

Cover illustration:
IFC model: Institute for Automation and Applied Informatics (IAI) / Karlsruhe Institute of Technol-
ogy (KIT). Retrievable from: https://www.ifcwiki.org/index.php?title=KIT_IFC_Examples.

https://www.ifcwiki.org/index.php?title=KIT_IFC_Examples

MSc thesis in Geomatics

Development and Testing of the CityJSON
Energy Extension for Space Heating Demand

Calculation

Özge Tufan

June 2022

A thesis submitted to the Delft University of Technology in partial
fulfillment of the requirements for the degree of Master of Science in

Geomatics

Özge Tufan: Development and Testing of the CityJSON Energy Extension for Space Heating Demand Cal-
culation (2022)
cb This work is licensed under a Creative Commons Attribution 4.0 International License. To view
a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

3D geoinformation group
Delft University of Technology

Supervisors: Camilo León-Sánchez
Ken Arroyo Ohori

Co-reader: Hugo Ledoux

http://creativecommons.org/licenses/by/4.0/

Abstract

3D city models are frequently used to acquire and store energy-related information of buildings to be
used in energy applications, such as solar potential analyses and energy demand calculations. In this
context, the most common data model is CityGML, which provides an application domain extension
called the Energy ADE to store energy-related data in a systematic manner in XML format. On the
other hand, CityJSON has been developed as a JSON-based encoding to exchange 3D city models,
with the aim of eliminating the hierarchical structure and shortcomings of the XML-based CityGML.
However, even though an extension mechanism exists in CityJSON, an energy-related CityJSON
extension is not present in the current literature. Therefore, the aim of this thesis is to develop
and test a CityJSON Energy Extension. To achieve this, the space heating demand calculation of
buildings is chosen as the use case to validate and test the Extension.

In this thesis, a simplified version of the Energy ADE, called the Energy ADE KIT profile, is used as
the first step to create a semi-direct translation to a CityJSON Energy Extension. After validating the
Extension with the official validator of CityJSON, the space heating demand is calculated for a subset
of the Rijssen-Holten in the Netherlands according to the Dutch standard NTA 8800. Required input
data is collected from various data sources, such as the 3D city model of the area and the TABULA
building physics library, and stored in the CityJSON Energy Extension to test its usability for the use
case. The Extension is then improved depending on the results of the tests based on the use case.

The results show that the semi-direct translation lacked numerous objects and attributes to store
certain input data for the use case, while the final version of the CityJSON Energy Extension fully
supports the use case with the possibility of storing all required input data. Furthermore, while
the semi-direct translation contained deep hierarchical structures, these were eliminated in the final
Extension to comply with the design decisions behind CityJSON. The main differences between the
Energy ADE and the CityJSON Energy Extension reflected this philosophy as well, where the former
data model was built with a deep hierarchical structure, while the latter flattens this hierarchy as
much as possible by using the characteristics of JSON. In addition, a comparison in file sizes showed
that the input 3D city model of the study area in CityJSON format (with 3318 objects) had a file size
of 40.6 MB, whereas the output CityJSON + Energy Extension file with all input and output data
was 65.8 MB (with 108732 objects). It was discussed that this increase of 25.2 MB in file size is not
significant, considering the high increase in the number of objects stored in the file. On the other
hand, the space heating demand calculation resulted in negative values for 32 buildings in the study
area, and for the majority of buildings during the solar gains computation, which was not expected.
While the possible reasons were detected with numerous tests, a solution could not be developed in
the given time frame of the thesis. Overall, this thesis showed that the CityJSON Energy Extension
can provide an easy to use alternative to CityGML Energy ADE, where the Extension files can be
simply parsed by software and easily understood by the user without reaching a large file size.

v

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Camilo León-Sánchez and Ken
Arroyo Ohori, for their guidance and support throughout my thesis. Both Camilo and Ken have
devoted a significant amount of their time to have frequent meetings and brainstorming sessions
with me, and to answer my endless questions. Without their patience and support, I could not
have found the daily motivation that I needed to complete my thesis. I would also like to thank
my co-reader, Hugo Ledoux, who has not only given constructive feedback on my thesis, but also
answered all my CityJSON-related questions. Furthermore, I would like to thank Giorgio Agugiaro,
who has had numerous meetings with me and gave me his valuable feedback throughout my thesis.
Without his help, I would have struggled greatly to overcome certain challenges. Special thanks to
Stelios Vitalis for his suggestions and valuable contribution to help me solve certain problems in my
thesis. Finally, I would like to thank my mom, my friends, and Matteo for always being there and
supporting me during this somewhat lonely process.

vii

Contents

1 Introduction 1
1.1 Objectives and research questions . 2
1.2 Scope . 2
1.3 Thesis structure . 3

2 Related work 5
2.1 CityGML . 5

2.1.1 Core and Building modules . 5
2.1.2 Level of Detail . 6
2.1.3 Extending CityGML . 6

2.2 CityJSON . 7
2.2.1 Extending CityJSON . 9

2.3 Current CityJSON Extensions . 10
2.3.1 CityJSON Point Cloud Extension . 10
2.3.2 CityJSON Noise Extension . 11

2.4 Energy ADE . 12
2.4.1 Energy ADE KIT Profile . 13

2.5 Space heating demand calculation and 3D city models 15
2.5.1 3D city models and the Energy ADE for space heating demand calculation . . 15
2.5.2 Current energy simulation software with 3D city models 17

3 Methodology 20
3.1 Semi-direct translation from the Energy ADE . 21

3.1.1 New City Objects . 21
3.1.2 New attributes to existing City Objects with additional data types 21
3.1.3 New non-City Objects . 22
3.1.4 Relations among City Objects and non-City Objects 23

3.2 Validation of the CityJSON Energy Extension . 23
3.2.1 Validation through the use case . 23
3.2.2 Validation through cjval . 23
3.2.3 Validation against the Energy ADE KIT profile 24

3.3 Space heating demand calculation . 24
3.3.1 Calculation method . 24
3.3.2 Required input data for space heating demand calculation 29

3.4 Improvements on the CityJSON Energy Extension . 30

4 Study area and datasets 33
4.1 Study area . 33
4.2 Collection of input data for space heating demand . 34

4.2.1 3D city model of Rijssen-Holten . 35
4.2.2 Basisregistratie Adressen en Gebouwen (BAG) 37
4.2.3 Meteorological Data Portal . 38
4.2.4 TABULA Building Physics Library . 38
4.2.5 NTA 8800 . 40

ix

Contents

5 Implementation 42
5.1 Mapping rules of the semi-direct translation . 42

5.1.1 Creating new City Objects . 42
5.1.2 New attributes to existing City Objects . 43
5.1.3 Creating new non-City Objects . 43
5.1.4 New data types, enumerations and code lists . 45
5.1.5 Relations among City Objects and non-City Objects 45

5.2 Experiments on the storage of input data in the CityJSON Energy Extension 46
5.3 Calculation of space heating demand . 48

5.3.1 Limitations on the retrieval of data from the CityJSON Energy Extension dur-
ing the space heating demand calculation . 49

5.4 Improvements on the semi-direct translation . 50
5.4.1 Reconsidering the Energy ADE KIT profile attributes 50
5.4.2 Associations among objects . 50
5.4.3 Removal of deep hierarchies . 51
5.4.4 Naming conventions . 53

6 Results and Analysis 55
6.1 Semi-direct translation versus the final CityJSON Energy Extension 55

6.1.1 Change in the hierarchical structure . 55
6.1.2 Change in the storage of relations . 56

6.2 The Energy ADE KIT profile versus the CityJSON Energy Extension 57
6.2.1 Changes in the used elements . 57

6.3 Comparison of file size . 59
6.4 Results of the space heating demand calculation . 60

6.4.1 Comparison of results with energy simulation tools 65

7 Conclusions and Future Work 70
7.1 Research overview . 70
7.2 Discussion . 72

7.2.1 Contributions . 72
7.2.2 Limitations . 72

7.3 Future work . 74
7.3.1 Further development of the Energy Extension 74
7.3.2 Additional methods for validation and comparison 74

7.4 Self-reflection . 75

A Comparison of the Extension elements 78

x

List of Figures

2.1 A subset of the CityGML Building module focusing on semantic features. 6
2.2 Geometrical and semantic differentiation of the five LODs in CityGML. 7
2.3 The hierarchy of CityJSON, structured as 1st- and 2nd-level city objects. 8
2.4 UML diagrams of the Noise ADE. 11
2.5 The modules and dependencies of the Energy ADE. 13
2.6 Approaches in Urban Energy Modelling for energy demand estimations. 16
2.7 Topologically adjacent buildings and the party walls between them as stored in the

3D city model. 17

3.1 Overview of the methodology. 20
3.2 UsageZone object defined as a City Object in the Energy ADE KIT profile. 21
3.3 The “hook” mechanism of the Energy ADE KIT profile to define new attributes, and

the newly defined data types, enumerations, and code lists. 22
3.4 Non-City Objects defined in the Energy ADE KIT profile. 22
3.5 Example of unidirectional and bi-directional relations. 30

4.1 The location of the Rijssen-Holten municipality in the Netherlands, and the study
area with used buildings. 33

4.2 Distribution of the building functionalities, and the building typologies in the study
area. 34

4.3 The 3D city model of the study area: a subset of Rijssen-Holten in the Netherlands. . . 35
4.4 Residential units as points in the BAG dataset. 38
4.5 TABULA building classification for the Netherlands. 39

5.1 The hierarchy of CityJSON Energy Extension objects to store the needed input data. . 47
5.2 A party wall between two buildings, and the remaining unshared wall surface with a

considerably small area. 49
5.3 The relation between ThermalBoundary and Construction objects in the semi-direct

translation and in the final version of the Extension. 51

6.1 The links to be passed to reach weather data values stored with the semi-direct trans-
lation, and the final CityJSON Energy Extension. 56

6.2 The definition of a volume attribute for Building objects with its value and unit of
measurement as two separate properties, and the links needed to be passed to reach
the volume data with and without the unit of measurement. 56

6.3 The relationship between a UsageZone object and its occupant(s) stored in attributes,
and in properties of the object. 57

6.4 Extension CityObjects before and after the parent/children relationships were recon-
sidered. 58

6.5 TimeSeries objects defined in the Energy ADE KIT profile with inheritance, and in the
CityJSON Energy Extension without the abstract class. 58

6.6 Considered and omitted buildings during the space heating demand calculation in
the center and a residential area in Rijssen. 60

6.7 Energy demand (kWh) in the month January in the center and a residential area in
Rijssen. 61

xi

List of Figures

6.8 Examples of corner and middle buildings with the type Terrace House. 61
6.9 Two buildings with differing sizes from the study area. 62
6.10 Average monthly energy demand (kWh) and the distribution of values on logarithmic

scale depending on the construction period. 63
6.11 Average monthly energy demand (kWh) and the distribution of values on logarithmic

scale depending on the building type. 64
6.12 The differences between the average energy demand values calculated with NTA

8800 and Simstadt for a 10-building subset. 65

A.1 A comparison of the Energy ADE KIT profile and CityJSON Energy Extension elements. 80

xii

List of Tables

3.1 Validation functionalities of cjval. 24
3.2 Elements of the space heating demand calculation according to NTA 8800, and the

needed input data. 29

4.1 Input parameters of the space heating demand calculation and the data sources. . . . 34
4.2 The attributes stored in the 3D city model of Rijssen-Holten. 36
4.3 The available attributes of the selected residential unit in the BAG dataset. 38

6.1 File size and the number of objects stored in each input/output file used in the thesis. 60
6.2 Comparison of energy demand in January for corner, stand-alone and middle buildings. 62
6.3 Comparison of energy demand in January for two buildings with distinct construc-

tion periods. 62
6.4 Comparison of energy demand in January for two buildings with distinct volumes. . . 63
6.5 Average volume of the three building typologies in the study area. 65
6.6 Comparison of monthly space heating demand values for a 10-building subset calcu-

lated with NTA 8800 and SimStadt. 66
6.7 Buildings with negative energy demand values. 67
6.8 Change in the energy demand values for one building after adjustments in the calcu-

lation method. 68

xiii

List of Schemas

2.1 A basic CityJSON Extension schema with all possible properties. 9
2.2 An instance of the +SolitaryVegetationObjectPC object. 10
2.3 Definition of the +NoiseCityFurnitureSegment object in the Noise Extension. 12
2.4 Building CityObject, extended with noise-related attributes. 12

5.1 Definition of the UsageZone CityObject in the Extension schema, and the exemplary
JSON object with example data. 43

5.2 Extra attributes defined for the Building CityObject, and how it is implemented for a
Building object. 43

5.3 EnergyDemand, a non-CityObject, defined with the ”extraCityObjects” keyword, and
an exemplary JSON object with the corresponding attributes. 44

5.4 Definition of the WeatherData object, and its use together with a TimeSeries object. . . 44
5.5 floorArea data type defined as a subschema, and referenced as the data type of the

floorArea attribute of Buildings. 45
5.6 ThermalZone object with its parents and children properties, and the use of this con-

cept to form a relation with a UsageZone object. 46
5.7 The relation between a Building and EnergyDemand object. 46
5.8 UsageZone CityObject with its weatherData and energyDemand relations as attributes,

and the occupants relation defined as a property. 52
5.9 WeatherData, defined as a subschema, and its use in a weatherData attribute for a

Building object. 52
5.10 The use of the ”+unitOfMeasurement” root property in a CityJSON + Energy Exten-

sion file. 53

xiv

Acronyms

ADE Application Domain Extension . 1
OGC Open Geospatial Consortium . 5
LoD Level of Detail . 6
BIM Building Information Modeling . 5
BAG Basisregistratie Adressen en Gebouwen . ix

xvi

1 Introduction

Energy performance of buildings is a prevalent discussion all around the world, considering that
more than one-third of global energy consumption and almost 40% of energy-related CO2 emissions
are caused by buildings and construction activities [United Nations Environment Programme, 2020].
Modelling the current energy use and predicting future scenarios require comprehensive knowledge
about buildings and tools to process and simulate this information [Agugiaro et al., 2018]. As a
result, Urban Energy Modelling has gained substantial importance over the years [Ali et al., 2021], in
which semantic 3D city models are frequently used to obtain and store energy-related data in urban
areas [Kaden and Kolbe, 2014; Agugiaro, 2016b].

In this context, the CityGML data model presents a standardised way of storing and exchanging
3D city models with an XML-based encoding also called CityGML [Gröger et al., 2012]. While
CityGML is used for numerous applications ranging from energy and noise simulations to disaster
management [Gröger and Plümer, 2012], the complexity and verboseness of the XML format has led
to the development of two other encodings for CityGML: an SQL-based encoding called 3DCityDB
[Yao et al., 2018], and a JSON-based encoding called CityJSON [Ledoux et al., 2019], both of which
aim to provide a more efficient way of storing information.

While CityGML covers a wide variety of city objects with their geometries and semantics, the
core data model can be extended for specific use cases with the concept of Application Domain
Extension (ADE), which allows the addition of classes and attributes to the data model in a systematic
way [Gröger and Plümer, 2012]. One of the most comprehensive of these is the Energy ADE, which is
used to store detailed energy-related data of buildings [Benner, 2018]. This information can then be
used in both steady-state and dynamic energy simulations to analyse the current state of buildings
as well as to obtain future predictions. For instance, a prominent application of Energy ADE is to
assess the energy performance of buildings by focusing on specific implementations such as energy
demand analysis or solar irradiation of buildings [Agugiaro et al., 2018]. Furthermore, it can be
used to determine future actions such as strategies on renewable energy or building refurbishment
measures.

Energy ADE was originally provided with an XML-based encoding, however, due to the com-
plexities of both the XML format and the Energy ADE data model itself, a database implementa-
tion was later created by extending the already existing 3DCityDB to store energy-specific data of
buildings [Agugiaro and Holcik, 2017]. In the recent literature, this format has been used in many
energy-focused studies, proving its efficiency over the XML-based encoding [Skarbal et al., 2017;
Pasquinelli et al., 2019; Rossknecht and Airaksinen, 2020]. On the other hand, even though an Ex-
tension mechanism exists for CityJSON to define additional objects and attributes for the core data
model, an energy-related CityJSON extension is not present in the current literature.

Compared to the CityGML ADEs, CityJSON extensions follow stricter guidelines, making them
similar to the original CityJSON files in terms of structure, and thus easier to read and process by
software [Ledoux et al., 2019]. Moreover, the compact structure of CityJSON without deep hierar-
chies may be beneficial for an energy-related extension, considering the high amount of data needed
to be stored for various energy applications. In addition, such an extension would enhance the use of
CityJSON for energy-related use cases while helping to close the gap with the CityGML data model.
Therefore, this thesis investigates the steps necessary to design an Energy Extension for CityJSON.
The Extension will be developed based on the existing extension mechanism of CityJSON, and the

1

1 Introduction

space heating demand calculation is chosen as the use case to structure the Energy Extension, and
for the validation, testing and improvements.

1.1 Objectives and research questions

The main objective of this thesis is to develop and test an Energy Extension for CityJSON that sup-
ports the calculation of space heating demand of buildings. For this, the Extension must enable the
storage of all input data needed for this calculation as well as the resulting energy demand values
in an efficient way. While CityJSON files already have, on average, a compression factor of 6 com-
pared to XML-based CityGML files [Ledoux et al., 2019], the efficiency based on the use case and
input data is crucial to assess as well to improve the Extension. Furthermore, the Extension must
follow the philosophy and the main design decisions behind CityJSON to ensure compatibility with
the core data model.

In order to achieve the outlined objective, this thesis aims to answer the following research ques-
tion:

How can a CityJSON Energy Extension be used to support the calculation of space heating demand of
buildings?

To answer this question, the following sub-questions are specified:

• How can different types of objects, other than CityObjects, be defined in a CityJSON Exten-
sion?

• How should the CityJSON Energy Extension differ from the Energy ADE?

• How can space heating demand calculation be used during the design phase to test and im-
prove the CityJSON Energy Extension?

• To what extent is it possible to map CityGML ADEs to CityJSON Extensions? Should the CityJ-
SON schema be extended to make this process more straightforward?

1.2 Scope

Considering the specified objectives and research questions, the scope of this thesis is defined as
follows:

• The proposed CityJSON Energy Extension focuses on a specific use case, which is the calcula-
tion of space heating demand of buildings. Therefore, the definition of additional objects and
attributes for other energy applications is out of the scope of this thesis.

• During the design and testing of the proposed Extension, limitations of the CityJSON data
model, its extension mechanism, and its validator, cjval 1, will be investigated. While certain
recommendations will be provided to these projects, implementing solutions to these limita-
tions is beyond the scope of this thesis.

1https://github.com/cityjson/cjval

2

https://github.com/cityjson/cjval

1 Introduction

• Space heating demand will be calculated for a subset of the Rijssen-Holten municipality in the
Netherlands with a steady-state energy balance method, as described in the Dutch standard
called the NTA 8800 [Royal Netherlands Standardization Institute, 2022]. On the other hand,
the implementation of a dynamic simulation method is not a part the scope, because of the
need for high-resolution input data, which is generally not possible to obtain for city-scale
calculations.

1.3 Thesis structure

Following this section of Introduction, the rest of the thesis is structured as follows:

Chapter 2 provides an overview of the theoretical background that is used in the rest of this
thesis. The CityGML, CityJSON, and Energy ADE data models are described in detail, and vari-
ous approaches in Urban Energy Modelling related to the space heating demand calculation are
explained. Furthermore, the theoretical background is supported with previous studies related to
the thesis topic.

Chapter 3 introduces the methodology in detail, which is proposed to answer the research ques-
tions. In addition, the main design decisions are described in this part of the thesis.

Chapter 4 presents the details of the study area, and the collection of required input data for the
space heating demand calculation.

Chapter 5 presents the implementation of the methodology and the predetermined design deci-
sions, as well as the additional tests and experiments.

Chapter 6 describes the results obtained after the implementation of the methodology, with a
focus on the results of the performed tests and experiments.

Chapter 7 concludes the thesis, in which a summary of the main results is included and the
research questions are answered. Furthermore, the limitations of the thesis are presented, and rec-
ommendations are provided for future work.

3

2 Related work

This section provides an overview of the theoretical background that this thesis is built upon, to-
gether with a review of the related studies. First, the CityGML data model is introduced with a
focus on the Building module and the ADE concept (Section 2.1). Second, the CityJSON encoding
and its extension mechanism are explained (Section 2.2), followed by a description of two of the
current CityJSON extensions (Section 2.3). Then, the Energy ADE data model is described with its
thematic modules (Section 2.4). Finally, relevant studies on space heating demand calculation are
discussed, and the contribution of 3D city models, the Energy ADE, and current software for energy
simulations are explained (Section 2.5).

2.1 CityGML

3D city models represent the common objects in urban areas with their three-dimensional geome-
tries, which can be used in a large number of domains for specific applications [Biljecki et al., 2015].
While some of these applications focus purely on geometrical properties, others require also the
semantic aspects in a structured way to characterize urban objects, especially buildings [Kolbe,
2009]. In this context, the three most frequently used standards include Building Information Mod-
eling (BIM), INSPIRE Data Specification on Buildings, and the CityGML data model. While BIM is
used to store and manage geometric and semantic data of individual buildings through their life
cycles [Sanhudo et al., 2018], INSPIRE Data Specification on Buildings enables the storage of data
on buildings on city, province, or country level [INSPIRE Thematic Working Group Buildings, 2013].
However, it can be seen that these two standards focus only on buildings, and not on various types
of objects in cities. On the other hand, CityGML is an open data model adopted by the Open Geospa-
tial Consortium (OGC) to store and exchange 3D city models. In this standard, the spatial properties
of objects are represented with a subset of the geometry model of GML3, and their topological,
semantic, and visual properties are also considered [Gröger et al., 2012]. CityGML has a broader
focus compared to the aforementioned standards since different types of city objects are considered,
and is consequently used the most for city-scale applications. In the following paragraphs, general
characteristics of CityGML that are relevant to the thesis are introduced.

2.1.1 Core and Building modules

CityGML consists of a Core module and 10 thematic modules. The Core module defines abstract
base classes and basic data types, where the base class of all thematic modules is the abstract class
called CityObject [Gröger and Plümer, 2012]. The thematic modules, on the other hand, provide
class definitions and properties of the most common objects in cities, namely relief, buildings, tun-
nels, bridges, water bodies, transportation objects, vegetation objects, city furniture, land use, and
city object groups. The main class of each thematic module is defined as a subclass of CityObject,
inheriting its attributes and relations.

The most detailed thematic module of CityGML is the Building module (Figure 2.1), in which the
geometry, semantics and various attributes of buildings are modelled. The base class of the Building
module, AbstractBuilding, includes general attributes such as the class and function of a building,

5

2 Related work

year of construction, roof type and number of storeys. Moreover, a building may be represented
with a Building or BuildingPart object, as subclasses of AbstractBuilding, depending on whether it
consists of a homogeneous part [Gröger et al., 2012]. Finally, a building may be represented as
semantic objects with boundary surfaces such as WallSurface, RoofSurface, and GroundSurface.

Figure 2.1: A subset of the CityGML Building module focusing on semantic features.
Figure adapted from Gröger et al. [2012]

2.1.2 Level of Detail

A prominent aspect of CityGML is that it allows the representation of an object in different Level
of Detail (LoD) simultaneously, from LoD0 to LoD4 (Figure 2.2) [Gröger and Plümer, 2012]. LoD0 con-
stitutes the least detailed representation as a 2.5D digital terrain model, which may include build-
ing footprints, and LoD1 is a blocks model with flat roof structures, usually obtained by extruding
the LoD0 geometries to a height. With LoD2, roof structures are represented more distinctively and
boundary surfaces are differentiated semantically such as walls and roofs. LoD3 provides even more
detail to add doors and windows to create an architectural model, and finally, LoD4 provides a com-
plete model by including interior elements like rooms, stairs, and furniture [Gröger et al., 2012].

2.1.3 Extending CityGML

CityGML can be extended in two ways to define additional features that are missing in the data
model for certain applications. The first option is to define new city objects or attributes using

6

2 Related work

Figure 2.2: Geometrical and semantic differentiation of the five LoDs in CityGML.
Figure from Biljecki et al. [2016]

the Generics module, which includes GenericCityObject and genericAttribute classes for this pur-
pose. While these classes provide the flexibility to extend CityGML, the fact that new objects and
attributes are not defined in an official schema with their own namespaces creates a major draw-
back, since this may prevent validity checks and lead to interoperability problems [Agugiaro et al.,
2018; Biljecki et al., 2018]. The second option for extending CityGML is called an Application Do-
main Extension (ADE). The use of an ADE is similar to the Generics module in the sense that it is
used to define additional classes, attributes, and relations to the data model. However, different
from the generic city objects and generic attributes, an ADE has its own formal schema and names-
pace to define additional features in a systematic manner without causing confusion with the main
CityGML elements [Kolbe, 2009]. There are two main rules about how to define new elements in an
ADE. If new feature types are created, these must be based on already existing CityGML classes with
inheritance relationships [Gröger et al., 2012]. On the other hand, if existing CityGML classes are
extended with new attributes and relations, the ”hook” mechanism is used, which allows to attach
additional properties to existing CityGML classes without having to use the inheritance mechanism
[Gröger and Plümer, 2012].

While Biljecki et al. [2018] detected more than 40 ADEs for a large number of applications ranging
from robotics to road traffic as of 2018, this number has been growing since then with new applica-
tions, such as a support mechanism for metadata in 3D city models [Labetski et al., 2018], keeping
relevant information from IFC-sourced 3D city models [Biljecki et al., 2021], and the integration
of BIM and environmental planning [Wilhelm et al., 2021]. However, even though ADEs provide a
systematic way of extending CityGML, they have their own disadvantages as well. Firstly, ADEs in-
crease the complexity of the data model since elements from different namespaces have to be taken
into account [Gröger and Plümer, 2012]. Secondly, special parsers and validators are needed for
specific ADEs, and existing software would fail to process additional information coming from an
ADE [Ledoux et al., 2019].

2.2 CityJSON

CityJSON is a JSON-based encoding for a subset of the CityGML data model [Ledoux et al., 2019],
which has been developed to create an easy-to-use alternative to the official XML-based encoding of
CityGML. The first motivation behind this comes from the fact that complex relationships between
objects in CityGML are stored as deep hierarchies in the XML-based encoding. This makes it harder
to develop software to parse and validate CityGML files, and results in large files that are not human
readable [Ledoux et al., 2019]. Moreover, the second motivation concerns the storage of geometries
in CityGML. The disadvantage of using the geometry model of GML3 is that the same geometry may
be represented in numerous ways with GML3 objects, adding to the complexity of CityGML and
making it even more difficult to parse CityGML files, since different variations for each geometry
must be supported in the software [Ledoux et al., 2019].

7

2 Related work

The design decision behind CityJSON is to remove the deep hierarchical structure of CityGML
and to ensure an efficient way of storing geometries and semantics without leaving any room for
ambiguity [Ledoux et al., 2019]. For this, CityGML classes and objects are mapped to CityJSON in
a straightforward manner as long as they do not contradict with the main goal of CityJSON, which
is to create a compact and user-friendly encoding. If, however, the addition of a CityGML element
leads to an increase in complexity, either that object is removed for the sake of simplicity or, and
more often, an alternative solution is provided in CityJSON to translate the same concept in a more
efficient way. An example to the latter is the Versioning module of CityGML (version 3.0), which is
not directly supported by CityJSON arguing its shortcomings, but a Git-based alternative is being
developed to provide the same functionality [Vitalis et al., 2019b].

The main differences between CityGML and CityJSON lie in the way objects are defined. First,
CityJSON has a simpler structure where city objects are defined as either 1st-level or 2nd-level ob-
jects (Figure 2.3). While the former can exist by themselves, the latter must have a relation to a
1st-level object to exist [Dukai and Ledoux, 2021]. The reason of following such a structure is to
remove the deep hierarchies of CityGML, while providing the relationship between 1st- and 2nd-
level objects implicitly with object properties such as the parent/children relationship [Vitalis et al.,
2019a]. In relation to this, some abstract classes are not contained in CityJSON to flatten the hi-
erarchy as much as possible, unless their absence causes structural problems. Second, boundary
surfaces such as WallSurface or RoofSurface are defined in a different way in CityJSON than in
CityGML. While CityGML defines boundary surfaces as city objects that bound the object in ques-
tion, CityJSON maps these as semantic objects that are stored separately from the geometry. The aim
of this is to decrease the verboseness of CityGML, since each type of semantic object may be then
declared only once, and all surfaces with that semantics can refer to it instead of defining the same
type of object multiple times [Ledoux et al., 2019]. Finally, even though CityJSON provides ways to
bypass the complexities of CityGML, certain aspects of the JSON schema fall behind that of XML.
For instance, while CityGML depends heavily on the creation of specialised classes from a general
class, this is not directly possible in CityJSON since the JSON schema does not support inheritance.
Similarly, CityGML makes use of the namespace concept from the XML schema which allows to add
uniquely named attributes to avoid collisions from a different file, or within the same file [Bray et al.,
2009]. In CityJSON, this is not possible as well since the JSON schema does not support namespaces.
Therefore, validating a CityJSON file might require extra considerations compared to CityGML.

Figure 2.3: The hierarchy of CityJSON, structured as 1st- and 2nd-level city objects.
Figure from Dukai and Ledoux [2021]

8

2 Related work

2.2.1 Extending CityJSON

Despite the fact that it is a rather new encoding, many studies can be found in the literature that
make use of CityJSON in various fields, such as automatic building generation using point clouds
or deep learning [Nys et al., 2020; Kippers et al., 2021], and urban energy modelling [Prataviera
et al., 2021]. Moreover, similar to the ADE concept of CityGML, CityJSON provides an Extension
mechanism to add extra elements that are not already included in the core data model. The main
difference between the two concepts is that CityGML ADEs are more flexible in the sense that they
allow to define different types of objects or new data types so long as they comply with the basic
rules behind the ADE concept (see Section 2.1.3). On the other hand, CityJSON restricts the way the
core data model can be extended with three possible options [Ledoux et al., 2019]:

1. New (complex) attributes can be added to existing CityObjects.

2. New CityObjects can be created (or existing ones can be extended), and complex geometries
can be defined.

3. New properties can be added at the root of the document.

A CityJSON Extension file containing all the elements listed above is demonstrated in Schema 2.1,
where the Extension is defined as a separate JSON file with its own URI, and the three possible op-
tions to extend the core data model are included as three properties of this file [Ledoux et al., 2019].
It can then be referred to in a CityJSON file when extra elements defined in the Extension are used.
The aim of creating such a structure is to eliminate the extra work that needs to be done to process
the Extension elements in a CityJSON file. To ensure this, it is recommended for all Extension object
names to start with a ”+” sign, and the object type must be included.

1 {

2 "type": "CityJSONExtension",

3 "name": "Traffic",

4 "description": "Extension to model the traffic",

5 "uri": "https :// extensionurl.org/traffic.ext.json",

6 "version": "1.0",

7 "versionCityJSON": "1.1",

8 "extraAttributes": {},

9 "extraCityObjects": {},

10 "extraRootProperties": {}

11 }

Schema 2.1: A basic CityJSON Extension schema with all possible properties.

It can be discussed that these restrictions and rules help with parsing a CityJSON file that in-
cludes extra elements, while putting limitations on the Extension mechanism compared to CityGML
ADEs. The fact that the extra elements can only be of three type (extraAttributes, extraCityObjects,
extraRootProperties) is a big limitation since any other type of object, such as extra object properties,
does automatically not qualify to be included in the Extension. This may restrict the use of CityJSON
Extensions for various applications while resulting in the use of CityGML ADEs instead. Moreover,
the shortcomings of JSON schema, such as the lack of namespaces and inheritance, also have a neg-
ative effect on CityJSON Extensions. For instance, the only way of extending a City Object in the
Extension is to create a new one since CityJSON does not support inheritance [Dukai and Ledoux,
2021]. Furthermore, the lack of namespaces may result in confusion about different elements and
attributes, especially if a CityJSON file refers to more than one Extension. In this case, different Ex-
tensions may contain elements with exactly the same name, which may lead to complications in the
parsing process, or general confusion about the data. As a result, it is recommended to prepend all
object names with the corresponding extension name to prevent this confusion.

9

2 Related work

2.3 Current CityJSON Extensions

Despite the aforementioned disadvantages of CityJSON Extensions, their benefits over CityGML
ADEs can be easily detected as well, such as the fact that software can generally handle CityJSON
Extensions without having to change the parsing code [Ledoux et al., 2019]. As a result, numerous
CityJSON Extensions can be found in the literature that successfully extend the core data model.
These range from the support for 3D point clouds [Nys et al., 2021] to the addition of topological
information for city objects [Vitalis et al., 2019a], from storing information on building permits [Wu,
2021] to the representation of data quality in city models [Ilizirov and Dalyot, 2022]. In addition,
there are also extensions developed by the CityJSON team to convert the CityGML Noise ADE, and
to provide a way to handle GenericCityObjects1. In the following paragraphs, the work of Nys et al.
[2021] and the CityJSON team to create a Noise Extension2 will be described.

2.3.1 CityJSON Point Cloud Extension

The Point Cloud Extension developed by Nys et al. [2021] supports the storage of 3D point clouds
in two ways: either as a link to an external source such as an LAS file, or inline with a MultiPoint
geometry. The former is realised by creating a new object called ”AbstractCityObjectPC”, which has
an extra property called ”pointcloud-file” to specify the MIME type, URI, and the SRS name of the
point cloud file. As a result, all City Objects in CityJSON are defined again as new objects since they
must refer to the ”AbstractCityObjectPC” element to be able to use the ”pointcloud-file” property.
An example to this case is given in Schema 2.2 3, where a tree is represented as a point cloud in LAS
format.

1 "CityObjects": {

2 "Tree_example": {

3 "type": "+SolitaryVegetationObjectPC",

4 "geometry": [],

5 "pointcloud -file": {

6 "mimeType": "application/vnd.las",

7 "pointFile": "https :// github.com/GANys/cityjson -pointcloud/raw/dev/

example/Tree.las",

8 "referenceSystem": "https ://www.opengis.net/def/crs /4326"

9 }

10 }

11 }

Schema 2.2: An instance of the +SolitaryVegetationObjectPC object, which uses the
”pointcloud-file” property.

It can be noticed that the already existing AbstractCityObject element could not be used here since
the extension mechanism of CityJSON only allows the addition of extra attributes, but not extra
properties. The main difference between these two features is that CityJSON attributes are gener-
ally used to specify object-specific characteristics, while properties are utilised to define spatial and
relational features, such as the geometry and the parent/children relationships between objects.
Furthermore, attributes are stored one level deeper in the hierarchy of a CityJSON object. Then, the
second option to store 3D point clouds in the Extension is realised by adding MultiPoint as one of
the allowed geometry types of the newly formed City Objects.

1https://www.cityjson.org/extensions/
2https://www.cityjson.org/tutorials/extension/
3https://github.com/GANys/cityjson-pointcloud/blob/dev/example/example.city.json

10

https://www.cityjson.org/extensions/
https://www.cityjson.org/tutorials/extension/
https://github.com/GANys/cityjson-pointcloud/blob/dev/example/example.city.json

2 Related work

This extension demonstrates both the strengths and weaknesses of the Extension mechanism of
CityJSON. For instance, it is clear that the addition of an extra City Object is highly straightforward
since it is one of the allowed operations in the Extension mechanism. On the other hand, extending
a City Object with a new property requires finding a way around since this is not directly allowed.

2.3.2 CityJSON Noise Extension

The CityJSON Noise Extension4 is a direct mapping from the Noise ADE, which is defined as an ex-
ample in the CityGML 2.0 standard to be used in simulations and analyses related to noise pollution
[Biljecki et al., 2018]. It extends the core of CityGML by defining new City Objects (Figure 2.4a) and
adding new attributes for buildings and building parts (Figure 2.4b).

(a) Adding new CityObjects. (b) Defining new attributes.

Figure 2.4: UML diagrams of the Noise ADE. Figures adapted from Gröger et al. [2012]

Both of these operations are easily translated to CityJSON by using its Extension mechanism.
First, a new City Object called NoiseCityFurnitureSegment is defined with its attributes and geometry
(Schema 2.3), and the parent/children relationship is used to ensure the connection with the City-
Furniture object, where each NoiseCityFurnitureSegment object has a CityFurniture object as a parent.
Moreover, it is important to note that the noise::type attribute is not directly mapped to the Extension
since CityJSON does not support code lists, while the other attributes are mapped with equivalent
data types.

4https://www.cityjson.org/tutorials/extension/

11

https://www.cityjson.org/tutorials/extension/

2 Related work

1 "+NoiseCityFurnitureSegment": {

2 "allOf": [

3 {"$ref": "cityobjects.schema.json#/ _AbstractCityObject "},

4 {"properties": {

5 "type": {"enum": ["+NoiseCityFurnitureSegment"] },

6 "attributes": {

7 "properties": {

8 "reflection": {"type": "string"},

9 "reflectionCorrection": {"$ref": "#/ definitions/measure"},

10 "height": {"$ref": "#/ definitions/measure "}

11 }

12 },

13 "parent": {"type": "string"},

14 "geometry": { ... }

15 }

16 ...

17 }

Schema 2.3: Definition of the +NoiseCityFurnitureSegment object in the Noise Extension.5

Second, new attributes are defined separately for Building and BuildingPart objects since CityJSON
does not support inheritance from the AbstractBuilding object. Here, the extraAttributes property
is used, and the Extension schema is given in Schema 2.4, where new attributes with several data
types are exemplified.

1 "extraAttributes": {

2 "Building": {

3 "+noise -buildingReflection": { "type": "string" },

4 "+noise -buildingLNightMax": { "$ref": "#/ definitions/measure" },

5 "+noise -buildingHabitants": { "type": "integer" },

6 "+noise -buildingImmissionPoints": {

7 "type": "array",

8 "items": { "type": "integer" } },

9 ...

10 },

11 "BuildingPart": {...}

12 }

Schema 2.4: Building CityObject, extended with noise-related attributes.5

It can be concluded that the mapping from the Noise ADE to a CityJSON Noise Extension is
mostly straightforward since the two operations, adding new CityObjects and attributes, are sup-
ported in the Extension mechanism of CityJSON. However, certain design decisions must still be
made when it is not possible to map elements due to the disadvantages of the JSON format, or
when certain concepts are not supported in CityJSON by choice.

2.4 Energy ADE

The Energy ADE (currently on version 1.0) is a data model that extends the CityGML version 2.0 to
store and manage energy-related information about buildings [Agugiaro, 2016a]. Even though the

5https://www.cityjson.org/tutorials/extension/

12

https://www.cityjson.org/tutorials/extension/

2 Related work

Building module of CityGML provides certain attributes that can be used in energy applications,
such as the year of construction and building class, the fewness and insufficiency of these attributes
are two of the main motivations behind the development of such an extension [Benner, 2018]. There-
fore, the Energy ADE extends the Core and Building modules of CityGML, and is designed to be used
in numerous energy applications, such as the analysis of building elements, energy demand calcu-
lations, solar potential studies, and future refurbishment scenarios. The scope of the Energy ADE
extends from single-buildings to city-scale assessments, which allows for dynamic simulations with
detailed input data, as well as for simplified models [Agugiaro et al., 2018]. As a result, the Energy
ADE is designed in 6 thematic modules with different functionalities, each one focusing on a distinct
aspect of buildings related to energy applications [Benner, 2018] (Figure 2.5).

Figure 2.5: The modules and dependencies of the Energy ADE. Figure adapted from Benner [2018]

2.4.1 Energy ADE KIT Profile

While the broad scope of the Energy ADE and its detailed modularisation contribute to its use in a
wide variety of applications, this comes with the consequence that the data model may be unneces-
sarily complex for certain simplified applications and simulations. Thus, a subset of the Energy ADE
has been created by the Karlsruhe Institute of Technology, called the Energy ADE KIT profile, that ex-
cludes the classes and attributes needed only for dynamic simulations, which is consequently easier
to use [León-Sánchez et al., 2021]. The main differences between the original Energy ADE data model
and the KIT profile are that the Energy Systems module is completely removed and the Supporting
Classes module is highly simplified in the KIT profile, while numerous classes and attributes are
also discarded in the remaining modules. The following paragraphs explain in more detail each of
the KIT Profile modules, since this thesis considers the KIT profile instead of the full Energy ADE.

Core module

The Core module extends the AbstractBuilding and CityObject classes of CityGML. The ”hook”
mechanism is used for this purpose (see Section 2.1.3), where new attributes and relations are at-
tached to the existing classes. Some of the new attributes include the building type, floor area, and
volume for buildings, while the new relations are formed to provide a way to store additional infor-
mation about the weather and energy demand of all city objects. However, it can be discussed that
these relations are sometimes irrelevant for certain city objects, since not all types of objects are con-
sidered in energy demand or meteorological calculations. For instance, the Relief, WaterBody, and
LandUse city objects of CityGML are also extended in the KIT profile with energy demand informa-
tion, even though these objects are not usually taken into account in energy demand calculations.

13

2 Related work

In addition to the additional attributes and relations, the Core module also defines the abstract
base classes for other thematic modules, namely AbstractThermalZone, AbstractUsageZone, and Ab-
stractConstruction [Agugiaro et al., 2018]. Finally, numerous data types, enumerations and code lists
are provided in the Core module.

Building Physics module

The Building Physics module includes three classes to define the physical and thermal properties
of buildings to be used in energy applications. The first of these is the ThermalZone class, which is
used to define the smallest unit inside a building with the same thermal behaviour [Benner, 2018].
Moreover, each ThermalZone is bounded by a number of ThermalBoundary objects that separate
different ThermalZones, or a ThermalZone from the outside environment. Outer walls of a building
or the party walls between two adjacent buildings can be given as examples of a ThermalBoundary.
Finally, each ThermalBoundary object may have ThermalOpenings such as windows or doors [Ben-
ner, 2018]. Each of these objects includes a number of attributes to define their physical properties
such as the area, azimuth, inclination, and geometry. In addition, ThermalBoundary and Ther-
malOpening objects contain a link to the AbstractConstruction object to define more detailed thermal
properties such as the U-value, glazing ratio, or reflectance.

Material and Construction module

The Material and Construction module is used to define the thermal and optical properties of the
construction parts of buildings. While a Construction can be used by itself to define these properties
in a generalised way, each Construction object may also be decomposed into Layers, where each of
the Layer objects represents a separate part of the Construction with different properties. Further-
more, a Layer object consists of one or more LayerComponent objects to specify a homogenous part
with a specific material [Benner, 2018]. These objects are usually utilised when a high amount of
input data is present for more detailed simulations [Agugiaro and Holcik, 2017].

Occupant Behaviour module

The Occupant Behaviour module stores detailed information on different UsageZones, which are
defined as ”the zones of a building with homogeneous usage conditions and indoor climate control
settings” [Benner, 2018]. In addition, Occupants of a building and the Facilities in it are modelled,
such as electrical appliances and lighting facilities. Numerous attributes are provided for these
objects, such as the current use type, heating and cooling schedules of a UsageZone, occupancy
rate of Occupants, and operation schedule of Facilities. These information can then be used in
energy demand calculations, since the behaviour of a building’s occupants greatly affects the heat
management of a building [Benner et al., 2016].

Supporting Classes module

The Supporting Classes module focuses on the representation of physical values as time series and
schedules. First, the KIT profile contains the RegularTimeSeries and RegularTimeSeriesFile objects.
While the former allows to store a list of measurement values during a specific period with a con-
stant time interval, the latter makes it possible to store the same data on an external file. Second, the
KIT profile supports the most frequently used schedule type, DailyPatternSchedule, which can be
utilised to define specific daily schedules within specific periods in a year [Agugiaro et al., 2018].

14

2 Related work

2.5 Space heating demand calculation and 3D city models

Two main approaches can be detected in Urban Energy Modelling for energy demand estimations:
top-down and bottom-up (Figure 2.6). The top-down approaches use aggregated national or regional
energy consumption data instead of individual buildings [Ghiassi and Mahdavi, 2017]. Urban scale
hypotheses and trends are then built about socio-economic, technical, or physical drivers to disag-
gregate this data for energy demand calculations [Prataviera et al., 2021]. On the other hand, the
bottom-up approaches take input data from individual or groups of houses to calculate energy de-
mand, which are then aggregated for estimations on larger scales [Swan and Ugursal, 2009]. The
superiority of one approach over the other depends highly on the application and availability of
data, since top-down approaches mostly work with total sum values that lead to lower accuracy,
while bottom-up approaches provide more detailed results at the cost of requiring a large amount
of data that may not be publicly available in all cases [Ferrando and Causone, 2019].

Within bottom-up approaches, statistical and building simulation (physical) methods are highly
used for energy demand estimations. Statistical methods use historical consumption values to de-
termine energy properties of distinct types of buildings. These values are then used to estimate the
energy demand of other buildings with similar properties [Kaden and Kolbe, 2014]. Conversely,
building simulation (physical) methods use simulation techniques, energy characteristics of build-
ings, and external data such as climate data to calculate energy demand instead of using already
measured consumption data. However, due to the high number of input data requirements, build-
ings are usually categorised by their properties, such as the typology and year of construction, and
the energy demand calculation is performed for each of these categories [Ali et al., 2021].

Building simulation methods can be classified as steady-state or dynamic models, depending on
the level of detail of the used parameters. In steady-state models, temporal resolution of input data
is generally lower for simplification purposes. For instance, climate data such as solar irradiation or
outdoor air temperature is usually taken in seasonal or monthly averages [Dalla Mora et al., 2021].
Similarly, fixed values can be used for set-point temperatures since detailed indoor temperature
data is mostly not available. Therefore, energy demand values calculated with steady-state models
are also presented as monthly or annual values. Contrarily, dynamic models present more detailed
results since dynamic effects in buildings, such as the composition of households and the behaviour
of dwellers, are taken into account [Verwiebe et al., 2021]. Furthermore, climate data is taken in
daily or hourly values, and the resulting energy demand is presented as hourly or daily values
as well [Agugiaro et al., 2015]. However, these models are usually preferred when detailed input
parameters are available.

2.5.1 3D city models and the Energy ADE for space heating demand
calculation

The literature suggests that the steady-state models are more frequently used for city-scale space
heating demand estimations, since less input parameters are needed and simplifications can be
made for the missing information [Agugiaro, 2016b; Skarbal et al., 2017; Pasquinelli et al., 2019;
Rossknecht and Airaksinen, 2020]. For instance, Van den Brom [2020] explains the calculation
method for space heating demand of buildings in the Netherlands, where the indoor air temper-
ature is taken as a fixed value of 18 ◦C for simplification purposes. It is important to note that this
fixed value is considered for this thesis as well, since the current version of the calculation method
does not include a predetermined value for indoor air temperature.

To calculate space heating demand, 3D city models are frequently used for obtaining the input
parameters about physical characteristics of buildings, as well as for storing the resulting space
heating demand values. Agugiaro [2016b] uses an energy balance method that follows the Italian

15

2 Related work

Figure 2.6: Various approaches in Urban Energy Modelling for energy demand estimations. Figure
adapted from Swan and Ugursal [2009]; Kaden and Kolbe [2014]

standards to calculate monthly space heating demand values for the city Trento, where many phys-
ical parameters such as the area, orientation, and pitch angles of building surfaces are obtained
through the 3D city model of the city. Moreover, party walls between topologically adjacent build-
ings are calculated and stored in the 3D city model as separate geometries (Figure 2.7). On the other
hand, detailed parameters such as heat transfer coefficients and window-to-wall ratios are either
obtained from existing building physics libraries or fixed values are assumed. This study provides
certain input parameters that will be utilised in this thesis. First, the dimensionless reduction factor
(bu) for non-adiabatic surfaces, which is given as a fixed value of 0.5, will be used in the calcula-
tion of the heat transfer between a heated and unheated space. Second, the formula to compute
the air volume flow for the heat losses through ventilation will be adopted in the thesis, which is
given in Equation 2.1, where the heated volume is assumed to be the 80% of the whole volume of a
building.

airvolume f low = Vheated · nve (2.1)

where

Vheated : heated volume of the building, in m3;
nve : air exhance rate, in h−1.

Kaden and Kolbe [2014] perform a city-wide energy demand estimation for Berlin according
to the German standards based on an energy balance method. The 3D city model of the city in
CityGML is used to calculate physical and thermal properties of LoD2 buildings, such as the heated
volume and energy reference area of surfaces. Furthermore, the final energy demand values are
stored in the 3D city model as CityGML attributes. These values are then used for validation by
comparing with the already existing energy demand estimations, which have been calculated after
visual inspections and manual measurements to obtain physical parameters of buildings. Their
results show that the estimated energy demand values using the 3D city model of Berlin varies only
5% from the estimation values obtained with manual calculations [Kaden and Kolbe, 2014], which
shows the potential of 3D city models for energy demand calculations.

16

2 Related work

Figure 2.7: Topologically adjacent buildings (left) and the party walls between them (right) as
stored in the 3D city model. Figure from Agugiaro [2016b]

Later studies make use of the CityGML Energy ADE to calculate and store the input parameters,
which are then used in energy demand simulations. Rossknecht and Airaksinen [2020] use the En-
ergy ADE on both the input and output sides of the calculation. The energy-related input parameters
(type of usage zones, number of occupants, heating status, etc.) are first stored in the already ex-
isting 3D city model in CityGML with the Energy ADE. Then, these parameters are used for energy
demand simulations, and the resulting monthly space heating demand values are stored with the
EnergyDemand class of the Energy ADE for each building.

Similarly, Skarbal et al. [2017] use the Energy ADE to store additional data about buildings to be
used in the energy demand calculation. While some of this data is calculated directly from the 3D
city model, such as the footprint area and gross volume, the data coming from external sources is
integrated as well, such as the solar irradiance values and building typologies. Therefore, it can be
concluded that the Energy ADE is utilised successfully to store heterogeneous energy-related data
from various sources in a single 3D city model.

2.5.2 Current energy simulation software with 3D city models

There are numerous energy simulation tools available with distinct focuses and considerations. For
instance, certain tools such as EnergyPlus [Crawley et al., 2001], TRNSYS [Beckman et al., 1994] and
SIM-VICUS 6 are generally used for performing detailed simulations on building level. These tools,
therefore, require highly detailed and precise input data about the building, such as the geometry,
building physics parameters, and HVAC equipments, to be able to run the simulation. On the other
hand, certain other software, such as SimStadt and CitySim, can be used for energy simulations on
city scale instead of focusing on single buildings. Since a city scale energy demand calculation is
within the scope of this thesis, detailed information about SimStadt and CitySim is provided in the
following paragraphs.

Firstly, SimStadt was developed at HFT Stuttgart to help authorities make energy-related de-
cisions by performing energy simulations, such as solar and PV potential analysis and energy de-
mand simulations [Scartezzini et al., 2015]. The software accepts CityGML files as input data, while
the missing additional information, such as building physics parameters and weather data, can be
retrieved from SimStadt’s pre-built libraries [León-Sánchez et al., 2021]. Alternatively, SimStadt ac-
cepts additional data provided by the user, as long as the data is created in a compatible format for
the software to read and process. Furthermore, SimStadt uses a steady-state method based on the
German standard DIN V 18599 for automatically calculating monthly energy demand of buildings

6https://www.sim-vicus.de/

17

https://www.sim-vicus.de/

2 Related work

[Monien et al., 2017]. The data in the pre-built libraries of SimStadt is therefore based on the German
regulations that specify the desired building characteristics.

Secondly, CitySim uses a dynamic method based on an RC model to simulate the energy flows
of buildings [Robinson et al., 2009]. In contrast to SimStadt, CitySim requires the input data to be
in a specific format (CitySim XML file format), which can be produced using the provided GUI
with CityGML files [León-Sánchez et al., 2021]. In addition, CitySim requires the user to provide
additional information such as weather and building physics data, instead of automatically using
pre-built libraries. Finally, CitySim differs from SimStadt in terms of the temporal resolution of
output values. While SimStadt provides monthly simulation values, CitySim produces values in a
higher temporal resolution, at hourly intervals, since it uses a dynamic method, which is known to
provide more detailed results [León-Sánchez et al., 2021]. The hourly simulation values can then be
aggregated into monthly or yearly values depending on the needs of the user.

18

3 Methodology

This section presents the details of the methodology used in this thesis. As shown in Figure 3.1,
the methodology consists of two interrelated parts: the development of the CityJSON Energy Ex-
tension, and the space heating demand calculation. In the rest of this section, the main parts of the
methodology are explained in detail. Firstly, Section 3.1 explains the main considerations in creat-
ing a semi-direct translation from the Energy ADE to a CityJSON Energy Extension. Secondly, the
validation process and the used tools are described in Section 3.2. Then, the calculation method for
the use case, space heating demand of buildings, is described, and the needed input parameters
are determined in Section 3.3. Finally, Section 3.4 explains the methods used to improve the initial
CityJSON Energy Extension to make it more efficient and fully compatible with the use case.

Figure 3.1: Overview of the methodology. Grey: main steps, blue: intermediate outputs, orange:
final output of the thesis.

20

3 Methodology

3.1 Semi-direct translation from the Energy ADE

The first step of the methodology involved creating a semi-direct translation from the Energy ADE
to a CityJSON Energy Extension to explore the possibilities, and to grasp the similarities and dif-
ferences between the CityGML and CityJSON data models. For this, an assessment was made to
decide whether to use the full Energy ADE or the Energy ADE KIT profile considering the use case.
Based on the previous studies where the Energy ADE is used for steady-state space heating demand
calculations [Agugiaro, 2016b; Rossknecht and Airaksinen, 2020], it was decided that the full Energy
ADE provides a much more complex option than needed for the use case, therefore, the Energy ADE
KIT profile was decided to be used throughout this thesis.

While the initial idea was to develop a fully-direct translation in this step, the literature review
presented in Chapter 2 showed the restricted extension mechanism of CityJSON, which made it clear
that a fully-direct translation is not possible in the case of the Energy ADE in general. Therefore, all
types of objects and attributes defined in the Energy ADE KIT profile were considered to determine
the mapping rules, and an overview of each of these elements and the main considerations are
described in the following paragraphs.

3.1.1 New City Objects

In the Energy ADE KIT profile, new city objects are defined as subclasses of the abstract CityObject
class of CityGML. Therefore, all attributes and relations defined for CityObject are inherited by the
new Energy ADE KIT profile city objects as well. An example is given in Figure 3.2 for the Us-
ageZone class, where an AbstractUsageZone is first created as a subclass of CityObject, inheriting its
four attributes: creationDate and terminationDate to keep track of the feature’s history, and relative-
ToTerrain and relativeToWater to determine the position of the feature [Gröger et al., 2012]. Then,
the UsageZone class itself is defined with its own attributes while inheriting additional ones from its
superclass. As a result, while determining the mapping rules for the new city objects in the Energy
ADE KIT profile, their own attributes as well as the inherited ones from their abstract classes or the
CityObject class itself were considered.

Figure 3.2: UsageZone object defined as a City Object in the Energy ADE KIT profile. Figure
adapted from Gröger et al. [2012]; Benner [2018]

3.1.2 New attributes to existing City Objects with additional data types

The Energy ADE KIT profile extends the existing AbstractBuilding class of CityGML with additional
energy-related attributes using the “hook” mechanism, as described in Section 2.4.1. For the semi-
direct translation, additional mapping rules were determined to discover the possibilities to use
such a mechanism in the CityJSON Energy Extension.

Furthermore, as shown in Figure 3.3, new data types, enumerations, and codelists are also de-
fined besides the simple types such as CharacterString or Decimal. While the data types and enumer-
ations are created directly in the schema, codelists are defined by referring to well-known standard

21

3 Methodology

codelists with their URLs. Since these additional data types are used extensively throughout the
Energy ADE KIT profile for all types of classes, they were considered carefully in the mapping rules
for the CityJSON Energy Extension.

Figure 3.3: The “hook” mechanism of the Energy ADE KIT profile to define new attributes (left),
and the newly defined data types, enumerations, and code lists (right). Figure adapted from

Benner [2018]

3.1.3 New non-City Objects

In addition to the new City Objects, new non-City Objects are created in the Energy ADE KIT pro-
file, which do not inherit the attributes and relations that AbstractCityObject contains. In the UML
model (Figure 3.4), these objects are defined with either ≪ featureType ≫ or ≪ type ≫ stereotypes,
which correspond to the subtypes of gml:AbstractFeatureType or gml:AbstractGMLType respectively
[Portele, 2007]. Therefore, the attributes of these types are inherited by the non-City Objects in the
KIT profile, such as gml:name, gml:identifier, and gml:description. While City Objects are themselves
derived from gml:AbstractFeatureType, and therefore inherit the same attributes, non-City Objects do
not inherit from CityObject class. As a result, extra attention was paid to these types of objects when
determining the mapping rules.

Figure 3.4: Non-City Objects defined in the Energy ADE KIT profile. Figure adapted from Benner
[2018]

22

3 Methodology

3.1.4 Relations among City Objects and non-City Objects

The associations between City Objects and non-City Objects are formed with the same mechanism
in the Energy ADE KIT profile, where additional attributes are defined to store the gml:identifier of the
objects that they have a relation with (Figure 3.4). Moreover, this mechanism considers multiplicity
since some objects may be related to only one object, while others may be associated with numerous
objects. These aspects of the relations among City Objects and non-City Objects were taken into
consideration in the determination of mapping rules, while also taking a critical side to create a
CityJSON Energy Extension that conforms to the design decisions behind the CityJSON data model
itself.

3.2 Validation of the CityJSON Energy Extension

After creating a semi-direct translation from the Energy ADE KIT profile to a CityJSON Energy Ex-
tension, the second step of the methodology involved the validation of the Extension. While three
possible validation methods were detected, only the first two were used in this thesis. The following
paragraphs give an overview of each of the three methods, including the reasons behind using them
or not.

3.2.1 Validation through the use case

The first validation method considered the use case, space heating demand calculation, since the
CityJSON Energy Extension was developed directly for this application. To validate the semi-direct
translation, a CityJSON + Energy Extension file was created, where the input data needed for the
use case was stored with the energy-related Extension objects and attributes. During this step, it was
evaluated whether all input data could be stored in the CityJSON Energy Extension in a straight-
forward way or not. This was done by comparing all required input data against the objects and
attributes defined in the CityJSON + Energy Extension file, and any data that could not be stored
with the predefined objects or attributes was marked as a shortcoming of the semi-direct translation
to be improved later. Moreover, special attention was paid to distinct data types and whether these
are compatible with the input data. If, however, incompatibilities were detected, these were marked
to be improved later in the process as well.

3.2.2 Validation through cjval

During, and after, the validation of the Extension with the use case, cjval 1, the official validator of
CityJSON, was used as the second validation method. This validator provides various functional-
ities for CityJSON files with or without an Extension by checking their validity against the official
JSON syntax, CityJSON schemas, Extension schemas (if provided), and other geometric checks (Ta-
ble 3.1). In the case of the CityJSON Energy Extension, the CityJSON + Energy Extension file created
in the previous step was validated to check for any inconsistencies. Furthermore, the additional
functionality called cjvalext was used to validate the schema of the CityJSON Energy Extension
against the official extension schema of CityJSON.

1https://github.com/cityjson/cjval

23

https://github.com/cityjson/cjval

3 Methodology

Cjval function What it does

JSON syntax Checks the file against the JSON schema

CityJSON schemas Checks the file against CityJSON schemas (v1.1)

Extension schemas
If an Extension is present in the input file, it is validated against
the Extension schema of CityJSON

Parent/children consistency Checks whether the referenced parents/children actually exist

Wrong vertex index Vertices list and their indices are checked

Semantics array Checks if semantics of a geometry are added correctly

Extra root properties Gives a warning if an extra root property is not defined in an
Extension

Duplicate vertices Gives a warning if there are duplicate vertices

Unused vertices Gives a warning if there are unreferenced vertices

Table 3.1: Validation functionalities of cjval 1

3.2.3 Validation against the Energy ADE KIT profile

The third, and final, validation method that could be used for the CityJSON Energy Extension was
to validate it against the Energy ADE KIT profile. This could be done by developing a program to
convert the CityJSON + Energy Extension file back to a CityGML + Energy ADE KIT profile file.
This way, it could be checked whether this is a lossless conversion, or whether certain data is lost in
the translation due to distinct data types or different ways of storing information. While this is an
effective validation method as well, it was decided not to be used for this thesis. The main reason of
this was that the validation step through the use case showed that the semi-direct translation was
not enough to fully support the use case, since certain classes and attributes were missing to store
particular input data, and these would have to be included in the final version of the CityJSON
Energy Extension. Considering that the newly added classes and attributes could not be translated
back to a CityGML + Energy ADE KIT profile file in a straightforward way, the validation against the
Energy ADE KIT profile was not considered in the thesis.

3.3 Space heating demand calculation

Space heating demand calculation of buildings was chosen as the use case to be benefited from in
every step of the development of the CityJSON Energy Extension, such as the validation, testing,
and improvements. In the following paragraphs, the details of the calculation method are given,
and the required input data is explained.

3.3.1 Calculation method

Space heating demand calculation was performed based on the determination method specified by
the Dutch standard called NTA 8800. The aim of this standard is to provide a determination method
to calculate the energy performance of buildings with a focus on the energy requirement, primary
fossil energy use, renewable energy, and the net heat demand of a building [Royal Netherlands
Standardization Institute, 2022].

24

3 Methodology

The calculation is based on a steady-state energy balance method, which considers heat losses
and heat gains with monthly average values of input parameters, while the dynamic effects are
included with utilisation factors [Radwan, 2021]. Accordingly, the net monthly energy demand of a
calculation zone for space heating (QH;nd;zi;mi) is calculated with Equation 3.1, where the left side of
the formula represents the heat losses through transmission (QH;tr;zi;mi) and ventilation (QH;ve;zi;mi),
and the right side illustrates the heat gains through internal (QH;int;zi;mi) and solar (QH;sol;zi;mi) gains
multiplied by a dimensionless utilisation factor (nH;gn;zi;mi) to consider dynamic effects.

QH;nd;zi;mi = (QH;tr;zi;mi + QH;ve;zi;mi)− nH;gn;zi;mi(QH;int;zi;mi + QH;sol;zi;mi) (3.1)

Heat losses through transmission

The heat losses through transmission represent the total heat transfer through the building envelope
elements due to the difference in temperature. In NTA 8800, this is calculated with Equation 3.2, in
kWh,

QH;tr;zi;mi =
(

HH;tr(excl.g f ;m);zi;mi
(
θint;calc;H;zi;mi − θe;avg;mi

)
+ Hg;an;zi;mi

(
θint;calc;H;zi;mi − θe;avg;an

))
· 0.001 · tmi (3.2)

where

HH;tr(excl.g f ;m);zi;mi : total heat transfer coefficient through transmission, except for the ground
floor, in W/K, calculated in Equation 3.3;

θint;calc;H;zi;mi : temperature of the calculation zone, in ◦C;
θe;avg;mi : average outside temperature in month mi, in ◦C;
Hg;an;zi;mi : heat transfer coefficient for building elements in contact with the ground,

such as basements, in W/K, calculated in Equation 3.7;
θe;avg;an : average outdoor temperature for the entire year, in ◦C;
tmi : length of the considered month, in h.

The first element of this calculation, the total heat transfer coefficient through transmission, ex-
cept for the ground floor, is calculated with Equation 3.3,

HH;tr(excl.g f ;m);zi;mi = HH;D;zi;mi + HH;U;zi;mi + HH;A;zi;mi + HH;p;zi (3.3)

where

HH;D;zi;mi : direct heat transfer coefficient between the heated space and the outside air, in W/K;
HH;U;zi;mi : heat transfer coefficient through adjacent unheated spaces, in W/K;
HH;A;zi;mi : heat transfer coefficient through adjacent heated spaces, in W/K;
HH;p;zi : heat transfer coefficient through vertical pipes, in W/K.

Firstly, the direct heat transfer coefficient between the heated space and the outside air is calcu-
lated with Equation 3.4, which considers the area (AT;i) and U-value (UC;i) of the building envelope
elements that are in direct contact with the outside air:

HH;D;zi;mi = ∑
i
(AT;i × (UC;i + ∆U f or)) (3.4)

25

3 Methodology

while taking into account linear thermal bridges with Equation 3.5:

∆U f or = max

0; 0.1 − 0.25 ×

∑
i
(AT;i × UC;i)

∑
i

AT;i
− 0.4

 (3.5)

Secondly, the heat transfer coefficient through adjacent unheated spaces is calculated for the
building elements that are in contact with an adjacent unheated space. Since these surfaces are not
directly in contact with the outside air, the heat transfer coefficient is first calculated with Equa-
tion 3.4, then, this value is multiplied with a dimensionless reduction factor (bu). Thirdly, the heat
transfer coefficient through adjacent heated spaces is considered. However, according to NTA 8800,
the heat transfer from a heated space to another heated space is neglected [Royal Netherlands Stan-
dardization Institute, 2022]. Therefore, this value is considered 0 in the rest of the calculation. Fi-
nally, the heat transfer coefficient through vertical pipes is calculated with Equation 3.6,

HH;p;zi = ∑
j

Nbouwlaag;j · HH;p;spec;j (3.6)

where

j : number of vertical pipes in the calculation zone;
Nbouwlaag;j : number of storeys of the calculation zone in which vertical pipe j is located;
HH;p;spec;j : heat transfer coefficient for vertical pipe j, in W/K, fixed at 1.8.

Next, the second element in the calculation of heat losses through transmission is computed
with Equation 3.7, which is the heat transfer coefficient for building elements in contact with the
ground:

Hg;an;zi;mi = AT; f l × U f l × 0.5 × P (3.7)

where

AT; f l : area of the floor, in m2;
U f l : heat transfer coefficient of the floor, in W/(m2 · K);
P : perimeter of the floor, in m.

Heat losses through ventilation

The heat losses through ventilation consider various types of air flows entering the calculation zone
such as through infiltration and natural/mechanical ventilation. According to NTA 8800, for each
calculation zone zi and month mi, the total heat loss through ventilation is computed with Equa-
tion 3.8, in kWh,

QH;ve;zi;mi =

(
pa · ca · ∑

k

(
qv;k;H;zi;mi · bv;k;H;zi;mi · fv;dyn;k;zi;mi

)
/3600

)
·
(
θint;calc;H;zi − θe;avg;mi

)
· 0.001 · tmi

(3.8)

where

26

3 Methodology

pa : air density, fixed at 1.205 kg/m3;
ca : specific heat capacity of air, fixed at 1005 J/kgK;
qv;k;H;zi;mi : air volume flow k, in m3/h;
bv;k;H;zi;mi : supply temperature correction factor for air volume flow k, fixed at 1;
fv;dyn;k;zi;mi : dynamic correction factor for air volume k, fixed at 1;
θint;calc;H;zi : temperature of the calculation zone, in ◦C;
θe;avg;mi : average outside temperature in month mi, in ◦C;
tmi : length of the considered month, in h.

Internal heat gains

Internal heat gains concerns the contribution of internal sources, such as the activity of occupants
and the utilisation of electrical devices, to the heat management of a building [Cerný and Kocı́, 2015],
which is calculated with Equation 3.9, in kWh,

QH;int;zi;mi = 180 · Nwoon;zi · NP;woon;zi · 0.001 · tmi (3.9)

where

180 : average heat production per person, in W;
Nwoon;zi : number of residential units in the calculation zone zi;
NP;woon;zi : average number of residents per calculation zone per residential unit, calculated in

Equation 3.10;
tmi : length of the considered month, in h.

Accordingly, the average number of residents per calculation zone per residential unit (NP;woon;zi)
is computed based on the average usable area of the calculation zone (Ag;zi) as follows:

Ag;zi/Nwoon;zi ≤ 30m2 : NP;woon;zi = 1 (3.10)

30m2 < Ag;zi/Nwoon;zi ≤ 100m2 : NP;woon;zi = 2.28 − 1.28/70 ×
(

100 −
Ag;zi

Nwoon;zi

)
Ag;zi/Nwoon;zi > 1002 : NP;woon;zi = 1.28 + 0.01 ×

Ag;zi

Nwoon;zi

Solar gains

Solar gains of a building involves the heat gain from incident solar radiation through both trans-
parent and non-transparent elements of the building [Royal Netherlands Standardization Institute,
2022], which is calculated with Equation 3.11, in kWh,

QH;sol;zi;mi = ∑
k

QH;sol;wi,k,mi + ∑
k

QH;sol;op,k,mi (3.11)

where

QH;sol;wi,k,mi : solar heat gain through transparent element wi, k for month mi, in kWh;
QH;sol;op,k,mi : solar heat gain through non-transparent element op, k for month mi, in kWh.

27

3 Methodology

First, the solar heat gain through transparent elements (QH;sol;wi,k,mi) is calculated with Equa-
tion 3.12, in kWh,

QH;sol;wi,k,mi = ggl;wi,k;H;mi · Awi,k ·
(

1 − Ff r;wi,k

)
· Fsh;obst;wi,k;mi · Isol;wi,k;mi · 0.001 · tmi − Qsky;wi,k;mi

(3.12)

where

ggl;wi,k;H;mi : average effective total solar gain factor of window wi, k for month mi;
Awi,k : area of window wi, k, in m2;
Ff r;wi,k : frame fraction of window wi, k, fixed at 0.25;
Fsh;obst;wi,k;mi : shading reduction factor for external obstacles of window wi, k in month mi;
Isol;wi,k;mi : average total incident solar radiation per m2 of window wi, k in month mi, in

W/m2;
tmi : length of the considered month, in h;
Qsky;wi,k;mi : extra heat flow due to heat radiation to the sky from window wi, k in month mi, in

kWh, calculated in Equation 3.13.

Accordingly, the extra heat flow due to heat radiation to the sky (Qsky;wi,k;mi) is calculated with
Equation 3.13,

Qsky;wi,k;mi = 0.001 · Fsky;k · Rse;k · Uc;k · Ac;k · hlr;e;k · ∆θsky;mi · tmi (3.13)

where

Fsky;k : visibility factor between the building envelope element k and the sky;
Rse;k : heat transfer resistance on the outside of element k, in (m2K)/W;
Uc;k : heat transfer coefficient of element k, in W/(m2K);
Ac;k : area of the element k, in m2;
hlr;e;k : heat transfer coefficient for long wave radiation on the outside of the construction,

fixed at 4.14 W/(m2K);
∆θsky;mi : average difference between the apparent sky temperature and the outdoor

temperature, fixed at 11 K;
tmi : length of the considered month, in h.

Second, the solar heat gain through non-transparent elements (QH;sol;op,k,mi) is calculated with
Equation 3.14, in kWh,

QH;sol;op,k,mi = αsol · Rse · Uc;op,k · Ac;op,k · Fsh;obst;op,k;mi · Isol;op,k;mi · 0.001 · tmi − Qsky;op,k;mi (3.14)

where

28

3 Methodology

αsol : dimensionless absorption coefficient for solar radiation, fixed at 0.6;
Rse : heat transfer resistance on the outside, in (m2K)/W;
Uc;op,k : heat transfer coefficient of non-transparent element op, k, in W/(m2K);
Ac;op,k : area of non-transparent element op, k, in m2;
Fsh;obst;op,k;mi : shading reduction factor for external obstacles of non-transparent element op, k,

fixed at 1;
Isol;op,k;mi : average total incident solar radiation per m2 of non-transparent element op, k in

month mi, in W/m2;
tmi : length of the considered month, in h;
Qsky;op,k;mi : extra heat flow due to heat radiation to the sky from non-transparent element op, k

in month mi, in kWh, calculated in Equation 3.13, where the variable wi is replaced
with variable op.

3.3.2 Required input data for space heating demand calculation

As the complexity of the calculation method from the NTA 8800 standard suggests, the space heating
demand calculation of buildings requires a large amount of input data, which must be obtained from
various types of data sources. An overview of the main elements of this calculation, as well as the
needed input data, is presented in Table 3.2. However, since this calculation was done on city-
scale and not for single buildings, it was not possible to obtain all needed data for each individual
building. Therefore, simplifications and assumptions were made to modify the calculation method
and to be able to perform the calculation for the whole study area. Moreover, the methods for
collecting the data and the used datasets will be explained in detail in Chapter 4.

Element Explanation Needed input data

Heat losses
through
transmission
(QH;tr;zi;mi)

Considers the heat transfer (1) between
the heated space and outside air, (2) via
adjacent unheated spaces, (3) via adja-
cent heated spaces, (4) through vertical
pipes in direct contact with outside air

- Area and U-value of surfaces
- Number of storeys of the building
- Perimeter of the calculation zone
- Indoor/outdoor temperature
- Length of the month

Heat losses
through
ventilation
(QH;ve;zi;mi)

Considers the ventilation air that enters
the calculation zone and causes heat
losses

- Volume of effective air flow
- Indoor/outdoor temperature
- Length of the month

Internal heat
gains
(QH;int;zi;mi)

Considers the internal heat produced
by occupants and the facilities located in
the calculation zone

- Number of residential units
in the calculation zone
- Average usable area of the
calculation zone
- Length of the month

Solar gains
(QH;sol;zi;mi)

Considers the on-site solar radiation,
orientation, sun absorption and heat
transfer properties of the receiving
transparent and opaque surfaces

- Area of the building element
- Frame fraction of windows
- g-values of windows
- U-value of the building element
- Monthly average solar radiation
- Heat transfer resistance
- Length of the month

Table 3.2: Elements of the space heating demand calculation according to NTA 8800, and the
needed input data.

29

3 Methodology

3.4 Improvements on the CityJSON Energy Extension

The final step of the methodology focused on improving the semi-direct translation that was created
in the first step. These improvements were mainly designed based on the results obtained from the
validation process, which considered the validity of the Extension schema as well as the testing
through the use case. As a result, the improvements focused on four different mechanisms/aspects
of the Extension, which are summarised below:

• Providing full support for the use case: As the main objective of this thesis is to develop a
CityJSON Energy Extension for the calculation of space heating demand of buildings as the use
case, the main consideration for improvements was to ensure that the Extension fully supports
the use case. The results of the validation process were taken into account for this, and new
classes and attributes were added when certain data could not be stored in the semi-direct
translation in an efficient way, which was assessed by comparing against the design decisions
behind CityJSON, such as avoiding a hierarchical structure as much as possible.

• Relations between objects: In the Energy ADE KIT profile, the relations between different
classes are ensured with additional properties to store object IDs. In CityJSON, on the other
hand, the parent/children mechanism is used to relate objects to one another. To improve the
semi-direct translation, the possibilities to use the two concepts were examined, and the deci-
sion of using additional properties or the parent/children structure was based on the type of
relation between objects and the resulting hierarchy. In other words, the main consideration
in this step was to ensure that the final relation between two objects do not result in a deep hi-
erarchy, in which the data can only be reached after going down several steps in the hierarchy.
In addition, the direction of relations between objects was considered, such as unidirectional
and bi-directional relations (Figure 3.5). Since unidirectional relations might result in dupli-
cate information stored in both objects on the two ends of a relation, these were modified to
avoid unnecessarily complex associations between objects.

Figure 3.5: Example of (a) unidirectional and (b) bi-directional relations. Figure adapted from
[Benner, 2018]

• Ease of retrieving data from the Extension file: To ensure that the CityJSON Energy Exten-
sion provides an efficient way of both storing and retrieving (the stored) data, the next step
in improvements focused on the number of links/hierarchy to pass to reach a specific data
during the space heating demand calculation. If this number was higher than a given thresh-
old, modifications were made in classes, attributes, or data types to store the data with less
hierarchies.

30

3 Methodology

• Naming conventions in the Extension schema: The schema of the semi-direct translation was
modified to establish consistency in the names of classes, attributes, and data types of the
CityJSON Energy Extension. The structure of names as well as the use of uppercase and/or
lowercase letters were checked, and a uniform framework was created. Furthermore, a prefix
was determined for the CityJSON Energy Extension to avoid confusion with objects from other
extensions or that are added outside of schema.

31

4 Study area and datasets

This section presents the study area and the used datasets for the space heating demand calculation.
First, the characteristics of the study area are introduced in Section 4.1. Then, the collection of input
data for the calculations is explained in Section 4.2. In addition, necessary pre-processing steps and
the used software are described in this section.

4.1 Study area

To calculate the space heating demand of buildings, a study area was determined from the city
of Rijssen, within the Rijssen-Holten municipality of the Netherlands (Figure 4.1). This area was
preferred for the use case because of the availability of input data coming from a previous study
and ongoing research, which will be described in Section 4.2.

The study area consists of 3318 buildings with different functionalities (Figure 4.2a). While 1918
buildings in the area have a residential function, 180 buildings have a mixed-use, and 1220 buildings
are used for non-residential purposes. Moreover, it is possible to find various typologies in the area
for residential buildings, such as single-family houses, multi-family houses, apartment blocks, and
terrace houses (Figure 4.2b). Since the space heating demand of a building is highly related to the
type of construction, this variety in typologies was considered an advantage to analyse and compare
the final energy demand values in the area.

(a) (b)

Figure 4.1: The location of the Rijssen-Holten municipality in the Netherlands (a), and the study
area with used buildings (b), both shown in red.

33

4 Study area and datasets

(a) (b)

Figure 4.2: Distribution of (a) the building functionalities, and (b) the building typologies in the
study area.

4.2 Collection of input data for space heating demand

Due to the complexity of space heating demand calculation, required input data was obtained from
various datasets and previous studies for the study area of Rijssen-Holten in the Netherlands. In
this section, first, an overview of the input parameters needed for each part of the calculation, as
well as the corresponding data sources, are presented in Table 4.1. Then, each of the data sources is
explained, together with the necessary pre-processing steps and the used software.

Element Input parameters Data source

Heat losses
through
transmission

Area of surfaces 3D city model
U-value of surfaces TABULA library
Number of storeys 3D city model
Perimeter of the building 3D city model
Indoor air temperature Van den Brom [2020]
Outdoor air temperature Meteorological data portal
Length of the month NTA 8800 standard
Dimensionless reduction factor Agugiaro [2016b]; Kaden and Kolbe [2014]

Heat losses
through ventilation

Building volume 3D city model
Air exchange rate TABULA library

Internal heat gains Number of residential units BAG dataset
Usable area in the building BAG dataset

Solar gains

g-value of windows TABULA library
Area of windows TABULA library (window ratio)
Shading reduction factor NTA 8800 standard
Solar radiation NTA 8800 standard
Inclination of surfaces 3D city model
Slope of surfaces 3D city model
Visibility factor NTA 8800 standard
Heat transfer resistance NTA 8800 standard

Additional needed
parameters

Utilisation factor TABULA library
Construction year of buildings 3D city model
Building typology 3D city model

Table 4.1: Input parameters of the space heating demand calculation and their data sources.

34

4 Study area and datasets

4.2.1 3D city model of Rijssen-Holten

In this thesis, the 3D city model of Rijssen-Holten is used as the main data source to acquire the
required input data for space heating demand calculation. The 3D city model is a testbed for energy
applications, currently under development at the 3D Geoinformation Group at TU Delft. In this
model, geometric, semantic, and topological properties of 3318 buildings in the study area are stored
in XML-based CityGML format (Figure 4.3). While 3290 of these are stored as single-part buildings
as CityGML Building objects, 9 multi-part buildings are present as well in the dataset, resulting in
extra 19 buildings modelled as CityGML BuildingParts.

The buildings are available with two types of geometries: an LoD0 geometry to represent the
building footprints, and an LoD2 geometry which includes a more detailed representation of the
building with its semantic surfaces. In the latter, each building’s surfaces are modelled as Bound-
arySurfaces of CityGML, namely WallSurface, RoofSurface, and GroundSurface. In addition to this
classification, the WallSurfaces between topologically adjacent buildings are instead modelled as
ClosureSurface objects to easily differentiate the party walls from the rest. Due to the complex nature
of the calculation and the dependency on highly detailed parameters, the LoD2 geometries are used
in this thesis for obtaining data from, and storing energy-related information in the 3D city model.

Each building contains a number of attributes to provide information about its specific proper-
ties. While some of these are added with existing CityGML attributes from the Building module
(e.g. year of construction, class, function), additional generic attributes are used to include the type
of properties that can be used in energy applications (e.g. number of adjacent buildings, volume).
Similarly, each BoundarySurface is enriched with energy-related generic attributes, such as the area,
azimuth, and orientation of the surface. An overview of all Building and BoundarySurface attributes
are presented in Table 4.2.

Figure 4.3: The 3D city model of the study area: a subset of Rijssen-Holten in the Netherlands.

Pre-processing of the 3D city model

A number of pre-processing steps were taken to prepare the dataset to be used in space heating
demand calculation. First, the 3D city model was used to calculate two required parameters, namely
the perimeter of buildings and the slope of all surfaces, to be used in Equation 3.7 and Equation 3.11,
respectively. This was done on a Safe Software FME Workbench, where, for each building, the

35

4 Study area and datasets

B
ui

ld
in

g
Attribute Description

Net internal area Exludes internal structural elements

Class Type of use of the building, e.g. residential, mixed-use

Function* Further description of the class, e.g., health, business

Usage Whether the building is still in use

Measured height Height of the building, in m

Relative to terrain Whether the building is (entirely) above or below the terrain

Roof type E.g. slanted, single/multiple horizontal

Year of construction Construction year of the building

Footprint area* Footprint area, calculated from the LoD0 geometry, in m2

Storeys above ground* Number of storeys situated above ground level

Storeys below ground* Number of storeys situated below ground level

Building name* Unique name of the building

Is single part Boolean value to show whether the building has BuildingParts

of adjacent buildings Number of topologically adjacent buildings

LoD2 volume* Building volume, calculated from the LoD2 geometry, in m3

LoD max Maximum LoD present for the building

Building (pand) ID Unique ID of the building

List adjacent buildings Building (pand) ID of topologically adjacent buildings

B
ou

nd
ar

yS
ur

fa
ce

Surface ID Unique ID of the BoundarySurface

Parent building ID Building (pand) ID of the building that the surface belongs to

Surface name Unique name of the BoundarySurface

Azimuth Azimuth of the surface, in degrees

Inclination Inclination of the surface, in degrees

Direction Direction of the surface

LoD2 area Surface area, calculated from the LoD2 geometry, in m2

Surface normal Normal vector of the surface

Table 4.2: The attributes stored in the 3D city model of Rijssen-Holten. If the object is a
BuildingPart, the marked attributes (*) are stored in the BuildingPart, while the rest is stored in the

parent Building object.

necessary calculations were done and the resulting data was integrated back to the 3D city model as
generic attributes.

Second, the 3D city model was converted from CityGML to CityJSON using citygml-tools 1, a
command line utility for processing CityGML files. Since citygml-tools currently supports CityJSON
up to version 1.0.3, the file was then upgraded to the latest version, 1.1.0, with cjio 2, which is a
Python command-line interface to process and manipulate CityJSON files. In this step, an informa-
tion loss was detected in the conversion between the two formats due to a limitation of CityJSON.
While each building may have a number of functions in CityGML format, only the first of these

1https://github.com/citygml4j/citygml-tools
2https://github.com/cityjson/cjio

36

https://github.com/citygml4j/citygml-tools
https://github.com/cityjson/cjio

4 Study area and datasets

functions was stored in the function attribute of Building objects in CityJSON, since the core data
model does not support complex attributes, such as array types to store multiple values. To solve
this problem, an additional function attribute was created in the CityJSON Energy Extension to be
able to store multiple functions in an array.

Finally, the resulting CityJSON file was examined to detect any inconsistencies in geometries or
attributes. It was discovered that 57 buildings out of 3318 did not have an LoD2 geometry, but were
modelled only by LoD0 geometries. Since energy-related generic attributes were not available for
these buildings, they were marked to be omitted in the calculation. In addition, it was found that
the parent Building objects of BuildingParts did not have any geometry at all. This was due to a
design choice, according to which the parent Building object is used to store only general attributes
that correspond to all children BuildingParts, while the BuildingPart objects themselves include the
geometry and specific attributes. Therefore, the parent Building objects were marked as well to be
neglected in the calculation. Furthermore, when the areas of BoundarySurfaces were examined, it
was seen that some buildings include considerably small WallSurfaces, such as an area of 0.2 - 2 m2,
which might be caused by errors during the construction of the 3D city model. Since these values
might result in wrong assumptions or overestimations in solar gains calculation, these WallSurfaces
were marked to be handled differently during the calculation.

4.2.2 Basisregistratie Adressen en Gebouwen (BAG)

The BAG is a key register for all addresses and buildings in the Netherlands, and the dataset can be
freely accessed from the website of Kadaster [Kadaster, 2022], which is the land registry agency of
the Netherlands. The BAG dataset contains detailed information about buildings, the most impor-
tant of which for this thesis are the usable area and the number of residential units in a building.
Therefore, this information was extracted from the dataset for each building in the study area, and
used in the calculation of internal gains in a building (Equation 3.9).

Pre-processing of the BAG dataset

In the BAG dataset, each residential unit in a building is modelled with a point geometry, which
refers to the Building (pand) ID that it belongs to. A number of additional attributes are available
for these objects, such as the construction year, address, usable area, and its function (Figure 4.4
& Table 4.3). Since the total number of residential units and usable area per building are needed
in the calculations, the residential unit objects were aggregated per building ID and the sum of
usable areas was calculated. In this step, some inconsistencies were detected in the BAG dataset.
First, it was discovered that 199 from the total 3318 buildings in the study area were not present in
the BAG dataset. Since the usable area and number of residential units data were not available for
these buildings, they were omitted during the calculations. Moreover, while the required data was
aggregated per building, BuildingPart objects were not considered since these are not modelled in the
BAG. Therefore, an assumption was made to distribute the data among the BuildingPart objects with
a residential function, such that the usable area and number of residential units were assigned to the
BuildingPart with the largest volume, while the others were not considered for the calculation.

37

4 Study area and datasets

Figure 4.4: Residential units as points.
Figure from the PDOK viewer

Attribute Value

Year of construction 1957
Function Residential
House number 18
Object ID 174200000013387
Street name Van den Broekestraat
Usable area 134
Building (pand) ID 1742100000005824
Building status Building in use
Postcode 7462VR
Status Residential unit in use
Place Rijssen

Table 4.3: The available attributes of the selected
residential unit (in blue).

4.2.3 Meteorological Data Portal

The outside air temperature data of Rijssen-Holten was obtained from the Meteorological Data Por-
tal, which was created by the Photovoltaic Materials and Devices (PVMD) group at TU Delft 3. This
portal uses the measurements from the Royal Netherlands Meteorological Institute (KNMI), and
weather data of a Dutch province as well as of a specific location in the Netherlands can be ob-
tained. Furthermore, the data is presented in two resolutions: weather data for the current date,
and the climate data for 1 year. The former includes measurements every 10 minutes for a day, and
the latter contains measurements of an average year with a 1 hour resolution.

Pre-processing of the outside weather data

Since the space heating demand calculation was done in a monthly resolution for the whole year,
the climate data for 1 year was obtained from the Meteorological Data Portal. The closest weather
station to Rijssen-Holten was chosen, called Heino, which is located approximately 30 kilometres
north-west of Rijssen-Holten. Then, the hourly data was averaged for each month, as well as for the
whole year, to be used in the heat losses calculations (Equation 3.2 & Equation 3.8).

4.2.4 TABULA Building Physics Library

For the space heating demand calculation, detailed data on the building physics properties of each
building must be known, such as the thermal transmittance of all surfaces and the g-value of win-
dows. While this data may be easily obtained for a single-building, it is not possible to collect
detailed information about all the surfaces of all building on a city-scale calculation. Therefore, in
this thesis, the building physics library developed as a result of the European projects TABULA and
EPISCOPE was used. The aim of these projects was to categorise buildings in each European coun-
try by their year of construction and building typology. Then, detailed building physics properties
were presented for each category instead of single buildings [TABULA, 2012].

For the Netherlands, buildings are categorised in 4 main building typologies (single-family
house, multi-family house, terraced house, apartment block). In addition, a more detailed classi-
fication is provided on top of the 4 main typologies, such as detached, semi-detached, middle row,

3https://www.tudelft.nl/?id=59090&L=1

38

https://www.tudelft.nl/?id=59090&L=1

4 Study area and datasets

and end house. However, only the main 4 building typologies are used in this thesis because of the
availability of data only for this classification. Furthermore, buildings are further categorised in 6
construction periods (till 1964, 1965 – 1974, 1975 – 1991, 1992 – 2005, 2006 – 2014, 2015 – today). Ex-
ample building types for the 4 main typologies and the first five construction periods can be found
in Figure 4.5.

The TABULA library provides data on three main elements of a building, which can be sum-
marised as follows:

• Windows: Eight distinct window types are defined, and their U-value, g-value, and frame
ratio are stored in the library.

• Construction elements: Different construction materials, such as brick, stone, and concrete,
are defined, and their physical properties, such as density, heat capacity, conductivity, and
thickness, are stored.

• Building category: This part of the library provides detailed building physics properties for
each type of surface (e.g. outer walls, ground and roof surfaces, party walls) of each building
category (based on the typology and construction period). These properties include the U-
value, short-wave reflectance, window ratio, as well as the window and construction IDs to
refer to the above-mentioned parts of the library for more detailed parameters. Moreover,
building-specific properties are included as well, such as the average storey height, infiltration
rate, and thermal bridge U-values. Finally, for each building category, the same properties are
included for a medium and advanced refurbishment scenario.

Figure 4.5: TABULA building classification for the Netherlands. Figure from TABULA [2012]

Pre-processing of the TABULA library

The raw data coming from the TABULA library for the Netherlands was stored in XML format,
which, because of its hierarchical structure, made it challenging to retrieve the needed information
for each building category. Therefore, we created a database to store all the data coming from the
TABULA library as a joint effort with Yuzhen Jin, who is currently writing his thesis and also makes
use of the TABULA library, and Camilo León-Sánchez, who is the first supervisor of this thesis. The
aim of this was to be able to retrieve data more easily and store information in a more structured way,
which may also be beneficial for future studies in this field. For space heating demand calculation,

39

4 Study area and datasets

U-values, window ratios, and window g-values were obtained to be used in the heat transmission
losses and solar gains parts of the calculation (Equation 3.2 & Equation 3.11).

4.2.5 NTA 8800

The solar radiation, shading reduction and visibility factors, and the length of the month parameters
are already provided in the NTA 8800 standard, therefore, these values were used in the calculation.
First, the solar radiation and visibility factor values are provided for different orientations and in-
clinations. Second, the shading reduction factor is provided for different orientations and slopes of
surfaces. Finally, the length of the month parameter is provided in the NTA 8800 standard for each
month. These input data were then stored in the database that was created before for the TABULA
library to ensure easy access to the data.

40

5 Implementation

This section presents the implementation details of the methodology. First, the mapping rules
and preliminary design decisions are described in Section 5.1 to create a semi-direct translation
from the Energy ADE KIT profile to a CityJSON Energy Extension. Second, experiments on the
storage of input data in the CityJSON Energy Extension are explained in Section 5.2, followed
by a detailed description of the space heating demand calculation with pre-determined assump-
tions and simplifications (Section 5.3). Finally, Section 5.4 presents the improvements on the semi-
direct translation to create the final CityJSON Energy Extension. The schema of the CityJSON
Energy Extension as well as the Python script to calculate space heating demand is available at:
https://github.com/ozgetufan/cjenergy

5.1 Mapping rules of the semi-direct translation

Since a fully-direct translation is not possible for the Energy ADE KIT profile, as presented in Chap-
ter 2, a semi-direct translation was created, which follows the structure of the Energy ADE KIT profile
as much as possible, and includes new mapping rules and preliminary design decisions when this
is not possible. The main mapping rules are explained in the following paragraphs, and examples
from the Extension schema, as well as the corresponding exemplary JSON objects are given from
the Core module of the KIT Profile [Benner, 2018]. However, not only the Core module elements but
the whole Energy ADE KIT profile was translated with the specified mapping rules.

5.1.1 Creating new City Objects

CityJSON’s Extension mechanism allows the addition of new CityObjects with their attributes by us-
ing the ”extraCityObjects” member of the Extension (Schema 5.1). Therefore, this functionality was
used to map the new CityObjects in the Energy ADE KIT profile in a straightforward way. However,
a preliminary design decision was made for the inheritance relationship between all CityObjects
and the AbstractCityObject class of CityGML, since inheritance is not supported in CityJSON. To en-
sure a similar mechanism, the ”allOf” keyword of the JSON schema was used, which ensures that
a schema is also valid against all of the given subschemas 1. For instance, the AbstractCityObject
defined in CityJSON includes a number of properties. By using the ”allOf” keyword in the schema
of new CityObjects defined in the Extension, it is made sure that these properties can be directly
defined for new CityObjects without facing validity problems.

In addition, it was decided not to map the new abstract CityObjects defined in the Energy ADE
KIT Profile. The reason of this is that the main philosophy of CityJSON is to define objects without
deep hierarchies [Ledoux et al., 2019]. To ensure this, the core data model of CityJSON itself elimi-
nates certain abstract classes as long as their absence does not cause systematic problems. A similar
check was performed, and it was seen that in the Energy ADE KIT profile, the abstract base classes,
such as AbstractUsageZone and AbstractThermalZone, do not include any properties to pass on to their
subclasses. Therefore, the mapping of the abstract CityObjects were deemed to be unnecessary, and
they were excluded from the semi-direct translation.

1https://json-schema.org/understanding-json-schema/reference/combining.html

42

https://github.com/ozgetufan/cjenergy
https://json-schema.org/understanding-json-schema/reference/combining.html

5 Implementation

1 "extraCityObjects": {

2 "+UsageZone": {

3 "allOf": [

4 {"$ref":" cityobjects.schema.json#/

_AbstractCityObject "},

5 {

6 "properties": {

7 "attributes": {

8 "type": "object",

9 "properties": {

10 "usageZoneType": {

11 "type": "string"

12 },

13 "floorArea": {...}

14 }

15 ...

16 }

"Usage1": {

"type": "+UsageZone",

"attributes": {

"usageZoneType": "residential",

"floorArea": {

"type": "netFloorArea",

"value": {

"value": 100,

"uom": "m2"

}

}

}

}

Schema 5.1: Definition of the UsageZone CityObject in the Extension schema (left), and the
exemplary JSON object with example data (right).

5.1.2 New attributes to existing City Objects

CityJSON’s Extension mechanism allows the addition of new attributes to existing CityObjects with
the ”extraAttributes” member, which supports both simple and complex attributes with varied data
types. Therefore, all new attributes defined in the Energy ADE KIT profile for the existing City-
Objects (AbstractBuilding and CityObject) were defined with this method. An example is given in
Schema 5.2, where the existing Building CityObject is extended with new attributes as defined in the
Energy ADE KIT Profile.

1 "extraAttributes": {

2 "Building": {

3 "+buildingType": {...} ,

4 "+constructionWeight": {...} ,

5 "+volume": {...} ,

6 "+floorArea": {...} ,

7 "+heightAboveGround": {...}

8 }

9 }

"Build1": {

"type": "Building",

"geometry": [...] ,

"attributes": {

"+buildingType": "singleFamily",

"+constructionWeight": "heavy",

}

}

Schema 5.2: Extra attributes defined for the Building CityObject (left), and how it is implemented
for a Building object called Build1 (right).

5.1.3 Creating new non-City Objects

The Energy ADE KIT profile contains not only new CityObjects, but also new classes that are not
derived from the CityObject class of the core data model, but from various other stereotypes, such as
≪ featureType ≫. However, a direct mapping of these classes to the CityJSON Energy Extension was
not possible, since the Extension mechanism of CityJSON only supports the addition of new objects
in the form of CityObjects. Therefore, a preliminary design decision had to be made in this stage, and
it was decided to create non-CityObjects under the ”extraCityObjects” member, together with the

43

5 Implementation

newly defined CityObjects. Since non-CityObjects do not inherit attributes and relationships from
the CityObject class, these objects were defined without using the ”allOf” keyword to reference
AbstractCityObject from the core data model of CityJSON. An example to this is given in Schema 5.3,
where the EnergyDemand class that is derived from gml:AbstractFeatureType is defined with the
”extraCityObjects” keyword.

1 "extraCityObjects": {

2 "+EnergyDemand": {

3 "type": "object",

4 "properties": {

5 "type": {...} ,

6 "attributes": {

7 "type": "object",

8 "properties": {

9 "energyAmount": {...} ,

10 "endUse": {...} ,

11 "maximumLoad": {...} ,

12 "energyCarrierType": {...}

13 }

14 ...

15 }

"Demand1": {

"type": "+EnergyDemand",

"attributes": {

"endUse": "spaceHeating",

"energyCarrierType": "naturalGas",

"energyAmount": "...", //ID of

TimeSeries object

"maximumLoad": {

"value": 250,

"uom": "kWh/m2"

}

}

}

Schema 5.3: EnergyDemand, a non-CityObject, defined with the ”extraCityObjects” keyword (left),
and an exemplary JSON object with the corresponding attributes (right).

Similarly, all objects with the ≪ type ≫ stereotype are derived from gml:AbstractGMLType, such
as the classes of Time Series, Schedule and Weather Data in the Energy ADE KIT Profile, and were
therefore mapped as ”extraCityObjects” as well (Schema 5.4). Even from this early stage, it could be
argued that defining CityObjects and non-CityObjects together with one keyword was not the most
ideal solution, since this could result in confusion about the defined objects and their properties.
However, since this restriction is related to the Extension mechanism of CityJSON, an alternative
solution was not possible.

1 "extraCityObjects": {

2 "+WeatherData": {

3 "type": "object",

4 "properties": {

5 "type": {...} ,

6 "attributes": {

7 "type": "object",

8 "properties": {

9 "weatherDataType": {...} ,

10 "values": {...} ,

11 "position": {...}

12 }

13 ...

14 }

15

16

"OutdoorTemperature": {

"type": "+WeatherData",

"attributes": {

"weatherDataType": "airTemperature",

"values": "RegularTimeSeries1",

//ID of TimeSeries object

}

},

"RegularTimeSeries1": {

"type": "+RegularTimeSeries",

"attributes": {

"values": [2.61, 4.82, 5.91, 9.32,

14.73, 16.12],

...

}

}

Schema 5.4: WeatherData object, defined with the ”extraCityObject” keyword in the Extension
schema, and an examplary JSON object, as well as the referenced Time Series object (right).

44

5 Implementation

5.1.4 New data types, enumerations and code lists

The Energy ADE KIT Profile defines specific data types, enumerations, and code lists to be used
as the allowed values of certain attributes. These additional types are defined individually and
separate from their corresponding classes, since a data type, enumeration, or code list may be used
in multiple classes. A similar approach was used for the semi-direct translation, and data types were
defined as subschemas under the ”definitions” keyword of the JSON schema. This way, defined
data types could be referenced multiple times with a JSON pointer (Schema 5.5) instead of having
duplicate information in the Extension schema.

After defining data types, enumerations were defined with the ”enum” keyword of the JSON
schema, which is used to restrict the value of an attribute to a fixed set of options 2. However,
unlike data types defined as subschemas, enumerations could only be defined inside a JSON object.
Therefore, if an enumeration was used for multiple attributes in the Energy ADE KIT profile, these
were created for each attribute individually, resulting in duplicate information in the Extension
schema.

1 "definitions": {

2 "floorArea": {

3 "type": "object",

4 "properties": {

5 "type": {

6 "enum": ["netFloorArea",

"grossFloorArea",

"energyReferenceArea"]

7 },

8 "value": {...}

9 }

10 }

11 }

"extraAttributes": {

"Building": {

"+floorArea": {

"type": "array",

"items": {

"$ref": "#/ definitions/floorArea"

}

},

...

}

}

Schema 5.5: floorArea data type defined as a subschema (left), and referenced as the data type of
the floorArea attribute of Buildings (right) in the schema.

Unlike data types and enumerations, code lists were not mapped as part of the semi-direct trans-
lation, since these values may not be fixed in advance, but may be determined by the responsible au-
thorities. Therefore, code lists in the Energy ADE KIT profile were simply mapped as string types.

5.1.5 Relations among City Objects and non-City Objects

The associations among CityObjects and non-CityObjects were handled as two separate cases in the
semi-direct translation. First, the relations between two CityObjects were implemented with the
”parents/children” concept of JSON. For instance, in the Energy ADE KIT profile, a ThermalZone
may contain 0 or more UsageZones [Benner, 2018]. To ensure this relationship in the semi-direct
translation, parents and children properties were defined for the two objects to specify the ID(s) of
the corresponding parent or children object (Schema 5.6).

Second, the relations between a CityObject and non-CityObject, or between two non-CityObjects,
were designed with additional attributes instead of the ”parent/children” concept. In these cases,
the additional attributes were added to the corresponding objects, and were used to store the IDs
of related objects. For instance, in the Energy ADE KIT profile, all CityObjects may have energy

2https://json-schema.org/understanding-json-schema/reference/generic.html

45

https://json-schema.org/understanding-json-schema/reference/generic.html

5 Implementation

demand, specified with the ”+demands” relation between the CityObject and the EnergyDemand
object [Benner, 2018]. To ensure this relation in the semi-direct translation, an additional attribute
called ”energyDemand” was added to all CityObjects to store the IDs of EnergyDemand objects that
they have a relation with (Schema 5.7).

1 "+ThermalZone": {

2 "type": {...} ,

3 "properties": {

4 "parents": {

5 "type": "array",

6 "items": {"type":" string "}

7 },

8 "children": {

9 "type": "array",

10 "items": {"type":" string "}

11 }

12 }

13 }

"Zone1": {

"type": "+ThermalZone",

...,

"children": ["Usage1"]

},

"Usage1": {

"type": "+UsageZone",

"attributes": {

"usageZoneType":" residential"

},

"parents": ["Zone1"],

...

}

Schema 5.6: ThermalZone object with its parents and children properties (left), and the use of this
concept to form a relation with a UsageZone object (right).

1 "extraAttributes": {

2 "Building": {

3 "+buildingType": {...} ,

4 "+energyDemand": {

5 "type": "array",

6 "items": {"type":" string "}

7 //ID of EnergyDemand objects

8 }

9 }

10 }

"Build1": {

"type": "Building",

"geometry": [...] ,

"attributes": {

"+buildingType": "singleFamily",

...

"+energyDemand":["Demand1"

]

}

}

Schema 5.7: The relation between a Building and EnergyDemand object, formed with an additional
attribute ”+energyDemand”.

The purpose of using separate mechanisms for CityObjects and non-CityObjects was to differen-
tiate the two types of objects by defining different functionalities regarding associations. This way,
the use and understanding of the Extension schema, as well as the objects used in a CityJSON +
Energy Extension file, could be made more straightforward.

5.2 Experiments on the storage of input data in the CityJSON
Energy Extension

After all the required input data was collected from numerous data sources, this data was then
stored in a CityJSON + Energy Extension file, which was created in the first step as a semi-direct
translation. The aim of this step was to make experiments on how to store the input data with the
CityJSON Energy Extension, and whether this process is straightforward or not. If it was discovered
during this process that certain data could not be stored in the Extension because of a lack of certain
attributes, these attributes were created without being defined in the Extension schema to make it

46

5 Implementation

possible to continue with the space heating demand calculation in the next step. However, these
out-of-schema attributes were noted to be properly defined in the final version of the CityJSON
Energy Extension. In the following paragraphs, it is described how each input data was stored
in the Extension, and Figure 5.1 demonstrates the hierarchy of CityJSON Energy Extension objects
after the input data was stored.

Figure 5.1: The hierarchy of CityJSON Energy Extension objects to store the needed input data. The
unbroken lines represent relationships with parent/children mechanism, and the dashed lines
show relationships with additional attributes. The red attributes represent the input data that
was stored with out-of-schema attributes in the semi-direct translation.

As the first step, the typology of each Building and BuildingPart was stored in a straightforward
way with the extra buildingType attribute, defined for these objects in the Extension. Then, for each
Building/BuildingPart, a ThermalZone object was created, and the relationship between them was
ensured with the parent/children mechanism, where each Building/BuildingPart has a Thermal-
Zone child. The floorArea, volume, and isHeated attributes of ThermalZone objects were used to
store the corresponding data. However, the perimeter of the calculation zone could not be directly
stored, since the Energy ADE KIT profile does not include this as an attribute of ThermalZones, or
in any other module/class. Furthermore, while a geometry can be defined for ThermalZones in the
semi-direct translation, this was not considered since the ThermalZone corresponds to the whole
building volume, and its geometry is already stored in the Building/BuildingPart object.

After ThermalZones, for each surface of the Building/BuildingPart, a ThermalBoundary object

47

5 Implementation

was created as a child of the corresponding ThermalZone object, with one of the following types:
outerWall, groundSlab, roof, or sharedWall. The inclination and area of each surface were stored
in the corresponding attributes of ThermalBoundary objects, while the orientation and slope of sur-
faces were added as additional attributes since these were not supported in the semi-direct trans-
lation. It is important to note that ThermalOpening objects were not used in this application, since
the actual number of openings were not available, except the window ratio of outer walls and roofs.
However, this data was added as additional attributes in the ThermalBoundary objects as well. Fi-
nally, for each ThermalBoundary object, a Construction object was created to store the U-value of the
surface in a straightforward way, while a heat transfer resistance (R-value) attribute, and a g-value
attribute for windows were not supported in the semi-direct translation.

Once the building physics properties were stored, information about the building’s use was
stored in two steps. First, a UsageZone object was created as a child of each ThermalZone. While the
intention was to store the number of residential functions in each UsageZone, this was not directly
possible since the semi-direct translation did not include an attribute for this data. Therefore, the
number of residential functions was added as an out-of-schema attribute. Then, an Occupant object
was added for each UsageZone, and the total number of residents in the building was stored with
the numberOfOccupants attribute.

The last step of creating a CityJSON + Energy Extension file was to store weather data. It was
decided to store only the monthly indoor and outdoor temperature values in the Extension, while
the solar irradiation and shading reduction factor values were directly obtained from the database.
As a result, for each ThermalZone, two WeatherData objects were created with the type airTempera-
ture. Then, to store the values, RegularTimeSeries objects were created for each WeatherData object,
in which the monthly indoor and outdoor temperature values were stored.

5.3 Calculation of space heating demand

After all the required input data was stored in a CityJSON + Energy Extension file either directly
with the extension elements or as out-of-schema attributes, the space heating demand was com-
puted based on the calculation method in the Dutch standard NTA 8800. However, certain sim-
plifications and assumptions had to be made beforehand to be able to perform the calculation in
city-scale, which are summarised as follows:

1. Only residential and mixed-use buildings in the study are were considered in the calculation.
The reason of this is that it was mostly not possible to acquire all needed input parameters
for non-residential buildings, such as internal gains through the people using the building in
specified periods.

2. For space heating demand calculation, a heating period of October to March (inclusive) was
assumed.

3. A constant monthly value was assumed for indoor air temperature during the heating period.

4. Since the 3D city model in LoD2 does not provide information about the internal structure of
buildings, each building was modelled as a single thermal zone. Accordingly, both residential
and mixed-use buildings were assumed to have a single thermal zone for the whole volume.

5. Because of the lack of detailed information about the windows in buildings, a window ratio
was used to obtain an estimate of the area covered by windows. Therefore, unlike the NTA
8800 standard where the solar gains are computed for each window of each surface, one hy-
pothetical window was assumed for each surface depending on the window ratio.

48

5 Implementation

6. In the 3D city model, it was detected that some buildings include wall surfaces with very
small areas (Figure 5.2). Since assigning a window ratio even for these walls could result in
an overestimation in the calculation of solar gains, only the wall surfaces with an area bigger
than 4 m2 were considered for solar gains through windows, while the smaller ones were still
added for solar gains through opaque parts of the building.

7. During the calculation, heat losses through party walls were only considered if the party wall
is adjacent to a non-residential building. Otherwise, the heat losses between residential and/or
mixed-use buildings were neglected.

8. According to the NTA 8800 standard, if the number of vertical pipes that are in contact with
outside air is not known to calculate the heat loss coefficient through vertical pipes, it can be
assumed 1 vertical pipe per residential function. Therefore, during the calculations, it was
assumed that the number of residential units in a building equals to the number of vertical
pipes.

Figure 5.2: A party wall between two buildings (grey with stripe pattern), and the remaining
unshared wall surface (green) with a considerably small area.

Once the space heating demand was calculated for the specified type of buildings in the study
area, the CityJSON + Energy Extension file was enhanced with the resulting values using the Ener-
gyDemand object. For each ThermalZone (therefore, for each building), an EnergyDemand object
was created to store the energy amount needed for space heating in each month of the heating pe-
riod.

5.3.1 Limitations on the retrieval of data from the CityJSON Energy Extension
during the space heating demand calculation

During the space heating demand calculation, all needed input data was retrieved from the CityJ-
SON + Energy Extension file that was created in earlier steps. During this process, some limita-
tions and improvement possibilities were identified in the way CityJSON Energy Extension was
designed. Firstly, some extension elements were found to include deep hierarchies even after the
efforts to avoid them. An example to this is the WeatherData object, which itself points to a Regular-
TimeSeries object where the actual weather data values are stored. Therefore, retrieving the actual
weather data values for a building requires passing numerous links in the CityJSON file, which is
against the philosophy of CityJSON that aims to prevent a deep hierarchical structure. As a result,
Extension elements with deep hierarchies were added as one of the main considerations to improve
the CityJSON Energy Extension. Furthermore, an additional drawback of WeatherData object was
identified for the use case. While the semi-direct translation allows to specify the type of weather
data (e.g. air temperature, wind speed, solar irradiation), a more detailed specification is not pos-
sible, such as the location of weather data (e.g. indoor, outdoor). This resulted in confusion about
the data during the calculation, since each ThermalZone included a reference to two WeatherData

49

5 Implementation

objects, one for indoor and one for outdoor temperature, without specifying the location for each
object. Therefore, this drawback was considered as well while improving the Extension.

The second possibility for improvement of the CityJSON Energy Extension was detected in the
way relations between objects were constructed. While, in the semi-direct translation, relations be-
tween all CityObjects were designed with the parent/children mechanism of JSON, this led to extra
steps needed to be taken during the calculation. An example to this is the ThermalZone object,
which might include a reference to ThermalBoundary and/or UsageZone object in its children prop-
erty. Since these two types of objects were handled differently during the calculation, an additional
check was needed to make sure only one type of object was processed at a time.

Yet another possibility to improve the Extension is related to structuring and removing duplicate
information that is stored in the CityJSON + Energy Extension file. In the semi-direct translation,
each numerical attribute is stored together with its unit of measurement. While it is crucial to include
information about the units used in a 3D city model, this may result in duplicate information. For
instance, all buildings in the study area include a volume attribute to store the value and the unit of
measurement. While the volume value may change for each building, the unit of measurement stays
the same. Therefore, the storage of the units of measurement would be another way to improve the
CityJSON Energy Extension.

5.4 Improvements on the semi-direct translation

As a result of the experiments with storage of input data in the CityJSON Energy Extension, as
well as with their retrieval for space heating demand calculation, drawbacks of the semi-direct
translation were identified to be improved in the final version of the Extension. In the following
paragraphs, it is described how these improvements were structured.

5.4.1 Reconsidering the Energy ADE KIT profile attributes

The first step of improving the CityJSON Energy Extension was to provide full-support for the use
case by including missing attributes and relations, as described in Section 5.2. For this, all missing
attributes that were added out-of-schema before were now included in the Extension schema, such
as building perimeter, orientation and slope of a ThermalBoundary, g- and R-values of Construction
objects, and the number of residential functions in UsageZones. Then, all Extension objects were
reconsidered to find possibilities to make them more compatible for a steady-state space heating
demand calculation. An example to this is the Construction object, which, in the semi-direct trans-
lation, had a relation with either a ThermalBoundary or a ThermalOpening object to store detailed
building physics parameters of a surface or its openings. However, since ThermalOpening object is
not used in this thesis due to the lack of information about individual windows, this relation needed
to be updated to still be able to store building physics parameters of openings, independent from
the ThermalOpening object. Therefore, the relation between ThermalBoundaries and Construction
objects was provided with two additional attributes to ThermalBoundary objects, namely opaque-
Construction and transparentConstruction to store the building physics parameters of the surface itself
and its openings with two separate Construction objects (Figure 5.3).

5.4.2 Associations among objects

Once the CityJSON Energy Extension was made fully compatible for the use case, all the associa-
tions among CityObjects and non-CityObjects were analysed, which, in the semi-direct translation,

50

5 Implementation

Figure 5.3: The relation between ThermalBoundary and Construction objects (a) with one additional
attribute in the semi-direct translation, and (b) two additional attributes in the final version to
support transparent parts of the ThermalBoundary.

was provided with parent/children mechanism and additional attributes respectively. For non-
CityObjects, it was observed that storing a relation as an attribute instead of a property of the object
resulted in an additional level of hierarchy to be passed before reaching the data, since JSON at-
tributes are stored one level below properties. Therefore, it was decided to create properties instead,
to store the relations among a CityObject and non-CityObject, or multiple non-CityObjects.

In this step, a limitation of the CityJSON’s Extension mechanism was detected. If an existing
CityObject has a relation with a non-CityObject, it is not possible to store this as a new property of
the existing CityObject, since the Extension mechanism of CityJSON only allows new attributes to
existing CityObjects. In the CityJSON Energy Extension, this is problematic for weatherData and
energyDemand relations, both of which may be defined for all CityObjects. The first possible so-
lution for this was to extend existing CityObjects with new properties by redefining them as new
CityObjects in the Extension. However, this would mean redefining all the CityObjects in CityJSON,
since the properties of weatherData and energyDemand would have to be added for all CityObjects.
To avoid creating an almost duplicate schema, a second solution was formed. Accordingly, only the
weatherData and energyDemand relations were kept as attributes for all existing and new CityOb-
jects, while all other relations were defined as properties for Extension objects. An example is given
in Schema 5.8, where the new UsageZone CityObject includes weatherData and energyDemand
relations with two attributes, while its relation to Occupants object is provided with a property.

After improving the relationships among non-CityObjects, the parent/children relationship was
reconsidered for CityObjects to ensure that parent and children properties store only one type of ob-
ject. Accordingly, the parent/children relationships between Building/BuildingPart, ThermalZone,
UsageZone, and Facilities objects were maintained. On the other hand, the relationships between
ThermalZone, ThermalBoundary, and ThermalOpening objects were instead formed using addi-
tional properties, as suggested in the Energy ADE KIT profile.

5.4.3 Removal of deep hierarchies

As discussed in Section 5.3.1, WeatherData object was marked to be improved due to its deep hierar-
chical structure. Moreover, during the space heating demand calculation, the EnergyDemand object
was found to have the same structure as well. Therefore, to simplify this hierarchy, WeatherData
and EnergyDemand objects were instead defined as subschemas under the ”definitions” keyword
of the JSON schema. An example from the definition of WeatherData is given in Schema 5.9. This
way, instead of referring to the ID of these objects, the weatherData and energyDemand attributes of

51

5 Implementation

1 "extraCityObjects": {

2 "+UsageZone": {

3 ...,

4 {

5 "properties": {

6 "type": {...} ,

7 "attributes": {

8 "type": "object",

9 "properties": {

10 "usageZoneType": {"type": "string"},

11 "weatherData": {"type": "string"}, //ID of WeatherData object

12 "energyDemand": {"type": "string "} //ID of EnergyDemand object

13 }

14 },

15 "occupants": {"type": "string "} //ID of Occupant object

16 }

17 ...

18 }

Schema 5.8: UsageZone CityObject with its weatherData and energyDemand relations as
attributes, and the occupants relation defined as a property.

CityObjects can directly store the data in these attributes. Furthermore, an additional attribute called
weatherDataLocation was added to provide more detail about WeatherData, such as whether it has
been obtained from indoor or outdoor calculations.

1 "definitions": {

2 "WeatherData": {

3 "type": "object",

4 "properties": {

5 "weatherElement": "...",

6 "weatherDataLocation": "...",

7 "values": {...} //ID of

8 TimeSeries object

9 }

10 }

11 }

"Build1": {

"type": "Building",

"geometry": [...] ,

"attributes": {

"weatherData": [

{"weatherElement": "airTemperature",

"weatherDataLocation ": "indoor",

"values ": "RegularTimeSeries1 "}

]

...

}

Schema 5.9: WeatherData, defined as a subschema (left), and its use in a weatherData attribute for
a Building object (right).

In addition, to simplify the hierarchy further and to remove duplicate information stored with
the CityJSON Energy Extension, it was decided not to store the units of measurement directly within
the numerical attribute. To remove units of measurement from each numerical attribute, the data
type of these attributes were simply changed to the number type of JSON. Moreover, an extra root
property called ”+unitOfMeasurement” was added in the schema, which enables the user to spec-
ify the units of measurement used in a CityJSON + Energy Extension file only once at the root of
the document, instead of storing the same information for each attribute. An example of a simple
CityJSON + Energy Extension file is shown in Schema 5.10, where the ”+unitOfMeasurement” root
property is used to store the units used in the file for each numerical attribute.

52

5 Implementation

1 {

2 "type": "CityJSON",

3 "version": "1.1",

4 "extensions": {"Energy": {...}} ,

5 "transform": {...} ,

6 "CityObjects": {...} ,

7 "vertices": [...] ,

8 "+unitOfMeasurement": { // Defined in the schema as an extraRootProperty

9 "energy -volume": "m^3",

10 "energy -floorArea": "m^2",

11 "energy -energyDemand": "kWh",

12 ...

13 }

14 }

Schema 5.10: The use of the ”+unitOfMeasurement” root property in a CityJSON + Energy
Extension file.

5.4.4 Naming conventions

In the last step of improving the CityJSON Energy Extension, the Extension schema was checked
for naming conventions. First, a prefix was added to all Extension objects to differentiate them from
any other CityJSON extensions. Two different versions of this prefix was used in the Extension. The
”+energy-” prefix was added to all attributes and properties. However, ”+Energy-” prefix was used
instead for subschemas and new objects, since, according to the CityJSON specification [Dukai and
Ledoux, 2021], all object names must start with an uppercase letter. Second, the use of lower/up-
percase letters throughout the schema was checked and corrected. Finally, any unclear names of
objects, attributes and properties were altered to make the Extension easier to understand and use.
For instance, instead of using the weatherDataType attribute of the WeatherData object, the name of
this attribute was changed to weatherElement to indicate a specific element related to the weather,
such as air temperature, humidity, and solar irradiation.

53

6 Results and Analysis

In this section the results of the thesis are presented and analysed. First, the effects of the improve-
ments on the semi-direct translation are discussed in Section 6.1. Second, a comparison between the
Energy ADE KIT profile and the CityJSON Energy Extension is presented in Section 6.2, in terms of
the design of the two data models and their effects on data storage. Then, a comparison on the sizes
of the input and output CityJSON files is presented in Section 6.3. Finally, the results of the space
heating demand calculation are demonstrated and analysed in Section 6.4.

6.1 Semi-direct translation versus the final CityJSON Energy
Extension

The comparison between the semi-direct translation and the final CityJSON Energy Extension was
done based on the improvements described in Section 5.4. This section focuses first on the effects of
the efforts to simplify the hierarchical structure of the Extension, then on the impacts of changing
the way relations between objects are stored.

6.1.1 Change in the hierarchical structure

Two main operations were performed to avoid deep hierarchies in the CityJSON Energy Extension.
The first operation focused on the WeatherData and EnergyDemand objects, which were found to
have a deep hierarchical structure in the semi-direct translation, as described in Section 5.4. In these
objects, their hierarchy required multiple lookups in the CityJSON + Energy Extension file to first
navigate to the corresponding WeatherData or EnergyDemand object with their IDs, then to the cor-
responding TimeSeries objects to reach the actual values. To simplify these operations, WeatherData
and EnergyDemand objects were instead defined as subschemas. To illustrate this change in hierar-
chy, Figure 6.1 demonstrates an example from the WeatherData object, where the links to be passed
to reach actual weather data values are shown for the semi-direct translation and the final CityJSON
Energy Extension. It can be seen from the figure that the number of links decreased by 2 in the final
Extension after the improvements. Since the WeatherData object is now stored as a subschema di-
rectly within the weatherData attribute, the eliminated operations included the lookup from all the
objects in the CityJSON + Energy Extension file to navigate to the corresponding WeatherData ob-
ject. As a result, the only remaining lookup was for the TimeSeries object to reach the actual weather
data values. This way, this improvement resulted in easier and faster access to data stored with the
Extension, while making the structure of the Extension simpler at the same time.

The second operation to reduce the hierarchy in the CityJSON Energy Extension, as well as to dis-
card duplicate information, was to remove the unit of measurement properties from the numerical
attributes. Figure 6.2 demonstrates how this property was defined in the schema of the semi-direct
translation, and the effect of removing it on the access to data after the improvements. It can be
seen that the number of links to be passed decreased by 1 in the final CityJSON Energy Extension,
since the data type of a numerical attribute was simply changed to the number type of JSON. This
way, instead of having to navigate to another property, the actual attribute value could be directly
obtained. While this may not seem like a significant change compared to the semi-direct translation,

55

6 Results and Analysis

Figure 6.1: The links to be passed to reach weather data values stored with (a) the semi-direct
translation, and (b) the final CityJSON Energy Extension.

it was highly important for this thesis, since the space heating demand calculation required using
many of the numerical attributes in the Extension, such as volume, U-value, and floor area of build-
ings. Therefore, this improvement simplified the structure of the Extension schema, and resulted
in faster access to data during calculations. In addition, the storage of units of measurement in a
root property prevented the storage of duplicate information in the Extension, since the unit of each
numerical attribute could be specified once in the ”+unitOfMeasurement” root property.

Figure 6.2: The definition of a volume attribute for Building objects with its value and unit of mea-
surement as two separate properties (left), and the links needed to be passed to reach the volume
data (a) when unit of measurement is stored, or (b) when only the numerical volume data is
stored.

6.1.2 Change in the storage of relations

Since the relations between objects were stored differently in the semi-direct translation for CityOb-
jects and non-CityObjects, the improvements also handled these cases separately. First, the asso-
ciations between non-CityObjects were decided to be formed with additional properties instead of
attributes. This operation resulted in a simpler hierarchy when the relation between two objects is
queried, since CityJSON properties are stored one level higher than attributes. An example is shown
for the relationship between UsageZone and Occupants objects in Figure 6.3, where the Occupants
of a UsageZone object is more easily accessible after the improvements.

56

6 Results and Analysis

Figure 6.3: The relationship between a UsageZone object and its occupant(s) stored (a) in attributes,
and (b) in properties of the object.

After the consideration of non-CityObjects, the relations between CityObjects were also changed
for the ThermalZone, ThermalBoundary, and ThermalOpening objects. Accordingly, the associa-
tions between these objects were decided to be stored with additional properties as well, instead
of the parent/children mechanism. This was due to an additional complexity introduced in the
space heating demand calculation, since both ThermalBoundary and UsageZone objects were used,
and both were stored as the children of ThermalZone objects in the semi-direct translation. On the
other hand, in the final CityJSON Energy Extension, the parent/children relationship was main-
tained only between ThermalZone and UsageZone objects, while the ThermalBoundary objects of
a ThermalZone were stored in the boundedBy property. Similarly, the contains property of Thermal-
Boundary object started to be used to store the ID of ThermalOpening objects (Figure 6.4). While this
operation did not have a particular impact on the hierarchical structure of the objects, the overall
structure of the Extension became more clear and easily understandable, since, with this operation,
all parent/children properties started to store references to only one type of object.

6.2 The Energy ADE KIT profile versus the CityJSON Energy
Extension

The Energy ADE KIT profile was the starting point for this thesis; however, the final CityJSON En-
ergy Extension is not a direct translation due to the distinct philosophies behind the CityGML and
CityJSON data models, and the structural differences between the XML and JSON data formats. Fol-
lowing the design decisions behind CityJSON, one of the main considerations during the design of
the Energy Extension was to avoid a deeply hierarchical structure as much as possible, as opposed
to the XML-based format of the Energy ADE KIT profile in which the hierarchy is one of the main
drawbacks. Therefore, most differences of the CityJSON Energy Extension from the Energy ADE KIT
profile reflect this philosophy. In addition, the requirements for the use case, space heating demand
calculation, had a significant impact on the design of CityJSON Energy Extension, since the main
objective of this thesis was to provide an energy-related extension specifically for this use case.

6.2.1 Changes in the used elements

The main differences between the Energy ADE KIT profile and the CityJSON Energy Extension in
terms of the used elements, such as classes, attributes, and data types, are presented in Appendix A.
Accordingly, the first difference is that the CityJSON Energy Extension does not include abstract
classes, such as AbstractThermalZone and AbstractUsageZone, to remove unnecessary hierarchies.
In the CityJSON Energy Extension, this did not have a significant impact, since most abstract classes

57

6 Results and Analysis

Figure 6.4: Extension CityObjects (a) before and (b) after the parent/children relationships were re-
considered for the ThermalZone, ThermalBoundary and ThermalOpening objects. In this figure,
only the corresponding properties are shown, while the other attributes are discarded for visuali-
sation purposes.

defined in the Energy ADE KIT profile do not include any attributes to pass on to their subclasses.
The only exception to this is the AbstractTimeSeries object, which has a variableProperties attribute
to pass on to RegularTimeSeries and RegularTimeSeriesFile objects (Figure 6.5). Only in this case,
this attribute was defined for both objects in the Extension schema. However, in overall, it can be
concluded that the lack of abstract classes contributed to the simplicity of the Extension schema,
which at the same time resulted in less hierarchy.

Figure 6.5: TimeSeries objects defined (a) in the Energy ADE KIT profile with inheritance, and (b) in
the CityJSON Energy Extension without the abstract class.

The second difference between the Energy ADE KIT profile and the CityJSON Energy Extension
concerns the attributes defined in the former. In the CityJSON Energy Extension, certain attribute

58

6 Results and Analysis

names were modified to make them more compatible with the use case, numerical data types were
simplified (e.g. no units of measurement), and new attributes were added to comply with the data
requirements of the use case. As a result, compared to the Energy ADE KIT profile, the CityJSON
Energy Extension consists of simpler and more concise attributes for the use case.

The third difference is related to the extension mechanisms for CityGML and CityJSON. While
CityGML ADEs provide a flexible way to define distinct types of objects and data types in a structured
way, the extension mechanism of CityJSON is only limited with defining new City Objects, attributes
and root properties. One of the main impacts of this limitation on the CityJSON Energy Extension
was that the non-CityObjects had to be defined under the extraCityObjects property of the extension
mechanism, which was originally created to store only CityObject type elements. While this did
not cause any validity problems, it can be discussed that it resulted in less clarity in the Extension
schema, since the types of stored objects may not always match with the name of the container
property in the Extension.

The final difference between the two Extensions is about the decision to store certain data or not.
The main idea behind the Energy ADE in general is to be able to store all energy-related information
in 3D city models so that external data sources are not needed. While this may be beneficial in cer-
tain cases, it is highly inefficient when the data to be stored takes up an extensive amount of space in
the file, such as weather data. This was proven in the space heating demand calculation, even with a
steady-state method, in which solar radiation and shading reduction factor data included different
values for each cardinal and ordinal direction, as well as for numerous intervals of inclination and
slope values of surfaces. Therefore, these values were not stored with the CityJSON Energy Exten-
sion, instead, an external database was used to extract only the needed information, which assured
a more manageable CityJSON + Energy Extension file.

6.3 Comparison of file size

To analyse the impact of the CityJSON Energy Extension, the size of input, intermediary, and output
files was compared, as demonstrated in Table 6.1. The first input file was the 3D city model in
CityGML format, which included 3318 Building/BuildingPart objects with their geometries and
attributes, including Generic Attributes to add extra energy-related information, which had a file
size of 165 MB. When this file was converted to CityJSON, the file size dropped significantly, as
expected, since CityJSON files have a much higher compression factor than XML-based CityGML
files [Ledoux et al., 2019].

After all needed input data was stored in a CityJSON + Energy Extension file, the number of
stored objects increased dramatically, from 3318 in the input CityJSON file to 106848 in the resulting
CityJSON + Energy Extension file. As a result, the file size also increased by 23.1 MB in the resulting
file. Then, after the calculations, 1884 more objects were added to the CityJSON + Energy Extension
file, to create an EnergyDemand object for each Building/BuildingPart in the calculation, and to
store the final space heating demand values. After this operation, the final output CityJSON file had
a size of 65.8 MB. It can be discussed that the overall increase of 25.2 MB in file size is not significant,
considering that 105414 more objects were added to the input file.

It is important to note that a comparison between the Energy ADE KIT profile and the CityJSON
Energy Extension could not be done, since the input 3D city model in CityGML format only included
Generic Attributes to add additional energy-related data. However, this information still provided
valuable insight when compared with the final output CityJSON file. It can be seen that the input
CityGML file with 3318 Building/BuildingPart objects and only a small subset of the needed input
data takes up 165 MB of space, while the output CityJSON + Energy Extension file with 108732
objects to store all needed input data takes up only 65.8 MB of space. This result once again proves

59

6 Results and Analysis

3DCM

in CityGML

3DCM

in CityJSON

CityJSON +

Energy Extension

(only input data)

CityJSON +

Energy Extension

(output file)

of objects 3318 3318 106848 108732

File size 165 MB 40.6 MB 63.7 MB 65.8 MB

Table 6.1: File size and the number of objects stored in each input/output file used in the thesis.

the efficiency of CityJSON compared to the XML-based CityGML, even when the core data model
of CityJSON is extended with additional objects and types.

6.4 Results of the space heating demand calculation

Out of the 3318 buildings in the study area, space heating demand calculation was performed for
1884 buildings while the remaining 1434 buildings were omitted in the calculations, because they
either had non-residential functions or lacked required input data. Figure 6.6a demonstrates the
distribution of the considered and omitted buildings in the center of Rijssen, and Figure 6.6b shows
the same distribution in a residential area of the city.

It can be seen that the omitted buildings in the two areas mostly differ in terms of size, as the
center generally consists of larger structures compared to a purely residential area. In addition,
when the functions of the omitted buildings are analysed in the 3D city model, it is seen that the
excluded buildings in the center are mainly used for commercial purposes, such as shops or offices,
while the ones in the residential area are mostly used as garages or storage rooms. As a result, space
heating demand was calculated only for residential and mixed-use buildings in the area, as long as
they included all required input data for the calculation.

(a) (b)

Figure 6.6: Considered and omitted buildings during the space heating demand calculation (a) in
the center and (b) in a residential area in Rijssen.

The resulting space heating demand values are displayed for the month January in Figure 6.7
for the center of Rijssen and the same residential area of the city. While the space heating demand

60

6 Results and Analysis

calculation includes numerous non-geometrical factors, such as building usage and occupant be-
haviour, it can be directly seen from the figures that the building size is a significant factor in the
determination of energy demand. While large buildings in the center mostly have a higher energy
demand, the buildings in the purely residential area have lower and similar energy demand values,
considering that their size and geometry are comparable, which, in the end, have an impact on the
number of occupants and overall usage as well. Furthermore, it can be discussed that the adjacency
between residential and non-residential buildings may have contributed to higher energy demand
values, since the energy loss through the shared thermal boundaries are mainly considered in the
center, compared to the residential area, where an energy loss between two residential buildings are
neglected.

(a) (b)

Figure 6.7: Energy demand (kWh) in the month January (a) in the center and (b) in a residential
area in Rijssen.

While a visual inspection of the overall distribution of energy demand values provides valuable
insight, it is crucial to analyse the impact of specific characteristics of buildings on the resulting
energy demand. The first of these analyses focuses on the position of buildings, where Figure 6.8
demonstrates a corner and a middle building with type Terrace House, and Table 6.2 shows their
characteristics as well as their energy demand in the month January. It can be seen that the main
difference between the buildings is their position, while their other characteristics, such as year of
construction, building type, building class, usable area and volume, are either the same or similar.
Under these conditions, the corner building has a higher energy demand, since more of its surfaces
are exposed to outside air for heat losses, compared to the middle building.

(a) (b)

Figure 6.8: Examples of corner (a) and middle (b) buildings with the type Terrace House.

61

6 Results and Analysis

A similar analysis was conducted to see the impact of the building position for single-family
houses. The energy demand of a stand-alone building was compared with that of a corner building
(Table 6.2), and a higher energy demand was observed for the stand-alone building. Similar to the
previous case, this impact is related to the overall surface area that is exposed to outside air for
heat losses. While all wall surfaces are considered during the calculation of heat losses through
transmission for a stand-alone building, at least one wall surface of a corner building is neglected,
since it is shared with another residential building.

Building
position Year Building

type
Building
class

Usable
area

Building
volume

Energy demand -
January (kWh)

Corner 1974 TH Residential 94 377.67 3945.98
Middle 1974 TH Residential 92 308.52 2615.43

Stand-alone 1985 SFH Residential 183 703.13 4373.22
Corner 1981 SFH Residential 127 495.885 2895.05

Table 6.2: Comparison of energy demand in January for corner, stand-alone and middle buildings.
TH = Terrace House, SFH = Single Family House.

Yet another analysis was done to compare the effect of the year of construction on the resulting
energy demand values. Table 6.3 shows the characteristics of two buildings with construction years
of 1933 and 2004. It can be seen that while all other characteristics are same or very similar, the for-
mer building has a much higher energy demand compared to the latter building with a more recent
year of construction. This difference in energy demand is expected, since older buildings usually
contain more inefficient materials, which is reflected in the used building physics parameters (from
TABULA) during the calculations as well.

Year Building
type

Building
class

Usable
area

Building
volume

Building
position

Energy demand -
January (kWh)

1933 SFH Residential 200 753.98 Stand-alone 9067.22
2004 SFH Residential 174 755.29 Stand-alone 3483.54

Table 6.3: Comparison of energy demand in January for two buildings with distinct construction
periods. SFH = Single Family House.

The final analysis on the building characteristics considered the impact of building volume on
the resulting energy demand values. It can be seen from Figure 6.9 and Table 6.4 that a building with
a higher volume requires much more energy for space heating compared to that with a smaller vol-
ume. Since a higher volume implicitly suggests a higher usable area in general, it is understandable
that the building size has a significant impact on the resulting energy demand values.

Figure 6.9: Two buildings with differing sizes from the study area.

62

6 Results and Analysis

Year Building
type

Building
class

Usable
area

Building
volume

Building
position

Energy demand -
January (kWh)

1975 MFH Mixed-use 3147 14962.58 Stand-alone 59094.54
1980 MFH Mixed-use 2225 7556.95 Stand-alone 26861.04

Table 6.4: Comparison of energy demand in January for two buildings with distinct volumes.
MFH = Multi Family House.

After the analysis of specific building characteristics on energy demand, a general analysis is
provided on the following paragraphs considering the same building characteristics and the overall
dataset. For this purpose, the monthly average energy demand values for the heating period of
October to March are demonstrated in Figure 6.10a, which are grouped by construction periods that
were determined in the TABULA building physics library. It can be seen from the graph that the
energy demand values follow a logical order, where the demand is higher in colder months such as
January and December, compared to the warmer periods of the year. In addition, it is seen that the
average energy demand values are higher for older construction periods compared to newer ones.
As discussed before, an important reason of this is the difference in used construction elements,
which affect the used building physics parameters such as higher U-values.

In addition to an analysis on the relationship between construction periods and energy demand,
it can be observed from Figure 6.10a that the average energy demand values are considerably high,
even almost reaching 8000 kWh per month for the oldest construction period. In addition, a negative
average of energy demand values is observed in October, which is against the logic of the space
heating demand calculation based on an energy balance method. To further investigate these values,
Figure 6.10b demonstrates the distribution of monthly energy demand values in logarithmic scale
for each construction period. It is possible to detect from the graph that while a majority of the
values are accumulated for each period, there are many outliers with much higher and lower values,
affecting the mean of the distribution. Especially for the oldest period (till 1964), which has the
highest average value for each month as shown in Figure 6.10a, almost all the outliers are positioned
on the higher side of the graph, which explains the considerably high average monthly energy
demand values. On the other hand, an analysis on the obtained negative energy demand values
and possible solutions are included later in this section.

(a) (b)

Figure 6.10: Average monthly energy demand (kWh) (a) and the distribution of values on
logarithmic scale (b) depending on the construction period.

After the analysis on the monthly average energy demand depending on the construction pe-
riods of buildings, a similar analysis was performed to investigate the relationship between the
monthly average energy demand and the building typology. While the initial TABULA building

63

6 Results and Analysis

classification identified four types of houses for the Netherlands, namely single family house, multi
family house, terrace house, and apartment blocks, only the first three categories were identified in
the study area. Accordingly, out of the 1884 buildings considered in the calculations, 84 of them
were labelled as multi family houses, 1295 of them as single family houses, and the remaining 505
as terrace houses.

It can be seen from Figure 6.11a that the monthly average energy demand is highest for the
multi family house category, which is significantly high compared to the other categories. Single
family house and terrace house categories, on the other hand, have similar values, with monthly
averages of around 5000 kWh or lower. Similarly, Figure 6.11b demonstrates the distribution of
monthly values for each building type in logarithmic scale. It can be seen that the values for multi
family houses are dispersed more unevenly in the scale, compared to single family and terrace
houses, which both have denser aggregations of values. However, for all three categories, it is
still possible to detect outlier values on both the higher and lower parts of the scale, affecting the
monthly averages. In addition, Table 6.5 shows the average building volumes for each of the three
building categories in the study area. It can be seen that the average volume is considerably high for
multi family houses compared to the single family and terrace houses, which have similar average
volumes. This comparison on building volume justifies the calculated energy demand values as
well, as shown in Figure 6.11a, since the multi family houses with largest volumes have the highest
monthly average energy demand values.

(a)

(b)

Figure 6.11: Average monthly energy demand (kWh) (a), and the distribution of values on
logarithmic scale (b), depending on the building type. SFH = Single Family House, MFH =

Multi-Family House, TH = Terrace House

64

6 Results and Analysis

Building type Average building volume (m3)

Multi Family House 7694.98

Single Family House 592.35

Terrace House 537.21

Table 6.5: Average volume of the three building typologies in the study area.

6.4.1 Comparison of results with energy simulation tools

After an analysis on the obtained space heating demand values based on different factors such
as construction period and building typology, these values were compared with the energy de-
mand values computed using the SimStadt software for the same study area. Table 6.6 presents the
monthly space heating demand values calculated with the NTA 8800 standard as part of this thesis
and the SimStadt software for a 10-building subset from the study area.

It can be noticed that the resulting values are quite similar for the two calculation methods in
each month. However, in this thesis, a heating period of October - March was considered, while
SimStadt considers the whole year for the space heating demand calculation. As a result, SimStadt
shows energy demand values for the period of April - September as well, while this period was
omitted in the calculations in this thesis. In addition to this analysis, Figure 6.12 demonstrates the
difference between the monthly average energy demand values for the same 10-building subset for
the two calculation methods. It can be more clearly seen from this figure that the difference between
the values are highly small, where the NTA 8800 values are generally on the higher side.

Figure 6.12: The differences between the average energy demand values (kWh) calculated with
NTA 8800 and Simstadt for a 10-building subset.

While the comparison between NTA 8800 and SimStadt results help to justify the space heating
demand values calculated in this thesis, it is important to consider certain differences between the
two calculation methods. Firstly, the NTA 8800 standard is used specifically in the Netherlands,
while the SimStadt software uses the German standard DIN V 18599 for this calculation. Even
though both methods are based on a steady state energy balance method, the additional data com-
ing from SimStadt’s pre-built libraries (building physics, occupancy, etc.) are based on German
regulations as well. Therefore, this comparison should not be seen as a way of validating the NTA
8800 results, since the used data and the calculation methods might slightly change.

65

6 Results and Analysis

ID
C

al
cu

la
ti

on

m
et

ho
d

M
on

th
ly

sp
ac

e
he

at
in

g
de

m
an

d
(k

W
h)

Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

Se
p

O
ct

N
ov

D
ec

N
TA

88
00

25
91

.5
9

20
34

.8
6

13
75

.1
4

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

75
7.

42
18

19
.6

2
25

56
.4

5
1

Si
m

St
ad

t
27

70
20

34
17

17
33

9
68

7
0

0
11

4
77

4
19

75
27

69

N
TA

88
00

19
42

.6
8

14
18

.7
7

84
8.

89
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
34

8.
17

12
89

.7
1

19
17

.2
9

2
Si

m
St

ad
t

23
09

15
90

12
82

19
0

42
4

0
0

57
47

3
16

24
23

88

N
TA

88
00

27
53

.3
4

21
45

.4
4

15
20

.9
6

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

91
7.

06
19

84
.8

5
27

25
.7

1
3

Si
m

St
ad

t
26

28
19

47
16

94
40

2
11

2
15

0
1

15
4

78
4

18
96

26
36

N
TA

88
00

18
92

.7
2

14
52

.0
5

10
59

.2
1

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

61
4.

47
13

45
.1

4
18

56
.1

1
4

Si
m

St
ad

t
17

36
12

84
11

11
24

2
56

6
0

0
76

47
9

12
42

17
42

N
TA

88
00

17
97

.7
0

13
80

.3
7

99
7.

54
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
57

5.
44

12
75

.3
9

17
63

.9
1

5
Si

m
St

ad
t

16
70

12
37

10
78

23
9

57
6

0
0

77
46

8
11

96
16

75

N
TA

88
00

27
24

.2
2

21
51

.1
4

16
05

.0
9

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

10
33

.0
8

19
99

.4
7

26
86

.1
4

6
Si

m
St

ad
t

24
06

17
82

15
35

34
4

84
10

0
1

12
0

69
5

17
31

24
14

N
TA

88
00

20
39

.2
1

15
83

.1
5

11
53

.7
5

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

68
8.

79
14

63
.1

8
20

06
.0

1
7

Si
m

St
ad

t
18

95
13

97
12

04
26

7
66

8
0

0
91

53
3

13
61

19
07

N
TA

88
00

20
25

.7
5

15
58

.5
7

11
21

.3
8

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

66
3.

15
14

47
.3

2
19

93
.3

3
8

Si
m

St
ad

t
18

70
13

79
11

91
26

0
62

7
0

0
87

52
5

13
41

18
80

N
TA

88
00

20
63

.4
1

15
94

.7
0

11
51

.0
1

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

68
7.

70
14

78
.7

9
20

31
.0

4
9

Si
m

St
ad

t
19

38
14

31
12

36
27

7
68

8
0

0
94

54
9

13
92

19
48

N
TA

88
00

23
30

.1
6

17
98

.6
8

11
90

.0
6

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

70
7.

08
16

56
.7

5
23

06
.4

0
10

Si
m

St
ad

t
23

22
17

13
14

57
34

0
87

13
0

1
12

3
67

9
16

79
23

45

Ta
bl

e
6.

6:
C

om
pa

ri
so

n
of

m
on

th
ly

sp
ac

e
he

at
in

g
de

m
an

d
va

lu
es

fo
r

a
10

-b
ui

ld
in

g
su

bs
et

ca
lc

ul
at

ed
w

it
h

N
TA

88
00

an
d

Si
m

St
ad

t.
Th

e
re

al
(p

an
d)

ID
s

of
bu

ild
in

gs
ar

e
no

ti
nc

lu
de

d
in

th
e

fig
ur

e
to

an
on

ym
is

e
th

e
da

ta
.

66

6 Results and Analysis

It is important to note that the negative energy demand values obtained with NTA 8800, as
shown in Figure 6.10a, were checked in the SimStadt values; however, it was found that SimStadt
results did not include any negative values, as expected. Therefore, a more detailed analysis was
made to solve the problem of negative values. It was found that 32 buildings out of 1884 had
negative energy demand values, 10 of which are shown in Table 6.7. To investigate the negative
values, the four main parameters of the calculation, namely transmission and ventilation losses,
and internal and solar gains, were analysed separately. It was found that 1401 buildings in the
study area out of 1884 had negative solar gains values, which contributed to the negative overall
energy demand values for the 32 buildings. Therefore, all calculation steps were checked more in
detail, with a focus on the solar gains calculations.

As the first step of this check, the formulas in the calculation method, all input data and the
unit of measurement of each parameter were controlled. It was found that the window ratio data
coming from the TABULA building physics library included very high values for certain building
categories, such as a window ratio of 0.51 for multi-family houses and of 0.39 for terrace houses
built after the year 2000. Moreover, when the 32 buildings with negative energy demand values
were analysed, it was discovered that all buildings were built after the year 2000 and the buildings
were either multi-family or terrace house types.

ID Year Class Type Monthly space heating demand (kWh)

Jan Feb Mar Apr -
Sep Oct Nov Dec

11 2006 Mix. MFH 4926.104 3164.618 493.2403 0 -480.732 2951.648 4907.25
12 2008 Mix. MFH 9307.493 6201.38 1204.335 0 -1136.18 5344.322 9260.464
13 2011 Res. TH 1756.013 1158.104 386.3949 0 -29.8774 1066.519 1750.983
14 2010 Res. TH 1786.082 1181.133 257.1867 0 -98.3848 1081.698 1797.701
15 2009 Res. TH 1161.864 742.2068 300.3615 0 -18.9162 694.6194 1144.829
16 2010 Mix. MFH 26330.35 17157.38 3156.998 0 -4463.61 14623.96 26365.8
17 2012 Res. MFH 7946.015 4610.537 -851.415 0 -2420.32 4212.729 8107.341
18 2012 Mix. MFH 28914.34 17449.27 1529.095 0 -5327.15 16200.62 28993.83
19 2014 Mix. MFH 19637.98 10367.67 -5014.41 0 -11479.8 8306.489 19928.46
20 2013 Mix. MFH 32795.87 20979.23 2316.002 0 -5191.17 18565.13 32985.15

Table 6.7: Buildings with negative energy demand values. Year = Year of construction, TH =
Terrace house, MFH = Multi family house, Res. = Residential, Mix. = Mixed-use.

The second step was to perform the calculation for a single residential building manually, to
ensure that all formulas were implemented correctly in the Python script created for this thesis.
However, the results of the manual calculation matched exactly with the output obtained from the
automatic calculations in Python. Then, the impact of each parameter in the calculation was exam-
ined. It was found that the negative values in solar gains calculations were caused by the solar gains
through opaque elements of the building. In this calculation (Equation 3.14), the extra heat flow due
to the radiation to the sky (Qsky;wi,k;mi) is subtracted to consider this heat loss in the solar gains
calculation. It was found that this parameter becomes too large for opaque parts of the building,
resulting in a negative value in the overall solar gains. However, even though the cause of the prob-
lem was identified, a solution could not be formulated since no errors or wrong implementations
were detected in the whole solar gains calculations.

While the negative energy demand and solar gains values could not be fixed in the given time
frame of the thesis, the detected potential problem areas in the input data and the calculation method
were modified to check their impact on the resulting values. First, an additional filter was imple-
mented for the window ratio data, which would only consider the 70% of the given window ratio
if the year of construction equals to or higher than 2000 for multi-family and terrace houses. This

67

6 Results and Analysis

way, the large window ratio values coming from the TABULA building physics library could be
decreased. Second, since no error could be found in the ”extra heat flow due to the radiation to the
sky” parameter, it was completely removed from the calculation. As a result of the aforementioned
tests, all negative energy demand and solar gains values were eliminated. An example is given in
Table 6.8, where the building 13, which originally had negative energy demand values (shown in
Table 6.7), no longer contains negative results. However, it is important to note that while these tests
helped to eliminate negative values, more research and tests are needed to grasp the overall impact
of the changes on the whole dataset.

ID Year Class Type Monthly space heating demand (kWh)

Jan Feb Mar Apr - Sep Oct Nov Dec
13 2011 Res. TH 1770.98 1282.00 682.92 0 205.22 1131.74 1742.47

Table 6.8: Change in the energy demand values for one building after adjustments in the
calculation method. Year = Year of construction, Res. = Residential, Mix. = Mixed-use.

68

7 Conclusions and Future Work

This chapter concludes the thesis by first providing an overview of the research, as well as the
answers to the determined research questions (Section 7.1). Then, the main contributions of the
thesis and its limitations are discussed in Section 7.2, and recommendations and new ideas for future
work are presented in Section 7.3. Finally, a self-reflection is included in Section 7.4, which focuses
on the reproducibility of the thesis, and provides a personal evaluation.

7.1 Research overview

The aim of this thesis was to develop and test an Energy Extension for CityJSON that supports the
calculation of space heating demand of buildings. As the first step, a semi-direct translation was
created from the Energy ADE KIT profile to explore the possibilities for a direct mapping as much
as possible. The validation of this Extension was done in two steps: through the official validator
of CityJSON and the use case. While the former was used to check validity against the JSON syn-
tax and the official CityJSON schemas, the latter considered the storage of required input data, as
well as the output values, with the Extension. For this, the space heating demand calculation was
performed for the city of Rijssen within the Rijssen-Holten municipality of the Netherlands, with
a steady-state energy balance method according to the Dutch norm NTA8800. Then, the valida-
tion results were utilised as guidelines to improve the CityJSON Energy Extension to make it more
compatible with the philosophy of CityJSON while fully supporting the use case. The schema of
the CityJSON Energy Extension as well as the Python script to calculate space heating demand are
available at: https://github.com/ozgetufan/cjenergy

In this thesis, the main research question was determined as: How can a CityJSON Energy Exten-
sion be used to support the calculation of space heating demand of buildings? To answer this question, four
sub-questions were defined, which will be answered in the following paragraphs.

• How can different types of objects, other than CityObjects, be defined in a CityJSON Ex-
tension?

The current extension mechanism of CityJSON only supports the addition of new CityObjects,
attributes and root properties with the three corresponding members of the extension, namely
extraCityObjects, extraAttributes, and extraRootProperties. On the other hand, it is currently not
possible to define non-CityObjects separately in a CityJSON Extension. Therefore, in this the-
sis, non-CityObjects were defined under the existing extraCityObjects member, even though the
defined features do not inherit the attributes and relations that CityObjects possess. While this
solution did not result in invalidity problems, it can be discussed that it had a negative impact
on the simplicity and understandability of the Extension, since the extraCityObjects member,
which was designed to store only CityObject type objects, was used to store different types of
features as well. Therefore, it can be concluded that the current extension mechanism of CityJ-
SON limits the possibilities of defining distinct types of objects, and a workaround is needed
to be able to include these objects in a CityJSON Extension.

70

https://github.com/ozgetufan/cjenergy

7 Conclusions and Future Work

• How should the CityJSON Energy Extension differ from the Energy ADE?

The literature study showed that the main difference between CityGML ADEs and CityJSON
Extensions is that the former are generally built with deep hierarchical structures as a result of
the XML data format. On the other hand, CityJSON Extensions follow the main philosophy
of CityJSON, which is to avoid deep hierarchies to ensure efficiency. As a result, this was
determined as the main consideration when creating the CityJSON Energy Extension as well.
While the first step of the methodology focused on a semi-direct translation from the Energy
ADE KIT profile, objects with deep hierarchical structures were detected to be improved in the
final version of the CityJSON Energy Extension.

In addition to the structural contrasts between the CityJSON Energy Extension and the En-
ergy ADE, the requirements of the use case, space heating demand calculation, resulted in
further differences between the two extensions. It was observed that the Energy ADE KIT pro-
file was missing certain attributes, such as the orientation and window ratio of surfaces and
the perimeter of buildings, which were required for the use case. These attributes were in-
cluded in the final version of the CityJSON Energy Extension to be able to fully support the
use case. Therefore, it can be concluded that the main purpose of differentiating CityJSON
Energy Extension from the Energy ADE KIT profile was to comply with the design decisions
behind CityJSON while providing support for the use case.

• How can space heating demand calculation be used during the design phase to test and
improve the CityJSON Energy Extension?

Space heating demand was chosen as the use case of this thesis, since it requires various types
of data to be stored in the CityJSON Energy Extension. Space heating demand was first used
to validate the Extension by checking whether it fully supports the use case or not. For this, the
required input data was examined to detect any missing objects or attributes in the Extension.
If certain data could not be stored, these were marked to be included in the final version of the
Extension.

The second use of the space heating demand calculation was to improve the CityJSON Energy
Extension by making it simpler and easier to use with less hierarchies. To achieve this, var-
ious tests were performed with the input data during the space heating demand calculation
to measure the efficiency of storing data with existing Extension objects and attributes. The
efficiency was measured according to the hierarchical structure of the object and the ease of
retrieving data from the CityJSON + Energy Extension file. The objects with deep hierarchies
were detected to be simplified to follow the philosophy of CityJSON.

• To what extent is it possible to map CityGML ADEs to CityJSON Extensions? Should the
CityJSON schema be extended to make this process more straightforward?

The literature study, as well as the thesis itself, showed that the possibilities for a direct map-
ping from CityGML ADEs to CityJSON Extensions depend on the type of objects. Since the
extension mechanism of CityJSON only considers extraCityObjects, extraAttributes, and extra-
RootProperties, the CityGML ADEs including only these features can be easily mapped to a
CityJSON Extension. However, if the CityGML ADE involves non-CityObjects, as is the case in
the Energy ADE, these objects cannot be mapped to a CityJSON Extension in a straightforward
manner.

While the existing mechanism can still be utilised to define non-CityObjects, this leads to less
clarity in the overall structure of a CityJSON Extension because of the lack of a separate prop-
erty to define non-CityObjects. It can be concluded that the existing extension mechanism of
CityJSON restraints the development of a wide variety of CityJSON Extensions, since it limits

71

7 Conclusions and Future Work

the type of features that can be added to three. Therefore, the extension mechanism of CityJ-
SON should be extended to allow for the definition of non-CityObjects in a systematic way,
which would enable a more straightforward mapping from CityGML ADEs, while contributing
to the usability of CityJSON Extensions.

7.2 Discussion

7.2.1 Contributions

As a result of this thesis, a CityJSON Energy Extension was created to support the calculation of
space heating demand of buildings. It can be discussed that the design and testing of such an
Extension contributes to the overall development of CityJSON and related future work, as described
below:

• Preference over CityGML: Prior to this thesis, an energy-related Extension was not available
for CityJSON. Considering the current significance of Urban Energy Modelling and energy
simulations, it can be said that the lack of such an Extension highly restricted the overall use
of CityJSON compared to CityGML. With the development of the CityJSON Energy Extension,
energy-related data of buildings can easily be stored in CityJSON files, making it possible to
use CityJSON for energy simulations, and especially for energy demand calculations. This can
be expected to increase the usability of CityJSON for a wider variety of applications, consider-
ing the advantages of the CityJSON Energy Extension over the CityGML Energy ADE, such as
the file size and a less hierarchical structure.

• Development of new CityJSON extensions: The CityJSON Energy Extension can be said
to be the most complex CityJSON extension developed so far, with distinct types of objects,
data types and relations. The availability of such a complex extension may be beneficial for
the development of new CityJSON extensions, where the design decisions behind the Energy
Extension can be used as guidelines to create complex elements.

• Development/improvement of CityJSON tools: During the development of the CityJSON
Energy Extension, many tools to manipulate and visualise CityJSON files were used, such as
cjval 1, citygml-tools 2, and ninja 3. The thesis helped to identify certain disadvantages and de-
ficiencies of these tools, which were communicated to the developers for the further improve-
ment of the tools. In addition, the thesis may contribute to the development of new CityJSON
tools in the future, focusing on the visualisation and manipulation of extension objects and
their relations to the core data model.

• Further development of the Energy ADE: In the thesis, an analysis of the Energy ADE KIT pro-
file was provided during the semi-direct translation. This analysis showed the shortcomings
of the data model, which can be used in the future for the further development of the KIT
profile, as well as the full Energy ADE.

7.2.2 Limitations

While the thesis provides valuable contributions for the development and use of CityJSON, the used
approach still has certain limitations, which can be described as follows:

1https://github.com/cityjson/cjval
2https://github.com/citygml4j/citygml-tools
3https://ninja.cityjson.org/

72

https://github.com/cityjson/cjval
https://github.com/citygml4j/citygml-tools
https://ninja.cityjson.org/

7 Conclusions and Future Work

• Flexibility of the Extension schema: Following the philosophy of CityJSON, the Energy Ex-
tension schema was developed in a way that ensures high flexibility, where the user is free
to define new attributes or properties for the Extension objects, even though they are not offi-
cially defined in the schema. While this may contribute to the usability of the Energy Extension
when the already defined objects and attributes are not sufficient for a specific use case, it may
make CityJSON + Energy Extension files more susceptible to errors. Since the validator of
CityJSON will not raise an error for objects or attributes/properties that are defined outside
the schema, any misspelled object, attribute or property names will be overlooked. On the
other hand, it can be discussed that this, at the same time, is a limitation of the validator,
which can be improved to raise a warning when an object or attribute/property that is not
defined in the schema is detected.

• Definition of new objects in the Extension schema: The limited extension mechanism of
CityJSON resulted in an unclear schema for the Energy Extension, where the extraCityObjects
member held definitions for both CityObjects and non-CityObjects. While this did not create
invalidity problems, it may be confusing for the user to discover that non-CityObjects were
not defined separately. However, this limitation is caused purely by the core data model of
CityJSON, which currently does not provide an additional mechanism to define different types
of objects in extensions. Since all possible options were investigated in this thesis to define non-
CityObjects with the existing extension mechanism, it was found that this limitation can be
avoided only if the extension mechanism of CityJSON is improved to allow for the definition
of non-CityObjects in a systematic way.

• Input data for the space heating demand calculation: In this thesis, the main data source
for the space heating demand calculation was the 3D city model of Rijssen-Holten, where
each building had energy-related Generic Attributes, such as area, orientation, and aspect of
surfaces. In addition, the 3D city model was used to obtain more of the required parameters,
such as the perimeter of buildings and slope of surfaces. However, the fact that the building
geometries were only available in LoD0 and LoD2 made it impossible to obtain certain input
data from the 3D city model. For instance, since LoD2 geometries do not include openings
on surfaces, detailed information about windows, such as their area, could not be used in
the calculations. Furthermore, since LoD2 geometries do not provide information about the
internal structure of buildings, simplifications had to be made to define the thermal zones
within buildings, which was especially problematic for mixed-use buildings. Therefore, it can
be concluded that a 3D city model with a higher LoD would improve the results of the space
heating demand calculation.

• Results of the space heating demand calculation: The space heating demand calculation im-
plemented in this thesis resulted in negative values for 32 buildings, as well as negative results
in solar gains during the calculations, which is neither expected, nor possible in a steady-state
energy balance method. While the potential reasons of this error were explained in Section 6.4
and tests were performed to find a solution, the problem of negative values could not be fixed
in the given time frame of the thesis.
Another limitation of the space heating demand calculation is that there was no ground truth
data to validate the resulting values. The results were only compared with the values obtained
from the SimStadt software for the same study area. While this comparison provided insight
on the general accuracy of the results, a real validation could not be performed since manually
calculated energy demand data was not available for the area.

73

7 Conclusions and Future Work

7.3 Future work

During the implementation of the thesis, new ideas and recommendations for future work arose,
which could contribute to the further development and usability of the CityJSON Energy Extension.
These potential research areas are described in the following paragraphs.

7.3.1 Further development of the Energy Extension

The developed CityJSON Energy Extension focuses on supporting the space heating demand calcu-
lation of buildings as the use case. To further develop the Extension and widen the range of fields
and applications that it can be used in, the Extension could be tested with different use cases, such
as solar potential analysis and future refurbishment scenarios. A variety of use cases could unveil
the shortcomings of the Energy Extension in terms of supported classes and attributes, which could
be the starting point for further development. In addition, since the use case was computed with a
simplified (steady-state) method in this thesis, the Energy Extension was developed by considering
the Energy ADE KIT profile instead of the full Energy ADE. As a result of the tests with distinct use
cases, an assessment between the two versions of the Energy ADE could be made, and the missing
objects and attributes from the full Energy ADE could be incorporated in a new version of the CityJ-
SON Energy Extension to provide better support for additional use cases. Finally, it is important
to keep in mind that both CityJSON and the Energy ADE data models are frequently updated and
new versions are released with the developments in the field of Geomatics. Therefore, it is crucial to
follow these developments, and update and improve the CityJSON Energy Extension accordingly.

7.3.2 Additional methods for validation and comparison

As discussed in Section 3.2, the CityJSON Energy Extension was not validated against the Energy
ADE KIT profile due to the diverse philosophies behind the CityGML and CityJSON data models,
and the content and focus of the two extensions. However, it can still be discussed that validation
against the Energy ADE KIT profile would highly contribute to the usability of the Energy Extension.
For this, a tool could be developed that provides conversion between CityGML + Energy ADE KIT
profile files and CityJSON + Energy Extension files. This tool would need to ensure a valid con-
version between the two files, while supporting a lossless transformation of data at the same time.
Since the CityJSON Energy Extension includes certain attributes and relations that are not present
in the Energy ADE KIT profile, these new features should be tackled carefully in such a conversion
tool, so that the data stored with the new features is not lost when converted to a CityGML + Energy
ADE KIT profile file.

A conversion tool between the CityJSON Energy Extension and the CityGML Energy ADE KIT
profile could be utilised further to compare the two data models quantitatively. In this thesis, a
comparison in file size was conducted only between the input and output CityJSON files to see the
impact of the Extension objects and attributes. An additional comparison could be done between a
CityJSON + Energy Extension file and a CityGML + Energy ADE KIT profile file, which would store
exactly the same data. This analysis would demonstrate the impact of the two extensions with the
used objects and attributes, which would provide a better understanding about the advantages and
disadvantages of the two extensions.

74

7 Conclusions and Future Work

7.4 Self-reflection

This section provides a discussion on the reproducibility of the developed methods and obtained
results in this thesis, and includes an evaluation of the thesis process from a personal point of view.

For the first part of the methodology, namely the design of a CityJSON Energy Extension, all
steps and justifications followed to create the Extension schema are described in the thesis report
in a detailed way so that users can easily understand the logic behind each design decision. This
is expected to help developers create new (complex) CityJSON Extensions as well, since various
methods were tested for different functionalities, and documented in the thesis report. In addi-
tion, the CityJSON Energy Extension schema is openly available on GitHub: https://github.com/
ozgetufan/cjenergy, where a short description of the Extension is provided as well, and guide-
lines on how to define and use each type of Extension property are described. As a result, the first
part of the methodology, as well as its implementation, enables a high level of reproducibility, since
the users can implement, test, and use the CityJSON Energy Extension themselves by following the
documentation provided in the report and the GitHub repository.

The second part of the methodology, namely the space heating demand calculation, was imple-
mented based on the openly available Dutch standard NTA 8800. While the required input data
was mostly collected from open datasets, such as the BAG and meteorological data portal, the main
data source of this thesis, namely the 3D city model of Rijssen-Holten, is not publicly available at
the moment. Therefore, this dataset is not directly shared in the GitHub repository, which decreases
the reproducibility in terms of input data. However, the characteristics of the 3D city model and the
attributes it contains are described in detail in the thesis report to help users shape their own 3D city
models in the same way to be able to perform the space heating demand calculation with the same
steps. In addition, example input data (including a 3D city model) is provided in the GitHub repos-
itory and integrated in the Python scripts to enable the user to test the calculation pipeline. In terms
of the pre-processing of input data, open tools were mostly used, but it was also benefited from
licensed software, namely Safe Software FME, to calculate the missing physical properties of build-
ings from the 3D city model, such as the slope of surfaces and the perimeter of buildings. In terms
of the calculation, the followed steps are described thoroughly in the thesis report, and the Python
scripts created to implement the formulas are openly shared on the GitHub repository. Therefore,
the acquisition and pre-processing of required input data provide limited reproducibility, while the
calculation itself can be easily reproduced from the developed code.

While the space heating demand calculation implemented in this thesis is reproducible, the re-
sults of the calculation indicate a limitation. As discussed in Section 6.4, negative energy demand
values were detected for 32 buildings in the study area, while the solar gains calculation resulted
in negative values as well. Even though various tests were performed to identify the problem, a
solution could not be found in the given time frame of the thesis. However, two problem areas were
detected which might be the reasons of negative values, namely the window ratio of surfaces and
the extra heat flow parameter in solar gains, and additional tests were performed to see the impact
in these areas. Since the detected problem areas are related to the used input data and the calculation
method itself, the user can still take these into consideration when preparing and pre-processing the
input data, and to use the calculation method correctly. Moreover, since the comparison of results
with SimStadt software showed little difference between the obtained values for the majority of the
dataset, it can be discussed that the reason behind negative values might be related to the used
additional input data instead of the geometry of buildings or the calculation method. However, a
comparison with ground truth data is still needed to verify this theory, since SimStadt is based on
German standards and regulations. Overall, in terms of reproducibility and transparency, all con-
ducted tests to solve this problem and a discussion about the results are provided in the thesis report
to guide the readers about the possible future steps.

75

https://github.com/ozgetufan/cjenergy
https://github.com/ozgetufan/cjenergy

7 Conclusions and Future Work

From a personal perspective, I have found the space heating demand calculation part of the the-
sis more challenging than the creation of CityJSON Energy Extension. The calculation required a
strong understanding of the specific calculation method for the Netherlands, which was available
only in Dutch. I had to translate all relevant parts of the document to understand the details of each
formula, which resulted in a significant time loss during my thesis. In addition, the collection of
required input data was not trivial, since different datasets had to be used and the obtained data
had to be pre-processed by using various tools. Moreover, I have spend a lot of time trying to fix
the problem of negative values in the energy demand results. Even though I have had help, the
collective efforts, unfortunately, did not result in a solution in the given time frame of the thesis.
However, I still have gained many valuable skills during this part of the thesis, such as making re-
search, finding valuable information from numerous articles, and being critical about the results I
have obtained. Compared to this part, the design of CityJSON Energy Extension was more straight-
forward and enjoyable for me. The biggest challenge I have faced in this part was (occasionally)
having to deal with errors coming from the existing tools of CityJSON. However, these problems
were quickly solved after I have contacted the developers of these tools.

76

A Comparison of the Extension elements

A comparison of the Energy ADE KIT profile and the CityJSON Energy Extension elements is pro-
vided in Figure A.1. The objects and attributes that were directly translated to the CityJSON En-
ergy Extension are not included in the figure, only changes between the two Extensions are empha-
sised.

78

A Comparison of the Extension elements

79

A Comparison of the Extension elements

Figure A.1: A comparison of the Energy ADE KIT profile and CityJSON Energy Extension elements.
Blue rows represent the newly added elements in the CityJSON Energy Extension, and orange
rows indicate the elements that were not included in the CityJSON Energy Extension.

80

Bibliography

Agugiaro, G. (2016a). Enabling “energy-awareness” in the semantic 3D city model of Vienna. ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-4/W1.

Agugiaro, G. (2016b). Energy planning tools and CityGML-based 3D virtual city models: experi-
ences from Trento (Italy). Applied Geomatics, 8(1):41–56.

Agugiaro, G., Benner, J., Cipriano, P., and Nouvel, R. (2018). The Energy Application Domain Ex-
tension for CityGML: enhancing interoperability for urban energy simulations. Open Geospatial
Data, Software and Standards, 3(1):1–30.

Agugiaro, G., Hauer, S., and Nadler, F. (2015). Coupling of CityGML-based semantic city models
with energy simulation tools: some experiences. pages 191–200. REAL CORP 2015 Proceedings/-
Tagungsband.

Agugiaro, G. and Holcik, P. (2017). 3D City Database extension for the CityGML Energy ADE 0.8 (Post-
greSQL Version).

Ali, U., Shamsi, M. H., Hoare, C., Mangina, E., and O’Donnell, J. (2021). Review of urban build-
ing energy modeling (UBEM) approaches, methods and tools using qualitative and quantitative
analysis. Energy and Buildings, 246:111073.

Beckman, W. A., Broman, L., Fiksel, A., Klein, S. A., Lindberg, E., Schuler, M., and Thornton, J.
(1994). TRNSYS The most complete solar energy system modeling and simulation software. Re-
newable Energy, 5(1):486–488.

Benner, J. (2018). CityGML Energy ADE V. 1.0 Specification. http://www.citygmlwiki.org/

images/3/38/Energy_ADE_specification_2018_03_25.pdf.

Benner, J., Geiger, A., and Häfele, K.-H. (2016). Virtual 3D City Model Support for Energy Demand
Simulations on City Level – The CityGML Energy Extension. REAL CORP 2016 – SMART ME
UP! How to become and how to stay a Smart City, and does this improve quality of life? Proceedings of
21st International Conference on Urban Planning, Regional Development and Information Society, pages
777–786.

Biljecki, F., Kumar, K., and Nagel, C. (2018). CityGML Application Domain Extension (ADE):
overview of developments. Open Geospatial Data, Software and Standards, 3(1):13.

Biljecki, F., Ledoux, H., and Stoter, J. (2016). An improved LOD specification for 3D building models.
Computers, Environment and Urban Systems, 59:25–37.

Biljecki, F., Lim, J., Crawford, J., Moraru, D., Tauscher, H., Konde, A., Adouane, K., Lawrence, S.,
Janssen, P., and Stouffs, R. (2021). Extending CityGML for IFC-sourced 3D city models. Automation
in Construction, 121:103440.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A. (2015). Applications of 3D City
Models: State of the Art Review. ISPRS International Journal of Geo-Information, 4(4):2842–2889.

Bray, T., Hollander, D., Layman, A., Tobin, R., and Thompson, H. (2009). Namespaces in XML 1.0
(Third Edition), W3C Recommendation. https://www.w3.org/TR/xml-names/.

81

http://www.citygmlwiki.org/images/3/38/Energy_ADE_specification_2018_03_25.pdf
http://www.citygmlwiki.org/images/3/38/Energy_ADE_specification_2018_03_25.pdf
https://www.w3.org/TR/xml-names/

Bibliography

Cerný, R. and Kocı́, V. (2015). Traditional fired-clay bricks versus large and highly perforated fired-
clay bricks masonry: Influence on buildings thermal performance. pages 63–81. Woodhead Pub-
lishing, Oxford.

Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., Strand,
R. K., Liesen, R. J., Fisher, D. E., Witte, M. J., and Glazer, J. (2001). EnergyPlus: creating a new-
generation building energy simulation program. Energy and Buildings, 33(4):319–331.

Dalla Mora, T., Teso, L., Carnieletto, L., Zarrella, A., and Romagnoni, P. (2021). Comparative Anal-
ysis between Dynamic and Quasi-Steady-State Methods at an Urban Scale on a Social-Housing
District in Venice. Energies, 14(16):5164.

Dukai, B. and Ledoux, H. (2021). CityJSON Specifications 1.1.0. https://www.cityjson.org/

specs/1.1.0/.

Ferrando, M. and Causone, F. (2019). An overview of urban building energy modelling (UBEM)
tools. In 16th IBPSA International Conference and Exhibition. International Building Performance
Simulation Association.

Ghiassi, N. and Mahdavi, A. (2017). Reductive bottom-up urban energy computing supported by
multivariate cluster analysis. Energy and Buildings, 144:372–386.

Gröger, G., Kolbe, T. H., Nagel, C., and Häfele, K.-H. (2012). OGC City Geography Markup Lan-
guage (CityGML) Encoding Standard. https://portal.ogc.org/files/?artifact_id=47842.

Gröger, G. and Plümer, L. (2012). CityGML – Interoperable semantic 3D city models. ISPRS Journal
of Photogrammetry and Remote Sensing, 71:12–33.

Ilizirov, G. and Dalyot, S. (2022). Data Quality Extension. https://github.com/TheGreatWizard/
data-quality.

INSPIRE Thematic Working Group Buildings (2013). D2.8.III.2 INSPIRE Data Specification on Build-
ings – Technical Guidelines. Technical report, INSPIRE Infrastructure for Spatial Information in
Europe.

Kadaster (2022). Basisregistraties Adressen en Gebouwen (BAG). https://www.kadaster.nl/

zakelijk/producten/adressen-en-gebouwen/bag-2.0-extract.

Kaden, R. and Kolbe, T. H. (2014). Simulation-based total energy demand estimation of buildings
using semantic 3D city models. International Journal of 3-D Information Modeling (IJ3DIM), 3(2):35–
53.

Kippers, R., Koeva, M., Keulen, M., and Oude Elberink, S. (2021). Automatic 3D Building Model
Generation Using Deep Learning Methods Based On CityJSON and 2D Floor Plans. The Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-4/W4-
2021:49–54.

Kolbe, T. (2009). Representing and Exchanging 3D City Models with CityGML. In 3D Geo-Information
Sciences, pages 15–31.

Labetski, A., Kumar, K., Ledoux, H., and Stoter, J. (2018). A metadata ADE for CityGML. Open
Geospatial Data, Software and Standards, 3(1):16.

Ledoux, H., Ohori, K. A., Kumar, K., Dukai, B., Labetski, A., and Vitalis, S. (2019). CityJSON: A
compact and easy-to-use encoding of the CityGML data model. Open Geospatial Data, Software and
Standards, 4(1):1–12.

82

https://www.cityjson.org/specs/1.1.0/
https://www.cityjson.org/specs/1.1.0/
https://portal.ogc.org/files/?artifact_id=47842
https://github.com/TheGreatWizard/data-quality
https://github.com/TheGreatWizard/data-quality
https://www.kadaster.nl/zakelijk/producten/adressen-en-gebouwen/bag-2.0-extract
https://www.kadaster.nl/zakelijk/producten/adressen-en-gebouwen/bag-2.0-extract

Bibliography

León-Sánchez, C., Giannelli, D., Agugiaro, G., and Stoter, J. (2021). Testing the New 3D BAG Dataset
for Energy Demand Estimation of Residential Buildings. The International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, XLVI-4/W1-2021:69–76.

Monien, D., Strzalka, A., Koukofikis, A., Coors, V., and Eicker, U. (2017). Comparison of building
modelling assumptions and methods for urban scale heat demand forecasting. Future Cities and
Environment, 3(0):2.

Nys, G.-A., Kharroubi, A., Poux, F., and Billen, R. (2021). An Extension of CityJSON to Support
Point Clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 42:301–306.

Nys, G.-A., Poux, F., and Billen, R. (2020). CityJSON Building Generation from Airborne LiDAR 3D
Point Clouds. ISPRS International Journal of Geo-Information, 9(9):521.

Pasquinelli, A., Agugiaro, G., Tagliabue, L. C., Scaioni, M., and Guzzetti, F. (2019). Exploiting the
Potential of Integrated Public Building Data: Energy Performance Assessment of the Building
Stock in a Case Study in Northern Italy. ISPRS International Journal of Geo-Information, 8(1):27.

Portele, C. (2007). OpenGIS® Geography Markup Language (GML) Encoding Standard. Version
3.2.1. https://portal.ogc.org/files/?artifact_id=20509.

Prataviera, E., Romano, P., Carnieletto, L., Pirotti, F., Vivian, J., and Zarrella, A. (2021). EUReCA:
An open-source urban building energy modelling tool for the efficient evaluation of cities energy
demand. Renewable Energy, 173:544–560.

Radwan, Y. M. G. (2021). Automation of Building Energy Efficiency Using BIM: A decision sup-
port BIM-based tool to optimize the EI of buildings. Master’s thesis, Eindhoven University of
Technology.

Robinson, D., Haldi, F., Leroux, P., Perez, D., Rasheed, A., and Wilke, U. (2009). CITYSIM: Compre-
hensive Micro-Simulation of Resource Flows for Sustainable Urban Planning.

Rossknecht, M. and Airaksinen, E. (2020). Concept and Evaluation of Heating Demand Prediction
Based on 3D City Models and the CityGML Energy ADE—Case Study Helsinki. ISPRS Interna-
tional Journal of Geo-Information, 9(10):602.

Royal Netherlands Standardization Institute (2022). NTA 8800:2022 Energy performance of build-
ings - Determination method. https://www.nen.nl/nta-8800-2022-nl-290717.

Sanhudo, L., Ramos, N. M. M., Poças Martins, J., Almeida, R. M. S. F., Barreira, E., Simões, M. L., and
Cardoso, V. (2018). Building information modeling for energy retrofitting – A review. Renewable
and Sustainable Energy Reviews, 89:249–260.

Scartezzini, J.-L., Nouvel, R., Brassel, K.-H., Bruse, M., Duminil, E., Coors, V., Eicker, U., and Robin-
son, D. (2015). SimStadt, a new workflow-driven urban energy simulation platform for CityGML
city models.

Skarbal, B., Peters-Anders, J., Faizan Malik, A., and Agugiaro, G. (2017). How to Pinpoint Energy-
Inefficient Buildings? AN Approach Based on the 3d City Model of Vienna. ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sciences, 44W3:71–78. ADS Bibcode: 2017IS-
PAn44W3...71S.

Swan, L. G. and Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential
sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13(8):1819–
1835.

83

https://portal.ogc.org/files/?artifact_id=20509
https://www.nen.nl/nta-8800-2022-nl-290717

Bibliography

TABULA (2012). TABULA: Typology Approach for Building Stock Energy Assessment. https:

//episcope.eu/iee-project/tabula/.

United Nations Environment Programme (2020). 2020 Global Status Report for Buildings and Con-
struction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector.
Technical report.

Van den Brom, P. (2020). Energy in Dwellings: A comparison between Theory and Practice. PhD thesis,
Delft University of Technology.

Verwiebe, P. A., Seim, S., Burges, S., Schulz, L., and Müller-Kirchenbauer, J. (2021). Modeling Energy
Demand—A Systematic Literature Review. Energies, 14(23):7859.

Vitalis, S., Arroyo Ohori, K., and Stoter, J. (2019a). Incorporating Topological Representation in 3D
City Models. ISPRS International Journal of Geo-Information, 8(8).

Vitalis, S., Labetski, A., Arroyo Ohori, K., Ledoux, H., and Stoter, J. (2019b). A Data Structure to
Incorporate Versioning in 3D City Models. In ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, volume IV-4-W8, pages 123–130. Copernicus GmbH.

Wilhelm, L., Donaubauer, A., and Kolbe, T. H. (2021). Integration of BIM and Environmental Plan-
ning: The CityGML EnvPlan ADE. Journal of Digital Landscape Architecture.

Wu, J. (2021). Automatic building permits checks by means of 3D city models. Master’s thesis, Delft
University of Technology.

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., Adolphi, T., and Kolbe, T. H.
(2018). 3DCityDB - a 3D geodatabase solution for the management, analysis, and visualization of
semantic 3D city models based on CityGML. Open Geospatial Data, Software and Standards, 3(1):5.

84

https://episcope.eu/iee-project/tabula/
https://episcope.eu/iee-project/tabula/

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main font is
Palatino.

	Introduction
	Objectives and research questions
	Scope
	Thesis structure

	Related work
	CityGML
	Core and Building modules
	Level of Detail
	Extending CityGML

	CityJSON
	Extending CityJSON

	Current CityJSON Extensions
	CityJSON Point Cloud Extension
	CityJSON Noise Extension

	Energy ADE
	Energy ADE KIT Profile

	Space heating demand calculation and 3D city models
	3D city models and the Energy ADE for space heating demand calculation
	Current energy simulation software with 3D city models

	Methodology
	Semi-direct translation from the Energy ADE
	New City Objects
	New attributes to existing City Objects with additional data types
	New non-City Objects
	Relations among City Objects and non-City Objects

	Validation of the CityJSON Energy Extension
	Validation through the use case
	Validation through cjval
	Validation against the Energy ADE KIT profile

	Space heating demand calculation
	Calculation method
	Required input data for space heating demand calculation

	Improvements on the CityJSON Energy Extension

	Study area and datasets
	Study area
	Collection of input data for space heating demand
	3D city model of Rijssen-Holten
	Basisregistratie Adressen en Gebouwen (BAG)
	Meteorological Data Portal
	TABULA Building Physics Library
	NTA 8800

	Implementation
	Mapping rules of the semi-direct translation
	Creating new City Objects
	New attributes to existing City Objects
	Creating new non-City Objects
	New data types, enumerations and code lists
	Relations among City Objects and non-City Objects

	Experiments on the storage of input data in the CityJSON Energy Extension
	Calculation of space heating demand
	Limitations on the retrieval of data from the CityJSON Energy Extension during the space heating demand calculation

	Improvements on the semi-direct translation
	Reconsidering the Energy ADE KIT profile attributes
	Associations among objects
	Removal of deep hierarchies
	Naming conventions

	Results and Analysis
	Semi-direct translation versus the final CityJSON Energy Extension
	Change in the hierarchical structure
	Change in the storage of relations

	The Energy ADE KIT profile versus the CityJSON Energy Extension
	Changes in the used elements

	Comparison of file size
	Results of the space heating demand calculation
	Comparison of results with energy simulation tools

	Conclusions and Future Work
	Research overview
	Discussion
	Contributions
	Limitations

	Future work
	Further development of the Energy Extension
	Additional methods for validation and comparison

	Self-reflection

	Comparison of the Extension elements

