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Preface

The journey of this thesis began with a fascination for Personal Weather Stations (PWS) and their
potential to contribute valuable data to weather and climate observations. Personal weather stations,
owned and operated by individuals or organizations, have emerged as a decentralized network of
weather measurement instruments. However, the assessment of the value and reliability of these
stations has been a challenging task due to various factors such as metadata organization, station
uniqueness, device setups, network availability, and credibility.

As I embarked on this research endeavor, my aim was to conduct the first-ever national assessment
of the Dutch PWS network, specifically focusing on theWOW-NL network and its 1031 weather stations.
I was driven by a desire to unravel the complexities surrounding the evaluation of PWS networks and to
explore their untapped potential for enhancing spatial resolution in weather and climate observations.

Throughout this thesis, I delve into the intricacies of metadata organization and its impact on as-
sessing the ’Value’ of a weather station. I examine the uniqueness of stations in terms of their spatial
distribution and location characteristics, shedding light on the concentration of PWS stations in urban
regions. I also delve into the analysis of device setups and their significance in ensuring high-quality
station output.

Furthermore, I explore the availability of the network over time, uncovering the challenges associ-
ated with obtaining consistent and reliable data. The importance of unbiased evaluation and credibility
assessment is emphasized, particularly in stations managed by esteemed organizations.

The research presented in this thesis would not have been possible without the support and guid-
ance of my advisors and the valuable contributions of researchers in the field. I am grateful for the
opportunities I have had as a Master Student at the TU Delft to work with Dr. M.A. (Marc) Schleiss,
whose involvement has provided further insights into the complexities of PWS networks.

As I reflect on the journey, I am filled with gratitude for the advancements in technology that have
made it possible to access and analyze vast amounts of data. Web bots, in particular, have played a
significant role in extracting and generating data, providing invaluable resources for geospatial analysis
and assessing the value of PWS stations.

It is my hope that this thesis will contribute to the growing body of knowledge in the field of weather
citizen science, stimulate further research and development, and inspire new approaches for leveraging
citizen-generated data in weather and climate observations.

I extend my sincere thanks to all those who have supported me throughout this research endeavor,
and I invite readers to embark on this journey with me as we explore the value of the Dutch PWS
network and its potential for advancing our understanding of weather and climate phenomena.

Adil Ayi
Delft, July 2023
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Abstract

This thesis explores the assessment of the value of Personal Weather Stations (PWS) in the Dutch
context. A framework comprising five values—Device Setup, Uniqueness, Availability, Credibility, and
Accuracy—was developed to quantify the value of PWS stations. The research involved analyzing
data from 1031 Dutch weather stations as a first ever national analysis of a weather citizen science net-
work. We overcame various obstacles, providing valuable insights for future developments to improve
weather citizen science networks.

By utilizing a web bot we created called “the WOWbot”, a national PWS network analysis was
conducted, extracting information from the WOW-NL network. The analysis of the existing metadata
structure revealed challenges and ambiguities that require attention. The current rating system is de-
pendent on three variables (location and two sensor classifications) and was found to be unreliable
due to the facts that ∼ 40% of the time these variables are unknown for stations in the Netherlands.
Also, when the data is known, subjective assessments of the classification in the metadata description
makes it prone to misunderstandings and wrong inputs by the citizens, this means even if there is data
we can’t trust it fully. Recommendations were made to address these issues and move towards a more
objective assessment of station value in chapter 5.

Based on relevant literature and findings from our analysis of the current metadata system, a new
framwork to assess the value of a personal weather station was made. In chapter 6 the framework is
immediatly used to assess the value of all personal weather stations in the Netherlands, showcasing
the usefullness but also an example of how to utilize the framework. Except ’Accuracy’ which has been
reseached in depth in other papers, we have quantified each value category. For example the most
”Unique” stations in the netherlands have been determined based on a Nearest Neighbor Analysis uti-
lizing a cutoff value in the distribution. Therefore succesfully quanitfying which stations are statistically
more spatially exclusive then others. For the more in depth description of how the framework has been
used for assessing the value of the weather stations in the Netherlands we refer to chapter 6.

Overall, this thesis contributes to the advancement of the weather citizen science field by providing
insights into assessing the value of personal weather stations. Continued research should focus on
resolving identified issues, refining assessment criteria, and enhancing metadata quality to unlock the
untapped potential of PWS networks for weather and climate observations. A list of improvements to
actualize this change can be found in the conclusion in chapter 7.
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1
Introduction

A personal weather station (PWS) is a set of weather measuring instruments that is owned and oper-
ated by an individual, club, association, or business [1]. These stations are often less advanced than
traditional weather instruments and can include sensors to measure a variety of weather conditions,
such as wind speed, wind direction, temperature, humidity, barometric pressure, and rainfall. The qual-
ity and placement of personal weather stations can vary, making it difficult to determine which stations
provide accurate and comparable data.

Personal weather stations typically include a digital console that displays the collected data, and
some may be connected to a personal computer for storage and sharing. Many personal weather sta-
tion owners share their data with others by uploading it to websites or distributing it through amateur
radio. The Citizen Weather Observer Program (CWOP) and Weather Underground are popular plat-
forms for sharing personal weather station data. These services allow personal weather station owners
to submit their data, which is then used by organizations such as the National Weather Service (NWS)
to improve forecast models [22]. In Western Europe, theWOW network is a well known source of in situ
weather data. The Dutch version of this network is called WOW-NL and is managed and maintained
by the Royal Netherlands Meteorological Institute (KNMI).

With these networks in full effect and still growing [14], the potential to use PWS data for weather
forecasting or research purposes has gained popularity in the scientific field for its potential to “fill
data gaps” [21]. A “Spatial Quality Control” procedure before using the data has also been proposed
in research by the American Meteorological Society [22] in the context of using the data to improve
weather forecasts. One of the big findings is how “Quality Control sometimes fails to identify the reason
for systematic errors caused by ill-chosen locations of citizen weather stations”. For example, a station
placed too close to a building can exhibit diurnally varying biases that are difficult to detect by analyzing
the time series of observations alone. As metadata are rarely available, a black list of stations known
to be poorly located cannot be created. What if we are able to generate this metadata based on the
data that is now widely available via the networks on the internet?

Availability, from a researcher’s perspective, the PWS networks are an invaluable source of informa-
tion. But one of the limitations of these platforms is the export limitations. For example, in the KNMI’s
WOW-NL network only a single station can be looked at, at a time. The time series is available, but
only for the time you specify in the portal. The value for a researcher is in looking at the full dataset,
from different stations and analyze the spatial distribution to name an example.

An Internet bot, also known as a web robot or simply a bot, is a software program designed to
automate certain tasks on the internet. These tasks can include imitating human activity, such as
sending messages or interacting with websites [12]. Internet bots are able to carry out these tasks,
which are often simple and repetitive, much faster than a human could. For example, querying different
PWS’s and gathering, and more importantly, generating data about it. The Bot operate in a client-
server model, with the bot functioning as the client and web servers playing the role of the server.
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Therefore also doing some logic, like looking at the temporal range and resolution telling something
about the age of the weather station, is possible. The bot can therefore gather useful information about
the stations in the network, which can be used within a Geospatial framework to assess the value of
stations. Establishing this framework is what the thesis will be about.

The use of Bots to access public data has been a point of discussion for a long time. In 2019 the
“Journal of business, Entrepreneurship and the Law” published an article where The inherit right to
be able to access publicly available information has been highlighted [25]. With the growing datasets
that become available and the rise of “Big Data”, data collection becomes more of an issue. The article
stated: “As the number of available datasets and the hunger for new data insights grow, online platforms
increasingly seek to protect their information from web scrapers. Unfortunately, these online platforms
do not always successfully distinguish bad from good actors, thus risking stomping out new innovation
and valid competition.”. This thesis is a manifestation of this, a geospatial analysis of PWS networks
has not been done before but to get the data to do this is almost impossible. Therefore, hindering the
growth of the field.

In this thesis, we create a framework to assess the “Value” of weather stations in a citizen network.
We begin with collecting a national dataset of weather stations to analyze the current state of the Dutch
network. After, we project our framework on all stations in the Netherlands, assessing the stations on
value on a national scale. Next to that, we investigate the opportunity Web Bots gives researchers to
analyze PWS networks. Similar things have been done in the UK by Simon Bell from Aston University
in his PhD for a small area and with a web scraper. He stated there was value in “allowing us to
summarize the volume of information available” [3].



2
Objectives

There are two objectives that we focus on in this thesis. Foremost, creating a robust definition of “Value”
for a Personal Weather Station. Like Peter Ackroyd wrote in the detective novel Chatterton: “The value
is always in the eye of the beholder. What is worthless to one person may be very important to someone
else” [2]. From what perspective do we look at value in this paper? To determine the perspective, we
first must understand the goal we want to reach. The framework will be aid into assessing the value of
a personal weather station from a retrospective point of view. We look at the whole station, its context,
the area it is active, what it is measuring and who is managing it. This wholistic approach is what can
really determine the value of PWS. To be able to have this retrospective view we must, approach the
problem from different angles (scientific, practical and user-centered).

The second objective is to understand the way bots can help researcher gather PWS data from the
web. Currently, most websites featuring PWS data are run by Meteorological Organizations. The data
in the network is publicly created, citizen data, but get unintentional privatized by organizations that
manage them. This creates a big barrier for researchers to start using these networks since it’s not
fully open sourced. The problem now is that either a log-in is required to download the data or that the
website does not support batch exportation, making it almost impossible to download regions of PWS
data. By showing a way to create a bot to gather bypass this inconveniences, we can validate a way to
remove these barriers in the research field. We are now able to investigate stations on a bigger spatial
scale. With the scraping tool, one can merge data from different networks and have a national or even
global database. Most publications so far were limited to single provinces and/or small study regions
because of the dependency on the use of one network.

So essentially, there are two main reasons for using a bot. First, to automatically gather large
amounts of PWS data that would otherwise be difficult or time-consuming to get. Second, to automati-
cally gather and process metadata that can be used to assess the value of a station. Next to that, the
bot is the only way to extract large databases from citizen data networks (at least for the public). It is
sad that the data gathered by volunteers and enthusiasts is in the hand of companies/organizations
which do not really make it easy for the public to actively use them.

Research Question: How to create a framework that can assess the “value” of an Amateur
Weather Station in a Network

1. How do current PWS networks quantify the value of a PWS station? And how good or reliable is
this rating system?

2. How valuable are the personal weather stations in the Netherlands based on our framework?

3



3
Background

3.0.1. WOW-NL
WOW-NL (https://wow.knmi.nl/) is a platform that allows individuals to participate in a large network
of weather observers, where users can share, view, compare, and archive current weather observations.
It was developed by KNMI in collaboration with the Met Office, and is part of the Weather Observations
Website (WOW) concept. Over 10,000 stations in 220 countries are part of the network, including
those of the KNMI. Anyone with an automatic weather station connected to the internet can participate
in WOW-NL by registering their station on the WOW-UK website and transmitting data. The data are
updated every 10 minutes and are available on WOW-NL for everyone to view. The potential benefits
of WOW-NL include insights into extreme weather trends, knowledge about urban climates, and more
detailed advice about the impact of weather [17].

Figure 3.1: Main Page of the WOW-NL Website with a Map that shows all Online Weather Station at that time

4
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3.0.2. WOW-NL metadata
For each station in the WOW network, some additional information can be accessed by clicking the
station on the website or going to the URL: ”https : //wow.knmi.nl/#{station − id}”. In the station
page one can look at general information about the station, its characteristics and outputs. All this
additional information is referred to as the “metadata”. Table 3.1 shows all the metadata fields that are
available for a given station.

Field Definition Datatype
Station ID Unique identification of the weather station Integer

Position Geographical coordinates of the weather sta-
tion

Decimal

(Lat, Lon)

Elevation Height of the weather station above sea level Integer
(meters)

Time zone Time zone of the weather station String

Active station Indicates whether the weather station is active Boolean

Download? Indicates whether downloading of data is al-
lowed

Boolean

Website URL of the website of the weather station String (URL)

Station motivation Reason why the weather station was set up String
Official station Indicates whether the weather station is offi-

cially recognized
Boolean

Organization Name of the organization that manages the
weather station

String

Location Address information of the weather station Categorical

Air temperature Indicates whether air temperature is mea-
sured

Categorical

Precipitation Indicates whether precipitation is measured Categorical

Wind Indicates whether wind speed and direction
are measured

Categorical

Urban area Indicates whether the weather station is lo-
cated in an urban area

Categorical

Observation hours Period during which the weather station
makes observations

Categorical

Star rating Rating of the weather station on a scale of 0
to 5 stars (more information in chapter 3.1)

Integer

Description Description of the weather station String
(Free Text)

Additional Additional information about the weather sta-
tion

String

(Free Text)

Table 3.1: Station Metadata Description and Datatype Extracted and Available from the WOW-NL Network
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3.1. Metadata Definitions
In the metadata, most of the information is self-explanatory. There are, however, 6 entries that are
based on a classification setup by the “Met Office” (A UK Metrological Organization that manages
WOW). These classifications are about the location and setup of the PWS [18].

Figure 3.2: Metadata Classification Data for A Station in the WOW-NL Network

3.1.1. Location
the classification system for station location based on various factors. The location can be classified
as Very Open, Open, Standard, Limited, Sheltered, or Very Sheltered, depending on the number and
proximity of obstacles and heated buildings to the temperature or precipitation instruments. 0 means
there are a lot of obstacles around the station, and 5 means very open surrounding with almost no
obstacles. Next to the integers, The classification system also includes categories for stations located
on rooftops (R) or near traffic (T), and an “Unknown” (U) category.

Rating: The classification system ranges from 0-5, with 5 being the most open location and 0 being
the most sheltered. Rooftop and traffic categories are designated by “R” and “T”, respectively, and the
“Unknown” category is self-explanatory.

3.1.2. Sensor
The temperature, precipitation and windspeed instruments are categorized based on the location of the
device and its calibration. Sunshine and wind speed instruments should be placed in the most open
locations, which often means on rooftops or masts. The minimum distance between the instruments
and obstacles is based on the height difference between the sensor and the obstacle, with a minimum
distance of twice that height difference.

Temperature: the rating system for measuring air temperature. The rating system is based on the
type of instrument used and the location classification of the station. Class A stations use standard
instruments in a Stevenson screen that have been calibrated within the past 10 years, and require
a minimum location classification of 3 (as defined in ’Location’ metadata). Class B stations use the
same instruments as Class A, but can have a location classification of 2 or 3. Class C stations also
use standard instruments, but can have a location classification of 1 or less. Class D stations use
non-standard instruments or screens and can have a location classification of 1 or less.

Precipitation: the rating system for measuring precipitation. Class A stations use manual or cali-
brated tipping bucket rain gauges at a standard height of 30 cm above the ground, and require a mini-
mum location classification of 3. Class B stations use the same instruments as Class A, but can have
a location classification of 2 or 3. Class C stations use manual or calibrated tipping bucket rain gauges,
but can have a location classification of 1 or less. Class D stations use non-standard instruments or
screens and can have a location classification of 1 or less.
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Wind: This classification categorizes the measurement of wind based on the location and charac-
teristics of the wind meters used. It has four categories: A, B, C, and U, as well as a 0 category for
locations where no wind measurements are taken. Categories A and B describe wind meters that are
attached to a pole or mast, with A being more precise with a height of 10 meters and no obstacles within
a 100-meter radius, and B being less precise with no obstacles within a 50-meter radius. Category C
describes wind meters that are attached to a building or wall. Category U is for situations where there
is no information available about the wind measuring instruments being used.

3.1.3. Urban Space
This rating system classifies areas based on their level of urban development, population density, and
types of buildings. The system has seven categories, ranging from a very strong urban area with
high-rise buildings to a semi-rural area with scattered houses in a natural or agricultural setting. The
unknown category is for cases where there is no information available about the urban classification of
an area. 1 means very urban and 7 is the most rural location. U again means Unknown and speaks
for itself

3.1.4. Observation time
The observation time rating system refers to the time at which weather observations are made and
reported. The system has four possible ratings ranging from A to D, plus an “Unknown” option. The
first three ratings (A, B, and C) all provide a standard period of 24 hours for temperature and precipitation
data. Rating A aims to provide a weather report at 9:00 UTC every day, while Rating B aims to provide
a report between 6:00 and 9:00 UTC. Rating C sets the 24-hour period frommidnight to midnight, which
is the standard for most automated weather stations. Rating D is for situations where the closing time
for temperature and precipitation data is different from A, B, or C, or where there are extremes that
do not relate to a 24-hour period. The Unknown option is used when there is no information available
about the reporting hours.

3.2. Current Star Rating
When a weather station is registered on WOW (the citizen science project), users can enter a number
of “location attributes” that provide other users with a better understanding of the station’s measure-
ment location. The location attributes are chosen based on methods used by organizations such as
COL, WMO, and Met Office to classify station locations. Both the station’s location and the measured
quantities are classified.

Figure 3.3: WOW -NL Station Page for a Random Station In the Netherlands with Rating Next to its Name

The current star ratings are only based on 3 of the metadata: Location, Temperature and Precipita-
tion. This means that the station surrounding, the temperature, and precipitation sensor setup are the
determining variables for the star rating. The way the star rating is give is as follows [18]:
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5∗ :Location = 5 ∩ Temperature = A ∩ Precipitation = A

4∗ :Location ≥ 3 ∩ Temperature ∈ {A,B,C} ∩ Precipitation ∈ {A,B,C}
3∗ :Location ≥ 3

2∗ :Location ≥ 1

1∗ :Location ∈ {0, 1, R, U}

Note how from an 3-star rating and under only the location metadata has influence on the station’s
rating. Next to that we can see how if metadata is Unknown (U) the rating is a 1 star by default, which
is a harsh penalty for not delivering data.

3.3. Webbots
A web robot, also known as an internet bot or simply bot, is a type of software application designed to
perform automated tasks on the internet [8]. Bots are programmed to imitate human activity on a large
scale, such as messaging, and can perform simple and repetitive tasks faster than a person [11]. Bots
typically act as clients in a client-server model, with web servers serving as the server. The primary
use of bots is for web crawling, which involves automated scripts fetching, analyzing, and organizing
information from web servers [24]. Bots are responsible for generating more than half of all web traffic
[4].

Web servers may employ various measures to restrict bot behavior, such as providing a robots.txt
file containing rules for bot activity [7]. Bots that fail to comply with these rules may be denied access
or removed from the website in question. However, adherence to these rules is voluntary, and there is
no way to ensure that bot creators or implementers read or acknowledge the rules. While some bots,
such as search engine spiders, are beneficial, others may be used for malicious purposes, such as
launching attacks on political campaigns [6].

3.4. Landelijk Grondgebruik Nederland (LGN)
The LGN2021 database, or Landelijk Grondgebruiksbestand Nederland 2021, is a geospatial dataset
that provides information about land use and land cover in the Netherlands. It is a comprehensive and
detailed representation of the country’s land surface, categorizing different land cover types across the
entire territory [16].

The database classifies land into various categories, such as built-up areas, agricultural land, forests,
nature reserves, water bodies, and other land cover types. Each category represents a specific type of
land use or land cover, allowing researchers, planners, and policymakers to understand the distribution
and characteristics of different land features in the Netherlands.

The determination of the LGN (Landelijk Grondgebruiksbestand Nederland) database involves a
comprehensive process of data collection, classification, and mapping to provide an accurate repre-
sentation of land use and land cover in the Netherlands. Here is an overview of how the LGN database
is determined:

1. Data sources: Multiple data sources are used to gather information about land use and land
cover. These sources include aerial imagery, satellite imagery, topographic maps, administrative
records, and other geospatial datasets. The data sources are selected based on their quality,
resolution, and relevance to land cover classification.

2. Image acquisition and preprocessing: Aerial imagery or satellite imagery is acquired, covering
the entire extent of the Netherlands. These images capture the land surface at various wave-
lengths, allowing the identification and differentiation of different land cover types. The acquired
imagery undergoes preprocessing to correct for geometric distortions, atmospheric effects, and
radiometric inconsistencies.
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3. Image interpretation and classification: Trained image interpreters analyze the imagery and visu-
ally identify different land cover features, such as urban areas, agricultural fields, forests, water
bodies, and natural vegetation. They use their expertise to classify each pixel or region in the
imagery into predefined land cover classes based on visual cues, spectral characteristics, and
contextual information.

4. Ground truth data and validation: To ensure the accuracy of the classification, ground truth data is
collected. This involves field surveys, ground-based measurements, and validation points where
land cover types are physically verified. The ground truth data serve as reference points to assess
the classification accuracy and make necessary adjustments or corrections to the classification
scheme.

5. Data integration and mapping: The classified land cover information is integrated into a geospa-
tial database, where each land cover class is assigned a unique code or identifier. This database
combines the classified imagery with other geospatial data layers, such as administrative bound-
aries or topographic features, to provide a comprehensive representation of land use and land
cover across the country.

6. Database updates and maintenance: The LGN database is regularly updated to account for
changes in land use and land cover over time. New imagery and data sources are incorporated,
and classification algorithms are refined to ensure the database remains up-to-date and reflects
the current state of land cover in the Netherlands.

Figure 3.4: LGN2021 Viewer with the Land types for a resolution of 25 m for The Netherlands



4
Methods

This thesis will be a step forward to be able to assess value of a PWS in the context of a citizen science
network. A high value station is a station with a lot of insight or is relevant enough to include in a use
case based on other criteria. In this thesis, we propose a framework to assess the value of a PWS.

To be able to get to this objective assessment of a PWS, we have a two-step approach. We will first
analyze the network of weather stations on Weather Observation Website (WOW) for the Netherlands
to get a better understanding of the current status of the PWS networks. This will be the first time a
PWS network will be analyzed on a national scale. A lot of questions will be answered that give insight
on how these networks are being used now. What data is available in the network? How do we bypass
the availability issue of the network? What are structural problems in the dataset? With these insights,
we are able to structurally show the problems and be able to suggest improvements.

In the second part, we have a practical framework which can be used in combination with data that is
really available in the network. To demonstrate, we actually will assess all stations in the Netherlanders
on Value conform the framework in the capacity we are able to do this with the resources we have to
date. The result will be a new and improved station network in which the stations are assessed on
different criteria for value/usefulness.

10
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Figure 4.1: Flowchart of the Method of this Research
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4.1. Values of a PWS
The need for a more objective framework that can tell us something about the value of a station is
needed. Through looking at the metadata, and reading relevant papers on personal weather stations.
We have set up a framework with 5 values that are important for a PWS. These 5 values are more to
be seen as criteria on which we can quantify the value of a certain personal weather station. In figure
4.2, the values are visualized with its definition in the schematic in figure 4.2. In table 4.1, the definition
of each value can be read.

Figure 4.2: Framework to Assess the ”Value” of a Personal Weather Station in a Citizen Network

While accuracy remains a fundamental aspect of a PWS value, this thesis aims to shift the focus
towards the broader value that these weather monitoring systems can offer and be assessed on. By
exploring the broader information about a PWS, this study highlights and tries to understand PWS
from a higher level, hopefully giving new insights into the field. Other research done has focussed on
Accuracy of PWS, for example work done by PhD Simon Bell from the University of Birmingham [3].
Therefore, the accuracy criteria will not be looked at in this thesis.



4.1. Values of a PWS 13

Value Definition
Device Setup: What kind of sensors are used, when were they installed, and how are they

combined? A station with old/cheap or little variety in sensor type is less valu-
able. That the device setup effects the value of a station is well known and
discussed in depth by the world metrological organization (WMO) in standards
they write [15]

Credibility: Credible owners tend to maintain the devices better, therefore increasing the
value of a station.

Availability: A station that steadily reports data is more valuable because it is fulfilling its
main purpose of delivering. A station with a very good device setup where
the data is not extractable is almost worthless. The availability of a station
has been talked about as an important part of a weather station in the PhD
research by Simon Bell [3]

Uniqueness: A weather station that gives high insights because the measurement is exclu-
sive or that the station is located in an interesting location. A spatially exclusive
station is one that is unique in a sense that it is one of the few observations
in an area. Location Exclusivity is a station that measures something that is
unique, for example, a certain ground type.

Accuracy: Error/Difference of the measurement time series from a Personal Weather Sta-
tion through comparison with professional and surrounding PWS. Countless
research have looked at accuracy as a way to analyze the value of a station.
In most cases, it is the first thing one thinks about.

Table 4.1: Definition of the Values of a PWS in a Citizen Network

4.1.1. Use Case Example
Notice how the framework would be useful in situations we want to make a choice between two station.
The framework gives you the criteria to approach the analysis of making a choice.For example, if the
two stations have the same owner the credibility is the same and therefore one of the 5 axes of value
is the same. It’s then up to the other 4 values to be assessed. Let’s say the device is the same, it’s
equally unique because they are spatially next to each other, but the availability is worse of one. We
now know the station with better availability is the more “valuable” station of the two.
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4.2. The WOWBot
Based on the way the website has been programmed, we can develop a script that is able to extract the
information we need. Python Selenium is a web automation and testing tool that enables programmatic
control of web browsers [9]. It can be utilized to extract metadata from citizen science networks like
the WOW-NL network, specifically for retrieving information on all stations in the Netherlands. Python
Selenium is often the preferred choice for batch export in this scenario due to the absence of a direct
API or data export feature. By automating web interactions, Selenium allows for automated naviga-
tion, search, and extraction of station metadata. However, it is important to note that Selenium-based
scraping may require periodic updates to accommodate changes in the web interface. It is advisable
to explore alternative options, such as APIs, before resorting to Selenium. Nevertheless, when no
alternative is available (like in this case), Python Selenium proves to be a reliable tool for efficiently
extracting metadata from the WOW-NL network. There are 2 steps to be taken to be able to extract all
the stations in the WOW-NL network.

1. Extract all the station IDs of the network.
2. Extract data of each individual station though the station IDs gathered in (1).

For (1), we created a bot that is able to go to https://wow.knmi.nl/, remove all filters on the map
to show all stations and zoom to the Netherlands in such a way that all stations are shown in the UI
of the website. This way all stations correspond to an element on the website which can be inspected
and extract from the HTML. These elements can be seen on the map in figure 4.3 as rectangles and
carry with them the station-id in the description, which is the string we extract with the bot.

Figure 4.3: WOW-NL Page Code Corresponding to Object on the Map

https://wow.knmi.nl/
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The result of IDs of all weather stations in the Netherlands. This list will be input for the next task
the bot can execute. The bot will one for one go to the station’s website: https://wow.knmi.nl/
#{station_ID} This website will show the real time information about the station. The bot does the
following to get the information:

1. Check if the station website exists. If it does not, the station is offline and is not anymore in the
WOW database.

2. Extract the location coordinates of the station and check whether the station is inside the poly-
gon of the Netherlands. If it is not, the station is skipped during the next step, meaning that no
metadata are extracted from this station.

3. Go to the Meta-Data subpage and extract all information available on the station, including the
description left by the maintainer.

4. Aggregate all the extracted data into the database of all stations in the Netherlands (formatting).

Algorithm 1 Extract PWS-id Bot
1: Start Chrome WebDriver
2: go to -> https://wow.knmi.nl/
3: time.sleep(loading time) ▷ Loading time is time until HTML stops generating
4: Turn off all Filters on the viewer to reveal all stations
5: time.sleep(loading time)
6: Extract the HTML
7:
8: Active Station div-class= ”marker holder temperature res-i” with i=1,...,28
9: Offline Station div-class= ”marker holder temperature no-data wow”
10:
11: if div-class == marker holder temperature res-i with i=1,...,28 then
12: Save div-id to Online List
13: end if
14: if div-class == marker holder temperature no-data wow then
15: Save div-id to Offline List
16: end if

Algorithm 2 Extract PWS Metadata, Appendix A
1: Inputs:

Output of algorithm: ”Extract PWS-id Bot”
2: Initialize:

Chrome Webdriver Already Initialized
3: for all station-ids do
4: go to -> https://wow.knmi.nl/#{station-id}
5: if URL Exist then
6: time.sleep(loading time) ▷ Loading time is time until HTML stops generating
7: Extract Station Coordinates (Latitude, Longitude)
8: if Station Coordinates inside the Netherlands then
9: click on -> subpage ”Meetopstelling” (Measurement setup)
10: Extract the Metadata Available (As defined in table 3.1)
11: end if
12: end if
13: end for

With this an automated bot has been made that does 2 things, gets the names of all stations in
the Netherlands and extract the data for that station, if it exists. The program has been coded and is
available in the appendix of this thesis. The code has been developed in python and uses selenium, a
python package. Note how information about the versions used is essential for recreating the bot and
using it for own purposes, check the ”requirements.txt” file in appendix A.

https://wow.knmi.nl/#{station_ID}
https://wow.knmi.nl/#{station_ID}
https://wow.knmi.nl/
https://wow.knmi.nl/#{station-id}
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4.3. Analysis of the Network
4.3.1. Nearest Neighbor
Nearest neighbor analysis is a method used to analyze spatial patterns in a dataset. The aim is to
determine whether the points in the dataset are randomly distributed or whether there is a systematic
pattern to their arrangement. This method is commonly used in fields such as ecology, geography, and
urban planning.

The basic principle of nearest neighbor analysis is to calculate the distance between each point in
the dataset and its nearest neighbor [13]. The pseudocode and algorithm to calculate the NN can be
read in Algorithm 3.

Algorithm 3 Nearest Neighbor Analysis
1: Inputs:

n weather stations u1, ...,un with ui = (uix, uiy) ∈ R2

m comparison weather stations v1, ..., vm with vi = (vix, viy) ∈ R2

distance function d : R2 × R2 → R+

2: Initialize:
dui,vi

=
√
(vix − uix)

2
+ (viy − uiy)

2

unn(j) the nearest neighbor of vj
3: for ui in u1, ...,un do
4: the input dataset d(uuu(j), vj) = min

1≤i≤n
d(ui, vj)

5: end for
6: Save d(uuu(j), vj) for all j

Note how this algorithm can also be used to calculate the NN-distance for a network. Not only
to compare two networks. In our case, the algorithm will be used to calculate the nearest neighbor
distance of all amateur stations against the amateur stations of the same network. In the second case,
we use the algorithm to calculate the distance to the nearest professional station. The results is a
distance metric for each station in the network telling us how far away another amateur station is for
potential cross validation or comparison or how far a professional station is.

The distances can be compared to a theoretical distribution of distances that would be expected if
the points were randomly distributed. This is called the NNI (nearest neighbor index). The formula for
nearest neighbor analysis is:

Nearest Neighbor Index(NNI) =
D

D′ (4.1)

D = Observed Mean Distance (4.2)
D′ = Expected Mean Distance (4.3)

If the observed mean distance is less than the expected mean distance, the NNI will be less than
1, indicating that the points are clustered together more than would be expected by chance. If the
observed mean distance is greater than the expected mean distance, the NNI will be greater than 1,
indicating that the points are more evenly spaced than would be expected by chance. If the observed
mean distance is equal to the expected mean distance, the NNI will be 1, indicating a random pattern.

Nearest neighbor analysis can be used to detect clustering or spatial patterns in a variety of datasets,
such as tree locations in a forest, crime incidents in a city, or animal territories in a habitat. It is important
to note that nearest neighbor analysis assumes a two-dimensional, Euclidean space and that other
methods may be more appropriate for datasets with different spatial properties.
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4.3.2. Language Processing
A word cloud is a visual representation of a collection of words, where the size of each word indicates
its frequency or importance. Making a word cloud involves several steps [23]:

1. Choose a dataset: The first step is to choose the text that will be used to generate the word cloud.
This could be a single document, a collection of documents, or even a website or social media
feed.

2. Preprocess the text: Once the dataset has been selected, it needs to be preprocessed to remove
stop words (e.g., ”and,” ”the,” ”a,” etc.), punctuation, and other irrelevant information. This can
be done using text preprocessing libraries in Python such as NLTK or SpaCy.

3. Count the frequency of each word: After preprocessing, the frequency of each word in the dataset
is counted using a word frequency counter. Python libraries such as Counter can be used for this
purpose.

4. Choose a visualization tool: Several tools are available to create word clouds. Some popular
options include WordCloud in Python, Tagxedo, and Wordle.

5. Generate the word cloud: Once the visualization tool has been selected, the word cloud can be
generated. The tool will usually have several options for customizing the appearance of the word
cloud, such as font size, color scheme, and layout. The most common approach is to use the
frequency of each word to determine its size in the word cloud.

6. Refine the word cloud: After generating the word cloud, it is a good idea to refine it by adjusting
the font size or color scheme, or by removing certain words that are not relevant to the analysis.

In summary, making a word cloud involves preprocessing the text, counting the frequency of each
word, choosing a visualization tool, generating the word cloud, and refining the result. Word clouds
can be a useful tool for visualizing and summarizing large datasets of text, and can help to identify key
themes and topics.



5
Results: Analysis of the Current state

of the Dutch PWS Network

5.1. Challenges in extracting information from the WOW-NL net-
work using a bot

When making the Web bot, we learned a lot about the WOW-NL network and how a bot can assist
in extracting information about personal weather stations. For example, it is important to understand
the dynamic behaviors of the website. A single input with the bot can change the website in such a
way that the HTML changes and the bot might not be able to perform its task. For example, there are
some stations for which the station ID can be read, but the station website does not exist. During the
development phase, a lot of errors and exceptions had to be considered. Over time, the bot become
better at detecting edge cases and handling them with the use of try/except statements. When a
try returns an error in the except statement, the station ID gets saved in a separate file for further
investigation by humans. The list below gives an overview of the particularities found in the structure
of the WOW-NL network:

1. Stations for which the ID is known but which do not exist when trying to access their data.
2. Metadata entries sometimes can have values outside the range of acceptable parameters defined

in the WOW-NL documentation. For example, in some stations, the value ’U’ which stands for
‘Unknown’, is entered as ’null’, ’ ’ or even ’0’. In this case, the bot simply overwrites the value and
saves it as ’U’.

3. The website can suddenly become unavailable due to server maintenance
4. The default map does not show any stations, only aggregations of multiple stations as a rectangle.

This way a user can click on for example on the rectangle around Amsterdam to then see the
stations in the area of Amsterdam on the map. This way, the website minimizes loading for the
user and server. For us, this means we have to zoom in twice to get to a resolution where we are
able to extract individual stations.

In total, the bot found 981 personal weather stations in the Netherlands (1031 if we also include the
professional stations). The time needed to extract all information using the bot was around 6 hours.
The bot is coded in such a way the extraction can be done on the background from a console on a local
or virtual machine.

5.2. Metadata analysis
After running the code, we have a dataset of all stations in the Netherlands and all their metadata
entries. This is very interesting information because for the first time, we are able to analyze the spatial
distribution and frequency of station characteristics in the network. For example, we can show how
many three, four and five star rated stations there are, where these stations are located, and who
operates them.

18
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The stations that were found are visualized in figure 5.1. Here the spatial structure of the network
can be seen for the first time. The green points are stations that are active, the red ones are not active
based on the metadata of the network. As we can see, almost all stations are active (99.3% like in 5.5f).
Figure 5.5 shows pie charts for all the metadata entries that we were able to extract from the WOW-NL
network, including the activity shown in Figure 5.1.

Figure 5.1: Map of all, 1031 stations in the WOW-NL network extracted using the web bot. Only stations located in the
Netherlands are shown

Figure 5.2 until 5.4, is the information about what weather variables the station is measuring. The
second row is the information about the motivation and location of the station. Lastly, the charts in the
last row are some yes/no questions that the participants of the network had to fill in about the station.
These results tell us a lot about the status of the network and what can be improved.

Figure 5.2: Temperature Setup
Categories

Figure 5.3: Precipitation Setup
Categories Figure 5.4: Wind Setup Categories
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Surrounding and Reporting Metadata in a Pie Chart for all stations in the Netherlands

Here are some of the insights that can be seen from the pie charts above.

1. For almost 40% of all stations, the kind of measurement device(s) is unknown (’U’, gray)
2. Almost 59% of the stations are in rural areas as we can see in the pie chart “Urban Area” (5>).
3. Most of the stations (57.7 %) in the network are for personal use.
4. The motivation is described in vague terms such as “enthusiast”, “hobbyist” and “personal”, which

are overlapping terms.
5. 99.3% are active, and 96.9% of their data are downloadable.
6. Almost all stations are managed by citizens, only 0.2% are official stations
7. With the current star rating
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5.2.1. KNMI rating
WOW (Weather Observations Website) station is automatically classified based on the information
provided during registration. The classification results in a score between 1 and 5 stars. This score
is based on the location of the station and the quality of temperature and precipitation device setup.
The classification process is explained more in depth in section 3.2. This is an questionable approach
where the amount of information used to form a rating is only 3 of the 6 main metadata entries. When
we look at the rating system spread over the Netherlands, we can see the following map:

Figure 5.6: Spatial distribution and frequency of PWS star rating in the WOW-NL network, extracted by the web bot

We can see that 80% of the stations are rated a 2 or lower. Almost all of them receive a low rating
because of the large numbers of unknown metadata values. For example, 393 stations have unknown
“precipitation” classification (see Table 3.1). For 391 stations, the “air temperature” classification ((see
Table 3.1)) is unknown. The “Location” classification (see Table 3.1) is not known for 350 stations.

These results tell us about a bigger systematic problem. The rating is based on 3 variables that 50%
of the time are unknown. Moreover, the variables themselves are often vaguely defined, overlapping
and rather subjectively assessed by the users themselves. The classification is a human input which
is prone to misjudgment of the user. For example, the “motivation” entry has overlapping options
like, hobby, enthusiast, or amateur. What is the difference between this? An amateur can still be an
enthusiast and doing it for a hobby.
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5.2.2. Language Processing
One of the other interesting data that a citizen provides the network is additional notes on the station in
free text. In this free text, some interesting things can be highlighted by the citizen, like particularities
about the area or the sensor that has been used. In the WOW-NL network there are 2 inputs of free
text, ’additional information’ and ’extra info’. These text boxes again show how there is no systematic
registration of device information. The two text boxes seem to have the same function, and the exclu-
sion of one would not negatively affect the metadata of a station. After going deeper in the registration
process, an “instruction manual” for the registration of the station and filling in the metadata has been
found [19]. After reading through, we found that ’extra info’ text box is for explaining the “device site” in
more depth (optional), while the ’additional information’ is again an extra text box at the end of the form
to give “information about the site or the equipment” as stated in the manual. This shows the inconsis-
tent registration process. Therefore, we combined both datasets for our analysis. After aggregating the
strings and removing stop words in Dutch and English, we were able to plot and create a word cloud
for what citizens have to say about their PWS (figure 5.7).

Figure 5.7: Word Cloud from the Free Text Box of All Dutch Weather Stations inside the WOW-NL Platform

In figure 5.7 we see the word cloud, the size of the words correspond to its frequency of occurrence
of the terms. As can be seen in the figure above, the main signals are the device names. For example,
“Davis Vantage”, “Vantage Pro (2)”, “Ventus W830”, “Alecto WS” and ’Vantage Vue’ are the main ones.
Next to that, the location of device has been further specified a lot. The second-biggest frequency was
“Garden”, “House” and “Located”. Interestingly, ’Delft’ is a signal that has been caught on to as one of
the few location names that has been mentioned in the network.

The word cloud in figure 5.7 not only tells us the information that the network users put in the text
box. But also what attributes are missing from the network administration. The device name should be
specified as an entry to the network. When linking this with the problems in the device categorization
in table 3.1, we see that steps can be made in standardization of the documentation of device setup in
a PWS.
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Results: Assessing the Value of the

Dutch Personal Weather Stations

in section 4.1 the framework for assessing a personal weather stations has been explained. Here we
take the criteria and project it on the network we have extracted. The following is the value assessment
of the Dutch PWS network for all criteria except ’Accuracy’.

6.1. Uniqueness
Uniqueness has been defined in two ways. Firstly, the station can be “Spatially Exclusive”, meaning
the station is standalone in an area making interesting because no alternative are present. The second
definition is “location based interest” where a station is measuring a unique location. An example would
be a PWS on a Dune. Someone who is investigating sand transportation of the dunes might adhere a
lot of value on wind measurements in this area. In this case, the user would use the framework to get
the PWS in dunes for the Uniqueness criteria with a wind sensor in the device setup. With the national
dataset of PWS’s we finally are able to analyze the spatial structure of the network. We determined the
“Spatially Exclusivity” of a station with two metrics:

1. Distance to Professional Stations
2. Distance to Amateur Stations

Figure 6.1: Weather Station in the Netherlands, appendix C for bigger image

“Uniqueness” in the framework can be assessed. As the definition states: A weather station that
gives high insights because the measurement is exclusive or that the station is located in an interesting
location. A spatially exclusive station is one that is unique in a sense that it is one of the few observations
in an area. With the nearest neighbor analysis, we are able to calculate which stations are far from
other stations, in other words “spatial exclusive” and thus Unique in our definition.

23
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On the flip side, a station can be very close to a professional/amateur weather station, making it
redundant because the other stations might have more insight because it might score better on one of
the other criteria in the framework. In the case of a professional station, the accuracy is much higher
because of more expensive device setup. While it is being maintained actively by the KNMI making it a
more “credible” station. Lastly, availability does not differ, hence the use of the professional station has
more “Value” as the framework proposes. In figure 6.1 the professional stations are spatially visualized.
This is an example of where the framework makes sense of the assessment of PWS stations in a
network.

In the same way, the framework is efficient in determining the value in a professional vs. amateur
station comparison. The same holds for assessing 2 amateur stations. In this case, when we look
at the stations that are far away from an amateur neighbor, we see this station as a spatially unique
observation, which then again translates into having more value assuming the other variables are all
the same for the stations that are being compared.

In figure 6.2 we calculated the Nearest Neighbors Distances and visualized it with a color ramp.
Red means the station is close by, while Blue and Green Means it is far from its neighbor.

Figure 6.2: Nearest Neighbor Analysis For Amateur to Professional Distance and Amateur to Amateur Distance

When plotting all the distances of the PWS in the Netherlands in a histogram, we can see how
the distribution of the distances differ for the two variants we calculated. In figure 6.3 and 6.4 the
distributions can be seen. For the distribution of the professional stations, we can see how there is a
peak frequency at the 10-20 km. Interestingly, being very close to a professional station is also a quite
statistical unique feature, which has relatively low frequency of happening. In both the professional
and amateur distances, there is a long tail. There are a lot of incidental outliers. For the professional
station this can be seen at that after 40 km there are still some stations. In the amateur distance, it is
clearer to see that there are more outliers already after 10 km. The amateur station distances peak
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around the 0 m and seem to have a log normal or exponential distribution from the looks of the KDE.
The Professional station KDE looks (from visual inspection) like a bimodal Gamma distribution, with a
short rise to the peak and a long decay to 0 frequency after the peak.

Figure 6.3: Histogram of Distance to Proffesional stations Figure 6.4: Histogram of Distance to Amateur stations

Looking at the distribution, we can take a cutoff values and plot the stations that are after this value.
Spatial uniqueness can be approached in two ways, we can take a cutoff value based on the distribution
and everything after this value is seen as statistical outliers/Unique. But the distribution can also be
used to compare stations on a continuum. We are able to link the distance metric to how frequent this
distance would occur, the station with a lower frequency metric is the one who is “More” Unique.

Figure 6.5: Spatial Unique Personal Weather Stations in the Netherlands

From inspection, we chose a cutoff value of 30 km for the professional stations metric and 5 km for
the amateur station distances. After plotting, this results in the spatial unique stations in the Netherlan-
ders. There were 2 stations in the Netherlands that meet both criteria, these stations are in “Ter Apel”
and “Vorden”, Both in North East of the Netherlands. In figure 6.5 all the stations that meet one of the
criteria are plotted over the map of the Netherlands:
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6.1.1. Location
The “Landelijk Grondgebruiksbestand Nederland” (LGN) is a geospatial dataset that provides infor-
mation about land use in the Netherlands. It classifies land into categories such as built-up areas,
agricultural land, forests, nature reserves, and water bodies.

Figure 6.6: Land cover Type From the LGN2021 Dataset and the PWS Locations from the WOW-NL Platform in the Randstad

To determine which personal weather station (PWS) is in a specific land cover type using the LGN,
we can overlay the PWS location data with the LGN dataset. By comparing the coordinates of the PWS
with the spatial boundaries and classifications of land cover in the LGN, we can identify the land cover
type in which each PWS is located. In figure 6.6 the land cover types of south of Holland are used as
an example. as we can see, the stations can be linked to a land cover type.

This analysis can provide insights into the relationship between weather observations from PWS
and the surrounding land cover characteristics. For example, we can examine how weather patterns
differ between urban PWS (located in built-up areas) and rural PWS (in agricultural or natural areas).
This can bring value to the user which might be interested in some type of land cover.

After doing the raster analysis, we got the results. From the 52 categories in the LGN2021 database,
the stations only span over 22 of the categories. The distribution over the 22 categories has been
plotted in figure 6.7. The colors correspond to what has been standardized by the WUR in the LGN
database for each category. In the legend, the percentages are bold for each category. As we can see,
there are two obvious anomalies, land type 18 and 23. Land type 18 (Red) correspond to “buildings in
primarily built-up areas” and Land type 23 (Green) to “Grass in primarily built-up areas”. Interestingly,
this means that 72.4 % of the weather stations in the Netherlands are in “primary build-up areas” which
is the same as the urban space class like defined in the KNMI metadata. This does make sense since
most weather stations are managed by amateurs that likely want to set up the device at home or close
to an area they work or live. The LGN also makes a separation between urban space by also having
’secondary build-up areas’. 6.29% of the stations are located in this area.
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Figure 6.7: Land cover Type based on LGN2021 for all PWS in the Netherlands

The third and fourth-biggest land cover types are land type 251 (Brown) which is ’main infrastructure
and railway bodies’ at 5.85% and land type 1 (Green) which is ’agricultural grass’ at 4.86%. In the rest,
there are small amounts of stations in interesting land cover type. For example, ’open sand in coastal
areas’ or the classification based on crop production on the land cover. These all can be interesting
from a value point of view for use cases where these locations are areas of interest.

6.1.2. Discussion
As seen in the results, a way to determine the uniqueness category for the value of a PWS has been
performed. We are able to statistically determine the spatial uniqueness and location based unique-
ness solely based on the location coordinates of the stations. Firstly, Statistical Spatial Unique stations
were identified through Nearest Neighbor Analysis, employing cutoff values derived from the metric’s
distribution. This method allowed for the identification of weather stations that exhibit distinctive spa-
tial characteristics compared to their neighboring stations.Secondly, Location Unique stations were
determined based on the land cover types using the LGN2021 database from Wageningen University
Research (WUR). By mapping the stations to their respective land cover types, unique stations were
identified based on their specific geographical locations.

There is however a problem with the dataset. When reading in the device registration form provided
by the WOW-NL, the coordinates of the station can be manually filled in. KNMI gives the advice to auto-
locate, but when not choosing this option, one can be based on a postal code or address to determine
the PWS location. The idea is then to use the postal code as a starting point and then change the pointer
to the exact location of the station. When the station is located in a rural area, the device location solely
is based on the user’s input, which can be less reliable [19]. When an auto locates option is used in all
stations, the procedure we propose needs no other human input and can objectively determine one of
the 5 components of Value for a Personal Weather Station.

The analysis revealed a concentration of Personal Weather Stations (PWS) in primary built-up ar-
eas, with approximately 72.4% of the entire weather station network situated within urban areas. This
finding highlights the preference for locating PWS in densely populated regions, potentially influenced
by factors such as accessibility, user density, and the availability of infrastructure. Understanding the
spatial distribution and uniqueness of weather stations is crucial for various applications, including spa-
tial planning, climate studies, and data quality assessments. These insights can aid in optimizing the
selection and placement of weather stations for specific research objectives, ensuring representative
coverage and minimizing data redundancies.
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6.2. Device Setup
In the current metadata system, the information about the device is structured in a classification. the
classification is done based on multiple variables. By looking at the classification and isolating the
variables, we are able to create an understanding of some aspects of the device setup.

6.2.1. Radiation Screen:
A radiation screen, also known as a radiation shield or radiation shield enclosure, is a critical compo-
nent of a Personal Weather Station (PWS) that houses temperature and humidity sensors. Its primary
purpose is to protect these sensors from direct solar radiation and other sources of unwanted heat,
ensuring accurate and representative measurements of air temperature and humidity.

The design of a radiation screen aims to minimize the impact of external factors that can distort temp
erature readings. It allows air to circulate freely around the sensors while shielding them from direct
exposure to sunlight, radiant heat from surrounding surfaces, and reflected radiation. In figure 6.8 an
example of a radiation screen on a Davis Weather Station can be seen. The radiation screen helps
maintain a more stable and reliable thermal environment for the sensors to operate in. Common types
of radiation screens used in PWS include the Stevenson screen and the naturally ventilated radiation
shield.

Figure 6.8: Example of a Radiation Screen in a Davis Weather Station [10]

The Stevenson screen is a double-louvered enclosure made of wood or another suitable material.
It consists of a box-like structure with multiple horizontal and vertical slats. These slats create spaces
or gaps that allow air to pass through while blocking direct sunlight. The design of the Stevenson
screen ensures proper ventilation and prevents the accumulation of heat inside, providing an accurate
representation of the ambient air temperature [20].
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On the other hand, a naturally ventilated radiation shield (As can be seen in figure 6.8) is typically
constructed with multiple layers of horizontal plates or vanes. These plates or vanes are angled to
allow air to flow freely, promoting natural convection and heat dissipation. The design of this shield
enhances the exchange of air while reducing the impact of external heat sources.

Both types of radiation screens are strategically positioned and mounted at an appropriate height
to ensure accurate temperature and humidity measurements. They are often installed away from ob-
structions, such as buildings or trees, to minimize potential interference with air circulation and radiation
exposure. The location and what type of screen is vaguely defined in the categorization. We are able
to extract that a radiation screen is used, but not if it is a Stevenson screen.

Figure 6.9: Percentage of Stations with and without a Radiation Screen in the Netherlands

By utilizing a radiation screen, PWS owners can enhance the reliability and accuracy of temperature
and humidity measurements, providing more representative data for weather monitoring and analysis.
Thus, also the value of the device setup. From extraction of information of the WOW-NL Network, we
can determine that 48.2% of the PWS have a radiation screen of some sorts (including Stevenson
Screens). A station with a radiation screen can be seen as a station that has more value because of
more reliable device setup.



6.2. Device Setup 30

6.2.2. Precipitation
Rain gauges are devices used tomeasure the amount of precipitation, specifically rainfall, at a particular
location. To ensure accurate measurements, rain gauges can be standardized and calibrated using a
tipping bucket mechanism in a Personal Weather Station (PWS).

A Standard rain gauge is made out of a tube with a known, a consistent diameter over the height. By
measuring the length of how filled the tube is, we get a sense of the volume that has fallen. The device
must meet certain standards in terms of its dimensions, collection area, and measurement accuracy.
An example of a ’Standard Rain Gauge’ can be seen in figure 6.10a.

(a) Standard Rain Gauge (b) Tipping Bucket Rain Gauge

Figure 6.10: Both types of rain gauges[5]

Calibration, on the other hand, involves verifying and adjusting the rain gauge’s measurement ac-
curacy using a known reference or benchmark. In the case of a PWS, a commonly used method for
calibration is the tipping bucket mechanism. A tipping bucket rain gauge consists of a container or
bucket with a pivoting mechanism. As rainwater enters the bucket, it fills up and reaches a specific
threshold, causing the bucket to tilt and discharge its contents. The tipping action is recorded elec-
tronically or mechanically, allowing for accurate measurement of rainfall. An illustration can be seen in
figure 6.10b.

To calibrate a rain gauge with a tipping bucket mechanism, a known quantity of water, typically a
standardized volume, is poured into the gauge. The bucket’s tipping and discharge are observed and
recorded. Any discrepancies in the measured quantity compared to the known reference can then be
used to adjust and calibrate the rain gauge.

Calibration may involve making adjustments to the calibration factor or calibration coefficient of the
rain gauge. This factor relates the recorded bucket tilts or discharge volumes to the actual amount of
rainfall. Regular calibration is important to maintain the accuracy of rain gauges in PWS. Factors such
as wear and tear, environmental conditions, and debris accumulation can affect their measurement
precision over time. By periodically calibrating the rain gauge with a tipping bucket mechanism, PWS
owners can ensure that their precipitation data remains reliable and consistent. The amount of devices
in the Netherlands with this device setup can be seen in figure 6.11. As we can see 34.05% of the
stations have either a standard rain gauge or a calibrated one with a tipping bucket. We are not able
to assume these stations to be of higher value because the station without these two types of sensors
might have a better one like a weighing gauge.

It’s worth noting that the calibration process may vary depending on the specific design and manu-
facturer’s instructions of the rain gauge used in the PWS. Following the manufacturer’s guidelines and
best practices for calibration is essential to achieve accurate rainfall measurements. Therefore, again
important for determining the value of a PWS if these mechanisms are included in the device setup.
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(a) Devices with standard or calibrated rain gauge in the
Netherlands

(b)Wind sensors above the ground in the Netherlands

Figure 6.11: Sensor Information for the PWS in the Netherlands

6.2.3. Wind
A wind sensor in a Personal Weather Station (PWS) should be positioned on a pole or above the
ground to ensure accurate and representative measurements of wind speed and direction. Here are
the reasons why:

1. Unobstructed airflow: Placing the wind sensor on a pole or above the ground allows it to capture
wind patterns and velocities without obstruction. Obstructions such as nearby buildings, trees, or
other structures can create turbulence and interfere with the flow of wind, leading to inaccurate
readings. By elevating the sensor, it is more likely to receive undisturbed and representative
airflow, providing more reliable measurements.

2. Reduction of ground effects: The proximity of the wind sensor to the ground can introduce ground
effects that affect wind measurements. Close to the ground, friction with the surface can slow
down the wind speed and alter its direction. These ground effects are more prominent in low-level
atmospheric layers and can cause significant discrepancies between the actual wind conditions
and the measured values. Mounting the wind sensor higher above the ground minimizes these
ground effects and improves the accuracy of the wind data.

3. Mitigation of local influences: Placing the wind sensor on a pole or elevated position helps reduce
the influence of local features on wind measurements. Local topography, such as hills, valleys,
or buildings, can create microclimates that differ from the broader atmospheric conditions. By
elevating the sensor, it is less affected by these localized influences, allowing for measurements
that better represent the prevailing wind patterns in the area.

4. Enhanced representativeness: A PWS aims to provide weather information that is representative
of the surrounding area. Placing the wind sensor on a pole or above the ground helps ensure
that the measured wind data represents the broader atmospheric conditions in the vicinity of
the station. This is particularly important for applications such as wind resource assessments,
microclimate studies, or weather forecasting, where accurate and representative wind information
is crucial.

It is important to note that the height and specific installation requirements of the wind sensor can
vary depending on the manufacturer’s recommendations and the intended purpose of the PWS. Fol-
lowing the manufacturer’s guidelines and best practices for mounting the wind sensor will help ensure
accurate and reliable wind measurements in the PWS. Therefore, it is an important way to determine
the value of the device setup. In the case of the Netherlands, 18.66% of the stations are above the
ground or on a pole. The other 76.96% is defined in the classification as being located on a building or
wall (more information about the classification can be read in the methods chapter).Station where the
wind sensors are situated above the ground or even better on a pole have a higher value.
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6.2.4. Discussion
As can be read in the previous results, the device setup is a complex system. There are a lot of parts
to the setup like the sensor type or the accessories that can be added to the setup that can improve or
worsen the output. A more systematic way to provide information about the device is needed. As we
can also see and is discussed in section 5.2.3 in figure 6.2. The use of the free text box mostly has
something to do with the device setup. For example, the device name is something which is one of the
biggest signals. This means that the user does not have a place to put this information. The device
setup can be very particular for each case, but standardization by being able to give up the device and
model name is a good start. In the future, a more systematic device registration for a PWS network
would enlighten us with a lot more information to base the ’value’ of a personal weather station on.
The basis should be to ask information that is not subjective, leading to comparability across stations.
For example, by getting the device name and all the product names that are added to the setup, the
network can automatically map the device to having radiation screens or what kind of sensor there are
present with what precision based on the manufactures manuals.

6.3. Availability
In the metadata of the WOW-NL, the only information about availability is in the “observation hours”
category. How this categorization works can be read in the methods. The information given is about
when the stations report data to the network. As we can see in figure 6.12, most of the stations (48.2%)
report at midnight. While the other 42.4% is unknown. This is already almost all stations. From 6.8%
we know that the reporting moment is at 9:00 UTC. 0.9% reports between 6:00 and 9:00 UTC. Lastly,
1.6% we know have irregular reporting times.

Figure 6.12: Pie Chart for the “Observation Hours” Metadata from WOW-NL

As we can see of the data a lot is unknown and even when we know when the reporting time is, it
does not make sense why it is being asked for and not being calculated from the dataset or connection
to the server. A lot of the station perhaps have a manual reporting option, making the metadata input
only an ideal for the station and not the truth. This tries back to the device setup category in the previous
results. We do not know enough about the context of the station to even base this conclusion to. This
makes it hard for it to be a dataset to base the ’Availability’ to in the Value Framework.
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Figure 6.13: Station Online/Offline Count over Time Since the Start of the WOW-NL Network

The second part of availability is looking at the whole WOW-NL Network. How many stations are
online over time? The WOWbot is able to extract all the stations in the Netherlands. We manually
changed the portal to different dates and extracted the list of station IDs that were online and offline at
each time.

After looking at the wow-nl network, we saw how the first data stations were added to the network
was on 04 January 2021. This is only 2 years ago. With this information, we chose to look at how the
network for each quarter. Quarters defined as: 1 January, 1 April, 1 July and 1 October. Q1 of 2021 is
the first data where data was available, this is 04 January. In figure 6.13 we can see the results of the
analysis. As we can see, in the beginning of the network, no stations where online and where reporting
information. In the first 3 quarters of 2021 no data was reported on the wow-nl network. In q4 2021
the first batch of stations began reporting. This looks like this was the moment all stations at the same
time were allowed to report information. In Q3 2022 there was a small dip of stations being removed
from the network, after that in Q4 a spike occur reporting the highest stations population size of 1342
Stations in the network. Taking 2021-10 as a starting point, the average ration of online/all stations
equals

Metadata Ratio
2021-10-01 0.499215

2022-01-01 0.497330

2022-04-01 0.504943

2022-07-01 0.538017
2022-10-01 0.455291

2023-01-01 0.476888

2023-04-01 0.466049

2023-05-29 0.481423

Average 0.49

Table 6.1: Ratio of Online Weather Stations in the WOW-NL over time
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The availability of the WOW-NL network has been examined over time. The analysis reveals a
significant amount of unknown information regarding availability. While we have knowledge of the re-
porting time for 57.6% of the network, the frequency of the time series remains undefined. This lack
of information limits our understanding of the temporal resolution of the data. It is important to note
that the WOW-NL network is relatively new, having been established in 2021, with data reporting com-
mencing in the fourth quarter of that year. As a young network, it is expected that there are still ongoing
developments and improvements being made to enhance its functionality and data accessibility. One
notable finding is that, on average, approximately 49% of the stations in the network are online and
available at any given time. This means that about half of the stations may be intermittently or tem-
porarily unavailable over time. Interestingly, this does not align with one of the metadata entries called
“activity” which says that 99.3% of the stations are active. It is worth emphasizing that this unavailability
does not pertain to the same stations consistently, but rather varies among different stations based on
their reporting frequency.

These findings underscore the importance of continuous monitoring and evaluation of network avail-
ability to ensure the reliability and usefulness of the collected data. As the WOW-NL network evolves
and matures, efforts should be directed towards improving data availability and establishing standard-
ized reporting frequencies for a more comprehensive and consistent dataset. This dataset can be for
example be generated by the network based on the connectivity of the devices to their server, making
the result the ground truth and not an ideal. As a second measure, the time series output can also be
checked. Sometimes the station can report only zeros. In this case, the network will again be able to
detect this.



6.4. Credibility 35

6.4. Credibility
Credibility is a hard value to assess. Most of the time, credibility is based on historical evidence of struc-
tured action which lead to good results. If someone has many times in the past showed competence,
it is reasonable to assume the same competence can be expected this time. There is one downside to
credibility, it is very easily lost when not consistent. These are the two factors which define credibility
in our definition as outlined in the method chapter introducing the framework.

1. Historical Evidence
2. Consistency

The same way the analogy of a person in the previous indention holds, the credibility of a PWS can
be treated the same way. Then again, Personal Weather Stations are managed by people, and we are
assessing their credibility to gain information about the quality and value of a particular weather station.
The first thing we are able to get from the metadata we already assemble is the motivation for the
weather station, which should be the reason for the maintainer to manage the station well. Secondly,
for some stations, we have a website that is linked to the project or organization of the person managing
the station. From this, we are able to see what kind of organizations and people have stations. As we
can see in figure 6.14, Waterlab and the TU Delft is a prominent signal in the website database of
stations in the Netherlands. The biggest signal however is the ’mijneigenweer’ website.

Mijneigenweer.nl is a site that offers you the possibility to have a complete plug play weather
website. Your own weather data online on a complete weather website without hassle. The complete
setup including upload of your weather data is arranged by us. This means there are a lot of amateurs
that use this system for their weather station registration.

There are a lot of small websites, as can be seen in figure 6.14. This is because of the uniqueness
of the websites for a personal weather station that is incidentally places by a citizen. For example,
’weerstationziewent’. The format of ”weersation + locationname” can be seen multiple times as format
for the websites.

Figure 6.14: Websites Data of PWS Owners in the Netherlands

Next to the websites, there is also an option to add the name of your organization to the station
metadata. From this database, we are able to also gain a database of organizations that are contributing
to the PWS Network. From all the stations, 23.6% added an organization name to the station. In figure
6.15 the organizations based on frequency are plotted. We can immediately see that the signals are
much clearer on the organizations that are related to the stations in the network. For example, ’VWK’
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(Dutch Society for Meteorology and Climatology), ’Ghent University’ and also again off course ’Delft’
are clearly represented. Next to that, HZ University of Applied Sciences can also be seen. Taking a
look at figure 6.15 will give an overview of the kind of organizations that use the WOW-NL network,
especially when looking at the smaller frequency organizations.

Figure 6.15: Organization Data of PWS Owners in the Netherlands

With this database, we get to know what organizations are managing the stations. To get to a
system to assess the credibility, we need to correlate the value of the stations to the organization or
maintainer of the stations. This way next time we see a station that is managed by an owner that has
a good track record, this will add to the value of that station. This poses a problem, as we have seen
in the previous analyses there is no good understanding of value yet.

This is where the framework for assessing the value of a personal weather station comes in. This
framework gives you 4 other categories to look at that gives us the assessment of value we want. This
means that for the future a more systematic way of managing the other 4 categories of value (Accuracy,
Availability, Uniqueness, Device Setup) will be the base of the Credibility category. The only step to
take from there will be to correlate the value of the station to the users. Giving us a way to determine
the credibility of users based on a track record of consistency.

Something we are able to do at this stage of the PWS network is being resourceful. When we look
at the rating system, it is using 3 metadata entries to base a 5-star rating on. When metadata is not
delivered, this is harshly punished in the rating. In some sense the rating system set in place by the
KNMI is not a value rating or a quality rating but rather a credibility rating. When we look at it in this way,
we can even expand the analysis to all metadata entries. How much has been delivered by the user
about the station, the more it is, the higher the credibility. With this, we can create a proxy for credibility,
even though the official way would be to use the other value categories to determine the value and
correlate it to the users. This still gives a good initial look at how credible the stations are. Note how
the limitation is that each station is seen to be owned by a different person. When we do the analyses,
we get the bar chart in figure 6.16.
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Figure 6.16: Percentage of PWS stations in the Netherlands for a certain amount of missing metadata entries as a bar chart

Interestingly, we do notice how the system created some peculiar results. For example, one of the
stations managed by the TU delft in the water lab project has been found in the system. It is being
managed for a project, which does give the idea that it is a high credible maintainer. But when we look
at its metadata and rating we see how for example station DMR2613 has 5/6 metadata entries missing.
This is an example of a weather station assumed to be credible because a university is maintaining
it, but in real life based on the metadata is not as managed well. To make a conclusion in the future
the framework can be implemented to be able to assess the other 4 categories like discussed in the
previous sections and following correlate these results with the usernames in the network. Therefore,
the ’Credibility’ categories can only be rightly assessed once a good way to determine the value of
station is possible.

Figure 6.17: TU Delft PWS example of missing Metadata entries
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Credibility is an important category within the assessment of weather stations, as it relates to the
perceived value of a station and how it correlates with user trust. This category not only defines the
value of a station but also considers the user’s perspective. It proves particularly useful when users
have multiple stations and one needs to make conclusions about their value without relying solely
on other categories or information. It is worth noting that organizations such as TU Delft and Gent
University, which frequently utilize the network, often assert ownership of specific stations. However,
despite being managed by reputable institutions, it is essential to objectively evaluate these stations
to ensure their credibility. This evaluation becomes particularly relevant when considering instances of
missing metadata, as exemplified by the case of TU Delft in the results chapter.

Objective assessment of stations becomes crucial in verifying their value andmaintaining the overall
credibility of the network. It serves as a means to double-check and validate the information provided
by these organizations. By conducting thorough assessments and addressing any missing or incom-
plete metadata, the network can enhance its reliability and foster greater confidence among users and
stakeholders. However, the condition for assessing credibility is a good base to assessing objective
“Value” of a PWS and then link that to the personas behind the stations.
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Conclusion

Significant progress has been made in developing the basis of a framework to assess the value of
a Personal Weather Station. The research process involved overcoming numerous obstacles, which
have provided valuable insights and lessons for the future development of a more refined PWS network
assessment system. A framework comprising five values—Device Setup, Uniqueness, Availability,
Credibility, and Accuracy—has been developed.

To answer, our first research question: “How do current PWS networks quantify the value of a
PWS station? And how good or reliable is this rating system?” we executed the first ever analysis of a
national PWS network enabled by a web bot for the WOW-NL network. A total of 1031 weather stations
in the Netherlands were successfully extracted using the WOWbot. A database with all the metadata
about the personal weather stations in the Netherlands has been generated, eventually 981 stations
were accessible using the bot even though 1031 were extracted from the map. The database can
be accessed and downloaded for further use at https://github.com/AdilAyi/WOWbot/blob/main/
Final_Database_Metadata_WOWNL.csv.

The identification of challenges and issues within the existing metadata structure has shed light on
areas that require attention and resolution. The resolutions underscore the importance of addressing
ambiguities, inconsistencies, and subjective assessments in the metadata, particularly in relation to the
rating system based on three variables in the current system. Answering the second part of the ques-
tion, we conclude the rating system to be unreliable because of its dependency on 3 main variable, with
the main one to be location, which is unknown 35.7% of the time. The other 2 variables are sensor clas-
sifications that are both unknown as ∼ 40% of the time. When an entry is unknown, the rating penalize
this by removing stars, making the rating not really a quality rating but more of a commitment rating. By
refining these aspects, the network can move closer to a more objective and accurate assessment of
the stations’ value. Recommendation for how to actualize these improvements are discussed in depth
for each value in the discussion subsections in each section, and an explicit feature summary can be
read in table 7.1.
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Where Improvements
Metadata

• Device Model Registration
• Device add-on registration, like a radiation screen.
• Accurate GPS coordinates as basis for all other location based metadata
• Location Particularities: [Roof, Wall, Garden] to clarify ambiguity from the
GPS coordinates

• Citizen Registration with a Profile, so more information about the person
can be gathered about motivation

• Device Maintenance Registration: What was the last time the device has
been recalibrated?

PWS Network

• Track Device Connectivity to Network
• Systemize Accuracy Metrics from the Data Output in the Platform itself
• Gamify the Experience with transparency on the Platform
• Have credibility metrics in the system, leaderboards of users can be one
of the features that not only tracks this but also again increases commit-
ment by the citizens

• Having multiple rating systems, For example by value category as de-
fined in the framework we propose.

Table 7.1: Future Improvements for Weather Citizen Science Networks

With the results of the analysis, we got an overview of all information known about a PWS in net-
works, from which we were able to detect clusters that describe one value of a personal weather station.
From this process we made a framework but also saw clearly how there remain some information gaps.
With the bots, we created proxies to approximate these gaps. Eventually, we were able to answer the
second research question: “How valuable are the personal weather stations in the Netherlands based
on our framework?”. For each Value (except “Accuracy”) a map or a selection can be made based on
metadata or proxies that estimate the value. For example, spatially unique station are calculated based
on a cutoff value from a Nearest Neighbor Analysis. The “availability” of stations over time since the
Q4 2021 has been calculated making selection possible, stations that were live longer therefore have a
higher availability. Devices with or without radiation screen and tipping bucket can be selected. Lastly,
station credibility has been approximated by measuring the amount of missing metadata entries in the
WOW network. Therefore, being able to pick stations based on 8 levels of credibility. Full detailed
assessment of each Value Category can be read in chapter 6.

While the current framework has laid the groundwork, it is important to acknowledge that further
advancements are necessary in the PWS network and the framework itself. For example, in the frame-
work, the definitions of the values are not independent of each other but should be seen as different
aspects of the stations. As an example, ’Accuracy’ is defined as the accuracy of the station weather
data output. Even though it sounds like it is independent of the other values because it is only looking
at the data output, the device setup or the location where the station is (Uniqueness) can cause the ac-
curacy to change drastically based on the literature outlined in “section 6.2”. It is important to know that
a lot of complications for the assessment of the value of a station can be solved by further development
of the device registration in these citizen science networks. The potential is there and with adequate
development these value categories can be assessed more and more accurately in the future.
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The utilization of automated data extraction through the bot has demonstrated its potential in aiding
the extraction of valuable information from citizen science networks like WOW-NL. This technology has
significantly enhanced the efficiency and effectiveness of extracting data from numerous stations, pro-
viding a valuable tool for future research and development. However, “the WOWbot” is only applicable
on the WOW-NL network and is therefore limited to this network. If anything, the results of this thesis
highlight why data transparency for citizen networks is essential. We now had to innovate the wheel to
be able to generate a dataset for all Personal weather stations in the Netherlands, delaying the findings
of inadequate station registrations and metadata definitions for creating a framework to determine the
value of a station. To advance the weather citizen science field, the ’citizen’ should be empowered to
also benefit from the network he is contributing in. This transparency will spur higher quality of citizens
that participate and commitment around the network because of the transparency. Also, the network
maintainer will then have a higher responsibility to improve the quality of their service because of the
social pressure, therefore improving the citizen science field.

Looking ahead, it is crucial to continue building upon the foundations established in this study. Fur-
ther research and improvements should focus on resolving the identified issues, refining the assess-
ment criteria, and enhancing the quality and completeness of the metadata. By doing so, the PWS
network can unlock its untapped potential, offering increased spatial resolution for weather and climate
observations. This progress will contribute to the broader goals of utilizing PWS data for research and
development, ultimately advancing our understanding of weather and climate patterns.
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Future Research:

1. Do the Nearest Neighbor Analysis in section 6.1 for more neighbors(k). Right now, a clustering
of 2 stations in an isolated area is still considered as a station that has a station close by. While
perhaps an average of the nearest neighbor and second neighbor, these stations would still be
considered as unique.

2. In the Land Type Analysis from section 6.2, The Stations could be bordering other land types that
could tell us more information about its uniqueness. For example, a weather stations next to a
railroad would be interesting to look at. Looking at the land cover type that is closest to the station
next to the landcovertype it is on would be an interesting analysis to do.

3. Device Setup still is very vague on what is a good setup and what is bad to base an assessment
of the category on. This is because there is not enough information on the effect of certain add-
ons or setup configurations on the device “value” or directly on the Accuracy. Research on the
Device itself and what would be considered a good device setup for a citizen can help with creating
objective metadata questions when registering on a citizen network.

4. Work needs to be done on how to combine the value categories from the framework. Right now,
the framework is open to subjectivity from the user of the framework. If we are able to tell for
which use case which value category is important, the use of the framework would be improved
because it would not be up to the user to decide (which is prone to potential misjudgment). Right
now, the main use case is for selecting “valuable” Weather stations from a pre-selected population
that could be bound to geographical or temporal filters.
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A
The WOWbot code

Source Code for the WOWbot, also available at https://github.com/AdilAyi/WOWbot
1

2 from selenium import webdriver
3 from selenium.webdriver.common.keys import Keys
4 from selenium.webdriver.common.by import By
5 from selenium.webdriver.support.ui import Select
6 from selenium.webdriver.chrome.service import Service
7 from webdriver_manager.chrome import ChromeDriverManager
8

9 from termcolor import colored
10 from bs4 import BeautifulSoup
11 import random
12 import numpy as np
13 import pandas as pd
14 import pickle
15 import time
16

17 import geopandas as gpd
18 from shapely.geometry import shape,mapping, Point, Polygon, MultiPolygon
19

20 def tableDataText(table):
21 rows = []
22 trs = table.find_all('tr')
23 for tr in trs[1:]: # for every table row
24 rows.append(tr.find_all('td')[0].get_text(strip=True)[-1]) # data row
25 return rows
26

27 def tableDataText2(table):
28 rows = []
29 trs = table.find_all('tr')
30 for tr in trs[1:]: # for every table row
31 rows.append(tr.find_all('td')[1].get_text(strip=True)) # data row
32 return rows
33

34 def get_metadata(all_id, random_sec=0, all_id_old=None):
35 "station_id now be a batch"
36 "Note that all_id and all_id_old must be a list of ids"
37 "random_sec makes it possible to let the bot to simulate human behaviour by having random

 delay in between metadata extraction"
38 "A random_sec of 10 makes it that a random amount of seconds in between 0-10 will be 

taken in between extraction"
39

40 #variable_names as defined in the wow_NL
41 variable_names = ['Station ID',
42 'Positie',
43 'Hoogte (boven zeeniveau)',
44 'Tijdzone',
45 'Actief station',
46 'Data downloaden toegestaan?',
47 'Website',

45

https://github.com/AdilAyi/WOWbot


46

48 'Motivatie station',
49 'Officieel station',
50 'Organisatie',
51 'Ligging',
52 'Meting luchttemperatuur',
53 'Meting neerslag',
54 'Meting wind',
55 'Stedelijke zone',
56 'Waarneemuren',
57 'lat',
58 'lon',
59 'star_rating',
60 'description',
61 'extra_info']
62

63 #initialize dataset
64 df = pd.DataFrame(columns=variable_names)
65 ids_error = []
66

67 #NL shape
68 NL_shp = gpd.read_file("shapefile/nl_10km.shp")
69 NL_shp = NL_shp.to_crs(4326) #change rd to wg84 crs:4326
70

71 j=0
72 for station_id in all_id:
73 if station_id not in all_id_old:
74 try:
75 #setup driver
76 #PATH = "C:\Program Files (x86)\chromedriver.exe"
77 #driver = webdriver.Chrome(PATH)
78 op = webdriver.ChromeOptions()
79 op.add_argument('headless') #so it only happens in the console and the

website does not get opened
80

81 driver = webdriver.Chrome(service=Service(ChromeDriverManager().install()),
options=op)

82 driver.maximize_window()
83

84 #go to site
85 driver.get("https://wow.knmi.nl/#"+station_id)
86

87 #get coordinates
88 time.sleep(1)
89 l = driver.find_element(By.XPATH, '//*[@id="myModalLabel"]/span[3]')
90 lat, lon = float(l.text.split(',')[0]), float(l.text.split(',')[1])
91

92 point = Point(lon, lat) # longitude, latitude
93

94 # Alternative: if point.within(shape)
95 if any(NL_shp.contains(point)):#check if in NL polygon
96 #go to metadata page
97 l2 = driver.find_element(By.XPATH, '//*[@id="modal"]/div[2]/div/div[2]/ul

/li[4]')
98 l2.click()
99

100 #get soup
101 second_soup = BeautifulSoup(driver.page_source, 'html.parser')
102

103 #TABLE OF GENERAL DATA
104 subset = second_soup.find('div', attrs={'class':'site-details'})
105 table2 = subset.find('table', attrs={'class':'table table-striped'})
106

107 #TABLE OF METADATA
108 table = second_soup.find('table', attrs={'class':'table table-striped 

location-attributes'})
109

110 #STAR RATING
111 star_rating = len(second_soup.find_all('i', attrs={'class':'fa rating fa-

star'}))
112

113 #TEXT
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114 beschrijving = second_soup.find('p', attrs={'data-property': 'site.
description'}).get_text()

115 extra_info = second_soup.find('p', attrs={'data-property': 'site.
additional_information'}).get_text()

116

117 #extracted data
118 list_table = tableDataText2(table2) + tableDataText(table) + [lat, lon,

star_rating, beschrijving, extra_info]
119 #print(colored(list_table, 'red'))
120 #print(colored(variable_names, 'red'))
121 #print(len(list_table) == variable_names)
122

123 #add to dataset and report progress in prompt
124 print(colored(f"Added station: {station_id}", 'green'))
125 print(colored(f"PROGRESS:  {j+1}/{len(all_id)}",'yellow'))
126

127 #save dataset to csv
128 df.loc[station_id] = list_table
129

130 #driver quit to reset the state
131 driver.quit()
132

133 #every 50 stations save
134 if j%50 == 0:
135 df.to_csv(f"NL_WOW_METADATA.csv")
136 j+=1
137

138 #random behaviour after extraction if needed
139 if random_sec > 0:
140 time.sleep(random.randint(1, random_sec))
141

142 except:
143 with open("ids_error.txt", "w") as f: #save ids with error to a file that

assembles all error codes
144 f.write(station_id +"\n")
145

146

147 #save last df with date and time
148 t = time.localtime()
149 current_time = time.strftime("%Y%m%d_%Hh%Mm", t)
150

151 df.to_csv(f"data_extracted/NL_WOW_METADATA_{current_time}.csv")
152 print(colored("DATA SAVED IN NL_WOW_METADATA.csv", "green"))
153

154 return df
155

156

157 #all_id = ['010c7bab-c21f-e911-9462-0003ff5972a6', '81b8a6b0-4110-ed11-b5cf-0003ff5962a8',
'44938373-9478-ed11-97b0-0003ff59730c', '12e7004b-1926-ed11-b5cf-0003ff59a71f', '6da1db89
-2b5e-ea11-b698-0003ff599880', '9ffd043e-4a57-e711-9400-0003ff596cbf', '924726001']

158 all_id = np.loadtxt('station_ids.txt', dtype='str').tolist()
159 get_metadata(all_id) #execute
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Requirements.txt
1 alabaster @ file:///home/ktietz/src/ci/alabaster_1611921544520/work
2 anaconda-client==1.11.0
3 anaconda-navigator==2.3.1
4 anaconda-project @ file:///C:/Windows/TEMP/abs_91fu4tfkih/croots/recipe/anaconda-

project_1660339890874/work
5 anyio @ file:///C:/ci/anyio_1644481921011/work/dist
6 appdirs==1.4.4
7 argon2-cffi @ file:///opt/conda/conda-bld/argon2-cffi_1645000214183/work
8 argon2-cffi-bindings @ file:///C:/ci/argon2-cffi-bindings_1644551690056/work
9 arrow @ file:///opt/conda/conda-bld/arrow_1649166651673/work
10 astroid @ file:///C:/Windows/TEMP/abs_b0dtxgpicv/croots/recipe/astroid_1659023126745/work
11 astropy @ file:///C:/ci/astropy_1657719656942/work
12 async-generator==1.10
13 atomicwrites==1.4.0
14 attrs @ file:///opt/conda/conda-bld/attrs_1642510447205/work
15 Automat @ file:///tmp/build/80754af9/automat_1600298431173/work
16 autopep8 @ file:///opt/conda/conda-bld/autopep8_1650463822033/work
17 Babel @ file:///tmp/build/80754af9/babel_1620871417480/work
18 backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work
19 backports.functools-lru-cache @ file:///tmp/build/80754af9/backports.

functools_lru_cache_1618170165463/work
20 backports.tempfile @ file:///home/linux1/recipes/ci/backports.tempfile_1610991236607/work
21 backports.weakref==1.0.post1
22 bcrypt @ file:///C:/Windows/Temp/abs_36kl66t_aw/croots/recipe/bcrypt_1659554334050/work
23 beautifulsoup4 @ file:///C:/ci/beautifulsoup4_1650293025093/work
24 binaryornot @ file:///tmp/build/80754af9/binaryornot_1617751525010/work
25 bitarray @ file:///C:/ci/bitarray_1657729621682/work
26 bkcharts==0.2
27 black @ file:///C:/ci/black_1660239974023/work
28 bleach @ file:///opt/conda/conda-bld/bleach_1641577558959/work
29 bokeh @ file:///C:/Windows/TEMP/abs_4a259bc2-ed05-4a1f-808e-ac712cc0900cddqp8sp7/croots/

recipe/bokeh_1658136660686/work
30 boto3 @ file:///C:/Windows/TEMP/abs_4009c406 -44ba-4406-8996-204d9b11202flt4kglbk/croots/

recipe/boto3_1657820114895/work
31 botocore @ file:///C:/ci/botocore_1657735875454/work
32 Bottleneck @ file:///C:/Windows/Temp/abs_3198ca53 -903d-42fd-87b4-03e6d03a8381yfwsuve8/croots/

recipe/bottleneck_1657175565403/work
33 brotlipy==0.7.0
34 certifi @ file:///C:/b/abs_4f5wo627a3/croots/recipe/certifi_1663615677642/work/certifi
35 cffi @ file:///C:/Windows/Temp/abs_6808y9x40v/croots/recipe/cffi_1659598653989/work
36 chardet @ file:///C:/ci/chardet_1607706937985/work
37 charset-normalizer @ file:///tmp/build/80754af9/charset-normalizer_1630003229654/work
38 click @ file:///C:/ci/click_1646038595831/work
39 click-plugins==1.1.1
40 cligj==0.7.2
41 cloudpickle @ file:///tmp/build/80754af9/cloudpickle_1632508026186/work
42 clyent==1.2.2
43 colorama @ file:///C:/Windows/TEMP/abs_9439aeb1 -0254-449a-96f7-33ab5eb17fc8apleb4yn/croots/

recipe/colorama_1657009099097/work
44 colorcet @ file:///C:/ci/colorcet_1651851676912/work
45 comtypes==1.1.10
46 conda==23.1.0
47 conda-build==3.22.0
48 conda-content-trust @ file:///C:/Windows/TEMP/abs_4589313d-fc62-4ccc-81c0-

b801b4449e833j1ajrwu/croots/recipe/conda-content-trust_1658126379362/work
49 conda-pack @ file:///tmp/build/80754af9/conda-pack_1611163042455/work
50 conda-package-handling @ file:///C:/b/abs_fcga8w0uem/croot/conda-package-

handling_1672865024290/work
51 conda-repo-cli==1.0.27
52 conda-token @ file:///Users/paulyim/miniconda3/envs/c3i/conda-bld/conda-token_1662660369760/

work
53 conda-verify==3.4.2
54 conda_package_streaming @ file:///C:/b/abs_0e5n5hdal3/croot/conda-package-

streaming_1670508162902/work
55 constantly==15.1.0
56 cookiecutter @ file:///opt/conda/conda-bld/cookiecutter_1649151442564/work
57 cryptography @ file:///C:/ci/cryptography_1652083563162/work
58 cssselect==1.1.0
59 cycler @ file:///tmp/build/80754af9/cycler_1637851556182/work
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60 Cython @ file:///C:/b/abs_0438epndxm/croots/recipe/cython_1663692771227/work
61 cytoolz==0.11.0
62 daal4py==2021.6.0
63 dask @ file:///C:/ci/dask-core_1658515307198/work
64 datashader @ file:///C:/Windows/TEMP/abs_62cyd2dpuf/croots/recipe/datashader_1659349034750/

work
65 datashape==0.5.4
66 debugpy @ file:///C:/ci/debugpy_1637091961445/work
67 decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work
68 defusedxml @ file:///tmp/build/80754af9/defusedxml_1615228127516/work
69 diff-match-patch @ file:///Users/ktietz/demo/mc3/conda-bld/diff-match-patch_1630511840874/

work
70 dill @ file:///tmp/build/80754af9/dill_1623919422540/work
71 distributed @ file:///C:/ci/distributed_1658505715201/work
72 docutils @ file:///C:/Windows/TEMP/abs_24e5e278 -4d1c-47eb-97b9-f761d871f482dy2vg450/croots/

recipe/docutils_1657175444608/work
73 entrypoints @ file:///C:/ci/entrypoints_1649926621128/work
74 et-xmlfile==1.1.0
75 exceptiongroup==1.1.0
76 fastjsonschema @ file:///C:/Users/BUILDE~1/AppData/Local/Temp/abs_ebruxzvd08/croots/recipe/

python-fastjsonschema_1661376484940/work
77 filelock @ file:///opt/conda/conda-bld/filelock_1647002191454/work
78 Fiona==1.9.0
79 flake8 @ file:///opt/conda/conda-bld/flake8_1648129545443/work
80 Flask @ file:///home/ktietz/src/ci/flask_1611932660458/work
81 fonttools==4.25.0
82 fsspec @ file:///C:/Windows/TEMP/abs_a2mhnomvfy/croots/recipe/fsspec_1659972224540/work
83 future @ file:///C:/ci/future_1607568713721/work
84 gensim @ file:///C:/ci/gensim_1646825438310/work
85 geopandas==0.12.2
86 glob2 @ file:///home/linux1/recipes/ci/glob2_1610991677669/work
87 greenlet @ file:///C:/ci/greenlet_1628888275363/work
88 h11==0.14.0
89 h5py @ file:///C:/ci/h5py_1659089875384/work
90 HeapDict @ file:///Users/ktietz/demo/mc3/conda-bld/heapdict_1630598515714/work
91 holoviews @ file:///C:/Windows/TEMP/abs_fb9d2988 -9681-46b6-b9ab-190cfecd15d7uinyq_4z/croots/

recipe/holoviews_1658171511842/work
92 hvplot @ file:///C:/Windows/TEMP/abs_02zoq6lck3/croots/recipe/hvplot_1659026502064/work
93 hyperlink @ file:///tmp/build/80754af9/hyperlink_1610130746837/work
94 idna @ file:///tmp/build/80754af9/idna_1637925883363/work
95 imagecodecs @ file:///C:/b/abs_948ub5byiu/croots/recipe/imagecodecs_1664562381493/work
96 imageio @ file:///C:/Windows/TEMP/abs_24c1b783 -7540-4ca9-a1b1-0e8aa8e6ae64hb79ssux/croots/

recipe/imageio_1658785038775/work
97 imagesize @ file:///C:/Windows/TEMP/abs_3cecd249 -3fc4-4bfc-b80b-bb227b0d701en12vqzot/croots/

recipe/imagesize_1657179501304/work
98 importlib-metadata @ file:///C:/ci/importlib-metadata_1648562621412/work
99 incremental @ file:///tmp/build/80754af9/incremental_1636629750599/work
100 inflection==0.5.1
101 iniconfig @ file:///home/linux1/recipes/ci/iniconfig_1610983019677/work
102 intake @ file:///opt/conda/conda-bld/intake_1647436631684/work
103 intervaltree @ file:///Users/ktietz/demo/mc3/conda-bld/intervaltree_1630511889664/work
104 ipykernel @ file:///C:/b/abs_21ykzkm7y_/croots/recipe/ipykernel_1662361803478/work
105 ipython @ file:///C:/Windows/TEMP/abs_45b5zb1l7q/croots/recipe/ipython_1659529855872/work
106 ipython-genutils @ file:///tmp/build/80754af9/ipython_genutils_1606773439826/work
107 ipywidgets @ file:///tmp/build/80754af9/ipywidgets_1634143127070/work
108 isort @ file:///tmp/build/80754af9/isort_1628603791788/work
109 itemadapter @ file:///tmp/build/80754af9/itemadapter_1626442940632/work
110 itemloaders @ file:///opt/conda/conda-bld/itemloaders_1646805235997/work
111 itsdangerous @ file:///tmp/build/80754af9/itsdangerous_1621432558163/work
112 jdcal @ file:///Users/ktietz/demo/mc3/conda-bld/jdcal_1630584345063/work
113 jedi @ file:///C:/ci/jedi_1644315428289/work
114 jellyfish @ file:///C:/ci/jellyfish_1647962783748/work
115 Jinja2 @ file:///tmp/build/80754af9/jinja2_1612213139570/work
116 jinja2-time @ file:///opt/conda/conda-bld/jinja2-time_1649251842261/work
117 jmespath @ file:///Users/ktietz/demo/mc3/conda-bld/jmespath_1630583964805/work
118 joblib @ file:///tmp/build/80754af9/joblib_1635411271373/work
119 json5 @ file:///tmp/build/80754af9/json5_1624432770122/work
120 jsonschema @ file:///C:/b/abs_59eyhnbyej/croots/recipe/jsonschema_1663375476535/work
121 jupyter @ file:///C:/Windows/TEMP/abs_56xfdi__li/croots/recipe/jupyter_1659349053177/work
122 jupyter-console @ file:///opt/conda/conda-bld/jupyter_console_1647002188872/work
123 jupyter-server @ file:///C:/Windows/TEMP/abs_d3c42c59 -765d-4f9b-9fa3-ad5b1369485611i_yual/
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croots/recipe/jupyter_server_1658754493238/work
124 jupyter_client @ file:///C:/ci/jupyter_client_1661836943389/work
125 jupyter_core @ file:///C:/b/abs_a9330r1z_i/croots/recipe/jupyter_core_1664917313457/work
126 jupyterlab @ file:///C:/ci/jupyterlab_1658891142428/work
127 jupyterlab-pygments @ file:///tmp/build/80754af9/jupyterlab_pygments_1601490720602/work
128 jupyterlab-server @ file:///opt/conda/conda-bld/jupyterlab_server_1644500396812/work
129 jupyterlab-widgets @ file:///tmp/build/80754af9/jupyterlab_widgets_1609884341231/work
130 keyring @ file:///C:/ci/keyring_1638531673471/work
131 kiwisolver @ file:///C:/ci/kiwisolver_1653292407425/work
132 lazy-object-proxy @ file:///C:/ci/lazy-object-proxy_1616529288960/work
133 libarchive-c @ file:///tmp/build/80754af9/python-libarchive-c_1617780486945/work
134 llvmlite==0.38.0
135 locket @ file:///C:/ci/locket_1652904031364/work
136 lxml @ file:///C:/ci/lxml_1657527445690/work
137 lz4 @ file:///C:/ci/lz4_1619516674350/work
138 Markdown @ file:///C:/ci/markdown_1614364082838/work
139 MarkupSafe @ file:///C:/ci/markupsafe_1621528502553/work
140 matplotlib @ file:///C:/ci/matplotlib-suite_1660169687702/work
141 matplotlib-inline @ file:///C:/ci/matplotlib-inline_1661915841596/work
142 mccabe==0.6.1
143 menuinst @ file:///C:/Users/BUILDE~1/AppData/Local/Temp/abs_455sf5o0ct/croots/recipe/

menuinst_1661805970842/work
144 mistune @ file:///C:/ci/mistune_1607359457024/work
145 mkl-fft==1.3.1
146 mkl-random @ file:///C:/ci/mkl_random_1626186184308/work
147 mkl-service==2.4.0
148 mock @ file:///tmp/build/80754af9/mock_1607622725907/work
149 mpmath==1.2.1
150 msgpack @ file:///C:/ci/msgpack-python_1652329316214/work
151 multipledispatch @ file:///C:/ci/multipledispatch_1607574329826/work
152 munch==2.5.0
153 munkres==1.1.4
154 mypy-extensions==0.4.3
155 navigator-updater==0.3.0
156 nbclassic @ file:///opt/conda/conda-bld/nbclassic_1644943264176/work
157 nbclient @ file:///C:/ci/nbclient_1650290387259/work
158 nbconvert @ file:///C:/ci/nbconvert_1649741016669/work
159 nbformat @ file:///C:/b/abs_1dw90o2uqb/croots/recipe/nbformat_1663744957967/work
160 nest-asyncio @ file:///C:/ci/nest-asyncio_1649829929390/work
161 networkx @ file:///C:/ci/networkx_1657716998256/work
162 nltk @ file:///opt/conda/conda-bld/nltk_1645628263994/work
163 nose @ file:///opt/conda/conda-bld/nose_1642704612149/work
164 notebook @ file:///C:/Windows/TEMP/abs_79abr1_60s/croots/recipe/notebook_1659083661851/work
165 numba @ file:///C:/ci/numba_1650394399948/work
166 numexpr @ file:///C:/Windows/Temp/abs_e2036a32 -9fe9-47f3-a04c-dbb1c232ba4b334exiur/croots/

recipe/numexpr_1656940304835/work
167 numpy @ file:///C:/ci/numpy_and_numpy_base_1653574844560/work
168 numpydoc @ file:///C:/Windows/TEMP/abs_30799058 -86dd-4401-b621-d172137a4d87_ra3twm7/croots/

recipe/numpydoc_1657529873713/work
169 olefile @ file:///Users/ktietz/demo/mc3/conda-bld/olefile_1629805411829/work
170 opencv-python==4.7.0.72
171 openpyxl==3.0.10
172 outcome==1.2.0
173 packaging @ file:///tmp/build/80754af9/packaging_1637314298585/work
174 pandas @ file:///C:/b/abs_cdcgk91igc/croots/recipe/pandas_1663772960432/work
175 pandocfilters @ file:///opt/conda/conda-bld/pandocfilters_1643405455980/work
176 panel @ file:///C:/ci/panel_1657899702145/work
177 param @ file:///tmp/build/80754af9/param_1636647414893/work
178 paramiko @ file:///opt/conda/conda-bld/paramiko_1640109032755/work
179 parsel @ file:///C:/ci/parsel_1646740216444/work
180 parso @ file:///opt/conda/conda-bld/parso_1641458642106/work
181 partd @ file:///opt/conda/conda-bld/partd_1647245470509/work
182 pathlib @ file:///Users/ktietz/demo/mc3/conda-bld/pathlib_1629713961906/work
183 pathspec @ file:///C:/Windows/TEMP/abs_581d0u45mh/croots/recipe/pathspec_1659627132171/work
184 patsy==0.5.2
185 pep8==1.7.1
186 pexpect @ file:///tmp/build/80754af9/pexpect_1605563209008/work
187 pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work
188 Pillow==9.2.0
189 pkginfo @ file:///tmp/build/80754af9/pkginfo_1643162084911/work
190 platformdirs @ file:///C:/b/abs_73cc5cz_1u/croots/recipe/platformdirs_1662711386458/work
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191 plotly @ file:///C:/ci/plotly_1658142442431/work
192 pluggy @ file:///C:/ci/pluggy_1648024580010/work
193 poyo @ file:///tmp/build/80754af9/poyo_1617751526755/work
194 prometheus-client @ file:///C:/Windows/TEMP/abs_ab9nx8qb08/croots/recipe/

prometheus_client_1659455104602/work
195 prompt-toolkit @ file:///tmp/build/80754af9/prompt-toolkit_1633440160888/work
196 Protego @ file:///tmp/build/80754af9/protego_1598657180827/work
197 psutil @ file:///C:/Windows/Temp/abs_b2c2fd7f -9fd5-4756-95ea-8aed74d0039flsd9qufz/croots/

recipe/psutil_1656431277748/work
198 ptyprocess @ file:///tmp/build/80754af9/ptyprocess_1609355006118/work/dist/ptyprocess -0.7.0-

py2.py3-none-any.whl
199 py @ file:///opt/conda/conda-bld/py_1644396412707/work
200 pyasn1 @ file:///Users/ktietz/demo/mc3/conda-bld/pyasn1_1629708007385/work
201 pyasn1-modules==0.2.8
202 pycodestyle @ file:///tmp/build/80754af9/pycodestyle_1636635402688/work
203 pycosat==0.6.3
204 pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work
205 pyct @ file:///C:/ci/pyct_1658488033428/work
206 pycurl==7.45.1
207 PyDispatcher==2.0.5
208 pydocstyle @ file:///tmp/build/80754af9/pydocstyle_1621600989141/work
209 pyerfa @ file:///C:/ci/pyerfa_1621560974055/work
210 pyflakes @ file:///tmp/build/80754af9/pyflakes_1636644436481/work
211 Pygments @ file:///opt/conda/conda-bld/pygments_1644249106324/work
212 PyHamcrest @ file:///tmp/build/80754af9/pyhamcrest_1615748656804/work
213 PyJWT @ file:///C:/ci/pyjwt_1657511236979/work
214 pylint @ file:///C:/Windows/TEMP/abs_518eqlbmoo/croots/recipe/pylint_1659110354241/work
215 pyls-spyder==0.4.0
216 PyNaCl @ file:///C:/Windows/Temp/abs_d5c3ajcm87/croots/recipe/pynacl_1659620667490/work
217 pyodbc @ file:///C:/Windows/Temp/abs_61e3jz3u05/croots/recipe/pyodbc_1659513801402/work
218 pyOpenSSL @ file:///opt/conda/conda-bld/pyopenssl_1643788558760/work
219 pyparsing @ file:///C:/Users/BUILDE~1/AppData/Local/Temp/abs_7f_7lba6rl/croots/recipe/

pyparsing_1661452540662/work
220 pyproj==3.4.1
221 pyrsistent @ file:///C:/ci/pyrsistent_1636093225342/work
222 PySocks @ file:///C:/ci/pysocks_1605307512533/work
223 pytest==7.1.2
224 python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work
225 python-dotenv==1.0.0
226 python-lsp-black @ file:///tmp/build/80754af9/python-lsp-black_1634232156041/work
227 python-lsp-jsonrpc==1.0.0
228 python-lsp-server @ file:///tmp/build/80754af9/python-lsp-server_1648176833691/work
229 python-slugify @ file:///tmp/build/80754af9/python-slugify_1620405669636/work
230 python-snappy @ file:///C:/ci/python-snappy_1610133405910/work
231 pytz @ file:///C:/Windows/TEMP/abs_90eacd4e -8eff-491e-b26e-f707eba2cbe1ujvbhqz1/croots/recipe

/pytz_1654762631027/work
232 pyviz-comms @ file:///tmp/build/80754af9/pyviz_comms_1623747165329/work
233 PyWavelets @ file:///C:/ci/pywavelets_1648728084106/work
234 pywin32==302
235 pywin32-ctypes @ file:///C:/ci/pywin32-ctypes_1607553594546/work
236 pywinpty @ file:///C:/ci_310/pywinpty_1644230983541/work/target/wheels/pywinpty -2.0.2-cp39-

none-win_amd64.whl
237 PyYAML==6.0
238 pyzmq @ file:///C:/ci/pyzmq_1657615952984/work
239 QDarkStyle @ file:///tmp/build/80754af9/qdarkstyle_1617386714626/work
240 qstylizer @ file:///tmp/build/80754af9/qstylizer_1617713584600/work/dist/qstylizer -0.1.10-py2

.py3-none-any.whl
241 QtAwesome @ file:///tmp/build/80754af9/qtawesome_1637160816833/work
242 qtconsole @ file:///opt/conda/conda-bld/qtconsole_1643819126524/work
243 QtPy @ file:///C:/ci/qtpy_1662015096047/work
244 queuelib==1.5.0
245 regex @ file:///C:/ci/regex_1658258307256/work
246 requests @ file:///C:/ci/requests_1657735342357/work
247 requests-file @ file:///Users/ktietz/demo/mc3/conda-bld/requests-file_1629455781986/work
248 rope @ file:///opt/conda/conda-bld/rope_1643788605236/work
249 Rtree @ file:///C:/ci/rtree_1618421015405/work
250 ruamel-yaml-conda @ file:///C:/ci/ruamel_yaml_1616016898638/work
251 ruamel.yaml @ file:///C:/b/abs_30ee5qbthd/croot/ruamel.yaml_1666304562000/work
252 ruamel.yaml.clib @ file:///C:/b/abs_aarblxbilo/croot/ruamel.yaml.clib_1666302270884/work
253 s3transfer @ file:///C:/ci/s3transfer_1654512518418/work
254 scikit-image @ file:///C:/ci/scikit-image_1648214340990/work
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255 scikit-learn @ file:///C:/ci/scikit-learn_1642617276183/work
256 scikit-learn-intelex==2021.20221004.171935
257 scipy==1.9.1
258 Scrapy @ file:///C:/Windows/TEMP/abs_f50e21j997/croots/recipe/scrapy_1659598707153/work
259 seaborn @ file:///tmp/build/80754af9/seaborn_1629307859561/work
260 selenium==4.8.2
261 Send2Trash @ file:///tmp/build/80754af9/send2trash_1632406701022/work
262 service-identity @ file:///Users/ktietz/demo/mc3/conda-bld/service_identity_1629460757137/

work
263 shapely==2.0.1
264 sip==4.19.13
265 six @ file:///tmp/build/80754af9/six_1644875935023/work
266 smart-open @ file:///C:/ci/smart_open_1651235069716/work
267 sniffio @ file:///C:/ci/sniffio_1614030527509/work
268 snowballstemmer @ file:///tmp/build/80754af9/snowballstemmer_1637937080595/work
269 sortedcollections @ file:///tmp/build/80754af9/sortedcollections_1611172717284/work
270 sortedcontainers @ file:///tmp/build/80754af9/sortedcontainers_1623949099177/work
271 soupsieve @ file:///tmp/build/80754af9/soupsieve_1636706018808/work
272 Sphinx @ file:///C:/ci/sphinx_1657617205740/work
273 sphinxcontrib-applehelp @ file:///home/ktietz/src/ci/sphinxcontrib-applehelp_1611920841464/

work
274 sphinxcontrib-devhelp @ file:///home/ktietz/src/ci/sphinxcontrib-devhelp_1611920923094/work
275 sphinxcontrib-htmlhelp @ file:///tmp/build/80754af9/sphinxcontrib-htmlhelp_1623945626792/work
276 sphinxcontrib-jsmath @ file:///home/ktietz/src/ci/sphinxcontrib-jsmath_1611920942228/work
277 sphinxcontrib-qthelp @ file:///home/ktietz/src/ci/sphinxcontrib-qthelp_1611921055322/work
278 sphinxcontrib-serializinghtml @ file:///tmp/build/80754af9/sphinxcontrib-

serializinghtml_1624451540180/work
279 spyder @ file:///C:/Windows/TEMP/abs_66k5aq_mkw/croots/recipe/spyder_1659599805372/work
280 spyder-kernels @ file:///C:/ci/spyder-kernels_1647011408404/work
281 SQLAlchemy @ file:///C:/Windows/Temp/abs_f8661157 -660b-49bb-a790-69ab9f3b8f7c8a8s2psb/croots/

recipe/sqlalchemy_1657867864564/work
282 statsmodels==0.13.2
283 stop-words==2018.7.23
284 sympy @ file:///C:/ci/sympy_1647853873858/work
285 tables==3.6.1
286 tabulate @ file:///C:/ci/tabulate_1657619055201/work
287 TBB==0.2
288 tblib @ file:///Users/ktietz/demo/mc3/conda-bld/tblib_1629402031467/work
289 tenacity @ file:///C:/Windows/TEMP/abs_980d07a6 -8e21-4174-9c17-7296219678ads7dhdov_/croots/

recipe/tenacity_1657899108023/work
290 termcolor==2.2.0
291 terminado @ file:///C:/ci/terminado_1644322780199/work
292 testpath @ file:///C:/Windows/TEMP/abs_23c7fa33-cbb9-46dc-b7c5-590c38e2de3d4bmbngal/croots/

recipe/testpath_1655908553202/work
293 text-unidecode @ file:///Users/ktietz/demo/mc3/conda-bld/text-unidecode_1629401354553/work
294 textdistance @ file:///tmp/build/80754af9/textdistance_1612461398012/work
295 threadpoolctl @ file:///Users/ktietz/demo/mc3/conda-bld/threadpoolctl_1629802263681/work
296 three-merge @ file:///tmp/build/80754af9/three-merge_1607553261110/work
297 tifffile @ file:///tmp/build/80754af9/tifffile_1627275862826/work
298 tinycss @ file:///tmp/build/80754af9/tinycss_1617713798712/work
299 tldextract @ file:///opt/conda/conda-bld/tldextract_1646638314385/work
300 toml @ file:///tmp/build/80754af9/toml_1616166611790/work
301 tomli @ file:///C:/Windows/TEMP/abs_ac109f85-a7b3-4b4d-bcfd-52622eceddf0hy332ojo/croots/

recipe/tomli_1657175513137/work
302 tomlkit @ file:///C:/Windows/TEMP/abs_3296qo9v6b/croots/recipe/tomlkit_1658946894808/work
303 toolz @ file:///tmp/build/80754af9/toolz_1636545406491/work
304 tornado @ file:///C:/ci/tornado_1606924294691/work
305 tqdm @ file:///C:/b/abs_0axbz66qik/croots/recipe/tqdm_1664392691071/work
306 traitlets @ file:///tmp/build/80754af9/traitlets_1636710298902/work
307 trio==0.22.0
308 trio-websocket==0.9.2
309 Twisted @ file:///C:/Windows/Temp/abs_ccblv2rzfa/croots/recipe/twisted_1659592764512/work
310 twisted-iocpsupport @ file:///C:/ci/twisted-iocpsupport_1646798932792/work
311 typing_extensions @ file:///C:/Windows/TEMP/abs_dd2d0moa85/croots/recipe/

typing_extensions_1659638831135/work
312 ujson @ file:///C:/ci/ujson_1657525944442/work
313 Unidecode @ file:///tmp/build/80754af9/unidecode_1614712377438/work
314 urllib3 @ file:///C:/Windows/TEMP/abs_65ynz4fdmi/croots/recipe/urllib3_1659110473919/work
315 w3lib @ file:///Users/ktietz/demo/mc3/conda-bld/w3lib_1629359764703/work
316 watchdog @ file:///C:/ci/watchdog_1638367441841/work
317 wcwidth @ file:///Users/ktietz/demo/mc3/conda-bld/wcwidth_1629357192024/work
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318 webdriver-manager==3.8.5
319 webencodings==0.5.1
320 websocket-client @ file:///C:/ci/websocket-client_1614804375980/work
321 Werkzeug @ file:///opt/conda/conda-bld/werkzeug_1645628268370/work
322 widgetsnbextension @ file:///C:/ci/widgetsnbextension_1644991377168/work
323 win-inet-pton @ file:///C:/ci/win_inet_pton_1605306162074/work
324 win-unicode-console==0.5
325 wincertstore==0.2
326 wordcloud==1.8.2.2
327 wrapt @ file:///C:/Windows/Temp/abs_7c3dd407 -1390-477a-b542-fd15df6a24085_diwiza/croots/

recipe/wrapt_1657814452175/work
328 wsproto==1.2.0
329 xarray @ file:///opt/conda/conda-bld/xarray_1639166117697/work
330 xlrd @ file:///tmp/build/80754af9/xlrd_1608072521494/work
331 XlsxWriter @ file:///opt/conda/conda-bld/xlsxwriter_1649073856329/work
332 xlwings @ file:///C:/b/abs_41rmpiyy58/croots/recipe/xlwings_1664932818417/work
333 yapf @ file:///tmp/build/80754af9/yapf_1615749224965/work
334 zict==2.1.0
335 zipp @ file:///C:/ci/zipp_1652273994994/work
336 zope.interface @ file:///C:/ci/zope.interface_1625036252485/work
337 zstandard==0.18.0
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Analysis Source Code

Analysis of the PWS Network in the Netherlands
1 # %%
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import numpy as np
5 import plotly.express as px
6

7 # %%
8 station = np.loadtxt('official_station.txt', delimiter="    ", dtype='str')
9

10 # %%
11 df = pd.read_csv('NL_WOW_METADATA.csv')#('backup_extraction.csv')
12

13 # %%
14 replace_dict = {'Zeer open':'Very open', 'Open':'Open', 'Standaard':'Standard', 'Beperkt':'

Restricted', 'Beschut':'Sheltered', 'Zeer Beschut':'Very Sheltered', 'Rooftop':'Rooftop',
"Traffic":"Traffic", 'Unknown':"Unknown"}#{'5':'Very open', '4':'Open', '3':'Standard',

'2':'Restricted', '1':'Sheltered', '0':'Very Sheltered' , 'R':'Rooftop', "T":"Traffic", '
U':"Unknown"}

15 replace_dict_before = {"l":'U'}
16

17 df = df.replace({"Meting luchttemperatuur": replace_dict_before , "Meting neerslag":
replace_dict_before , "Meting wind":replace_dict_before , "Stedelijke zone":
replace_dict_before , "Waarneemuren":replace_dict_before , "Ligging":replace_dict_before})

18 df = df.replace({"Ligging": replace_dict})
19

20 # %%
21 def pie_plot(df, column, name=''):
22 sizes = df[column].value_counts().sort_index() / df[column].value_counts().sum() * 100
23

24 colours = {'1': 'C0',
25 '2': 'C1',
26 '3': 'C2',
27 '4': 'C3',
28 '5': 'C4',
29 '6': 'C5',
30 '7': 'C6',
31 'U': 'C7',
32 'A': 'C8',
33 'B': 'C9',
34 'C': 'C10',
35 'D': 'C11',
36 '0': 'C12',
37 'Unknown': 'C7'}
38

39 labels = sorted(df[column].unique())
40

41 #print(sorted(labels), [colours[key] for key in labels])
42

43 plt.pie(sizes,
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44 autopct='%1.1f%%', startangle=140, pctdistance=1.1, labeldistance=1.2,
45 colors=[colours[key] for key in labels])
46 plt.axis('equal')
47 plt.legend(sizes.index, loc="best", title='Category')
48

49 if name != '':
50 plt.title(name)
51 else:
52 plt.title(column)
53

54 plt.tight_layout()
55 plt.show()
56 return None
57

58 # %%
59 def pie_plot2(df, column, name=''):
60 sizes = df[column].value_counts().sort_index() / df[column].value_counts().sum() * 100
61

62 plt.pie(sizes,
63 autopct='%1.1f%%', startangle=140, pctdistance=1.1, labeldistance=1.2)
64 plt.axis('equal')
65 plt.legend(sizes.index, loc="best", title='Category')
66

67 if name != '':
68 plt.title(name)
69 else:
70 plt.title(column)
71 plt.tight_layout()
72 plt.show()
73 return None
74

75 # %%
76 metadata_columns = df.columns[11:-5]
77

78 # %%
79 lowerdf = df[df["star_rating"] <= 2]
80 clean_lowerdf = lowerdf[metadata_columns].replace("Unknown", 'U').melt()
81

82 # %%
83 pie_plot2(df, 'Ligging', 'Location')
84

85 # %%
86 pie_plot(df, 'Waarneemuren', 'Observation Time')
87

88 # %%
89 pie_plot(df, 'Stedelijke zone', 'Urban area')
90 pie_plot(df, 'Meting luchttemperatuur', 'Air temperature')
91 pie_plot(df, 'Meting neerslag', 'Precipitation')
92 pie_plot(df, 'Meting wind', 'Wind')
93 pie_plot2(df, 'Actief station', 'Active station')
94 pie_plot2(df, 'Data downloaden toegestaan?', 'Downloadable')
95 pie_plot2(df, 'Officieel station', 'Official station')
96 pie_plot2(df, 'star_rating', 'Star Rating')
97 pie_plot2(df, 'Motivatie station', 'Motivation station')
98

99 # %% [markdown]
100 # # Wordcloud
101

102 # %%
103 from wordcloud import WordCloud
104 from wordcloud import ImageColorGenerator
105 from wordcloud import STOPWORDS
106

107 from stop_words import get_stop_words
108 stop_words = get_stop_words('dutch')
109

110 # %%
111 text = " ".join(i for i in df.description.dropna())
112 stopwords = list(STOPWORDS) + stop_words #dutch and english
113 wordcloud = WordCloud(stopwords=stopwords, background_color="white",width=800, height=400).

generate(text)
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114 plt.figure( figsize=(15,10))
115 plt.imshow(wordcloud, interpolation='bilinear')
116 plt.axis("off")
117 plt.show()
118

119 # %%
120 #without obvious things
121 text = text.replace('weather', '')
122 text = text.replace('station', '')
123 text = text.replace('weatherstation', '')
124 text = text.replace('weerstation', '')
125 text = text.replace('Netherlands', '')
126 text = text.replace('Weatherstation', '')
127 text = text.replace('Weer', '')
128 text = text.replace('Weather', '')
129 text = text.replace('weer', '')
130 text = text.replace('sensor', '')
131 text = text.replace('data', '')
132 text = text.replace('meter', '')
133

134

135 wordcloud2 = WordCloud(stopwords=stopwords, background_color="white",width=800, height=400).
generate(text)

136 plt.figure( figsize=(30,20))
137 plt.imshow(wordcloud2, interpolation='bilinear')
138 plt.axis("off")
139 plt.show()
140

141 # %%
142 import seaborn as sns
143

144 # %%
145 df_prof = pd.read_csv("DIST_PROF.csv")
146 df_amat = pd.read_csv("DIST_AMATEUR.csv")
147

148 # %%
149 sns.distplot(df_prof['HubDist'])
150 plt.grid()
151 plt.title("")
152 plt.xlim([0, df_prof['HubDist'].max()])
153 plt.xlabel("Distance to Nearest Proffesional Station in Meters (m)")
154 plt.suptitle("Histrogram and KDE of Distance to Nearest Proffesional Station for PWS in The 

Netherlands")
155

156 # %%
157 sns.distplot(df_amat['MIN'])
158 plt.grid()
159 plt.xlim([0,df_amat['MIN'].max()])
160 plt.xlabel("Distance to Nearest Amateur Station in Meters (m)")
161 plt.suptitle("Histrogram and KDE of Distance to Nearest Neighbor Station for PWS in The 

Netherlands")
162

163 # %% [markdown]
164 # # Land Cover Analysis
165

166 # %%
167 lgn = pd.read_csv('LGN_PWS.csv')
168

169 # %%
170 replace_dict2 = {1:'1 - agrarisch gras', 2:'2 - maïs', 3:'3 - aardappelen', 4:'4 - bieten',

5:'5 - granen', 9:'9 - boomgaarden', 11:'11 - loofbos', 16:'16 - zoet water', 18:'18 - 
bebouwing in primair bebouwd gebied', 19:'19 - bebouweing in secundair bebouwd gebied',
20:'20 - bos in primair bebouwd gebied', 22:'22 - bos in secundair bebouwd gebied', 23:'
23 - gras in primair bebouwd gebied', 26:'26 - bebouwing in buitengebied', 27:'27 - 
overig grondgebruik in buitengebied', 28:'28 - gras in secundair bebouwd gebied', 31:'31 
- open zand in kustgebied', 45:'45 - natuurlijk beheerde agrarische graslanden', 61:'61 -
 boomkwkerijen', 62:'62 - fruitkwekerijen', 251:'251 - hoofdinfrastructuur en 
spoorbaanlichamen', 252:'252 - halfverharde wegen, infrastructuur langzaam verkeer en 
overige infrastructuur'}

171

172 colours2 = {1: '#73df1f',
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173 2: '#e89919',
174 3: '#b26600',
175 4: '#e51f7f',
176 5: '#ffff00',
177 9: '#3cef45',
178 11: '#33c800',
179 16: '#2473ff',
180 18: '#ff0000',
181 19: '#730000',
182 20: '#93d600',
183 22: '#93aa00',
184 23: '#93ff00',
185 26: '#761818',
186 27: '#ff645a',
187 28: '#a8ef44',
188 31: '#e6fb00',
189 45: '#b6b639',
190 61: '#ffb3a8',
191 62: '#e3ff70',
192 251: '#871b00',
193 252: '#b02300'}
194

195 colours = {}
196 for i in colours2:
197 colours[replace_dict2[i]] = colours2[i]
198

199 # %%
200 lgn = lgn.replace({'LGN_1':replace_dict2})
201

202 # %%
203 sizes = lgn['LGN_1'].value_counts().sort_index() / lgn['LGN_1'].value_counts().sum() * 100
204 labels = sorted(lgn['LGN_1'].unique())
205

206 # %%
207 import re
208

209 # %%
210 new_labels = []
211 for i in range(len(labels)):
212 new_labels.append(labels[i] + rf" $\bf{({round(sizes.values[i],2)})}$" +'%')
213

214 sorted_labels = sorted(new_labels, key=lambda s: int(re.search(r'\d+', s).group()))
215

216 # %% [markdown]
217 # # Land Cover Analysis
218

219 # %%
220 test = pd.DataFrame(sizes)
221

222 # %%
223 labels_sort = sorted(list(replace_dict2.values()), key=lambda s: int(re.search(r'\d+', s).

group()))
224

225 # %%
226 sizes_sorted = test.loc[labels_sort]
227

228 # %%
229 sizes_sorted["LGN_1"]
230

231 # %%
232 # plt.pie(test,
233 # colors=[colours[key] for key in [i.split('$')[0][:-1] for i in labels]])#, labels =

[i.split(' ')[0] for i in labels])
234 # plt.legend(sorted_labels, loc="center left", bbox_to_anchor=(1.1, 0.5), title='Category',

fontsize='10')
235 # plt.title('Landcover Types of the WOW-NL Weather Stations')
236 # plt.tight_layout()
237 # plt.show()
238

239 # %%
240 colors = {}
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241 for i in range(len(colours)):
242 colors[sorted_labels[i]] = colours[list(colours.keys())[i]]
243

244 # %%
245 sns.set_style("whitegrid")
246

247 # %%
248 plt.bar([i.split(' ')[0] for i in sorted_labels], sizes_sorted["LGN_1"], color=[colours[key]

for key in [i.split('$')[0][:] for i in labels]])
249

250 plt.title("Landcover of PWS stations in the Netherlands")
251 plt.xlabel("LGN - Landcover Categories")
252 plt.ylabel("Percentage of PWS Stations (%)")
253 plt.xticks(rotation=90)
254

255 #plt.legend(sorted_labels, loc="center left", bbox_to_anchor=(1.1, 0.5), title='Category',
fontsize='10')

256 labels = list(colors.keys())
257 handles = [plt.Rectangle((0,0),1,1, color=colors[label]) for label in labels]
258 plt.legend(handles, labels, loc="center left", bbox_to_anchor=(1.1, 0.5), title='Category',

fontsize='10')
259

260

261 plt.show()
262

263 # %% [markdown]
264 # # Device Setup
265

266 # %%
267 def pie_plot(df, column):
268 sizes = df[column].value_counts().sort_index() / df[column].value_counts().sum() * 100
269

270 colours = {'1': 'C0',
271 '2': 'C1',
272 '3': 'C2',
273 '4': 'C3',
274 '5': 'C4',
275 '6': 'C5',
276 '7': 'C6',
277 'U': 'C7',
278 'A': 'C8',
279 'B': 'C9',
280 'C': 'C10',
281 'D': 'C11',
282 '0': 'C12'}
283

284 labels = sorted(df[column].unique())
285

286 #print(sorted(labels), [colours[key] for key in labels])
287

288 plt.pie(sizes,
289 autopct='%1.1f%%', startangle=140, pctdistance=1.1, labeldistance=1.2,
290 colors=[colours[key] for key in labels])
291 plt.axis('equal')
292 plt.legend(sizes.index, loc="best", title='Category')
293 plt.title(column)
294 plt.tight_layout()
295 plt.show()
296 return None
297

298 # %%
299 df['radiationscreen'] = (df['Meting luchttemperatuur'] == 'A') | (df['Meting luchttemperatuur

'] == 'B') | (df['Meting luchttemperatuur'] == 'C')
300 df['radiationscreen'][df['Meting luchttemperatuur'] == '0'] = 'None'
301

302

303 # %%
304 plt.pie(df['radiationscreen'].value_counts(), labels=['No', 'Yes', 'No Data'], autopct='%.2f

%%')
305 plt.title('PWS in the Netherlands with a Radiation Screen')
306 plt.show()



59

307

308 # %%
309 df['precipitation_cal'] = (df['Meting neerslag'] == 'A') | (df['Meting neerslag'] == 'B') | (

df['Meting neerslag'] == 'C')
310 df['precipitation_cal'][df['Meting neerslag'] == '0'] = 'None'
311

312 plt.pie(df['precipitation_cal'].value_counts(), labels=['No', 'Yes', 'No Data'], autopct='%.2
f%%')

313 plt.title("Standard rain gauge or calibrated rain gauge with tipping bucket")
314 plt.show()
315

316 # %%
317 df.columns
318

319 # %%
320 df['wind_cal'] = (df['Meting wind'] == 'A') | (df['Meting wind'] == 'B')
321 df['wind_cal'][df['Meting wind'] == '0'] = 'None'
322

323 plt.pie(df['wind_cal'].value_counts(), labels=['No', 'Yes', 'No Data'],autopct='%.2f%%')
324 plt.title("Wind Sensor Above the Ground")
325 plt.show()
326

327 # %% [markdown]
328 # ## Credibility
329

330 # %%
331 text = " ".join(i for i in df.Website.dropna())
332 text = text.replace('.nl', '')
333 text = text.replace('.net', '')
334 text = text.replace('https://', '')
335 text = text.replace('www.', '')
336 text = text.replace('html', '')
337 text = text.replace('https', '')
338 text = text.replace('.com', '')
339 text = text.replace('.org', '')
340 text = text.replace('.eu', '')
341 text = text.replace('index', '')
342 text = text.replace('htm', '')
343

344

345 stopwords = list(STOPWORDS) + stop_words #dutch and english
346 wordcloud = WordCloud(stopwords=stopwords, background_color="white",width=800, height=400).

generate(text)
347 plt.figure( figsize=(15,10))
348 plt.imshow(wordcloud, interpolation='bilinear')
349 plt.axis("off")
350 #plt.title('Website of PWS Owners in the Netherlands')
351 plt.show()
352

353 # %%
354 text = " ".join(i for i in df.Organisatie.dropna())
355

356 stopwords = list(STOPWORDS) + stop_words #dutch and english
357 wordcloud = WordCloud(stopwords=stopwords, background_color="white",width=800, height=400).

generate(text)
358 plt.figure( figsize=(15,10))
359 plt.imshow(wordcloud, interpolation='bilinear')
360 plt.axis("off")
361 #plt.title('Website of PWS Owners in the Netherlands')
362 plt.show()
363

364 # %%
365 metadata_columns = [
366 'Ligging',
367 'Meting luchttemperatuur',
368 'Meting neerslag',
369 'Meting wind',
370 'Stedelijke zone',
371 'Waarneemuren',
372 'description',
373 'extra_info',
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374 ]
375

376 # %%
377 check_empty = pd.concat([df[metadata_columns].iloc[:,:6] == "U", df[metadata_columns].iloc

[:,-2:].isna()],axis=1)
378 amount_empty = check_empty.sum(axis=1)
379

380 # %%
381 plt.pie(sorted(amount_empty.value_counts()), labels=sorted(amount_empty.value_counts().index)

,autopct='%.2f%%')
382 plt.title("Amount of missing Meta Data Entries")
383 plt.show()
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Figure C.1: Weather Stations in the Netherlands
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Figure C.2: Value Framework for a Personal Weather Station
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