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A topological characterisation of looped drainage networks
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ABSTRACT
Hydrodynamic models are used to analyse water networks (water distribution, drainage, surface water,
district heating, etc.). The non-linear nature of water flows necessitates the use of iterative solution meth-
ods in hydraulic modelling. This requires a relatively large computational effort. To reduce this effort, net-
works, network forcing and/or the flow in networks are often simplified and analysed using the Graph
Theory. The simplification options depend on the network characteristics. There are many topological fea-
tures to describe Graph-based networks. In this paper, these characteristics are summarised, applied on 7
urban drainage networks and discussed. As the topological features do not describe the networks in a
uniform manner, a new type of topological characterisation of looped drainage networks (Network
Linearisation Parameter, NLP) is proposed based on linearized hydraulics and bottlenecks identified in
paths to outfalls.
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1. Introduction

Networks (e.g. internet, communication, transport, power
grids, water distribution networks [WDN], urban drainage
networks [UDN]) are crucial for the functioning of today’s
society and especially for urban areas. The performance level
of these networks is under pressure due to: (i) an increasing
load as result of urbanisation and population growth, (ii)
deterioration as result of ageing (and a lack of mainten-
ance), (iii) terrorist attacks and (iv) for some networks, cli-
mate change (Reyes-Silva, Helm, & Krebs, 2020).

To reclaim, or at least maintain, the desired level of service,
proper maintenance and rehabilitation of infrastructure are
essential (see e.g. Le Gauffre et al., 2007; Wirahadikusumah,
Abraham, & Iseley, 2001). Achieving the desired service level is
extra important for networks that, because of the interdepend-
ence with other networks or co-location, could result in the fail-
ure of other networks (D’Agostino & Scala, 2014; Klinkhamer
et al., 2019). For developing adequate maintenance strategies
and to improve the reliability of networks, understanding net-
work failures is necessary (Klinkhamer et al., 2019; Reyes-Silva
et al., 2020).

The influence of the network structure on the performance
of the network in terms of efficiency, reliability and robustness
is studied for many kinds of networks (ants, cells, internet,
power supply, social, transport, water distribution, sewer, etc.)
(see e.g. Albert & Barab�asi, 2002; Barth�elemy, 2011; Buhl et al.,
2004; Buhl et al., 2006, Giudicianni et al., 2018; Klinkhamer,
2019; Yazdani, Otoo, & Jeffrey, 2011). As the structure of each

network is unique, an unambiguous description of the network
is required to make statements on network performance.
Therefore, the structures (topology) in combination with the
performance of networks have been investigated in a broad
range of disciplines (see e.g. Albert & Barab�asi, 2002;
Barth�elemy, 2011; Klinkhamer et al., 2019). This has resulted in
numerous characteristics, all of which describe one or more
aspects of a network (see section 2.3).

The Graph Theory is widely used as starting point for charac-
terising networks and to identify critical elements in networks.
This theory, in combination with linearisation of hydrodynamic
processes, is also used in the Graph Based Weakest Link Method
(GBWLM) (Meijer, Korving, Langeveld, & Clemens-Meyer,
2022). The GBWLM is a method to analyse urban water systems
(combination of gully pots, drainage systems and surface water)
with long time rainfall series. In order to predict the applicability
of the GBWLM to a network in advance, many methods have
been reviewed. The topology of 7 urban drainage networks has
been analysed with various methods to evaluate if the existing
methods offer indicators that could be used to determine the
potential for applying a linearized approach. However, none of
them meets the following three criteria:

1. Is applicable on spatial networks (these are networks
with spatial constraints).

2. Takes into account the functions of the elements of
the network.

3. Gives insight in the linearisation possibilities.
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Given these results, a new concept (i.e. Network Linearisation
Parameter, NLP) is proposed to classify looped drainage networks
based on the network structure, linearized hydraulics and bottle-
necks in drainage paths to outfalls. This paper is structured as fol-
lows: section 2 presents an overview of existing network concepts
and topologies, including the proposed Network Linearisation
Parameter (NLP) and a description of the case studies. The appli-
cation of this concept to 7 UDN is described in section 3. The
topological features are discussed in section 4. In section 5, the
key findings are summarised along with an outlook and recom-
mendations for future research.

2. Materials and methods

The GBWLM (Meijer et al., 2022) is used to analyse the robust-
ness of urban water systems against capacity reduction and load
increase. The GBWLM combines the structure of networks with
linearized hydrodynamics. The quadratic hydraulic gradient
(Equation (1)) has been simplified to a linear relationship
(Equation (2)). Based on the maximum available hydraulic gradi-
ent, the maximum capacity of each pipe is computed (Equation
(1)). alinear is determined for each pipe by linearising the dis-
charge (between zero and the maximum pipe capacity) and the
maximum available hydraulic gradient with Equation (2):

I ¼ aquadraticQ
2 (1)

I ¼ alinearjQj (2)

where I is the hydraulic gradient (–), Q is the discharge
(m3/s), aquadratic is a quadratic hydraulic parameter (s2/m1=4),
and alinear is a linear hydraulic parameter (s/m3).

To determine the types of networks for which hydraulics can be
linearized, network models and topological characteristics of net-
works have been analysed. Much literature exists about network
models, network topology and failure. Networks have been studied
from numerous perspectives (e.g. mathematics, transport, civil
engineering (water, energy), computer science, biology, (tele)com-
munication, sociology). The following sections describe succes-
sively: (i) important concepts in complex networks analyses, (ii)
impact of spatial constraints on networks, (iii) topological features
to characterise networks, (iv) the Dual Graph Approach to convert
spatial networks to scale free networks, (v) the NLP, a new topology
parameter for urban drainage networks and (vi) the case studies.

2.1. Important concepts in complex networks analyses

Albert and Barab�asi (2002) have presented an overview of
the advances in the field of complex networks, focussing on
the statistical mechanics of network topology and dynamics.
They discuss the main models and analytical tools, covering
random graphs and small-world and scale-free networks, as
well as the interactions between topology and the network’s
robustness against failures and terrorist attacks.

Until the 1950s, complex networks were mainly studied as
regular graphs using graph theory. Since the 1950s, complex
networks have been described as random graphs. A widely
used model for studying random graphs is the Erd�os-R�enyi
model. This model starts with N nodes and every edge is
formed with probability p independently of every other edge.

This results in a graph with approximately p Nðn�1Þ
2 edges dis-

tributed randomly (Albert & Barab�asi, 2002).
Albert and Barab�asi (2002) also observe that since the 1990s,

three concepts play an important role in network analyses:

1. The small-world concept: there is a relatively short path
between any two nodes, even in large networks. The
path length is defined as the number of edges along the
shortest path (Watts, 1999; Watts & Strogatz, 1998).

2. Clustering: cliques are common in social networks. In
these circles of acquaintances, every member knows every
other member. The degree of clustering can be expressed
with the clustering coefficient:

Ci ¼ 2Ei
kiðki � 1Þ (3)

where ki is the number of edges connected to node i and Ei
is the total number of edges.

3. Scale-free networks and degree distribution (degree is the
number of edges that are connected to the node): the dis-
tribution of the node degree P(k) for large networks has a
power-law tail as follows:

P kð Þ � k�c (4)

where P(k) is the distribution of the node degree and k is
the node degree.

The three concepts (small worlds, clustering and scale-free
networks) result in three main classes of modelling paradigms
(Albert & Barab�asi, 2002):

1. Random graphs based on the Erd€os–R�envi model serve
as benchmarks for modelling and empirical studies.

2. Small-world models are situated between random
graphs and highly clustered regular lattices.

3. Scale-free models are used to explain the origin of non-
Poisson degree distributions (such as power-law tails) as seen
in real systems by focussing on the network dynamics.

Scale-free models are widely used to test the robustness of
networks. Albert and Barab�asi (2002) have shown that networks
that meet the criteria of scale-free models display a high degree
of robustness against random failure of edges. However, nodes
with a high degree (hubs are nodes connected to many other
nodes) are crucial for the functioning of scale-free networks.
Therefore, the functioning of these networks is susceptible to
(terrorist) attacks on hubs.

2.2. Impact of spatial constraints on networks

Barth�elemy (2011) has presented an overview of the influence
of spatial constraints on the structure and properties of net-
works (transportation and mobility networks, internet, mobile
phone networks, power grids and social and contact networks).
The topological structure is strongly influenced by space, as an
important consequence of space is that costs are associated
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with the length and location of the edges. Two main categories
of spatial networks are planar graphs and non-planar graphs.

“A plane graph is a graph drawn in the plane in such a
way that any pair of edges meet only at their end vertices (if
they meet at all). A planar graph is a graph which is iso-
morphic to a plane graph, i.e. it can be (re)drawn as a plane
graph” (Clark & Holton, 1991, p. 157). In contrast to planar
graphs, non-planar graphs can have intersection links (e.g.
rail networks or flyovers, airline networks, cargo ship net-
works or the internet) (Barth�elemy, 2011).

Spatial constraints affect the network characteristics of
planar graphs in the following ways (Barth�elemy, 2011):

� In planar graphs, P(k) is peaked because space restricts
the existence of high degrees.

� In planar graphs, the length of links is limited, and the
distribution is peaked.

� The tendency to connect to hubs is limited, but there is
a tendency of cliques to form between spatially close
nodes leading to higher clustering coefficients.

� In 2D planar networks, the average shortest paths scale
as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

No: of nodes
p

:

According to Barth�elemy (2011), the five most important
models of spatial networks are the following:

1. Random geometric graph: the nodes in a plane are con-
nected according to a given geometric rule (e.g. distance).

2. Spatial Erd€os-R�envi graph: the probability to connect two
nodes depends on the distance between these nodes.

3. Spatial small-world graph: based on a given probability
distribution for their length, random links are added to
a d-dimensional lattice.

4. Spatial growth model: a spatial extension of the scale-
free models in which new nodes have a preference to
be connected to already well-connected nodes.

5. Optimal networks: networks obtained by the minimisa-
tion of a certain cost function.

The optimal network model is important in many practical
engineering issues related to both the problem of optimal net-
works and optimal flow through the networks. This has
resulted in a large variety of hub-and-spoke networks. In the
case of optimal networks, fluctuations and resilience to sabo-
tage attempts naturally lead to the formation of loops.
However, loops can also have adverse effects. For example, in
WDNs, loops might lead to prolonged stagnation of water,
which can have a negative effect on water quality.

2.3. Topological features to characterise networks

Barth�elemy (2011) has presented an overview of the main
empirical features that can be used to characterise all types
of networks with spatial constrains:

� Number of nodes N;

� Average (node) degree kh i (degree¼ the number of edges
connected to a node);

� Average clustering coefficient C Equation (5);
� Average shortest path l;
� The degree distributions P(k) (scale-free models: broad

with a power-law tail; spatial constraints model: peaked);
� The weight distributions of the edges P(w) (peaked

or broad);
� The scaling of the strength with the degree sðkÞ � kb;
� The relationship between the centrality (number of

shortest paths through a link or node) and the degree;
� Meshedness (Buhl et al., 2004):

M ¼ E� N þ 1
2N � 5

(5)

where M is meshedness, E is the number of edges and N is
the number of nodes.

The trend of describing networks based on topological char-
acteristics has continued over the past 10 years (Giudicianni
et al., 2018; Johnson, Flage, & Guikema, 2019; Johnson, Reilly,
Flage, & Guikema, 2021; Meng, Fu, Farmani, Sweetapple, &
Butler, 2018; Metcalfe, 2020; Reyes-Silva et al., 2020; Yazdani
et al., 2011). Table 1 summarises the parameters used to
describe networks.

To clarify the relationship between the structure of a net-
work and the topological features, these values have been
calculated for two networks: an unstructured grid of 10� 10
and the minimum spanning tree of this grid (see Figures 1
and 2 and Table 2).

2.4. Converting spatial networks to scale free networks
with dual graph approach

Over the past 10–15 years, the dual graph approach has
been used to analyse urban road, drainage and water distri-
bution networks. A dual graph or line graph (Harary &
Norman, 1960) is a graph in which nodes are replaced by
edges and edges by nodes. In a dual graph, each vertex rep-
resents an edge of the graph. The dual graph has an edge
for each pair of vertices in G that are separated from each
other by an edge (Harary & Norman, 1960).

To cluster edges, the dual graph approach is combined
with the Intersection Continuity Negotiation model (ICN
model) (Porta, Crucitti, & Latora, 2006) or Hierarchical
Intersection Continuity Negotiation (HICN) (Masucci,
Stanilov, & Batty, 2013). The ICN model is a generalisation
model based on the principle of continuity for urban street
networks. At each graph node, the two edges forming the
largest convex angle are assigned the highest continuity and
are coupled together. This is repeated for other edges. In
nodes with an odd degree, the remaining edge receives the
lowest continuity value (Porta et al., 2006). In the HICN,
the roads are first categorised to four hierarchical levels,
which broadly reflect capacity. The ICN is then applied at
each road category (Masucci et al., 2013).

STRUCTURE AND INFRASTRUCTURE ENGINEERING 3



A way of schematising a UDN or WDN as a graph is to
assign a node for each manhole or connection point and an
edge for each pipe or connection. In the dual graph
approach, groups of pipes with, for example, the same
diameter are schematised as a node, and the manholes are
schematised as connections between the groups of pipes.
The diameters are applied as an HICN criterion (Zischg
et al., 2017, 2019). According to Klinkhamer et al. (2019),
high node degrees represent collector pipes in UDNs; how-
ever, Zischg et al. (2019) have shown that high node degrees
do not necessarily correlate with large pipe diameters.

According to Krueger et al. (2017), the benefit of dual map-
ping (based on pipe diameters) of urban water networks is that
separate pipes are mapped as “functional pipe units”. The node-
degree distribution is affected by representing a network as a
dual graph. Kalapala, Sanwalani, Clauset, and Moore (2006) and
Klinkhamer et al. (2019) analysed urban road networks, drainage
networks and water supply networks with the dual graph
approach and the HICN. They show that the node-degree distri-
bution of these networks changes from a peaked distribution to
a highly variable degree distribution with a heavily tailed P(k).
They conclude that these properties suggest a robustness against
random failures and a vulnerability to the loss of high node-

degree hubs. The overlap in locations between the networks
introduces the possibility for cascading failures affecting multiple
infrastructure networks. Klinkhamer et al. (2017) conclude that
co-located large degree elements can be applied as a criterion to
allocate resources for maintenance and investment.

2.5. A New topology parameter for urban
drainage networks

The GBWLM is developed to analyse large comprehensive
networks with multi-annual precipitation series (Meijer
et al., 2022). To determine in advance whether the hydro-
dynamics can be linearised and the GBWLM is suitable for
analysing a network, the NLP has been developed as an
indicator. The NLP is based on the network geometry, pipe
characteristics and the runoff area.

In optimal designed networks, the pipe diameters are
matched to the design flow rates. In flat areas, this results in
uniform hydraulic gradients, especially in pipes toward out-
flow locations. In pipes furthest from the outfalls, other
design criteria influence the minimum pipe diameter, result-
ing in lower gradients. At bottlenecks (pipes with larger

Table 1. Empirical features for characterising networks.

Category Topological parameters Description/explanation

Size Number of nodes
Number of links

Structure Maximum degree
Average degree
Degree assortativity The degree variance in a network.
Node closeness The inverse of the sum of shortest paths from a node to every other node.
Density Ratio between the number of edges and to the maximal number of edges.

Redundancy Meshedness coefficient 1 Equation (5)
Meshedness coefficient 2 Meshedness based on the inner nodes degree (Reyes-Silva et al., 2020).
Clustering coefficient (or

transitivity)
A redundancy measure by quantifying the density of triangular loops and the degree to

which junctions in a Graph tend to be linked (Wasserman & Faust, 1994). In grid-like
structures and networks with structural loops different from a simple triangle the
clustering coefficient is normally small (Yazdani et al., 2011).

Robustness Algebraic connectivity The second smallest eigenvalue of the Laplacian matrix. The Laplacian matrix is a matrix with
the node degrees minus the adjacency matrix. The adjacency matrix describes the
connections between nodes. An eigenvector is a vector which direction does not change
in a transformation. The eigen value is the factor by which the eigenvector is scaled. A
large algebraic connectivity implies (Wang & Van Mieghem, 2010):
(i) a relatively large number of links should be deleted to generate a bipartition.
(ii) a robust synchronised state.
(iii) a more optimal performance of dynamic processes, e.g. synchronisation of dynamic
processes at the nodes of a network and random walks on Graphs.
(iv) efficient movement and dissemination of random walks.

Spectral gap Difference between first and second eigen values of Graph’s adjacency matrix. A large
spectral gap is usually associated with high network performance (Watanabe & Masuda,
2010) and a relatively short distance between nodes (Donetti, Neri, & Mu~noz, 2006).

Density of bridges Number of bridges (edge that does not belong to any cycle) and the total number of links.
The higher the density the smaller the meshedness.

Density of articulation points Ratio of the number of articulation points (node variant of bridge) and the total number of
nodes. The higher the density the smaller the meshedness.

Inverse spectral radius Inverse of the largest absolute eigenvalue of the adjacency matrix. The lower the inverse
spectral radius, the better is the communication within a network. A low number implies
many hubs and a high number many loops (Giudicianni et al., 2018).

Central point dominance The average difference in betweenness centrality of the node with the maximum
betweenness centrality and all other nodes. A high value means that one node is much
more often in a path than the other nodes of the network.

Distance measures Average path length l
Network diameter The maximum eccentricity. Eccentricity of node n is the maximum distance from n to all

other nodes in G.
Network radius The minimum eccentricity.
Average hop count The average shortest-path between all node pairs.

Centrality/ importance Node betweenness (max) Number of shortest paths through a node.
Link betweenness (max) Number of shortest paths through a link.
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hydraulic gradients at high flows than adjacent upstream
pipes), the gradient increases to allow a larger discharge.

If full hydraulic equations are used, each pipe gets a specific
hydraulic gradient in order to use the maximum capacity of the
network. In the GBWLM, each pipe has a fixed maximum cap-
acity based on a fixed gradient. The linearisation in the
GBWLM is valid when the hydraulic gradients in the network
are approximately equal. The degree of homogeneity of the gra-
dients in a catchment draining into an overflow determines
whether linearisation can be applied successfully. If there are
many bottlenecks, especially in the main pipes to the outfall
locations, the outcomes of the GBWLM are less valid.

The hydraulic gradient in the GBWLM depends on the alinear
and the discharge (Equation (2)). The required capacity of each
pipe is unknown at the start. To estimate the discharge, the
shortest paths between all manholes and the outflow structure
are determined. For each pipe, the runoff area that discharges via
a pipe (RApipe) is calculated based on the runoff area of each
manhole and the shortest path from the manhole to an outfall.
Based on the alinear and RApipe, the NLP is determined by:

NLP ¼ 1
alinear RApipe

(6)

where NLP is the network linearisation parameter (m/s),
RApipe is the runoff area that discharges via a pipe (m2) and
alinear is a hydraulic parameter (s/m3).

For each pipe, the NLP is quantified along a path from the
manhole to the outflow location by calculating the NLP-factor
(Equation (7)). If the NLP-factor of a pipe is larger than 1, the
head loss is larger than the head loss of the directly upstream
pipe. If the NLP-factor exceeds a threshold, the pipe is labelled

as a “bottleneck”. The part of a UDN that drains to an outflow
location is defined as an “outflow catchment”. For each bottle-
neck, two parameters are determined:

1. Bottleneck location, Equation (8).
2. Percentage of affected manholes, Equation (9):

NLP� factor ¼ a2 RAdown streampipe

a2 RA up streampipe
(7)

Bottleneck location ¼ Pipe No:
Max: path length

(8)

% affected manholes ¼ No: manholes
Tot: No: manholes

(9)

where the bottleneck location is the position of the bottleneck
in a path relative to the maximum path length of all manholes
in an outflow catchment, Pipe No. is the location number of a
pipe counted from outflow location (–), Max. path length is
the maximum path length to the outfall location of all man-
holes in an outflow catchment (–), % affected manholes is the
percentage of manholes affected by the bottleneck, No.
Manholes is the number of manholes with a path to an outlet
crossing the bottleneck and Tot. No. Manholes is the total
number of manholes in a UDN (see Figure 3).

2.6. Case studies

The network parameters are applied on 7 urban drainage systems.
Figure 4 and Table 3 show the structure (manholes and pipes).

Figure 1. Unstructured 10� 10 grid and its minimum spanning tree.

STRUCTURE AND INFRASTRUCTURE ENGINEERING 5



The systems used are based on the Dutch context. The catchment
area of Loenen ismildly sloping. The other catchments are flat.

3. Results and interpretation

3.1. Reflection on the applicability of the topological
parameters for urban drainage systems

Underground piped systems, as UDNs, are examples of planar
graphs. They have spatial constraints, and connections between
distant nodes normally do not occur (Buhl et al., 2004). UDNs
have some typical characteristics that distinguish them from other
spatial networks: (i) UDN are supply driven, (ii) UDN have multi
origins and few destinations, and (iii) UDN are mainly gravity
driven. Free surface and pressurised flowmay both occur during a
storm event.

Because of spatial constraints, the characteristics of UDNs do
not correspond to the characteristics of small-world and scale-free
networks (Barth�elemy, 2011). The topological features mentioned

in Subsection 2.3 to describe networks can be applied to describe
UDNs, but these turn out to be very specific for each network (see
Figure 5 and Table 4). In Figure 5, values have been normalised
based on the minimum and maximum values of the parameters
for the seven networks.

Parameters 1 and 2 are measures for the size of the network.
The larger networks Vlijmen and Drunen, holding many nodes
and pipes, have a high score. Parameters 3–6 describe the struc-
tures of the UDNs. The differences in the parameter values for the
tested networks are limited. The average degree of the less-looped
system of Loenen is slightly lower than that of the other looped
networks. The parameter values “node closeness” and “density”
of the Almere UDNs are slightly higher than those of the other
networks. This may be related to the fact that the Almere net-
works are smaller (less nodes and pipes) and more looped than
the other networks.

Parameters 8–10 are indicators for redundancy. As expected,
the meshedness parameters for the partly branched and partly
looped UDN of Loenen are slightly less than those of the other

Figure 2. Normalised topological features of an unstructured 10� 10 grid and its minimum spanning tree.
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Table 2. Topological features of an unstructured grid (10� 10), its minimum spanning tree and the differences between these characteristics for
both networks.

Parameter Category Grid 10� 10 Minimum spanning tree, grid 10� 10 Difference

Number of nodes Size 100 100 0
Number of links Size 180 99 81
Maximum degree Structure 4 3 1
Average degree Structure 3.6 1.98 1.62
Degree assortativity Structure 0.57 0.39 0.18
Node closeness Structure 0.15 0.09 0.06
Density Structure 0.0364 0.02 0.0164
Meshedness coefficient 1 Redundancy 0.42 0 0.42
Meshedness coefficient 2 Redundancy 0.8 0.05 0.75
Clustering coefficient Redundancy 0 0 0
Algebraic connectivity Robustness 0.0979 0.0076 0.0903
Spectral gap Robustness 0.2365 0.1633 0.0732
Central point dominance Robustness 0.07 0.47 0.4
Density of bridges Robustness 0 1 1
Density of articulation points Robustness 0 0.9 0.9
Inverse spectral radius Robustness 0.2606 0.4098 0.1492
Average path length Distance measures 6.67 11.85 5.18
Network diameter Distance measures 18 27 9
Network radius Distance measures 10 14 4
Average hop count Distance measures 6.67 11.85 5.18
Node betweenness (max) Centrality 616.21 2810 2193.79
Link betweenness (max) Centrality 475 2500 2025

Figure 3. Example of the network linearisation parameter for outflow catchment 17R0204 of the urban drainage network of Almere Waterwijk Noord. The upper-
left subplot depicts the outflow catchment 17R0204 and the outfall is indicated by a star. The wide black line in the upper-right subplot is the maximum path
length. The wide black line in the lower-left figure is the location of the bottleneck. The dots in the lower-right figure are the affected manholes.
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networks. The clustering coefficient indicates the absence of tri-
angle loops in six of the seven tested networks. The robustness
parameters (11–16) contain three parameters (density of
bridges and articulation points and inverse spectral radius) that
have an inverse relationship with the meshedness parameters.
The UDN of Loenen scores highly for these parameters. The
smaller and more meshed networks of Almere have high values
for algebraic connectivity and spectral gap.

This is consistent with the characteristic that a relatively
large number of links should be deleted to generate a biparti-
tion (characteristic of algebraic connectivity) and the relatively
short distance between nodes (characteristic of spectral gap).
The central point dominance of the UDNs of Loenen, Vlijmen
and Heusden is relatively high. These networks are either partly
branched (Loenen) or made of different parts connected by a
few pipes only (see Figure 4). The distance parameters (17–20)
and the centrality parameters (21–22) are high for the larger
tested networks and low for the smaller ones.

3.2. Reflection on the applicability of the dual
graph approach

The dual graph approach, in combination with the HICN
(based on pipe diameters), is used to convert UDNs into
networks with the characteristics of small-world and scale-
free networks (Zischg et al., 2019). Figure 6 shows an
example of the UDN of Loenen and its dual graph represen-
tation. Loenen’s UDN is used as an example because, of the
seven UDNs, it is the most branched one. The structure of
the network is still partly recognisable in this example.
Applying the dual graph approach on the Loenen network
has two important consequences. First, the pipes in the
looped part of the network have the same diameter and are
replaced by one node (rectangles with a solid line in Figure
6). This node has a central place in the network and has the
highest degrees because it is interconnected with many other
parts of the network. A part of the network around which

Figure 4. Structure (pipes and manholes) of 7 urban drainage systems.
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water can flow in case of a blockage is therefore represented
as one element in the dual graph approach. Second, the part
in the dotted rectangle are two branches that come together.
Because the diameter of these branches is equal, the
branches are also displayed as one node in the dual graph.
This means that pipes that drain different parts of the

network are represented as one node in the dual graph if
the diameter of the pipes is the same.

The degree distribution P(k) of the UDN of Loenen is pre-
sented is Figure 7. The graph representation shows a peak at a
degree of two. The degree distribution of the dual graph repre-
sentation has a power-law tail for larger degrees. The two nodes

Table 3. Characteristics of 7 urban drainage systems.

Characteristics Almere Waterwijk Zuid Almere Watewijk Noord Loenen Tuindorp Vlijmen Heusden Drunen

Catchment area Flat Flat Mildly sloping Flat Flat Flat Flat
System type Storm water Storm water Combined Combined Combined Combined Combined
System structure Looped Looped Partly branched Looped Looped Looped Looped
Contributing area (ha) 9.2 14.6 20.5 56.2 208.74 41.34 103.01
Number of inhabitants (–) 0 0 2.1 10.656 15740 4786 11600
Number of combined sewer

overflow (CSO)
structures (–)

4 3 2 5 10 6 4

Number of pumping
stations (–)

0 0 1 1 1 1 2

Number of edges (–) 92 118 352 778 1,776 787 2,053
Number of nodes (–) 80 102 337 684 1,556 722 1,843

Figure 5. Normalised values of 22 different network parameters for seven urban drainage networks. For each parameter, the normalisation is based on the min-
imum and maximum values of the seven networks.
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in the rectangles in dual graph representation in Figure 6 have
the highest degree and should, according to the scale-free the-
ory, and can be crucial for the functioning of the network.

3.3. Results of the network linearisation parameter

The NLP was determined for the seven UDNs. Table 5 and
Figure 8 present the results. In Figure 8, each dot represents a
bottleneck. The size and greyscale colouring visualise the
number of nodes of the UDN that discharge via the bottleneck
see % affected manholes in Figure 8). The larger and darker

the dot, the higher is the percentage of affected manholes. On
the x-axis is the applied threshold for the bottleneck. The bot-
tlenecks per combined sewer outfall or storm sewer outflow of
the UDN have been plotted side by side for each threshold.
The position of the bottleneck is on the y-axis. The position
has been normalised per outfall based on the maximum path
length to the outfall. The numbers on top of each plot indicate
the number of bottlenecks per threshold for the outfall with
the highest number of bottlenecks.

For Tuindorp’s UDN, Figure 8 shows that there is one major
bottleneck that affects approximately 40% of the manholes that

Table 4. Overview of 22 parameters of seven sewer networks.

Almere Waterwijk Zuid Almere Watewijk Noord Loenen Tuindorp Vlijmen Heusden Drunen

Number of Nodes 80 102 337 684 1,843 722 1,556
Number of links 92 118 352 778 2,053 787 1,776
Maximum degree 4 4 4 5 5 4 5
Average degree 2.3 2.31 2.07 2.26 2.23 2.18 2.28
Degree assortativity �0.11 �0.08 �0.14 �0.12 �0.11 �0.15 �0.02
Node closeness 0.13 0.12 0.04 0.04 0.02 0.04 0.03
Density 0.0291 0.0229 0.0061 0.0033 0.0012 0.003 0.0015
Meshedness coefficient 1 0.08 0.09 0.02 0.07 0.06 0.05 0.07
Meshedness coefficient 2 0.23 0.23 0.11 0.2 0.16 0.17 0.21
Clustering coefficient 0 0 0 0 0 0 0.01
Algebraic connectivity 0.0161 0.0193 0.0012 0.0008 0.0001 0.0007 0.0007
Spectral gap 0.1724 0.1673 0.0289 0.0456 0.0624 0.1102 0.0607
Central point dominance 0.24 0.25 0.48 0.3 0.5 0.58 0.33
Density of bridges 0.26 0.2 0.5 0.24 0.26 0.32 0.24
Density of articulation points 0.25 0.22 0.46 0.24 0.26 0.3 0.25
Inverse spectral radius 0.3616 0.3661 0.3961 0.3591 0.3468 0.3599 0.3449
Average path length 7.96 8.71 23.99 23.95 50.84 27.24 32.53
Network diameter 21 22 62 65 154 62 82
Network radius 11 11 31 33 77 31 42
Average hop count 7.96 8.71 23.99 23.95 50.84 27.24 32.53
Node betweenness (max) 1,013 1,641 31,052 80,025 901,142 159,114 417,366
Link betweenness (max) 1,069 1,323 16,933 70,599 837,172 130,312 346,459

Figure 6. Urban drainage network in Loenen, shown as a graph and a dual graph. Larger and darker dots and lines indicate larger pipe diameters. The pipes with
the same diameter (colour) in the rectangles are replaced by one node in the dual graph.
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drain to one of the outflow locations if the “bottleneck thresh-
old” is smaller than three. The bottleneck is located at approxi-
mately 0.25 of the maximum path length. The other
bottlenecks only influence a few percent of the manholes. For
Heusden’s UDN, there is a relatively large bottleneck (impact-
ing 60% of the manholes) at a threshold value of 100 relatively
close to an outfall. At a threshold value of 50, a second bottle-
neck can be identified with similar characteristics.

Table 5 presents an overview of the maximum thresholds at
which more than 1% of the manholes of an outflow catchment
would be affected by a bottleneck. It also includes the corre-
sponding position of the bottleneck, the percentage of man-
holes influenced by the bottleneck and the number of
catchments. The table shows the following:

� For the UDNs of Vlijmen, Heusden and Drunen, the
maximum threshold is higher than that for the networks
of Almere, Loenen and Tuindorp.

� The percentage of affected manholes of the UDNs of Heusden
and Drunen is larger than that of the other networks.

� The bottlenecks of the UDNs of Almere Zuid, Almere
Noord and Tuindorp are situated at a greater distance
from the outflow than those of the other networks.

For precipitation intensities between 10 and 140 l/(s.ha), in
steps of 10 l/(s.ha), the HBWLM and the GBWLM were used to
identify flooding. The results were mutually compared using the
Matthews Correlation Coefficient (MCC). For each catchment,
the calculatedMCCvalues of the different precipitation intensities
for which the MCC was not equal to zero were analysed. The
mean 95% confidence interval and median of the MCC values
were calculated. Table 6 summarises the results of the MCC ana-
lysis. Please note that the confidence interval is based on a small
sample and should therefore be regarded as an indication, at best.

Table 6 shows that the mean, the median and the lower and
upper limit of the 95% confidence interval of the MCC values of
the UDNs of Vlijmen, Heusden and Drunen were lower than
those of the other four UDNs. Based on this observation, it can
be concluded that for the UDNs of Almere Waterwijk Zuid,
Almere Waterwijk Noord, Tuindorp and Loenen, the results of
GBWLM were more in agreement with the HBWLM results
than those for the UDNs of Vlijmen, Heusden and Drunen.

When the results of the NLP and the comparison of the
GBWLM with the HBWLM were compared, the following
observations could be made:

� The mean MCC of Heusden’s UDN was the lowest, and the
NLP showed several major bottlenecks close to an outfall.

� The mean MCC values for the UDNs of Vlijmen, Heusden
and Drunen were relatively small, and the NLP showed
multiple bottlenecks for high thresholds (i.e. 100, 1000).

� The UDNs of Almere, Loenen and Tuindorp had rela-
tively high MCC values and a relatively small number of
bottlenecks, occurring at smaller threshold values and
affecting fewer manholes.

4. Discussion

4.1. Value of the topological network parameters

Many parameters have been proposed in the literature to describe
the topological features of networks. The seven networks tested
exhibit three distinctive features, each of which can be described
by one ormore parameters.

1. Size of the network (parameters are, e.g. number of nodes,
number of pipes, network diameter or network radius).

2. Meshedness of the network (parameters are, e.g. mesh-
edness coefficient, density of bridges, density of articu-
lation points and inverse spectral radius).

Figure 7. The probability of the degree distribution of Loenen’s urban drainage
network, represented as a graph and a dual graph.

Table 5. Overview of Urban Drainage Networks (UDNs) with a threshold at which more than 1% of a catchment of the UDN is affected by a bottleneck includ-
ing the location, the percentage affected manholes and the number of bottlenecks.

Threshold at which >1% of
no. of manholes is affected

by a bottleneck

Bottleneck location in path
(0¼ downstream,
1¼ upstream) % of affected manholes Total number of bottlenecks

Almere Waterwijk Zuid 5 0.4 0.01 2
Almere Waterwijk Noord 3.33 0.36 0.07 2
Tuindorp 25 0.44 0.01 1
Loenen 25 0.04 0.04 1
Vlijmen 1000 0.07 0.07 1
Heusden 100 0.03 0.57 4
Drunen 1000 0.1 0.14 3
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3. Structure of the network (parameters are, e.g. central
point dominance).

Even using a combination of the above parameters, it is not
possible to describe the characteristics of a UDN in an unam-
biguous manner. The parameters describe the structure and not
the flow (hydrodynamics) in the network. Special characteristics
of UDNs that are not taken into account by the parameters men-
tioned are:

1. The flow directions (multiple origins, few destinations).
2. The capacity (geometry) of the pipes.

3. The transportation “costs” (required energy, head loss).

UDNs that produce more or less similar results in the
GBWLM may have very different network parameter values.
Therefore, other indicators are needed to characterise UDNs
in order to predict whether or not the GBWLM can be applied
successfully.

4.2. The dual graph approach

With the Dual Graph Approach, adjacent pipes with the
same diameter are merged into one node. If meshed parts

Figure 8. Bottlenecks in seven Urban Drainage Networks (UDNs) that affect more than 1% of the manholes of the UDN. The applied threshold is on the x-axis, and the normal-
ised position is on the y-axis. The numbers in top of each plot indicate per threshold the number of bottlenecks for the outfall with the highest number of bottlenecks.
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of the network are merged to one node, the Dual Graph
Approach neglect the fact that these pipes function partially
as each other’s backup. It is not plausible that they will fail
all at the same moment. If a failure occurs in this part of
the UDN, it will usually only be a partial failure.

If at the confluence, pipes of equal diameters, are merged
to one node, the Dual Graph approach does not distinguish
between the upstream areas. The consequences of failure
depend on the exact location of the failure. Failure of one
branch will lead to other consequences than failure of another
branch. This information is lost in the Dual Graph Approach.
These examples show that the assumption of the scale free
network theory, that nodes with a high degree are crucial for
the functioning of scale-free networks cannot be applied auto-
matically on Dual Graph representation of UDN. Information
is lost when the network structure is changed. This could lead
to invalid conclusions if the analysis is not carried out care-
fully, especially for looped networks.

4.3. Network linearisation parameter

The NLP combines linearised hydraulics and network structure
to classify networks. There was no general value for the NLP
for all tested networks. There were differences in the following:

� The threshold at which bottlenecks might occur.
� The position of the bottlenecks in the paths.
� The percentage of manholes affected by the bottlenecks.

The importance of these three sub-parameters is not yet
entirely clear. The threshold value is an indication of the
severity of the bottleneck. The higher the value, the larger is
the difference in capacity between two adjacent pipes.
However, the consequences also depend on the position. The
consequences are smaller if the bottleneck occurs in the
upstream parts of the network than in the downstream parts.
The consequences are larger if the block is in a “main path” to
an outflow location rather than in a path used only to dis-
charge water from a few manholes. More networks should be
analysed to determine the importance of the three sub-param-
eters more precisely and to determine whether or not these
parameters set specific boundaries for the successful imple-
mentation of the GBWLM.

5. Conclusions

This paper presents the results of an analysis of the topology
of 7 UDN. As described in the results and discussion sections,
the existing topological features to describe networks can be
applied to describe UDN but prove to be very specific for each
individual network. A rather large overlap between the differ-
ent features makes the use of all topological parameters at the
same time meaningless. On the other hand, special character-
istics of UDNs (multiple origins but few destinations, required
transport energy, etc.) are not (fully) considered.

The Dual Graph method in combination with the HICN
could be useful for the analysis of branched networks.
However, this method is less applicable to looped networks
where many pipes have the same diameter. By merging mul-
tiple pipes into one node, the network structure is strongly
affected, and the bypass function of the loops is ignored.

Seven urban drainage networks (UDN) have been analysed
using the GBWLM and hydrodynamic models. The MCC
value of 4 of the 7 UDNs (Almere Zuid and Noord, Tuindorp
and Loenen) is larger than 0.6 indicating a relatively good
match between the outcomes of the GWBLM and hydro-
dynamic models (see Table 6). These UDN have different
characteristics (see Figure 5, Table 4). The Network
Linearisation Parameter is used to describe the UDNs. The
NLP combines the network structure and the flow characteris-
tics. The UDNs that according to the MCC match well with
the outcomes of hydrodynamic models meet the follow-
ing criteria:

� A low (<5) bottleneck threshold for larger (impact on
>5% manholes).

� No large bottlenecks (impact on >5% manholes) close to
outfalls (<20% path length).

More networks have to be analysed to determine more
precisely the importance of the sub-parameters (bottleneck
threshold, the bottleneck position, the percentage affected
manholes and the number of bottlenecks (see Figure 8) and
the applicability of the NLP on other networks.
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