
 
 

Delft University of Technology

Electron binding energy of donors in bilayer graphene with a gate-tunable gap

Gorbar, E. V.; Gusynin, V. P.; Oriekhov, D. O.; Shklovskii, B. I.

DOI
10.1103/PhysRevB.109.165145
Publication date
2024
Document Version
Final published version
Published in
Physical Review B

Citation (APA)
Gorbar, E. V., Gusynin, V. P., Oriekhov, D. O., & Shklovskii, B. I. (2024). Electron binding energy of donors
in bilayer graphene with a gate-tunable gap. Physical Review B, 109(16), Article 165145.
https://doi.org/10.1103/PhysRevB.109.165145

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1103/PhysRevB.109.165145
https://doi.org/10.1103/PhysRevB.109.165145


PHYSICAL REVIEW B 109, 165145 (2024)

Electron binding energy of donors in bilayer graphene with a gate-tunable gap

E. V. Gorbar ,1,2 V. P. Gusynin ,2 D. O. Oriekhov ,3,4 and B. I. Shklovskii 5

1Department of Physics, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine
2Bogolyubov Institute for Theoretical Physics, Kyiv 03143, Ukraine

3Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
4Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands

5School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Received 26 January 2024; revised 25 March 2024; accepted 9 April 2024; published 24 April 2024)

In gapped bilayer graphene, similarly to conventional semiconductors, Coulomb impurities (such as nitrogen
donors) may determine the activation energy of its conductivity and provide low-temperature hopping conduc-
tivity. However, in spite of the importance of Coulomb impurities, nothing is known about their electron binding
energy Eb in the presence of gates. To close this gap, we study numerically the electron binding energy Eb

of a singly charged donor in BN-enveloped bilayer graphene with the top and bottom gates at distance d and
gate-tunable gap 2�. We show that for 10 < d < 200 nm and 1 < � < 70 meV the ratio Eb/� changes from 0.4
to 1.4. The ratio Eb/� stays so close to unity because of the dominating role of the bilayer polarization screening
which reduces the Coulomb potential well depth to values ∼�. Still, the ratio Eb/� somewhat decreases with
growing �, faster at small � and slower at large �. On the other hand, Eb/� weakly grows with d , again faster
at small � and slower at large �. We also studied the effect of trigonal warping and found only a small reduction
of Eb/�.

DOI: 10.1103/PhysRevB.109.165145

I. INTRODUCTION

Bernal-stacked bilayer graphene (BLG) is composed of
two layers of graphene where atoms of sublattice A in one
layer lie directly below or above atoms of sublattice B in
the other layer so that interlayer dimer bonds are formed.
Its low-energy electron spectrum is gapless and is given by
parabolic valence and conduction bands touching at two K
and K ′ valley points. Their charge carriers are characterized
by nontrivial chiral properties with Berry phase 2π [1,2] and
are described by two-component spinors. A unique feature
of BLG is that an electric field D applied perpendicular to
its layers due to the potential difference between gates opens
gap 2� between the valence and conduction bands [1–4].
The possibility of inducing and controlling the energy gap via
gating makes BLG an active research area, including practical
applications in electronic devices. We assume below that as in
the best devices BLG is enveloped by two layers of hexagonal
boron nitride (hBN) with thickness d each and has top and
bottom gates made of graphite or gold with electric poten-
tial +U and −U , respectively [see Fig. 1(a)]. This potential
difference opens gap 2� = −2eUc0/d in bilayer graphene,
where c0 ≈ 0.34 nm is interlayer separation and −e < 0 is
the electron charge.

In this paper we study the ground state of the electron
bound to singly charged positive donor. It is known that
the best samples of graphite and, consequently, exfoliated
from it BLG samples, have charged impurities in concen-
tration ∼109 cm−2 per layer, presumably singly charged
nitrogen donors [5–7]. These donors provide activated elec-
tron conductivity with activation energy related to their
binding (ionization) energy Eb. At low temperature donors

compensated by smaller concentration of acceptors provide
weakly activated hopping conductivity. Donors are also re-
sponsible for additional lines of the light absorption. Thus, it
is important to find the donor ground state energy E (�, d ) cal-
culated from the mid-gap energy E = 0 and electron binding
(ionization) energy Eb = � − E [see Fig. 1(b)]. The history
of semiconductors implies that knowledge of binding energy
of donors and acceptors is important both for efforts to make
BLG cleaner or for intentional doping of BLG, which eventu-
ally allow to create better devices.

The parabolic energy spectrum in BLG plotted in Fig. 1(b)
is actually realized only at low energy [1] for momenta up to
|p| ≈ γ1/(2vF ), where vF is the Fermi velocity and γ1 is the
interlayer hopping amplitude. The energy dispersion is linear
for larger momenta as in single-layer graphene. The four-band
model formulated in [1] describes the electron quasiparticles
in BLG both at low and high energies. Its energy dispersion
in gapped bilayer graphene has a Mexican hat structure where
the smallest by modulus value of energy is realized at nonzero
momentum p0 rather than at p = 0. Still, such a Mexican
hat structure is negligible at small gap � because the differ-
ence of energies at zero momentum and p0 is proportional to
2�3/γ 2

1 . Therefore, it is quite small at � � γ1. In addition,
momentum |p0| ≈ √

2�/vF tends to zero as � → 0. Thus,
the Mexican hat structure is smoothed and shrinks to zero
momentum for small gap. Since we consider in our paper
small gaps, we employ the two-band model whose energy
dispersion increases monotonously with momentum and does
not have the Mexican hat shape. This model is applicable for
gap � < γ1/4 ≈ 100 meV. Our calculations are limited by
� = 70 meV.
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FIG. 1. (a) Schematic geometry of dual-gated device studied. hBN substrates are characterized by dielectric constant κ and d denotes the
distance to gates. (b) The energy dispersion of the two-band model of bilayer graphene without trigonal warping and the definition of binding
energy Eb of an in-gap bound state.

Our calculation takes into account two kinds of screening
of the Coulomb potential of a donor. First, we take care of
polarization of gapped BLG via virtual electron transitions
across the gap [8,9], as well as polarization due to σ -bond
electrons [10,11]. This screening is very strong at small �

and as a result reduces the Coulomb potential of a donor to a
shallow long-range potential well with the depth of order �

[8]. Note that this gapped BLG polarization screening is dif-
ferent from screening of BLG without gap [12–15]. Second,
there is screening due to top and bottom gates. It is known that
screening of a single charge located in the middle between two
metallic gates (in the absence of a BLG polarization) leads to
the exponential decay of potential with the decay length 2d/π

[16,17]. In our case, BLG releases electric lines to the gates
only at large distances from the donor. Therefore, as we see
below, the effect of screening by gates in the double-screened
potential is quite modest.

In our calculations, we use techniques developed in the
previous study of electron bound states of the Coulomb center
with an arbitrary charge Z in BLG [9]. That work was mostly
concerned with finding a critical Zc at which energy of the
ground-state donor level E reaches −� and dives into the
valence band. Aside from that, Ref. [9] did not study screening
by gates. The main objective of this work is to find binding
energy of donor Eb with single positive charge as a function
of � and d taking into into account screening of the potential
of charged impurity both by gates and BLG electrons.

In Fig. 2, we present our results for E (�, d ) with 10 <

d < 200 nm and 1 < � < 70 meV taking into account double
screening due to gates and bilayer graphene including σ -bond
polarization. We see that the ratio Eb/� changes from 0.4 to
1.4. It stays close to unity because of the dominating role of
the BLG polarization screening which reduces the Coulomb
potential well depth ∼� [8]. Still, the ratio Eb/� somewhat
decreases with growing �, faster at small � and slower at
large �. On the other hand, Eb/� grows with d faster at small
� and slower at large �. This happens because at small � the
localization length of the electron bound state becomes larger
and screening by gates plays a larger role. We also studied the
effect of the trigonal warping at � � 20 meV and found only
a small reduction of Eb/�.

The paper is organized as follows. The low-energy ef-
fective Hamiltonian, the equations of motion, and numerical

results for the donor binding energy in the two-band model are
presented in Sec. II. The role of trigonal warping effects on the
electron bound states is described in Sec. III. The electric po-
tential of Coulomb impurity screened both by internal electron
polarization and by gates in gated BLG is found in Sec. IV.
Main results and conclusions are summarized in Sec. V. An
approximate analytic method for estimation of the electron
bound state energy is presented in the Appendix.

II. HAMILTONIAN, EQUATIONS OF MOTION,
AND NUMERICAL RESULTS

The free two-band Hamiltonian in gapped bilayer graphene
has the form [1]

H0 = v2
F

γ1

(
0 (p−)2

(p+)2 0

)
+ �

(
1 0
0 −1

)
, (1)

where p± = px ± ipy and p = −ih̄∇ is the two-dimensional
momentum operator, γ1 ≈ 0.39 eV [18] is the strongest inter-
layer coupling between the pairs of orbitals that lie directly
below and above each other, and vF � c/300 is the Fermi
velocity. The two-component spinor field �V s carries the val-
ley (V = K, K ′) and spin (s = +,−) indices. We will use
the standard convention: �T

Ks = (ψA1, ψB2)Ks whereas �T
K ′s =

(ψB2, ψA1)K ′s. Here A1 and B2 correspond to those sublattices
in layers 1 and 2, respectively, which, according to the Bernal
(A2-B1) stacking, are relevant for the low-energy dynamics.

FIG. 2. The ground-state energy of donor E as a function of � in
units of � for few values of distance to gates d from 10 to 200 nm as
well as in the absence of gates.
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The energy spectrum of Hamiltonian (1) is given by
E (p) = ±

√
(p2/2m)2 + �2, so that we have gap 2� between

the lower and upper continua (valence and conduction bands),
where m = γ1/2v2

F ≈ 0.054me is the quasiparticle mass and
me is the mass of the electron. To determine the electron
bound states in the field of Coulomb impurity in gated BLG
we should find the electric potential V (r) induced by this im-
purity. We solve the Poisson equation taking into account the
polarization effects in BLG and boundary conditions at gates
and obtain the corresponding electric potential in Sec. IV.

The exact calculation of energy levels proceeds employing
the integral equations in momentum space following the ap-
proach used in Ref. [9]. In numerical analysis, it is convenient
to represent the integral equations for the wave function of
electron bound states in the field of Coulomb impurity in
dimensionless variables. Using the wave function in the form

� =
(

ei( j−1)θ a j (k)

ei( j+1)θ b j (k)

)
, (2)

we find that the corresponding integral equations for two com-
ponents of the electron spinor function with the total angular
momentum j = 0,±1,±2, . . . in momentum space have the
form

k2b j (k) + a j (k) − ξ

∫ Q

0
d p pa j (p)Vj−1(k, p) = εa j (k),

(3)

k2a j (k) − b j (k) − ξ

∫ Q

0
d p pb j (p)Vj+1(k, p) = εb j (k),

(4)

where ξ = (αg/κ )(γ1/�)1/2, αg = e2/(h̄vF ) ≈ 2.19 is the
fine-structure constant in graphene, energies are expressed
in units of gap �, and momenta are rescaled by the inverse
of the wavelength λ1 = h̄vF /

√
γ1�. The cutoff parameter

Q = √
γ1/� corresponds to the range of applicability of the

effective model (1). To get the above set of one-dimensional
(1D) integral equations, we integrated the potential over angle

Vj (k, p) = 1

2π

∫ 2π

0
dϕ φ̃

(√
k2 + p2 − 2kp cos ϕ

)
cos( jϕ),

φ(|k|) = (2πeλ1/κ )φ̃(|k|λ1), (5)

where the dimensionless potential φ̃(p) is expressed through
the screened potential φ(|k|) in Eq. (26) with charge q = e.
The numerical solution is found in the same way as in Ref. [9]
via discretization of momentum in a grid of N points k =
iQ/N, i = 1, 2, . . . , and replacing integrals by summation∫ Q

0 dk f (k) → ∑N
i=1 wi f (iQ/N ) with weight coefficients wi

of discrete quadrature formulas. The Newton-Cotes formulas

FIG. 3. The ground-state energy of donor E as a function of � in
units of � for few values of distance to gates d from 10 to 200 nm in
the absence of screening due to σ -bond electrons.

of the fifth order are used at each subinterval of six neighbor-
ing points to determine the weight coefficients wi. Such an
approach reduces the discrete integration error to the order of
h9 f (8)(q), where h is the integration step and f (8)(q) is the
eighth derivative of the integrand. Since the wave functions
are expected to be regular functions in the considered region,
the integration error quickly reduces with decreasing step size.
It is important to note that the kernel functions Vj (k, p) in
the presence of polarization and gating are not singular at
k = p. Therefore, the technique used in Ref. [9] to extract and
regularize the singularity coming from the Coulomb potential
is not needed here. For each pair of momentum points ki, pi

we evaluate numerically the integral over angle in Eq. (5) with
potential (26). After such discretization of momentum-space
integration, the system of Eqs. (3) and (4) becomes a matrix
equation for 2N unknowns whose eigenvalues define the spec-
trum. A technical remark regarding this solution should be
made. The discrete grid starts not exactly at zero momentum
to avoid the appearance of a spurious solution with the wave
function fully localized at zero momentum. The convergence
is ensured by taking a sufficiently large number of points N ,
which equals N = 1000 for the smallest gap value considered.

The results are presented in Fig. 2 where the energy of
the lowest-energy state in units � is plotted for q = e and
κ = 4 as a function of � for few values of d from 10 to
200 nm as well in the absence of gates. Analogous results are
presented in Fig. 3 for the case when σ -bond polarization is
not taken into account. Comparing Figs. 2 and 3 we conclude
that screening due to σ -bond electrons weakly affects the
bound electron state energy for small gaps and distances (see
Table I).

Obviously, the influence of gates is the most significant at
small gaps and strongly changes the relative energy position
of the bound state. For convenience, the numerical values

TABLE I. Numerical values of the lowest bound-state energy E in meV for different gap values � and distance to gates d .

�/d, nm 10 13 16 20 25 35 50

1 meV 0.40 0.31 0.25 0.17 0.10 −0.01 −0.13
2 meV 0.81 0.65 0.51 0.37 0.23 0.02 −0.19
1 meV, σ -bond polarization 0.42 0.34 0.28 0.21 0.14 0.04 −0.06
2 meV, σ -bond polarization 0.88 0.72 0.60 0.48 0.36 0.16 −0.015

165145-3



GORBAR, GUSYNIN, ORIEKHOV, AND SHKLOVSKII PHYSICAL REVIEW B 109, 165145 (2024)

FIG. 4. (a) A schematic view of the energy spectrum with trigonal warping corrections plotted for gap � = 5 meV. Contour lines
corresponds to lines of constant energy. Dark contour lines enclose four domains where the minimal energy is realized at E = �. (b) The
energy spectrum at py = 0 without (blue solid line) and with trigonal warping corrections (red dashed line).

of E for gaps 1 and 2 meV and several values of distance
d are given in Table I including (the last two rows) and in
the absence of the contribution to the polarization function
due to σ -bond electrons (the second and third rows). Clearly,
the correction to the electron bound-state energy due to the
σ -bond polarization increases as � and d grow.

For the considered values of �, the radius of the donor
wave function in the BLG plane is given by the effective Bohr
radius aB = h̄vF /(�αg) and exceeds 10 nm. Such a radius is
many times larger than the lattice constant of BLG a0 ∼ 0.25
nm. This means that our donor energies are valid for all singly
charged impurities. Indeed, such impurities differ only in the
chemical shift related to the short-range core of impurity po-
tential depending on the chemical nature of the atom. The role
of the chemical shift is known to be very small when aB 	 a0

[19–22].

III. TRIGONAL WARPING EFFECTS

The results presented in the previous section were obtained
in the effective low-energy model neglecting the trigonal
warping effects. This effective two-band model possesses
complete rotational invariance [1] in contrast with more re-
stricted C3 rotational invariance of the hexagonal lattice of
BLG. This more restricted symmetry is taken into account
by the trigonal warping terms in the two-band model. The
corresponding low-energy effective Hamiltonian is given by
[1]

H = v2
F

γ1

(
0 (p−)2

(p+)2 0

)
+ �

(
1 0
0 −1

)

− v3

(
0 p+

p− 0

)
+ V (r), (6)

where v3 ≈ vF /10 accounts for the trigonal warping effects
(without loss of generality we consider the valley K). The
screened potential V (r) of Coulomb impurity in the presence
of gates is given by Eq. (26) (in our calculations, we consider
donors with unit charge e). Without loss of generality, we

could consider energy dispersion in, e.g., the K valley, which
is given by

E =
√

p4

4m2
+ v2

3 p2 − v3 p3

m
cos(3ϕ) + �2. (7)

Clearly, this kinetic energy does not possess the complete rota-
tional symmetry as terms with v3 reduce this symmetry to the
C3 symmetry. The minimum of the kinetic energy Emin = �

is realized at p = 0 and three nonzero values of momenta
defined by |p| = 2mv3 and ϕ = 2πn/3 where n = 0, 1, 2 so
that cos(3ϕ) = 1. The energy spectrum given by Eq. (7) is
plotted in Fig. 4(a) (schematic view) and its section at py = 0
is shown by red dashed line in Fig. 4(b). For comparison,
the energy spectrum of the two-band model without trigo-
nal warping corrections is plotted by the red dashed line in
Fig. 4(b).

The energy dispersion (7) implies that the trigonal warp-
ing could be neglected for (v3/vF )2γ1/2 < |E | < γ1/4 [1]
and is relevant at smaller energies. Numerically, the upper
limit of validity of the parabolic spectrum is approximately
W = γ1/4 ≈ 0.1 eV and the lower one is T = γ1

2 (v3/vF )2 ≈
0.002 eV. The dimensional ratio of the upper and lower limits
is W/T = 50.

Rescaling momenta by the inverse of the wavelength λ1 =
h̄vF /

√
γ1� and using the wave function in form (2), we find

k2b j (k) + a j (k) − v3
√

γ1

vF

√
�

kb j−3(k)

− ξ

∫ Q

0
d p pa j (p)Vj−1(k, p) = εa j (k), (8)

k2a j (k) − b j (k) − v3
√

γ1

vF

√
�

ka j+3(k)

− ξ

∫ Q

0
d p pb j (p)Vj+1(k, p) = εb j (k), (9)

where we use the double-screened potential (27) with q = e
(for simplicity, we neglect screening due to σ -bond electrons).

165145-4



ELECTRON BINDING ENERGY OF DONORS IN BILAYER … PHYSICAL REVIEW B 109, 165145 (2024)

FIG. 5. The donor ground-state energy E in units � as a function of distance to gates d in the absence (red thick line) and with trigonal
warping corrections (blue dashed-dotted line) for � = 1 meV (left panel) and � = 20 meV (right panel). Here the cutoff parameter n = 1 and
the total angular momentum j = 1. For all values of d , the trigonal warping effects result in somewhat higher energy of the electron bound
state E and hence smaller donor binding (ionization) energy Eb = � − E .

This system of equations couples equations for components
of the wave function with angular momentum j to the
wave function with j + 3 and j − 3 components. To deter-
mine solutions to such a system of equations, we should
truncate this infinite chain of coupled equations at j ± 3n
with integer n � 1. Coupling to other angular momentum
components is taken to be zero truncating the system of equa-
tions. Let us consider as an example the case of the j = 1
ground state. Then, in the case n = 1, we take into account
the nearest components and solve the system of equations for
j = 1, 4, and −2 with kernel functions V0(k, q), V2(k, q),
V3(k, q), V5(k, q), and V−3(k, q), V−1(k, q).

The spectrum can be found by solving the system of
Eqs. (8) and (9). For an angular momentum cutoff n, the size
of the discretized system is 2N (2n + 1), where N accounts for
the discretization of momentum in a grid of N points as was
done in the previous section when studying the electron bound
states in the absence of the trigonal warping effects. To convert
the wave function into a real-space distribution, the Hankel
transform of appropriate order should be used [9]. In Fig. 5
we show the dependence of the lowest bound-state energy
with angular momentum j = 1 in the presence of corrections
from trigonal warping when components j = −2 and 4 are
taken into account. The effect of trigonal warping results in a
small increase of the ground-state energy for all values of gate
distance. Corrections to the spectrum due to wave functions
with higher components j, i.e., for n � 2, are approximately
10 times smaller compared to those with components j = −2
and 4 for gap � � 1 meV.

IV. SCREENED POTENTIAL OF CHARGED IMPURITY

Let us find the potential for the Coulomb impurity with
charge q situated outside BLG at z′ with two metallic gates
at z = d and −d when BLG is at z = 0. Without loss of
generality, we assume that the Coulomb impurity is above
BLG, i.e., z′ > 0 and its x and y coordinates are x = 0 and
y = 0. In addition, we assume also that the BLG sheet is
separated from gates by a medium with dielectric constant κ .
Then we have the following Poisson equation for potential φ

in region I (0 < z < d):

�φI = −4πq

κ
δ(z − z′)δ(x)δ(y), (10)

where κ ≈ 4 is the dielectric constant for hexagonal
boron nitride. In addition, we have the boundary condition
φI(x, y, z) = 0 at z = d . In region II (−d < z < 0), the elec-
tric potential φII satisfies the Laplace equation

�φII = 0 (11)

with the boundary condition φII(x, y, z) = 0 at z = −d .
Note that the total electric potential is the superposition of

two parts. One part describes constant electric field due to
applied potentials ±U at the upper and lower gates, respec-
tively [see Fig. 1(a)]. This part satisfies the Laplace equation.
The other part satisfies the Poisson equation whose source is
related to impurity charge and has trivial boundary conditions
at gates φI(z = d ) = φII(z = −d ) = 0. We determine this part
in this section.

Electron quasiparticles in bilayer graphene can move when
perturbed by an external electric field resulting in screening
of this field. Mathematically, this screening is defined by the
induced charge density σ (x, y) in BLG. This charge density
contributes to the Poisson equation as follows:

�φ = −4π

κ
δ(z)σ (x, y). (12)

Integrating this equation over z from −ε to ε and then setting
ε → 0, we conclude that the induced charged density in BLG
results in the following matching condition for the normal
component of the electric field Ez = −∂zφ:

Ez(0+, x, y) = Ez(0−, x, y) + 4π

κ
σ (x, y). (13)

Note that although the normal component of the electric field
is discontinuous according to Eq. (13) at z = 0, potential
φ(x, y, z) is well defined and continuous at z = 0.
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The charge density in bilayer graphene is defined via the
Green function G(u, u′) = −i〈ψ (u)ψ+(u′)〉 as follows:

σ (x, y) = ie tr G(u, u′), u = (t, x, y),

u′ = (t ′, x, y), t ′ − t = 0+, (14)

where −e < 0 is the electron charge. By making use of the
Green function

G(u, u′) = 〈u| h̄

ih̄∂t − H + eφ
|u′〉,

where φ is the potential at z = 0, the induced charge density
of the first order in φ is given by

σ (x, y) = −ie2
∫

d3u′ tr[G0(u − u′)φ(u′)G0(u′ − u)]

= −e2
∫

d3u′ �(u − u′)φ(u′), (15)

where �(u) = i tr[G0(u)G0(−u)] is the polarization function
and G0(u) is the free Green function. Since we assume that
φ(u′) does not depend on t ′, one can make the change of
variable t ′ → t ′ − t in the integral in Eq. (15). Therefore, the
induced charge density σ (x, y) indeed does not depend on t .

Thus, Eq. (13) gives the following matching conditions at
plane z = 0 where BLG is situated:

φI(x, z = 0+) = φII(x, z = 0−),

κ∂zφI(x, z = 0+) − κ∂zφII(x, z = 0−) = −4πσ (x). (16)

The induced surface charge density defined in Eq. (15) equals

σ (x) = −e2
∫

dt d2y �(t, x − y)φI(y, 0+) or

σ (x) = −e2
∫

dt d2y �(t, x − y)φII(y, 0−), (17)

where we took into account that potentials are time indepen-
dent.

It is convenient to perform the Fourier transform of the
equations for the electric potential in regions I and II with
respect to x and y. Then we obtain the equations(

∂2
z − k2

)
φI(k, z) = −4πq

κ
δ(z − z′),(

∂2
z − k2

)
φII(k, z) = 0, (18)

whose general solutions have the form

φI(k, z) = 4πq

κ

e−|k||z−z′ |

2|k| + A1(k)e−|k|z + A2(k)e|k|z, (19)

φII(, z) = B1(k)e−|k|z + B2(k)e|k|z, (20)

where A1(k), A2(k), B1(k), B2(k) are arbitrary functions of
wave vector k = (kx, ky). The boundary and matching condi-
tions take the form

φI(k, d ) = 0, φII(k,−d ) = 0, φI(k, 0) = φII(k, 0),
(21)

∂zφI(k, 0+) − ∂zφII(k, 0−) = −4π

κ
σ (k)

= 4πe2

κ
�(k0 = 0, k)φII(k, 0),

(22)

where �(k0 = 0, k) ≡ �(k) is the static polarization.
Equations (21) and (22) lead to a system of linear equa-
tions for unknown functions A1, A2, B1, B2. Solving this
system we find the potential in the region −d<z<0<z′<d:

φII(k, z, z′) = 2πq

κ

sinh[k(d + z)] sinh[k(d − z′)]

[k cosh(kd ) + 2πe2

κ
�(k) sinh(kd )] sinh(kd )

. (23)

We note that this formula applies to any truly two-dimensional system with free charge carriers and polarization function �(k),
for example, graphene. In the absence of polarization, �(k) = 0, this potential reduces, after making the Fourier transform in k,
to the potential of a point charge q between parallel conducting plates [see Eq. (5) in Ref. [17]].

In the region 0 < z < z′ < d the potential has the form

φI(k, z, z′) = 2πq

κk

sinh[k(d − z′)][k sinh[k(d + z)] + 4πe2

κ
�(k) sinh(kd ) sinh(kz)]

[k cosh(kd ) + 2πe2

κ
�(k) sinh(kd )] sinh(kd )

. (24)

When gates are removed (d → ∞) potential (23) reduces to

φII(k) = 2πq

κ

ek(z−z′ )

k + 2πe2

κ
�(k)

, (25)

which for z = z′ = 0 in configuration space gives the interac-
tion energy −eφ(r) of electron with charge (−e) and impurity
with charge q described by Eq. (27) in Ref. [9]. For z = z′ =
0, potential (23) takes the form

φ(k) = 2πq

κ

1

k coth(kd ) + 2πe2

κ
�(k)

, (26)

and, for the interaction energy, we obtain

V (r) = −eq

κ

∫ ∞

0

dk kJ0(kr)

k coth(kd ) + 2πe2

κ
�(k)

. (27)

Note that this interaction energy does not include screen-
ing due to core electrons related to σ bonds. It is known
from studies in single [10] and bilayer graphene [11] that
core electrons affect the polarization function. This con-
tribution can be accounted by replacement 2πe2�(k) in
Eq. (27) with 2πe2�(k) + σbk. In bilayer graphene σb = 1.8
that gives dielectric constant ε ≈ 2.8 [11], which defines
screening of the bare Coulomb potential in suspended bilayer
graphene (κ = 1) and in the absence of gates (d → ∞) and
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vanishing polarization �(k) due to itinerant electrons. We
use the double-screened potential (26) and the interaction
energy (27) with single positive charge q = e to determine the
electron bound states defined by Eqs. (3) and (4) in Sec. II
as well as Eqs. (8) and (9) in Sec. III. To gain insight into
importance of screening due to core electrons, we analyze
both cases σb = 0 and �= 0.

One can find a more general formula when the upper gate
is at distance d1 and the lower gate is at other distance d2

from graphene sheet situated at z = 0. In addition, we assume
that the BLG sheet is separated from gates by media with κ1

(upper) and κ2 dielectric constants. The potential produced by
the charge q sitting in the upper medium at the point z′ has the
form (0 < z < z′ < d1)

φI (k, z, z′) = 4πq
sinh[k(d1 − z′)][kκ1 cosh(kz) sinh(kd2) + (kκ2 cosh(kd2) + 4πe2�(k) sinh(kd2) sinh(kz))]

kκ1[kκ2 cosh(kd2) sinh(kd1) + (kκ1 cosh(kd1) + 4πe2�(k) sinh(kd1)) sinh(kd2)]
. (28)

It is easy to check that for d1 = d2 = d and κ1 = κ2 = κ

this formula reduces to Eq. (24). If z = z′ = 0 we obtain the
potential in graphene sheet

φ(k) = 4πq

kκ1 coth(kd1) + kκ2 coth(kd2) + 4πe2�(k)
, (29)

which generalizes Eq. (26) [23]. The last formula allows to
study the case of one gate. For example, taking the limit
d2 → ∞ we obtain

φ(k) = 4πq

kκ1 coth(kd1) + k + 4πe2�(k)
. (30)

The polarization function in BLG can be approximated by the
expression [see Eq. (30) in [9]]

2πe2

κ
�(k) = k2

k� + λγ k2
, k� = 3κ

4αg

1

λ
,

λγ = κ h̄vF

4 ln 2αgγ1
= κ

4 ln 2αg
a, (31)

where λ = h̄vF /� and a = h̄vF /γ1 ≈ 1.7 nm.
For not too large values of κ , coefficients k� and λγ are of

order 1/a and a, respectively. Thus, we have three scales: a,
d , and λ with a � d � λ for BLG with gates. In fact, since
we are not interested in distances less than λγ ≈ a, we can set

λγ = 0. Then the potential takes the form

V (r) = −eq

κ

∫ ∞

0

dk J0(kr)

coth(kd ) + k/k�

. (32)

For r < d , the main contribution to potential (32) comes from
the region with large k such that kd 	 1 where gate screening
is not effective. Approximating in this region coth(kd ) � 1,
we get the integral [see Eq. (2.12.3.6) in [24]]

V (r) = −eqk�

κ

∫ ∞

0

dk J0(kr)

k + k�

= −eqk�

κ

π

2
[H0(k�r) − Y0(k�r)], (33)

where H0(x) and Y0(x) are the Struve function and the Bessel
function of the second kind, respectively. This potential en-
ergy is known in the literature as the Rytova-Keldysh potential
[25–27]. Thus, in the region r < d < λ, the potential behaves
as follows:

V (r) = −eqk�

κ
ln[2eγ /(rk�)], (34)

where γ is the Euler–Mascheroni constant.
If we keep λγ �= 0 in (31), then we get a more general

function than function (33):

V (r) = −eq

κ

[
1

r
− π

2λγ (q1 − q2)
{q1[H0(q1r) − Y0(q1r)] − q2[H0(q2r) − Y0(q2r)]}

]
, (35)

where q1,2 = (1 ± √
1 − 4k�λγ )/2λγ . This expression was obtained earlier in [9]. Similar mathematical expression (without

1/r term) for the potential arises in the problem of the Coulomb interaction in a thin dielectric film in the presence of one gate
[28]. Since k�λγ � 1, we have q1 � 1/λγ , k� � k� and the interaction energy takes the form

V (r) = −eq

κ

[
1

r
− π

2λγ

{[H0(r/λγ ) − Y0(r/λγ )] − k�λγ [H0(k�r) − Y0(k�r)]}
]
. (36)

For r > d , the main contribution to the integral gives the region of small k where we can replace coth x by its two first terms
of the Taylor expansion. Then we obtain

V (r) = −eqd

κ

∫ ∞

0

dk kJ0(kr)

1 + b2k2
= −eqd

κb2
K0(r/b), b = d

(
1 + 4αg

3κ

λ

d

)1/2

. (37)

This potential is used in the Appendix for an analytical estimation of the electron binding energy. Since λ 	 d , the asymptotic
behavior is governed by length b ≈ √

dλ,

V (r) = −eqd

κb2

√
πb

2r
e−r/b, r > b. (38)
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For r < b, we have

V (r) = −eqd

κb2
ln

2e−γ b

r
. (39)

Thus, the logarithmic behavior persists up to distances ∼√
dλ.

We note that in the case of one gate we would have a linear
in k term in the denominator of the integrand in Eq. (37) and
this changes the asymptotic behavior at large distance from
the exponential to power law ∼1/r3 [28].

V. CONCLUSIONS

In modern devices bilayer graphene is enveloped by two
insulating layers of hexagonal boron nitride and has top and
bottom metallic gates made of graphite or gold, for example,
at the same distance d from BLG. These gates play a twofold
role for charged impurities. First, the electric field created by
the potential difference between top and bottom gates pro-
duces a gap 2� in the electron spectrum of BLG. As a result,
donors and acceptors located in BLG create electron and hole
bound states in the gap. Second, gates screen the Coulomb po-
tential of charged impurities in BLG. We studied the interplay
of this screening with BLG polarization screening. We derived
general formulas given by Eqs. (24)–(26) for the double-
screened electric potential of a charged impurity. Using this
double-screened electric potential of a singly charged donor
we calculated its binding (ionization) energy Eb, solving nu-
merically the integral equation for electron bound states. We
analyzed also the role of screening due to σ -bond electrons
and found it to be rather minor. We checked our numerical
results via a simple analytical estimate of the electron binding
energy of donor using the uncertainty principle.

We found that Eb is close to half of the gap. Namely, our
results show that for distances to gates 10 < d < 200 nm
and gaps 1 < � < 70 meV the ratio Eb/� changes from 0.4
to 1.4. The ratio Eb/� stays close to unity because of the
dominating role of the BLG polarization screening which at
any � reduces the depth of the Coulomb potential well to
∼�. We also studied the effect of the trigonal warping of BLG
energy bands and found that even at very small � = 1 meV
it leads only to 20% reduction of ratio Eb/�. At much larger
� = 20 meV the trigonal warping effects practically play no
role for Eb/�. Of course, our results for the electron binding
energy to donor are applicable also to the binding energy of a
hole and a negative acceptor.

The Coulomb potential of a donor located in hBN calcu-
lated in Sec. IV can be used for evaluation of the binding
energy of such a donor in future studies. Assuming that donors
are randomly distributed in hBN, one can calculate the density
of states of BLG electrons bound to hBN donors, which in
turn can be used for the calculation of hopping conductivity
of BLG. While this paper dealt with relatively small gaps
� < 70 meV employing the two-band model, the study of
both BLG and hBN donors can be extended to � > 70 meV
with the use of the BLG four-band model. Finally, it would be
interesting to study BLG donors in the presence of an external
magnetic field. We would like to remind that the spectrum of
a Coulomb impurity in bilayer graphene in a magnetic field
was previously investigated in Ref. [29], but in the absence of
double screening due to the BLG polarization and gates.

FIG. 6. The average energy (A2) in the two-band model in units
γ1 as a function of distance x = r/a for � = 1 meV (δ = 0.00256)
and distance d = 13 nm to gates.
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APPENDIX: UNCERTAINTY PRINCIPLE ESTIMATE
OF ELECTRON BINDING ENERGY OF DONOR

To gain an analytic insight into the obtained numerical
results, we consider in this Appendix an approximate method
of derivation of the donor binding energy which uses the
uncertainty principle. Although the accuracy of this method
is not under control, its obvious advantage is simplicity and
transparency.

To apply the uncertainty principle, we begin with the ex-
pression for the classical energy of the electron in the upper
band

E (r) =
√

(p2(r)/2m)2 + �2 + V (r), (A1)

where V is the potential energy for which we use the ap-
proximate analytic potential (37). Since the potential energy
does not depend on angle φ, it is natural to expect that the
wave function of the lowest-energy state does not depend on
angle also, i.e., it is a function of radial coordinate r only.
Consequently, we should apply the uncertainty principle to the
radial momentum.

In the corresponding quantum-mechanical problem, the
classical momentum p2(r) in Eq. (A1) is replaced by the
Laplace operator p2 = −h̄2�. In two dimensions (2D), the
radial part of the Laplace operator equals �r = ∂2

r + 1/r ∂r .
On the other hand, the Hermitian radial momentum is given
by p̂r = −ih̄(∂r + 1/(2r)) in view of the presence of the
Jacobian r in the integral over polar coordinates (for a
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similar definition of the Hermitian radial momentum oper-
ator in 3D, see Ref. [30]). Then it is easy to check that
−h̄2�r = p̂2

r − h̄2/(4r2). This means that the correct applica-
tion of the uncertainty relation for the radial momentum and
radial coordinate in 2D should be made via the replacement
−h̄2�r = p̂2

r − h̄2/(4r2) → h̄2/r2 − h̄2/(4r2) = 3h̄2/(4r2).
Applying this prescription to function (A1), we arrive at

the problem to determine a minimum of the function

f (x) = E (r)

γ1

=
√

9

16x4
+ δ2 − αg

κ

a

d + 4αg

3κ
a
δ

K0

(
x

a

d
(
1 + 4αg

3κ
a

dδ

)1/2

)
,

(A2)

where δ = �/γ1 and x = r/a is dimensionless distance with
a = h̄vF /γ1 ≈ 1.7 nm. This function is plotted in Fig. 6 for
d = 13 nm, � = 1 meV and has a minimum at x = 22.11
which is equal to 0.0011 that gives E = 0.43 meV in di-
mensional units. This value should be compared with E =
0.31 meV in Table I obtained in numerical calculations. As
usual, a variational method gives an overestimated value for
the bound-state energy compared to the exact computation.
Still, as one can see, it gives a reasonably good estimate of the
electron bound-state energy.

We would like to note also that the interaction energy
(32) starts to deviate from the analytical expression (37) for
x < 4. However, in this region, the kinetic energy significantly
exceeds the potential energy and the minimum of total energy
lies in the region x 	 4, thus, the calculation with potential
(37) is valid.
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