T̃M,
which is the complementary sensitivity of the MICH loop. The peak value of T̃M is around
4 Hz, which is roughly the UGF of the loop. The FRMmatrix is not accurate at this frequency
range and the µ estimates are therefore very noisy below 10 Hz. The µ values are frequency
independent, thus allowing to average µ at the accurately identified frequency bins (between
10 and 30 Hz) and extrapolating this to lower frequencies such that the condition of (17) can
be analyzed. This is another advantage of this method as it does not require an accurate FRM
across a wide frequency range to assess stability.

The dashed lines in figure 3 represent the mean values of µ. The condition of (17) is violated
around 4 Hz, indicating that the interaction between the DoFs is too high to guarantee MIMO
stability. Note that (17) is only a sufficient condition, i.e. a violation of the condition as in
figure 3 does not necessarily imply instability of the loops. Given the level of interaction,
MIMO stability could be guaranteed by sufficiently reducing the peak value of TM, which
requires increasing the stability margins of the loop.

The Factorized Nyquist criterion provides a clear design guide on how to tune the controller
for MIMO stability against the time dependency of the plant. The CITF DoFs are however
known to strongly couple to the DARM DoF above 10 Hz, which is the start of the detection
band. Higher stability margins will go at the expense of the roll-off of the control loops, thus
introducing more noise into the DARM DoF, which is highly undesirable. The decoupling
approach is therefore derived next since this allows to significantly increase theµ bound, which
in turn removes the control design restrictions currently imposed by the large interaction terms.

3.2. Identification of coupling matrix: a local model approach

This section derives the identification scheme used to estimate the coupling matrixGi using the
presently available perturbation signals in AdV+. First, the identification setting is presented,
after which the proposed method of identification is derived for a general control structure. In
the final part, the derived identification method is applied to AdV+.

9
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3.2.1. Identification setting. A general control structure as defined in the block diagram in
figure 4 is considered here to illustrate the working principle of the method as well as its
generality. Later on, the proposed method is applied to the specific plant dynamics considered
in this paper. The plant H( jω) ∈ Cn×n of dimension n is to be identified in closed-loop with a
controller K( jω) ∈ Cn×n. The plant has the following structure

H( jω) = h( jω)H (18)

where h( jω) ∈ Cn×n is a diagonal transfer matrix and H ∈ Rn×n a real matrix. The output
transformation matrix Ty ∈ Rn×n is for the moment considered to be an Identity matrix, i.e.
p= y. A measurement of the error signal e ∈ Rn and control input u ∈ Rn is furthermore
available as well as the perturbation signal d ∈ Rn. The perturbation d is a single sinusoid
per DoF, i.e.

d=


A1 cos(ω1t)
A2 cos(ω2t)

...
An cos(ωnt)

 , (19)

with ωi, i = 1,2, . . . ,n the excitation frequencies which are all distinct. The objective is to
identify H using only the defined perturbation d. The frequency response of h( jω) is fur-
thermore assumed to be available, which could be obtained either through modeling or from
measurements.

Discrete-time signals are used throughout this section, i.e. the signal x̂(lTs)with length N is
a measurement of the variable x and subject to noise. The Discrete Fourier Transform (DFT)
of these signals is given by Pintelon and Schoukens (2012)

X(k) =
1√
N

N−1∑
l=0

x̂(lTs)e
−j2π lk/N. (20)

3.2.2. Identification using sine excitations. A typical approach in system identification to
identify an n× n system is to perform n experiments where multisines are consecutively injec-
ted in orthogonal directions. An example of orthogonality is to inject it first in loop 1, then loop
2 and so on, but other orthogonal excitations are also possible. For each discrete frequency bin
k, the following matrices are then constructed according to Pintelon and Schoukens (2012)

X(k)=


X1
1 (k) X2

1 (k) . . . Xn1 (k)

X1
2 (k) X2

2 (k) . . . Xn2 (k)
...

...
. . .

...
X1
n (k) X2

n (k) . . . Xnn (k)

 (21)

for X= U,Y. The variable Xmn (k) denotes output n in experiment m at the excited frequency
bin k. The plant H at the frequency bin k is then obtained by computing

H(k) = Y(k)U(k)−1
. (22)

Note furthermore that for this approach h( jω) does not need to be known. A similar
approach is taken for the perturbation considered here, where each sinusoid is considered as

10
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a separate experiment and all experiments are thus simultaneously performed. The following
matrix is then constructed

X=


Xk11 Xk21 . . . Xkn1
Xk12 Xk22 . . . Xkn2
...

...
. . .

...
Xk1n Xk2n . . . Xknn

=
[
Xk1 Xk2 . . .Xkn

]
, (23)

Note the different notation in (23) where Xkmi represents the DFT of output xi, evaluated at
frequency bin km. The columns thus represent the vector evaluated at the different frequencies.
While a full matrix is obtained, (22) cannot directly be computed since the columns are at
different frequencies due to the requirement of the sinusoids being at distinct frequencies.

3.2.3. Integrating local model knowledge. The frequency dependence of the columns in (23)
is solved by integrating a locally valid model of the plant in the identified frequency range in
the identification procedure. Consider the following input-output relation of the plant

Ykm1
Ykm2
...
Ykmn

= h( jωkm)H


Ukm

1

Ukm
2
...

Ukm
n

 (24)

for a frequency km. Left multiplication of both sides with the inverse of h( jωkm), which is
assumed to be available, results in

h( jωkm)
−1Ykm =HUkm . (25)

The only unknown is nowH, which is frequency independent, since h( jωkm) is assumed to
be known andUkm , Ykm are measured. Evaluating (25) for the nDoFs and writing this in matrix
form then yields[
h( jωk1)

−1Yk1 h( jωk2)
−1Yk2 . . . h( jωkn)

−1Ykn
]

︸ ︷︷ ︸
Ỹ

=H
[
Uk1 Uk2 . . . Ukn

]︸ ︷︷ ︸
U

. (26)

An estimate ofH is now obtained from

H= ỸU−1. (27)

The method essentially normalizes the DFT outputs by multiplying them by the inverse of
the frequency-dependent part of the plant. A frequency-independent input-output relation is
then found which is easily evaluated. The inverse of U is furthermore guaranteed to exist since
the perturbation is by definition orthogonal (one sinusoid per DoF) and the matrix is therefore
always full rank.

It is furthermore not required that the complete frequency response of h( jω) is known.
Decoupling is typically applied in the frequency range around the UGF of the loops, so a
model of h( jω) is only required in this frequency range. As is shown in section 4.1.1, only
the structure of h( jω) is required, assuming all diagonal terms have the same structure in the
applied frequency range. Any relative scaling between the diagonal terms is then estimated
together withH and compensated for in the decoupling matrix.

11
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4. Experimental results

This section presents the implementation and experimental results of the proposed methods
on the AdV+ detector.

4.1. Implementation of decoupling algorithm

The following subsection discusses the implementation aspects of the proposed approach for
AdV+. First, the identification scheme is defined for the perturbation signals and system struc-
ture of the detector. Then, the update law of the decoupling matrix Ty is presented, which
ensures that the coupling remains small during the update of the matrix without introducing
large transients in the system.

4.1.1. Identification on AdV+. The objective is to decouple the CITF DoFs in the 1 to 100 Hz
range since the UGF of the loops is in this range. The following perturbation signal is used for
the identification in AdV+

d=

dMdP
dS

=

AM cos(2π21.7t)
AP cos(2π64.4t)
AS cos(2π26.6t)

 , (28)

where the subscripts M, P, S denote respectively the MICH, PRCL and SRCL DoFs. Note
that the excitation frequencies are chosen to be slightly above the UGF of the loops and are
furthermore unique with respect to all DoFs in the detector.

A complete model of A( jω) is not available, so the approximation as used in (14) is used
as prior knowledge to estimate the frequency-dependent part of the plant, i.e.

h( jω) = A( jω)≈ 1
( jω2)

I, (29)

resulting in the approximation given in (14), where the -2 slope in the actuation stems from
the force exerted on the mirrors, which above the resonance frequency of the suspension is
approximated by a mass line. The input-output matrices U, Ỹ as in (26) are then constructed
according to

( jωkM)
2YkMM ( jωkP)

2YkPM ( jωkS)
2YkSM

( jωkM)
2YkMP ( jωkP)

2YkPP ( jωkS)
2YkSP

( jωkM)
2YkMS ( jωkP)

2YkPS ( jωkS)
2YkSP


︸ ︷︷ ︸

=Ỹ

= Gi

UkM
M UkP

M UkS
M

UkM
P UkP

P UkS
P

UkM
S UkP

S UkS
S


︸ ︷︷ ︸

=U

, (30)

where e.g. YkPM represents the DFT of the MICH output at the PRCL line. An estimate of the
real coupling matrix is then found by computing (27).

4.1.2. Implementation of decoupling matrix. The aforementioned identification is performed
on the decoupled plant

y= TyHu, (31)

12
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so for each subsequent iteration after the first, the decoupled plant is estimated and a new Ty
matrix is computed accordingly. The identification is performed by measuring the signals for
180 s , such that 18 averages are performed on 10 s periods of data. Note that 10 S periods
or integer multiples of those are required since the least common divisor of the perturbation
signals in (28) is 0.1 Hz.

To avoid large transients when updating the Ty matrix, the following update law is used

Ty (m) = Told
y +

m
Fstramp

(
Tnew
y −Told

y

)
, (32)

with m denoting the sample index, tramp the time to switch between decoupling matrices and
Fs the sampling frequency. Using this update law preserves the relative gains between the
elements in the Ty matrix such that the coupling does not worsen during the updates of the
weights. This can be shown by considering a static coupling matrix Gi, for which the coupling
during the update of the Ty matrix is given by

Ty (m)Gi (m) = Told
y Gi +α(m)

(
Tnew
y −Told

y

)
Gi, (33)

with

α(m) =
m

Fstramp
∈ [0, 1] . (34)

Equation (33) is rewritten to

Ty (m)Gi (m) = (1−α(m))Told
y Gi +α(m)Tnew

y Gi (35)

and if the following condition holds(
Tnew
y Gi

)p,q
<
(
Told
y Gi

)p,q ∀ p,q, (36)

then

Gdecp,q
i (m)< Gdecp,q

i (m− 1) ∀m,p,q, (37)

with

Gdecp,q
i (m) = Ty (m)Gi (m) , (38)

where p,q denote respectively the row and column of the matrix and the superscript dec refers
to the decoupled version of Gi. Switching times tramp of more than 10 s are used to minimize
transients, so the proposed update law ensures that the coupling does not worsen in between
updates and cause potential stability problems.

4.2. Decoupling over time

The coupling is measured over time to evaluate the time dependence of the effect using the
identification method as defined in section 3.2. But rather than estimating the coupling at a
single time instance as done in section 3.2, a moving average estimate of TyG(t) is obtained to
assess how the coupling fluctuates over time as a validation method. This moving average is
obtained by multiplying each time domain signal by the Euler coefficient for each perturbation
frequency, i.e.

x̃km = x(lTs)e
−j2π k/N. (39)

13
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Figure 5. Measured estimate of the decoupled coupling matrix TyG(t) over time on
AdV+ and ( ) are the time instances at which the output matrix Ty is updated. The
coupling matrix is estimated by computing a moving average transfer function over the
lines. The off-diagonal entries of TyG(t) are shown to decrease after each update and
rise in amplitude in between updates of the Ty matrix.

A moving average filter is then applied to the signal x̃km to obtain

Xkmma (l) =
1
V

V∑
v=0

x̃km (v)q−v, (40)

where q denotes the shift operator, x= û, ŷ and V the number of coefficients. The variable
Xkmma(l) thus gives a moving average of the signal x̂ over the DFT bin k for each discrete time
instance l.

The resulting plot using this method is shown in figure 5. The vertical red dashed lines indic-
ate the time instances at which the algorithm updates the decoupling matrix Ty. The coupling
is indeed shown to reduce at these time instances, with the largest jump at the first iteration
and a few smaller jumps at subsequent iterations. The effect of the thermal transient and other
effects changing the coupling levels are also observed in e.g. the 1,2 element, where the coup-
ling increases in between the time instances.

4.3. Coupling through Factorized Nyquist

Based on the moving average estimate of G(t) obtained in section 4.2, µT̃(E) is computed
over time and compared against the H∞ norms of the complementary sensitivity functions of
the individual loops to assess stability. The criterion over time is depicted in figure 68, where
the marked black lines represent the H∞ norms of the MICH, PRCL and SRCL loops and

8 Note that the cyan line represents µ(E) over time, which is the same variable as plotted in figure 3, but the starting
value is slightly higher since this measurement is taken at a different time instance during the thermal transient.

14
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Figure 6. Factorized Nyquist criterion over time as defined in (17), with ( ) MICH
DoF ∥T̃M( jω)∥∞; ( ) PRCL DoF ∥T̃P( jω)∥∞; ( ) SRCL DoF ∥T̃S( jω)∥∞; ( )
SSV µ−1

T̃
(E) over time; ( ) Update instances of the decoupling algorithm. After the

first update instance, the µ bound is shown to be sufficiently high such that even for a
factor four reduction MIMO of µ−1, stability is guaranteed.

the cyan line is a moving average estimate of the SSV over time. It shows that in the first
220 s, the MICH loop is very close to violating the stability condition and stability thus cannot
be guaranteed. After the first update instance around 220 s, µ−1

T̃
(E) is shown to increase by

a large factor, such that there is a large stability margin against the fluctuating interaction
terms. Several subsequent iterations are shown to increase the SSV again while it decreases in
between the time updates. This highlights the necessity of continuously adapting the Ty matrix
since a single computation of the weights does not guarantee the robustness margin to remain
sufficiently large throughout the transient of the system.

4.4. Decoupling over broad frequency range

As a final validation of the method, the FRM is measured in the 1 to 100 Hz range without
and with the decoupling approach applied to assess if the coupling is decreased over the entire
frequency band. The interferometer is first left to converge to a more steady-state situation
in which most of the thermal transient has passed, after which the injections are performed.
First, the situation without decoupling is measured using band-passed filtered white noise in
the 10 to 100 Hz range. Two iterations of the decoupling procedure are then performed after
which the same measurement is repeated. The resulting FRM for both situations is depicted in
figure 7.

The decoupling procedure is shown to significantly reduce the coupling in the measured
frequency range. This indicates that the model used for the actuation defined in (14) is indeed
accurate. The only outlier is the MICH to PRCL coupling, where the coupling for higher fre-
quencies increases, while for the other elements the coupling is decreased by the same factor
across the identified frequency range. This indicates a mismatch in the model in (14), which
likely stems from the optical transfer functionGi having some frequency-dependent dynamics
in this element. Note furthermore that in e.g. the MICH to SRCL element, the coupling is not

15
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Figure 7. FRMof the plantH of the CITFDoFs on AdV+. ( ) FRMwhen no decoup-
ling is applied, i.e. Ty = I, and ( ) FRM when decoupling is applied. The couplings
in all off-diagonal entries are decreased using the presented method, with the PRCL to
MICH and SRCL to MICH couplings in particular being reduced up to a factor of 20.

reduced, which likely stems from the fact that the coupling is already very low and the coup-
ling estimate of the element is too noisy to further reduce the coupling. The result nevertheless
confirms that the approach works over the whole frequency range of interest (1 to 100 Hz)
under the assumptions that are made.

4.5. Improved controller design

The objective of the proposed approach is to free the controllers from any design restrictions
imposed by the coupling among the loops, i.e. the additional stability margins that are required
in the SISO loops. In figure 8, the open-loop and closed-loop frequency response of the pre-
existing and newMICH controller are depicted, where the new controller is the same as the one
used in figure 3. Noise in the CITF loops couple to the DARMDoF through the complementary
sensitivity function. Improving the roll-off of the controller in the detection band (>10Hz) thus
reduces this noise.

The roll-off of the new controller is significantly reduced compared to the pre-existing con-
troller, at the expense of a higher peak in the complementary sensitivity (and in general lower
but still sufficient stability margins). This increased peak magnitude in the complementary
sensitivity is however not a problem anymore for stability when the decoupling is applied, as
illustrated in figure 6, whereas without the decoupling only the pre-existing controller would
have guaranteed MIMO stability. The new controller thus reduces the noise coupling to the
sensitivity of the detector, while maintaining the same level of RMS error in the loop.
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Figure 8. Magnitude of frequency response of ( ) open-loop and ( ) complement-
ary sensitivity T of newMICH controller and ( ) open-loop and ( ) complementary
sensitivity T of old MICH controller. Noise in the MICH loop couples to the sensitivity
of the detector through the complementary sensitivity function, of which the roll-off is
significantly lower for the new controller, thus reducing the noise coupling to the sens-
itivity of the detector.

5. Conclusion

A systematic design procedure has been presented in this paper that addresses the problem of
controlling strongly coupled feedback loops in which the interaction varies over time, posing
potential closed-loop stability problems. First, it has been shown that the Factorized Nyquist
criterion is an effective tool in analyzing the time-varying behavior of the interaction terms and
how this affects MIMO stability. Second, the derived identification scheme has been shown
to provide a sufficiently accurate estimate of the optical plant, where the identification is con-
tinuously performed during the operation of the detector without requiring extra perturbations
beyond the ones presently available in the detector. Finally, an update law for the decoupling
matrix is presented that avoids large transients and worsening of the interaction during the
update times of the decoupling matrix. The presented experimental results of the decoupling
algorithm on the AdV+ prove the effectiveness of the proposed design procedure by showing
that the approach keeps the interaction of the decoupled system sufficiently small such that
the interaction between the feedback loops can be neglected in the control design. This con-
sequently allows for control designs with more roll-off, reducing the coupling of noise from
the CITF DoFs to the sensitivity of the detector.
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