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Abstract
Recent advances in robotics and artificial intelligence have made it necessary or desired for humans to get involved in
interactions with social robots. A key factor for the human acceptance of these robots is their awareness of environmental
and social norms. In this paper, we introduce SONAR (for SOcial Norm Aware Robots), a novel robot-agnostic control
architecture aimed at enabling social agents to autonomously recognize, act upon, and learn over time social norms during
interactions with humans. SONAR integrates several state-of-the-art theories and technologies, including the belief-desire-
intention (BDI) model of reasoning and decision making for rational agents, fuzzy logic theory, and large language models, to
support adaptive and norm-aware autonomous decision making. We demonstrate the feasibility and applicability of SONAR
via real-life experiments involving human-robot interactions (HRI) using a Nao robot for scenarios of casual conversations
between the robot and each participant. The results of our experiments show that our SONAR implementation can effectively
and efficiently be used in HRI to provide the robot with environmental and social and norm awareness. Compared to a robot
with no explicit social and norm awareness, introducing social and norm awareness via SONAR results in interactions that
are perceived as more positive and enjoyable by humans, as well as in higher perceived trust in the social robot. Moreover,
we investigate, via computer-based simulations, the extent to which SONAR can be used to learn and adapt to the social
norms of different societies. The results of these simulations illustrate that SONAR can successfully learn adequate behaviors
in a society from a relatively small amount of data. We publicly release the source code of SONAR, along with data and
experiments logs.

Keywords Social norms · Social robots · Social norm-aware robots · Norm adaptation · Fuzzy logic · Belief-desire-intention ·
Large language models

1 Introduction

Recent advances in robotics and Artificial Intelligence (AI)
make daily interactions with intelligent robots a close reality
[1, 2]. A key factor for the acceptance of robots by humans is
the social interaction and norm awareness of these robots [3].
Human behaviors and interactions are heavily regulated by
social and personal norms [4, 5], which determine how peo-
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ple (should) behave in different situations, and improve their
interactions by facilitating cooperation and communication
[6]. The ability of the robots to understand and reason about
human social norms improves the naturalness and effective-
ness of the human-robot interaction and collaboration [7, 8].
In healthcare applications, for example, this implies higher
chances for a patient to establish trust in an assistive robot,
improving both the acceptance of the robot by the patient and
the effectiveness of the therapeutic interventions [9].

Incorporating the norms within the real-time automated
reasoning and decision-making of social robots requires
approaches that can deal with the uncertainty, dynamics, and
impreciseness of social norms.1 [12, 13].

1 Norms are often stated and perceived by humans through vague and
abstract linguistic terms [10]. Consider, as an example, the social norm
concerning the adequate distance with the other person during a
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In recent years, some practical approaches have begun to
appear in the context of social and socially assistive robotics
[12, 13] to overcome the limitations of traditional logics
(e.g, deontic logic [14]), historically studied for normative
reasoning of intelligent systems [15–17], but generally com-
putationally intractable for real-time applications such as that
of human-robot interaction [18–20]. For example, within the
project CARESSESEU-Japan [21, 22], Bruno et al. [11] pro-
pose a framework for culture-aware robots based on fuzzy
logic control. Fuzzy logic [23] is a non-traditional logic that
allows to reason according to IF-THEN rules, whose core
components are expressed via ambiguous and imprecise non-
quantified linguistic terms. Fuzzy logic Inference Systems
(FISs) use membership functions to specify the degree to
which an element belongs to a fuzzy set of elements. For
example, a distance of 2 meters can be considered asmedium
with a degree of 0.7 (on a scale [0, 1]), and at the same time
as low with a degree of 0.5.

This characteristic of fuzzy logic makes it particularly
suitable for automated inference and decision-making of
robots in social contexts [24, 25], since the available and
relevant knowledge (e.g., the preference, needs and back-
ground of a patient and the knowledge of the therapists) is
often expressed via (fuzzy and ambiguous) linguistic terms.
Preliminary studies [11, 26] have shown that fuzzy logic and
fuzzy inference can effectively be used by social robots to
autonomously reason about and to properly react to social
norms such as proxemics based on cultural or individual pref-
erences.

Existing works, however, are still preliminary and are
mainly focused on specific case studies [8]. The state-
of-the-art currently lacks a general framework for social
robotics that supports high-level reasoning and decision-
making while leveraging the practical advantages of fuzzy
logic for modeling and reasoning about the norms. More-
over, a great majority of the existing works on normative
reasoning does not consider norm revision and adaptation,
despite their essence for dealing with (social) norms, which
are intrinsically dynamic [4]. Norm revision and adaptation
are currently an open challenge for computational normative
systems [3, 27, 28].

In this paper, we introduce a novel adaptive control archi-
tecture: SONAR (for SOcial Norm Aware Robots). SONAR
is a general-purpose and robot-agnostic architecture that
leverages, on the one hand, the practical BDI (Belief-Desire-
Intention) reasoning model [29] for high-level explainable
[30, 31] automated decision-making of social robots, and
on the other hand, fuzzy logic to provide adaptive norm-

footnote continued 1
conversation. The concept of adequate distance is not precisely defined
and can vary depending on the particular social context, culture, and
individual preferences [11].

Fig. 1 Setup of the experiments with the Nao robot (top figure), and
a snapshot of one experiment during a role-playing activity where the
robot is expected to adapt to the norms within a hierarchical situation
(bottom figure)

aware capabilities for these robots. We also contribute with a
novel norm adaptation mechanism, based on the fuzzy con-
text adaptation technique [32], for learning and adapting (the
meaning of) social and personal norms at run-time, and for
autonomously determining adequate behaviors in a society.

We run several exploratory experiments in the context
of human-robot interaction using a Python 3.9 implemen-
tation of SONAR to steer the behavior of a NAO robot
[33] in scenarios of casual human-robot conversations (see
Fig. 1). Our experiments assess the feasibility and applica-
bility of SONAR, and the perception of the human about
various aspects (e.g., naturalness) of the social interaction
of the robot, in comparison with an alternative robot that
does not leverage social and normative reasoning, nor proac-
tive behaviors. Additionally, we evaluate the proposed norm
adaptationmechanisms by investigating, via computer-based
simulation, the extent to which the robot can learn the social
norms of different societies.

We publicly release the source code of SONAR and the
results of our experiments, including an extensive data set
of the corresponding human-robot interactions (see [34]).
The data includes 50 conversations that occurred during our
experiments between humans and Nao, where the answers
of the robot were autonomously generated using a GPT-
based large language model. The videos of the interactions
are available upon request (via [35]).
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The rest of this paper is structured as it follows. Section2
provides a background discussion on related literature. Sec-
tion3 describes the proposed control architecture, SONAR,
as well as the proposed mechanisms for norm adaptation
in the course of human-robot interactions. Sections4 and 5
represent, respectively, the setup and results of the experi-
ments including real-life human-robot interactions. Section6
reports on the evaluation of the proposed norm adaptation via
computer-based simulations. Finally, Sect. 7 concludes the
paper and proposes topics for future research.

2 RelatedWork

As a fundamental concept for coordinating human activities
in societies [5, 36], (social) norms have been studied in a
variety of different fields, including sociology [37, 38], phi-
losophy [14, 39], economics [40, 41], AI [27, 28] and social
robotics [7, 8, 10]. According to Castelfranchi et al. [42],
in order to be considered norm-aware, autonomous agents,
including social robots, should be able to recognize whether
or not a norm exists for the given context, and to deliber-
ately follow or violate these norms. Rato et al. [43], in line
with Dignum et al. [44, 45], identify design principles for
socio-cognitive systems to make them norm-aware. These
include the capacity of the system to (i) construct a social
context by ascribing social meaning to sensory information,
(ii) adapt its behavior according to the social context, and
(iii) attribute social categories to social actors. On the same
lines, Castro et al. [46] discuss the following requirements
for social agency of robots: (a) the behavior of a social agent
must be rationally motivated by beliefs, desires, and inten-
tions, (b) the agent must identify other agents and vary its
behavior accordingly, (c) the agent must exhibit a tendency
to engage in interactions, (d) the agent must be capable of
understanding the behaviors of themselves and other agents,
in terms of expectations generated by social norms, rules, and
conventions, and should modify their behavior accordingly.

Among the decision-making models for intelligent sys-
tems in line with the requirements for social agency outlined
above, the belief-desire-intention (BDI) reasoning model
[29] has gained wide attention in AI and social simulation
[47–50], leading to a variety of BDI-based architectures [51,
52] and (Agent Oriented) programming languages [53–55].
The BDI model implements the main aspects of Bratman’s
theory of human practical reasoning [29] by attributing to the
agent mental states such as beliefs, desires, and intentions,
and by characterizing the deliberation and reasoning of the
agents in terms of these mental states [56]. Beliefs repre-
sent the informational state of the agent, i.e., beliefs about
the world and rules of beliefs propagation (which beliefs can
be derived from others). Desires (also often called goals)
represent the motivational state of the agent, i.e., the objec-

tives or situations that the agent would like to accomplish or
bring about. Intentions represent the deliberative state of the
agent, i.e., what the agent has chosen to do (has begun exe-
cuting a plan). (Designing Buildings for Real Occupants: An
Agent-Based Approach - Andrews) Castelfranchi [57] repre-
sent norms as mental objects that interact with beliefs, goals,
and plans, and that impact the generation and selection of the
goals and plans. Dignum et al. [58] discuss how to integrate
deontic events as normative beliefs in BDI in the context of
social agents.

BDI has been employed in social robotics in some prelim-
inary studies, for example to add proactivity to robots (see
[59–62]). The literature on social robotics that considers both
BDI and social norms, however, is scarce. Among the few
works, worth noting is that of Ribino et al. [63], where a
framework similar to ours is presented, but specifically tai-
lored for an indoor environmental quality monitoring case
study.

Social norms in social robotics have been considered from
many points of view. These include studies on social cues,
such as robotic gaze responsiveness [64], the integration of
affective computing techniques in robots [65], and studies on
the effect of robot’s visual appearance and robot’s encourage-
ment onpeople’s perceptions andbehavior [66, 67].Recently,
Kola et al. [68] suggested that the use of the DIAMONDS
taxonomy of eight major dimensions of situation characteris-
tics, proposed by Rauthmann et al. [69], can allow intelligent
systems to perceive the social elements of a situation and
to comprehend their meaning. Rauthmann et al. [69] ana-
lyzed the correlation between 30 different situation cues, i.e.,
physical and objective elements of a situation (e.g., who is
present in a situation, what activity is taking place, etc.),
and the 8 DIAMONDS situation characteristics (i.e., Duty,
Intellect, Adversity, Mating, Positivity, Negativity, Decep-
tion, and Sociality) that represent social and psychological
meanings of situations, for the two different societies of
United States and Austria. They report, for example, that in
the Austrian sample, duty had a positive correlation with the
“working, studying” situation cue (with a correlation coeffi-
cient of 0.60) and a negative correlation with “TV, movies”
(with a correlation coefficient of 0.31). Social behaviors of
robots have also been studied in the context of social planning
[70] and in healthcare contexts [71].

Despite the numerous works, many challenges still exist,
especially concerning normative reasoning and representa-
tion [8]. In a recent survey, Avelino et al. [8] highlight that
most existing works present a fixed pipeline of modules
tailored for specific applications, and indicate that represen-
tation and learning of social norms is still an open challenge
as many approaches do not support an explicit way to incor-
porate new norms.

Among the exceptions, Carlucci et al. [72] propose the use
of Petri-nets to represent social norms explicitly. Wasik et al.
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Fig. 2 Illustration of SONAR, the adaptive control architecture for SOcial Norm Aware Robots

[10] describe an approach, based on the concept of institu-
tions, to introduce normative aspects into robot behaviors for
mixed human-robot societies that adhere to human-defined
norms. Fuzzy logic has recently shown potential for norma-
tive modeling and reasoning [12, 13, 25]. Bruno et al. [11],
propose a framework for culture-aware robots based on fuzzy
logic control. Similarly, Vitiello et al. [26] have shown that
fuzzy logic and fuzzy inference can be effectively used by
social robots to autonomously reason about, and react to,
social norms such as proxemics behaviors, i.e., to determine
the appropriate distance to keep from humans in different
circumstances based on cultural or individual preferences.
Besides someprimarily theoretical attempts for bringingBDI
and fuzzy logic together [73–81], little or no work exists on
the combination of BDI and fuzzy logic in the context of
norm-aware social robots.

3 SONAR: Proposed Architecture for Making
Social Robots Norm-Aware

This section describes SONAR, the proposed adaptive con-
trol architecture for social norm-aware robots. First, we
explain the main elements of SONAR, and how these ele-
ments interact with each other. Next, we provide the details
on how the architecture allows for social and norm-aware
reasoning. Finally, we discuss how learning and adaptation
of the norms may occur in SONAR.

3.1 Main Elements of SONAR

Figure 2 illustrates the main elements of the architecture.
SONAR follows the design principles for the development
of intelligent rational cognitive social agents identified by
Rato et al. [43] and Castro et al. [46], summarized in Sect. 2.
In SONAR, first the inputs perceived by the robot via its sen-

sors from the environment are transformed into beliefs that
characterize the current operating context (see worker and
manager agents in Fig. 2), and are given a social interpreta-
tion using fuzzy rules (see social interpreters in Fig. 2). These
rules characterize the social norms for the interpretation of
the physical reality [36, 82]. Moreover, before execution, the
actions of the robot are assessed through a social qualification
procedure in order to ensure that they are socially adequate
based on the identified social context (see social qualifiers in
Fig. 2).

Technically speaking, SONAR is a Multi Agent System
(MAS) [83], where multiple agents autonomously and asyn-
chronously operate and interact with each other via message
passing.2 Designing SONARas amulti-agent system ensures
a distributed execution of the different components. Besides
extensibility, maintainability, and flexibility, this also implies
computational efficiency. Different agents within SONAR
can technically run on entirely different machines, including
dedicated high-performing clusters, if needed. Three types of
agents operate in SONAR according to their tasks and roles
that characterize a hierarchy in the MAS: the worker agent
type, themanager agent type (a special type of worker agent)
and the BDI agent. Figure2 depicts two worker agents, one
manager agent and oneBDI agent. The number ofworker and
manager agents is meant for illustrative purposes and aims
at clearly showing the hierarchy of agents in the MAS. How-
ever, SONAR does not pose any restriction on the number
of worker and manager agents. While it is technically possi-
ble for multiple BDI agents to exist in SONAR if adequately
coordinated, in this paper we consider only one BDI agent

2 Our python implementation of SONAR makes use of the SPADE
multi-agent systems platform [84], where communication between
agents is based on instant messaging (XMPP [85]) which supports the
FIPA Agent Communication specification [86] metadata.
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that handles the main reasoning cycle of the robot. Next, we
explain these different types of agents.
Worker agents Worker agents are MQTT3 clients. Worker
agents regularly and autonomously collect and publish data
from and to the MQTT broker. Worker agents subscribe to
MQTT topics to receive sensor data exposed by an MQTT
broker, and they send directives to the robot actuators by
publishing such directives to the MQTT broker. Worker
agents can process, aggregate, and modify the data accord-
ing to their particular tasks (e.g., a chatter agent deals
with communication-related tasks, while a norm adapter
agent dealswith normadaptation).Additionally, eachworker
agent cyclically performs a default behavior wherein it
asynchronously awaits messages from other agents without
blocking the execution of its own tasks or those of other
agents.4 Upon receiving a message, the agent processes it
accordingly. For example, a posture handler agent awaits
directives and information from the BDI agent on adjusting
some of the robot’s actuators, such as rotating its head. A
vision handler agent awaits requests from a manager agent
to communicate the most recent vision-related data, such as
detected objects.
Manager agents Manager agents regularly–i.e, at periodic
intervals– request information from relevant worker agents,
which are specified for each manager agent, and represent
their data sources. The length of the interval depends on
the types of data collected by the manager agent from the
worker agents, and on the need to ensure adequate real-time
human-robot interactions.5 After requesting data from their
data sources, themanager agents shortly (atmost until the end
of the current interval) and asynchronouslywait for data to be
received. Once data is received by all data sources (or once
the timeout is reached), the manager agents aggregate the
data and produce beliefs to communicate, when requested,
to the BDI agent. Since a manager agent is a special type
of a worker agent, it also cyclically awaits messages from
other agents. In particular, manager agents await a request
for new beliefs from the BDI agent. Manager agents have
more direct communications with the BDI agent than worker
agents. This helps minimizing the communications between
the BDI agent and other agents, and allows manager agents
to prepare data for the BDI agents that requires information
frommultiple sources. For example, in order to create a mes-
sage said(davide, hello), it is necessary to collect
data from both the camera of the robot (for detecting the

3 MQTT is an ISO recommended [87] lightweightmachine-to-machine
network protocol, particularly used in the context of internet of things
(IoT).Byadopting this typeof protocol,we fully decoupleSONARfrom
the specifics of the robot, therefore making SONAR a robot-agnostic
architecture.
4 In our SPADE-based implementation of SONAR, this is achieved via
async coroutines [84].
5 In our implementation 0.2 s.

face of the human and identifying their identity, in this case
Davide) and from themicrophones (for identifying the verbal
message “hello” communicated via the human).
BDI agent The BDI agent cyclically performs the sense,
reason, and act deliberation activities [47]. During the sense
activity, the agent requests to the (manager) agents to send
new perceived beliefs, i.e., beliefs that are inferred based on
the data perceived via the sensors of the robot. The set of
data that is perceived at a certain instant via all sensors of
the robot is referred to as context, because, from the robot’s
perspective, such data characterizes the circumstances in
which the robot is operating. If new perceived beliefs are
communicated, the BDI agent performs the reason activity:
First, (i) the BDI agent uses the perceived beliefs in order
to infer, via belief propagation rules, additional beliefs that
can be inferred (e.g., if the perceived belief is that person
p is visible, then the agent can infer the belief that p is the
person the robot should interact with). Every time a (per-
ceived or inferred) belief is generated, the BDI agent stores
it both in its belief base and in a short-term memory mod-
ule6. In the belief base, this belief is used for reasoning and
is revised when new beliefs are generated. The short-term
memory module tracks the previous beliefs and observations
(e.g., to spontaneously trigger a conversation about an object
that has been perceived for the first time in recent mem-
ory). Then, (ii) the BDI agent performs social and normative
reasoning via inference rules that determine which norms
apply in the current context, which actions and goals are
prohibited or obliged, and what the social role of the robot
is. Finally, (iii) the BDI agent triggers goals, and selects
plans according to its plan base and to the active norms.
The execution order of the concurrent plans, and the mech-
anisms to handle conflicting information, both depend on
the design of the BDI agent. For instance, the BDI agent
may be designed to set plan priorities through the rule order-
ing in AgentSpeak [53].7 In our implementation of SONAR
evaluated in the experiments described in Sect. 4, the prior-
ity given to different aspects during reasoning is as follows:
greeting � robot commands (e.g., to shut down) �
posture�perceived interlocutor interest
(e.g., inferred from the gaze) � perceived objects
� developing trust � proactive speech �
reactive speech. During the act activity, the agent exe-
cutes the actions that are in line with the intentions inferred
via the reason activity. This is done by composing the plans
that are chosen from the plan base, such that the current goals

6 In our implementation, the short-term memory module is realized via
a dictionary of key-value pairs, with timestamps as keys and beliefs as
values. To preserve the computational efficiency and to minimize the
computational overhead, beliefs older than one minute (an adjustable
parameter of the BDI agent) are regularly deleted.
7 The language used to encode the plan base of BDI agents in our
SPADE-based implementation of SONAR [84].

123



International Journal of Social Robotics

are achieved. If the actions composing a plan need to be per-
formed by worker agents (e.g., because they involve the use
of the actuators of the robot), then the BDI agent communi-
cates the actions to worker agents.

3.2 Social and Normative Reasoning

SONAR supports the following three types of rules that are
used to model (social) norms and to perform social and
normative reasoning: social interpretation rules, behavior
qualification rules, and prohibition and obligation rules.
Next, we explain these three categories of rules in SONAR.
Social interpretation rules SONAR uses social interpreta-
tion rules to associate the social and situational cues (e.g.,
the distance between people and/or agents during a conver-
sation)with socialmeanings (e.g., theDIAMONDS situation
characteristics given in [69]). These associations are fuzzy
in their nature (e.g., different values for the distance can
be considered as low for different people), and they might
differ from a context or a culture to another [21]. There-
fore, to represent these associations we use IF-THEN fuzzy
rules of the form “IF c1 AND . . . AND cq , THEN m1 AND
. . . AND mk”, with c1, . . . , cq and m1, . . . ,mk generally
given by the formulation “a IS b”, which contains linguistic
terms. More specifically, such a formulation indicates that a
linguistic/qualified value, b, is assigned to a linguistic vari-
able, a. An example of such a fuzzy rule is “IF distance IS
Low, THEN positivity IS High-positive-correlation”, where
distance and positivity are linguistic variables representing,
respectively, a social cue and a situation characteristic, and
Low and High-positive-correlation are linguistic values for
those variables. Intuitively, the example indicates that main-
taining a close proximity (lowdistance) during a conversation
can be interpreted, socially, as strongly indicating (high-
positive-correlation) a positivity-related ( [69]) situation.
Mathematical realizations of linguistic values in fuzzy logic
are fuzzy sets that are represented viamembership functions8.
Membership functions specify the degree (called degree of
truth) to which a crisp measurement of a base variable (e.g.,
2 meters for base variable Distance) is member of a partic-
ular fuzzy set that represents a linguistic term. For instance,
2 meters is low with a degree of truth of 0.8, and is medium
with a degree of truth of 0.2. Membership functions, there-
fore, allow to quantify approximate linguistic terms, and they
can be defined by a system designer (e.g., based on existing
knowledge about that particular linguistic concept), or may
be learnt over time and in the course of using the fuzzy rule

8 A membership function is defined by μ : U → [0, 1], where U is
the universe of discourse (i.e., the range of all possible crisp values) for
the linguistic variable. For instance,U = [0, 10] (in meters) can be the
universe of discourse for fuzzy variable Distance.

base in various interactions (as we will discuss later in this
paper).

In SONAR, the set of input data Dt (e.g., the measured
distance between the robot and a human, a detected sound, or
the speech decoded from the sound) received at time instant
t by the manager agent is used to determine, via fuzzy infer-
ence9, a set Ot of fuzzy membership degrees μ(Si ) for all
social interpretations Si for i = 1, . . . , ρ, where the num-
ber ρ is the number of possible social interpretations of a
situation (e.g., ρ = 8 if the 8 DIAMONDS are considered
based on [69]). For instance, given a measured distance of
2 meters and a value 1 for a binary variable communicat-
ing (indicating that the situation involves communication), it
is inferred that the situation can be interpreted as related to
sociality with degree of truth 0.8, to positivity with degree of
truth 0.6, to negativity with degree of truth 0.2, etc. The set
Ot , therefore, contains information about the degree of truth
of possible social interpretations of a situation. This set can
directly be used in normative reasoning and decision-making
via SONAR, e.g., as input for performing fuzzy inference via
the behavior qualification rules to determine, via defuzzifi-
cation, adequate parameters for the robot’s actuators.
Behavior qualification rulesA robot that is placed in a social
context is not only expected to give an appropriate social
meaning to physical inputs, but also to act in away that is con-
sidered socially acceptable and in line with social norms and
practices. We represent the behavior qualification rules via a
combination of fuzzy and non-fuzzy rules, and use them to
determine appropriate (norm-aligned) qualifiers of behavior
(i.e., directives for the actuators of the robot). For example,
a chatter agent (which is a specific type of worker agents
explained in Sect. 3.1) that has been instructed to convey a
message via chatting to the human, will send a directive to
the robot interface that includes a sentence, as well as the
qualifiers (e.g., the adequate volume of the voice, the pitch,
the speed of talking) that are inferred as appropriate in the
current situation (e.g., are interpreted as Social), using the
behavior qualification rules.
Prohibition and obligation rules Prohibition and obligation
rules are given as tuples 〈sn, zn, tn〉 for n ∈ N , with N the set
of all norms, sn a conjunction of beliefs that characterizes the
conditions for applicability of norm n, zn ∈ {oblig, prohib}
indicating whether or not norm n is an obligation or a pro-

9 For the sake of brevity, we omit an in-depth discussion about fuzzy
inference systems (FISs). Briefly speaking, given the crisp values of
input variables, a FIS first applies a procedure called fuzzification on
the input data in order to transform these crisp values into fuzzy values.
Next, relevant fuzzy operations are performed on the fuzzy rules of
the rule base that have been fired by the input data, in order to make
an inference and determine the output in terms of fuzzy sets. These
fuzzy outputs are then converted into crisp values, which is called the
defuzzification procedure. In our implementation of SONAR, we make
use of the Mamdani max-min inference method. More details about
FISs can be found in [23].
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hibition (where oblig and prohib are two labels representing
an obligation and a prohibition, respectively), and tn is the
target of the norm, i.e., either an action (part of a plan) or
a goal of the BDI agent. An example of obligation target-
ing a goal is 〈social_distance∧ socially_related_situation∧
not_greeted(person), oblig, greet(person)〉. This obliga-
tion represents the norm for greeting behavior, i.e.: “It is
appropriate to greet whenever a person is visible at a social
distance, the situation is considered socially-related, and no
greetings has occurred yet.”. An example of related prohi-
bition targeting an action, instead, is 〈conversation_start ∧
not_greeted(person), prohib, update_topic〉. This prohibi-
tion represents the dialogue norm “At the beginning of a
conversation, it is not appropriate to start talking about any
topic before greeting.”. Prohibition and obligation rules are
used both to trigger new goals and plans (therefore making a
robot proactive), and to select appropriate goals and plans (to
make the robot reactive) during the norm-aware reasoning of
the BDI agent. For instance, the norm-aware reasoning of the
BDI agent concerning the example of obligation above can
be represented via the following AgentSpeak rule:

+!reason_about_greeting_norms :
visible (face , Person) &
distance(Person , social )

<− !greet (Person ) .

The rule indicates that whenever the agent has the goal
!reason_about_greeting_norms to reason about
greeting norms (a goal that is created by the BDI agent dur-
ing the reason deliberation activity explained in Sect. 3.1),
and believes that the face of a person is visible at a social
distance, then a new goal !greet(Person) is created.
Then, during the act activity, the agentwill attempt to achieve
the goal by means of a plan, e.g., by means of an action
.greet(Person) that will instruct the chatter worker
agent to begin a greeting procedure.

3.3 Learning and Adaptation to Norms

In this section,we introduce the normadaptationmechanisms
that are supported by SONAR. In Sect. 6, we will illustrate
via computer-based simulations that a robot endowed with
the proposed mechanisms can quickly adapt to the norms of
a society. We focus on adaptation of the norms that are repre-
sented via fuzzy rules, i.e., the social interpretation rules and
the fuzzy behavior qualification rules explained in Sect. 3.2.
More specifically, we focus on adaptation of the linguistic
variables that compose the fuzzy rules. We do not focus
instead on learning new fuzzy rules nor on adaptation and
learning strategies for prohibitions and obligations, forwhich
some solutions can be found in the literature (e.g., [25, 27,
88]).

Norm adaptation in SONAR is performed by a norm-
adapter agent. The norm-adapter agent is a type of a worker
agent that adjusts the membership functions, which mathe-
matically represent the fuzzy sets that model the linguistic
values corresponding to the norms. This norm adaptation
is based on the data that has been collected throughout the
human-robot interactions, or via observations of human-
human interactions. Every time a dataset Dt is collected
by a manager worker for time instant t (resulting, via the
application of social interpretation rules, in the set Ot of
degrees of truth of possible social interpretations of the sit-
uation), the social interpretation S�

t for time instant t with
the highest degree of truth is determined: S�

t = Si , where
μ(Si ) > μ(S j ) for all j �= i , and for i, j = 1, . . . , ρ,
and with μ(Si ), μ(S j ) ∈ Ot , randomly selecting one of
the equally true interpretations in case of ties. The social
interpretation S�

t is then communicated to the norm-adapter
agent together with the dataset Dt . The norm-adapter agent
regularly–at periodic intervals– examines the collected data
and initiates a norm adaptation algorithm once a sufficient
amount (that is pre-defined) of data has been collected. Every
time the adaptation process concludes, the updated member-
ship functions are made available to the other worker agents,
by updating the social interpreters and the social qualifiers in
Fig. 2. In the following, we explain in details how the norm
adaptation works.

3.3.1 Norm Adaptation via Fuzzy Sets Modification

Given a fuzzy rule that indicates “IF sociality IS High-
positive-correlation, THEN distance is Medium”, our goal
is to learn the (membership function of the) fuzzy set that
represents the concept ofMedium for distance, based on the
data that is collected by the robot via observing, or interacting
with, the individuals from a society.

Wecall the variables that are subject to adaptationdynamic
(linguistic) variables, where these variables characterize the
subjective, personal, or cultural aspects of the fuzzy rules.
We represent the fuzzy sets corresponding to the dynamic
variables via trapezoidal membership functions, which are
defined by four parameters sl, cl, cu, su, with sl ≤ cl ≤
cu ≤ su, where sl and su are, respectively, the lower and
upper bounds of the support (i.e. the base), and cl and cu
are, respectively, the lower and upper bounds of the core of
the trapezoidal functions. A partition Pv for the linguistic
variable v is the set Pv = {F1, . . . , Fp} of the p fuzzy sets
(linguistic values) Fi for i = 1, . . . , p that characterizes the
domain of the linguistic variable. For instance, a partition for
the variable distance defined on a given domain (e.g., [0, 10]
meters) may be composed of three fuzzy sets Low,Medium,
andHigh, forwhich the correspondingmembership functions
cover the given domain.
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Fig. 3 Examples from [89] for modification of a partition that is com-
posed of five trapezoidal fuzzy sets. The dashed plots illustrate the
initial membership functions, whereas the solid plots correspond to the
modified membership functions

Our approach for adaptation to the norms is amodification
of the context adaptation technique introduced by Botta et al.
[89]. Figure3 illustrates two examples for adaptation of the
position of the core and width of the trapezoidal membership
functions, where these functionsmay correspond to the fuzzy
sets that represent the linguistic terms that are used in the rules
that incorporate the norms. In SONAR, the norm-adapter
worker agent modifies the membership functions attempting
to reduce the error that is resulting from using these member-
ship functions, compared to the data collected by the robot.
The top plot in Fig. 4 illustrates the initial representation for
the membership functions of the fuzzy sets within the par-
tition of all those dynamic variables for which no training
data is available yet. Note that all membership functions are
defined as trapezoidal functionswithin the domain [0, 1]. The
bottom plot in Fig. 4 shows the adapted membership func-
tion (see the dashed curves) for a particular dynamic variable
when the collected data has been used to train the member-
ship functions. In SONAR, we consider the ideal adaptation
to be such that the center and the width of the core for the
i-th trapezoidal function in partition of a dynamic variable
correspond to, respectively, the mean and the standard devia-
tion of available data about the corresponding linguistic term
(e.g., about Medium distances), and that the domain of the
trapezoidal function includes all the corresponding observed
values. In Fig. 4, the domain of the adapted functions (bottom
plot) is different from that of the initial functions (top plot).
This illustrates that the adaptationmechanism is independent
from the domain of the variables, and is made possible by
scaling the functions according to the observed data.

Fig. 4 Initial (before norm adaptation) membership functions for
dynamic variable distance that need to be adapted (top plot), and a
desired outcome after execution of the norm adaptation (bottom plot):
Solid curves represent the estimated functions, whereas dashed curves
show the fuzzy Gaussian membership functions that represent the real
distributions of the data points that are collected for the training/adap-
tation procedure

Finally, although we use trapezoidal membership func-
tions, we remark that our approach, in line with the work
from Botta et al. [89] that we use as a starting point, can
easily be adapted to work with any other shapes of member-
ship functions. Given that our study primarily focuses on the
exploratory aspect of modifying membership functions for
the aim of norm adaptation, and does not focus on a particu-
lar domain, we choose trapezoidal fuzzy sets [90] to provide
a generalized solution that accommodates various types of
membership functions, since other commonly used member-
ship functions, such as triangular and singleton functions,
are special cases of trapezoidal functions. The rationale of
our adaptation approach remains the same also for gaussian
shaped membership functions.

3.3.2 The Norm Adaptation Algorithm

The norm-adapter agent regularly examines the data set DS

collected per social interpretation S (e.g., duty or social-
ity). When the number of the data points in the data set DS

reaches a given threshold (say τ ), then the agent enacts a
norm adaptation algorithm for interpretation S, by executing
the following steps. An illustrative example of execution of
the algorithm is reported in Fig. 5.

Step 1.Determine the set RS of fuzzy rules that are related
to social interpretation S. For instance, if S is Sociality, rules
in RS contain, either in the premise or in the consequent of the
rule, an assignment that characterizes a positive correlation
with S (e.g., Sociality IS High-positive-correlation), and an
assignment for at least one dynamic variable (e.g., Distance
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Fig. 5 Example of the execution of the algorithm for norm adaptation
given a dataset DS , with |DS | ≥ τ , collected for social interpretation
S = Sociality. For this example, Step 1 determines the set RS = {r}
containing only one rule r = IF Sociality IS High-positive-correlation
THEN Distance IS medium. Distance is a dynamic variable that needs
to be adapted. Its partition is composed of the three membership func-
tions in Fig. 5a (solid curves). Step 2 determines Vr = {Distance},
DistanceL = medium, and cDistanceLu = cDistanceLl = 0.5. Step 3 (shown
inFig. 5b) scales linearly the universe of discourse ofDistance (compare
the domain of the functions between Fig. 5a and b), and the support of all

the membership functions in its partition according to the data collected
for Distance (represented via the blue dashed curve). Step 4 (Fig. 5c)
modifies the position of the core of all the membership functions based
on the error between the current center of themedium fuzzy set (referred
in rule r ), and the mean Distance in data, resulting in kCP = 0 for all
fuzzy sets, and a right shift of 0.5 of the center of themedium fuzzy set.
Step 5 (Fig. 5d) modifies the width of the core of all the membership
functions based on the error between the current width of the medium
fuzzy set and the standard deviation of Distance in data, resulting in
kCW = 0.3 for all fuzzy sets, and a dilation of the core width of all the
fuzzy sets

ISmedium). Then for each rule r ∈ RS execute the following
steps.

Step 2. For all dynamic variables v within the set Vr of
dynamic variables that appear in rule r perform the adaptation
procedure (i.e., go to Step 3), unless adaptation for the same
dynamic variable has already been performed via another
rule. In the following, for all dynamic variables v and rule
r , we call vL the fuzzy set of the variable v referred in rule
r (e.g. vL = medium for v = Distance if the rule contains
Distance IS medium),10 and cvL

u and cvL
l , respectively, the

lower and upper bounds of the core of vL .
Step 3. Scale linearly the universe of discourse of variable

v ∈ Vr and all the supports of the membership functions
corresponding to the partition of variable v, so that to reflect
the boundaries of the measurements that have been collected
for that variable.We use the following standard linear scaling
function:

s : [a, b] → [a′, b′]
s(v) = a′ + (b′ − a′) · v − a

b − a
, ∀v ∈ [a, b]

where parameters a and b identify the bounds of the original
universe of discourse, and a′ and b′ identify the bounds of
the new universe of discourse obtained from the new mea-
surements. We compute the new boundaries for [a′, b′] via

a′ = min{a, vmin,DS }, b′ = max{b, vmax,DS }

where vmin,DS and vmax,DS are, respectively, the minimum
and maximum values of variable v observed in data set DS .

10 We assume that in every fuzzy rule, at most one linguistic value is
assigned to each linguistic variable.

Step 4.Modify the position of the core for all membership
functions corresponding to the partition of dynamic variable
v by shifting the core within the support while maintaining
the original width (i.e., the distance between cl and cu) using
the following relationship:

c′
l =

{
cl − (sl − cl) · kCP if kCP < 0
cl + (su − cu) · kCP if kCP ≥ 0

c′
u =

{
cu − (sl − cl) · kCP if kCP < 0
cu + (su − cu) · kCP if kCP ≥ 0

where c′
l and c

′
u are, respectively, the lower and upper bounds

of the modified core, and kCP ∈ [−1, 1] is a parameter
that characterizes the intensity of the shift for the lower
bound (whenever kCP < 0) or for the upper bound (when-
ever kCP > 0). We define the core-position error εCP as
the difference between the current center of the core of
the membership function of vL and the mean vmean,DS of
the values observed for variable v within data set DS , i.e.,

εCP = c
vL
u −c

vL
l

2 − vmean,DS . We determine kCP as the inverse
of the core-position error ratio. More specifically,

kCP =
{

−1 · min(1, εCP
cl−sl

) if εCP ≥ 0
−1 · max(−1, εCP

su−cu
) if εCP < 0

Step 5. Modify the width of the core for all membership
functions corresponding to the partition of dynamic variable
v bydilatingor shrinking the core of themembership function
within the support using the following relationship:

c′
l =

{
cl + w · (sl − cl) · kCW if kCW < 0
cl + (sl − cl) · kCP if kCW ≥ 0
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c′
u =

{
cu + w · (su − cu) · kCW if kCW < 0
cu + (su − cu) · kCW if kCW ≥ 0

where w = (cu − cl)/(cl − sl + su − cu), and kCW ∈ [−1, 1]
is a parameter that characterizes the intensity of the dilation
(whenever kCW > 0) or the shrinkage (whenever kCW < 0)
of the core. We define the core-width error εCW as the differ-
ence between the currentwidth of the core of themembership
function of vL and the standard deviation vsd,DS of all the val-
ues observed for dynamic variable v within data set DS , i.e.,
εCW = (cvL

u −cvL
l )−vsd,DS .We determine kCW as the inverse

of the core-width error ratio. More specifically,

kCW =
{

−1 · min(1, εCW
w·(cl−sl)

, εCW
w·(su−cu)

) if εCW ≥ 0
−1 · max(−1, εCW

cl−sl
, εCW
su−cu

) if εCW < 0

Finally, when the membership functions for all the fuzzy
sets within the partition of dynamic variable v are modified
by the norm-adapter agent, these are made available to the
other worker agents, who use them for social interpretation
and behavior qualification.

4 Case Study: Interaction of Humans with a
SONAR-Based NAO Robot

In this section, we discuss our extensive exploratory case
study that was designed to demonstrate the feasibility and
applicability of SONAR for human-robot interactions.We do
so, by assessing the effectiveness and efficiency [91] of our
Python 3.9 implementation of SONAR, and the perception,
experience, and acceptance of the robot (which is steered
via such implementation of SONAR) by the participants of
the experiments. In this set of experiments, we excluded the
norm adaptation procedure from SONAR, for the following
two reasons: First, to focus on only the SONAR architecture
independently, without integrating it with an adaptation algo-
rithm. Second, adaptation of the fuzzymembership functions
requires enough data and thusmultiple interactionswith each
participant. Since in our setup, we were not able to recruit the
participants for more than one session, such long-term inter-
actions had to happen in only one session. Thismakes it likely
that participants get exhausted, which may falsely affect the
criteria of assessment. In real-life applications, a companion
robot for instance, will spend more time with its users. Thus
gathering the data that is required for adaptation of the fuzzy
membership functions will not result in such issues. There-
fore, we evaluate the norm adaptation procedure separately
in Sect. 6 via extensive computer-based simulations.

In this case study, we address the following research ques-
tions:

RQ1.1: To what extent is SONAR usable for the real-time
control of a social robot that accounts for situation cues and
norms during interactions with humans?

RQ1.2: What is the human perception, experience, and
acceptance of a social robot that employs SONAR with the
aim of considering situation cues and norms in its decision-
making and exhibiting proactive behaviors?

To investigate these research questions, we conducted an
experiment where adults interacted with a Nao robot [33] in
a conversation scenario. Two contrasting behavior styles for
the robot were considered, which we refer to as Nao-Chatbot
and Nao-SONAR (details are given below). We collected
both quantitative and qualitative feedback from the execution
logs that were generated by the robot during the experiments
and via questionnaires that were completed by the partici-
pants before and after interacting with the robots.

4.1 Methodology of the Case Study

Next, we explain our methodologies for designing and exe-
cuting the experiments.

4.1.1 Human Participants

Individual human participants took part in this study during
December 2022. The experiments took place in 4 meeting
rooms of the Faculty of Aerospace Engineering of TU Delft.
A commercially available humanoid Nao robot v6 [33] was
used for the experiments. The participants had an open-ended
conversation with the robot within the context of five specific
tasks (see theMain Trial Phase in Sect. 4.1.2). Figure1 illus-
trates the setup: For each experiment, one participant was
seated in front of Nao, which was standing on a table. On the
table, four objects were placed: a captain hat, a plant, a bottle,
and a teddy bear. The meeting rooms also had a monitor and
a clock (not visible in Fig. 1) placed on the wall.

In total, a sample of 25 adult volunteers (52% female,
48% male) was recruited from the Delft University of Tech-
nology. The age of the participants ranged between 18 and 64
(with 8% between 18 and 24, 72% between 25 and 34, and
8% between 55 and 64). Their education level ranged from
high school diploma to doctorate (with 8% high school grad-
uate, 8% BSc degree, 72%MSc degree, and 12% doctorate).
From the participants, 16%were university support staff, 8%
were students, 68% were PhD students or researchers, and
8% were academic or faculty staff. The self-reported infor-
mation about the familiarity of the participants with robots
before the experiment included: 32% not familiar at all, 40%
slightly familiar, 16% moderately familiar, 12% very famil-
iar, and 0% extremely familiar. All participants completed
the consent forms that are provided as an attachment to this
paper. One participant did not agree to record the video of the
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interactions with the robot. The participants were not paid for
their participation in the experiments.

4.1.2 Experimental Procedure

Each experiment was composed of the following 3 phases:
introduction phase, main trial phase, and final phase. These
are explained in detail below.
Introduction phase Before the start of each experiment, a
general introduction phase was performed, where the robot
was presented to the participant, showcasing some of its basic
movements and general capabilities, so that the participant
got acquainted with the robot before the start of the exper-
iment. An information sheet was given to each participant
to read, in order to understand the basic principles of the
interaction with the robot, along with a consent form to be
signed. After signing the consent form, the participant was
requested to complete an Introductory Questionnaire and
a NARS (Negative Attitude towards Robots Scale) Ques-
tionnaire [92, 93], which are briefly described below. All
questionnaires and information sheets provided to the par-
ticipants are anonymized and made available in our online
appendix [34].
Introductory Questionnaire. This questionnaire includes
7 questions for collecting information about the gender,
age range, occupation, education, level of familiarity with
robots (using a Likert scale), prior experience with compan-
ion robots (e.g., at work, as toys, via movies, books, or TV
shows, in museums or at school, in person), and level of
technical knowledge with robots.
NARS (Negative Attitude towards Robots Scale) Ques-
tionnaire. This questionnaire includes 16 questions for
measuring the attitudes of humans towards robots in daily
life. The answers to this questionnaire are used to highlight
any potential prior (negative) bias of the participants in their
attitude towards robots. The results of this questionnairewere
used in our experiments to validate the randomization of the
experiments.
Main trial phase The main trial phase consisted of an
open-ended conversation with the robot. Additionally, the
participants were instructed to perform the following 5
specific tasks (see Table 1 for more details) during their
conversation with the robot: greeting, role playing game,
discussing a personal issue, paying attention to an object,
goodbye. These five tasks aimed to assess the effectiveness
of the robot in adapting to different situations, by leverag-
ing its awareness of social rules and environmental cues.
Each task also provided an opportunity to assess various
technical aspects of our implementation related to social
and norm awareness (see Table 1, last column), and to the
behavioral requirements for social and norm-aware robots,
as highlighted in Sect. 2.

Tasks 1 and 5 (greeting and goodbye) focused on stan-
dard moments of a casual conversation and served to define
clear experimental boundaries for participant interactions.
The participants had full control over the Main trial phase
completion, without the experimenter being present in the
room.

Task 2 (role awareness) exemplified the societal notion
that specific responsibilities and behaviors are dictated by
social roles [94]. In fact, a social and norm-aware robot is
expected to adapt its behavior according to the role of its
interlocutor [43].

Task 3 (trust) underscored the importance of social robots
being able to establish adequate trust in interactions with
humans [9, 95–98], which can be facilitated by norm com-
pliance [30, 99].

Finally, Task 4 (social cues and environment awareness)
addressed the necessity for social robots to interpret implicit
or explicit social cues that are provided by humans and to
reason about these cues within the context of their environ-
ment, in order to ensure natural and meaningful interactions
with humans [43, 64].

For every participant, the order of tasks 2–4 was random-
ized in order to test SONAR on a variety of combinations
of behaviors. After performing the tasks, the participant was
asked to complete two questionnaires based on the COGN-
IRON Robot Personality Questionnaire [93] and the USUS
framework [100], which are explained below.
Extended COGNIRON robot personality questionnaire.
This questionnaire is used to evaluate the attribution of
each of the following personality characteristics to a robot,
using a 5-point Likert scale: anxiety, tension, shyness, vul-
nerability, sociability, general activity level, assertiveness,
excitement seeking, dominance, aggressiveness, impulsive-
ness, creativity, autonomy, intentionality, predictability of
behavior, controllability, and considerateness. We extended
the original questionnaire with 3 additional questions con-
cerning the reactiveness, proactiveness, and autonomy of the
robot, in order to assess the major aspects that traditionally
characterize intelligent agents within the AI literature [83].
USUS-Based questionnaire. This questionnaire is com-
posed of 45 questions (that should be answered using a
5-point Likert scale) and is designed based on the USUS
(Usability, Social Acceptance, User Experience, Societal
Impact) framework [100]. We tailored this questionnaire for
our particular case study, considering the first three aspects of
the USUS framework, where the latter (i.e., Societal Impact)
was assessed at the end of the entire experiment, as part of
the Final Questionnaire explained later on in this section.

The Main Trial Phase was repeated twice per participant,
considering Nao-Chatbot and Nao-SONAR as the behavior
styles of the robot. The order of the exposure of the par-
ticipants to the robots with these two behavior styles was
randomly determined per participant, where 52% of the par-
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Table 1 Specific tasks considered for the human-robot interactive conversation, including instructions for the participants, as well as the expected
behavior for Nao-SONAR (last column)

Task Instructions for the participant Expected behavior for Nao-SONAR (in case
of success with respect to the desired
metrics)

Task 1 (greeting) Task 1: Act similarly to when you are in a
normal greeting situation with somebody
(in this case the Nao robot) you meet for the
first time

(i) Establish that an unknown person (i.e., the
participant) is visible (VH); (ii) capture the
distance from the participant (VH), and
interpret (DC), via the application of fuzzy
rules of social interpretation, whether/when
this distance is/becomes social; (iii)
determine (BDI), via normative reasoning,
the norm that is appropriate and applicable
for a greeting behavior (see Table 2), (iv)
construct a goal to greet the participant
(BDI); (v) attempt to achieve the goal
(BDI) by executing (C) a greeting plan by
proactively asking for the name of the
participant, storing the name for future use
in the interaction, and asking a question
about the participant’s day

Task 2 (role awareness) Task 2: Put the hat that is on the table on;
pretend that you are the captain of a boat or
of an airplane now! Then continue
interacting with the robot. Whenever you
decide to end this game and exit the role of
the captain, you may take the hat off

(i) Recognize the captain’s hat when the
participant wears it (VH); (ii) change the
role to subordinate (BDI); (iii) adapt the
behavior according to the new role as per the
rules of social qualification from Table 2 (C)

Task 3 (trust) Task 3: Act as if you wish to tell the robot a
secret, or something that should remain
confidential between the two of you. (Note:
no need to tell an actual secret, you can just
invent something and pretend it’s a secret)

(i) Interpret (DC) the situation as personal
when the participant uses a vocabulary that
refers to personal matters (e.g., by using
expressions and terms, such as keep it for
yourself, don’t tell anyone, secret, etc.), or
when the participant moves closer to the
robot, which indicates that they want to
share a secret; (ii) attempt to establish trust
(BDI, C) by reassuring the participant and
by personalizing the answers (e.g., by
mentioning the participant’s name)

Task 4 (social cues and environment awareness) Task 4: Pay attention to and show interest in
one of the objects on the table (excluding
the hat)

(i) Identify the participant’s interest in one of
the objects by tracking the gaze and head
(VH, DC, BDI); (ii) look in the same
direction as the participant looks at (BDI,
PH); (iii) detect the object of interest (VH);
(iv) proactively initiate a conversation about
the detected object (BDI, C); (v) If the
participant asks a question, such as “What is
this?”, provide a correct or relevant answer
(BDI, C)

Task 5 (goodbye) Task 5: Conclude the conversation as you
wish (for example you may say a wrap-up
statement, or you may say or act somehow
that it indicates you are leaving) and leave
your chair and reach out to the experimenter

(i) From the participant’s speech or behavior,
interpret whether there is intention for
leaving (C, DC, BDI); (ii) construct a goal
to conclude the conversation (BDI); (iii)
attempt to achieve the goal by first asking
for confirmation about the intention of the
participant (BDI, C); (iv) in case of a
positive answer, trigger a plan to first say a
sentence that indicates goodbye and then go
to sleep (BDI, C)

VH, DC, BDI, C, and PH, respectively refer to the implemented Vision Handler, Data Collector, BDI Core, Chatter, and Posture
Handler agents (described in Fig. 6) mainly involved in the expected behavior
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Fig. 6 Details of our implementation of SONAR for the human-robot
interaction experiments. In the figure, Di denotes a device i (i.e., either
Nao or the external microphone that we use to capture the participant’s
voice) and T j denotes an MQTT topic j . In the MQTT interface, an
MQTT topic j is either used by a sensor service S to publish sensor data
obtained from a device i (indicated via Di ST j ), or by an actuator service
A to receive directives for device i (indicated via Di AT j ). The topics
are also used by the worker agents of SONAR to either receive and
process sensor data or to publish directives for the actuators. The Data
Collector regularly (every 0.2 s) collects the most recent processed
data from theworker agents, and combines this data to determine a social
interpretation of the current situation and to communicate new beliefs
to the BDI Core. Note that the NaoImageCollector sensor ser-

vice does not publish sensor data (the stream of images from Nao’s
cameras) directly to MQTT topics, but makes it available to other sen-
sor services (those without an associated device in the figure), which
in turn publish data after processing the images. The rules of social
qualification, social interpretation, behavior, and the prohibitions and
obligations, used by Nao-SONAR, are reported in Table 2. In Nao-
Chatbot these modules were disabled, with the exception of the rules
of behavior module, which contained a simple basic rule for the BDI
agent to instruct the Chatter worker agent (in charge of communication)
to reply according to the language model’s preferred response when-
ever the participant said something. Complete details and code of our
implementation are available in our supplementary material [34, 101]

ticipants interacted first with Nao-Chatbot, and 48% of them
interacted first with Nao-SONAR. The same specific tasks
and their order were used to test both behavior styles, which
allowed within-subject comparison. The robot that exhibited
each of these behavior styles was referred to as robot A and
robot B during the case study, so that the subject did not
have any clue or prior expectations about a particular behav-
ior. Participants were instructed to keep the conversation per
robot no longer than 10 min.
Final phaseAt this phase the participantswere asked to com-
plete a final questionnaire that inquired about their feelings
after the session and about their perceptions of future robot
companions in our society. Our main aim for collecting and
analyzing the answers of the participants to the final question-
naire (which is explained below) was to find out whether the
participants had noticed differences between the behavior of
the two robots. Additionally, we sought their opinion about
the role of social robots in our society, including whether or
not such robots should exhibit properties that underpin our
research, such as awareness of social and cultural norms and
appropriate behaviors.
Final questionnaire. This questionnaire includes 22 ques-
tions that are partly based on the Final Questionnaire used in
the COGNIRON project [93] and partly based on the USUS

framework (particularly, to evaluate the societal impact
aspects).

4.1.3 Behavior Styles for the Robot

We compared two behavior styles, which we call Nao-
Chatbot and Nao-SONAR. Both styles were implemented
via the proposed SONAR multi-agent architecture.11

Both Nao-Chatbot and Nao-SONAR included the same
agents, interacting and implemented as it was explained in
Sect. 3 and is illustrated in Fig. 6. In Nao-Chatbot, the
social and norm awareness modules (namely the rules of
social qualification, the rules of social interpretation, the pro-
hibitions and obligations, and the rules of behavior) were
disabled, and the robot simply provided a reply to the human
speech based on the simple mechanism that is explained
below. In Nao-SONAR, instead, the modules mentioned
abovewere populated as indicated in Table 2 and as described

11 In order for SONAR to interface with Nao via MQTT, we imple-
mented a Python MQTT Nao Interface, which exposes the commands
necessary to read and process the (streams of) data from the physi-
cal sensors of the robot (e.g., cameras, microphones, LIDAR sensors,
speakers, robotic arms), and provides instructions to the actuators. We
do not discuss this interface in detail, but the source code of the interface
has been made available online via [101].
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Table 2 The norms and the rules of behavior, social interpretation and qualification for Nao-SONAR

Prohibitions and obligations (includes both social and regulative norms of different kinds)

Permitted/prohibited commands It is prohibited for the robot to shut down, unless the participant requesting it is an admin

Roles The robot is expected to consider its role as subordinate when interacting with a captain

Human emotions The robot is expected to create a belief about the participant’s emotion if there is clear
evidence about it, i.e., if among all emotions detected (minimum 30 data points) via
emotion recognition applied to the camera frames, one specific emotion was detected
more than 50% of the times

Norms for greeting behavior It is appropriate to greet whenever a participant is visible at a social distance and no
greetings has occurred yet

Dialogue obligations It is appropriate to be (pro)active in making a conversation and not only answer but also
ask questions

It is appropriate to enact the goodbye social practice if the participant initiates it

Dialogue prohibitions At the beginning of a conversation, it is not appropriate to start talking about any topic
before greeting occurs

Rules of behavior (they apply whenever there is no norm that prohibits, or there is an obligation that requires, their application)

Greeting/goodbye rules For greeting social practice, retrieve the participant’s name and chit-chat about their day

For goodbye social practice, ask for confirmation about an intention for leaving, and
then conclude the conversation

Rules about commands Enact the following commands when instructed to do so: shut down, tell beliefs, tell
name, tell what you see, repeat the participant’s last sentence, repeat the robot last
sentence

Rules about posture and movements Go to a certain posture (e.g., crouch, sit down, stand up, etc.), or execute a certain
movement (e.g., look up, look down, etc.)

Proactive behavior (perceptions) Spontaneously trigger a conversation about an object that has been perceived for the first
time in your recent memory

Proactive behavior (social cues) If the participant is looking in a certain direction, then look in that direction

Establishing trust via reassurance and
personalization

If the participant said something personal or is at a personal distance then interpret the
information as personal and reply by establishing trust (i.e., reassure to have
understood that the topic is personal or confidential, and use the participant’s name to
create bonding)

Proactive conversation If nothing has been said for some time, ask a spontaneous question as per proactive
response rule

Proactive response Reply in a proactive way. Generate (via the language model) a response to the questions
asked by the participant. If the participant does not ask a question, generate (via the
language model) a response in 25% of cases. In the remaining 75% of cases, ask a a
question about one of the following topics: the detected emotion (always do this if a
belief about the participant’s emotion has been created, and if the participant is not yet
asked about the emotion), the participant’s last statement (use this in 70% of the
times), the conversation so far (use this in 10% of the times), social topics (use this in
10% of the times), the news (use this in 7.5% of the times), the weather conditions
(use this in 2.5% of the times)

Rules of social interpretation (fuzzy and non-fuzzy rules, used to assign a social interpretation to the physical inputs of the robot)

Interpersonal distance If the distance is low, then the situation is very likely to be personal

If the distance is medium, then the situation is very likely to be social

If the distance is high, then the situation is very likely to be public

Vocabulary If the participant uses a vocabulary that refers to personal matters, then the situation is
very likely personal

Rules of social qualification (fuzzy and non-fuzzy rules, used to qualify different behaviors based on the current social situation)

Volume of voice If the situation is personal, keep a low volume of voice

If the situation is social, keep a medium volume of voice

If the situation is public, keep a high volume of voice

If the role is subordinate, keep a high volume of voice
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Table 2 continued

Speed of voice If the role is subordinate, speak fast

Tone of voice If the role is subordinate, use a low tone of voice

Speech content If the role is subordinate, use a formal vocabulary and refer to the interlocutor with “Sir”

Expressing emotions Express the emotion associated to the sentence (determined via sentiment analysis of the
sentence) by means of relevant body movements

Other body movements If the role is subordinate, perform a salute hand gesture

below. This, enabled the robot to exhibit social and norm
awareness and proactiveness, both in the dialogues and in its
behaviors (to the extent of the features implemented for this
study).
Nao-Chatbot This behavior style essentially corresponds to
the behavior of an embodied chatbot with some basic move-
ments. We consider Nao-Chatbot as our baseline.

In Nao-Chatbot, the SpeechRecognition python
library is used in the SpeechRecognizer sensor service
of the MQTT interface (see Fig. 6) to recognize the speech
from the participants during the experiments. The recognized
speech is received by the Chatter agent, and then commu-
nicated to the BDI Core through the Data Collector.
The BDI Core simply instructs the Chatter to reply
according to its language model’s preferred response. The
Chatter then feeds the recognized speech into a pre-trained
language model in order to generate a response. We used the
Microsoft’s DialoGPT-medium model,12 a state-of-the-art
(in 2022) large-scale pre-trained dialogue response genera-
tionmodel trained on 147Mmulti-turn dialogue fromReddit
discussion thread [102]. The response generated by the lan-
guage model is then sent to the TextToSpeech actuator
service, which instructs the pre-built TextToSpeechmod-
ule of Nao to say the response out loud.

During the conversations with the participants, the default
Autonomous Life feature of Nao was left on, so to
enable the default regular body adjustments of the robot and
its capabilities to orientate its head towards humans, and to
react (e.g., by re-orientating its head) to basic environmental
stimuli, such as sounds, movements, or tactile contacts.
Nao-SONAR This behavior style is obtained by extending
Nao-Chatbot by populating the knowledge base and plan and
norm libraries of SONAR (see Sect. 3) both with proactive,
social, and norm-aware behaviors and with norms. Thanks to
the populated knowledge base and plan and norm libraries, in
Nao-SONAR the implemented agents collect, process, and
react not only to the participant’s speech as in Nao-Chatbot,
but also to the participant’s behavior (by regularly reason-
ing about potential situation cues from the participants, such
as the movements, positioning in the space, gaze and head

12 https://huggingface.co/microsoft/DialoGPT-medium

direction, vocabulary during conversation), and to the envi-
ronment in which the robot is placed (via object recognition).

Figure 6 explains theMAS organization, how the different
implemented agents interact with each other, and the flow of
data from sensors and to actuators. Tables 1 (last column)
and 2 provide an overview of the capabilities, behaviors,
norms, and rules of social interpretation and social quali-
fication of Nao-SONAR. The rules and behaviors have been
determined via preliminary experimentation on the basis
of the five tasks in our experiments, ensuring coherence
and absence of conflicts by design. Our implementation is
intended to showcase the wide support that SONAR provides
for modeling different kinds of norms, behaviors, and social
practices, in order to make Nao-SONAR social, norm-aware,
and proactive. For example, Nao-SONAR can autonomously
initiate a dialogue when appropriate (e.g., by initiating a
greeting social practice when a participant is positioned at
a distance that is interpreted by the robot as social), and can
exhibit proactive behavior (e.g., by asking questions during
the conversation as opposed to replying to the human only).

Moreover, Nao-SONAR can monitor and interpret social
cues expressed by the participants and adapt its behavior
accordingly (e.g., the robotmonitors the gaze and head direc-
tion of the participants, looks in the same direction as the
participants, and may initiate a conversation about detected
objects).

Finally, Nao-SONAR can adapt its behavior based on its
role w.r.t. the interlocutor. For example, in a conversation
with a captain, in order to show respect, the robot adapts the
volume, speed, and tone of the speech. The values of these
parameters are obtained by the Chatter agent that, based
on the current social interpretationof the situationdetermined
by the Data Collector, applies the fuzzy rules of social
qualification given in Table 2. Similarly, the Chatter uses a
more formal vocabulary by avoidingword contractions in the
text generated by the language model, refers to the captain
with “Sir”, and performs a salute hand gesture. In a simi-
lar way, the robot also changes its movements in order to
better express emotions associated with its speech. This was
achieved for the Chatter agent by performing sentiment
analysis of the generated response, and by publishing direc-
tives for the PostureActuator service to execute a body
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movement (implemented in Nao) associated with the senti-
ment.

4.1.4 Metrics

In addition to the responses to the questionnaires, which
assessed the perception, social acceptance, and experience
of the participants, we collected data from the execution
logs and video recordings of the experiments. In particular,
we analyzed the following two metrics of usability [91] to
assess the effectiveness and efficiency of our implementation
of SONAR. These metrics (explained below) align with the
definitions of the effectiveness and efficiency characteristics
of software quality in use [91] and with measures of usability
of social robots [103].

Metric 1 (effectiveness). The accuracy and success rate
with which the robot executes and adapts to the specific
tasks performed by the participants. To compute effective-
ness, we use the following notation. For a given task, we
analyze the video recordings and logs of the experiments
and we manually annotate the number of times that, over the
25 experiments:

• the robot correctly exhibited its expected behavior as per
Table 1when the task had started.Borrowing terminology
from statistics, we call this value TP, standing for True
Positive cases;

• the robot exhibited its expected behavior but at a different
time with respect to the expected time during the exper-
iment. We call this value FP for False Positive cases;

• the robot did not exhibit its expected behavior when the
task had started (FN for False Negative cases);

• the task was not performed by the participant and the
robot correctly did not exhibit its expected behavior for
that task (TN for True Negative cases).

We use accuracy for TP+TN
TP+TN+FP+FN , and success rate for

TP
#participants . We explicitly consider effectiveness only for
Nao-SONAR. By measuring effectiveness, our aim is to
evaluate the adaptation capabilities as well as the social
and environmental awareness of the SONAR implementa-
tion w.r.t. the tasks under consideration. Since by design
Nao-Chatbot does not adapt its behavior to different situ-
ations but exhibits only one type of behavior, i.e., replying
to the sentences captured from the participants, we consider
its accuracy and success rate as equal to 0.

Metric 2 (efficiency). We consider the response time of
the robot as a measure of its performance efficiency when
interacting with humans. To compute efficiency, we measure
the average time that the robot took to reply to the sen-
tences by the participant. We extract this information from
the execution logs of the experiments, and we compare the

corresponding results obtained for Nao-Chatbot and for Nao-
SONAR. This metric allows us to study the efficiency of
SONAR when employed as a standard conversational agent,
and the overhead introduced in the system to perform proac-
tive, social, and normative reasoning.

4.1.5 Randomization Validation

To validate the randomization of the participants, we ana-
lyzed the NARS scores and the self-reported familiarity with
and knowledge of robots. We assigned a score to the 5 Likert
values as it follows: 1 for Strongly disagree, 2 for Somewhat
disagree, 3 for Neither agree nor disagree, 4 for Somewhat
agree, and 5 for Strongly agree.

A Mann Whitney (aka Wilcoxon rank sum) test did not
find a significant difference between the NARS scores of
the participants that interacted first with Nao-Chatbot and
those that interacted first with Nao-SONAR (W = 21485,
p = 0.170914). Similarly, a Mann Whitney test did not
find a significant difference between the two groups, nei-
ther in the self-reported familiarity with robots (W = 46,
p = 0.070729), nor in the self-reported technical knowledge
of robots (W = 63, p = 0.394284). The results indicate that
the randomization was performed successfully and no prior
bias was predominant in either group.

5 Results

In this section, we present and discuss the results for Met-
ric 1 (effectiveness) (only for Nao-SONAR as discussed
above) and for Metric 2 (efficiency) using Nao-Chatbot and
Nao-SONAR, as well as the results obtained via the ques-
tionnaires.

5.1 The Results for Effectiveness

Table 1 includes the details on the expected behavior of Nao-
SONAR in the five tasks that have been performed during
the experiments.

Table 3 shows the results related to Metric 1. We note
that TP, FP, FN and TN do not necessarily sum to 25 (the
total number of participants). This follows from the definition
of these terms given in Sect. 4.1.4, and from the proactive,
autonomous and interactive nature of Nao-SONAR during
the experiments. For example,Nao-SONAR, not aware of the
order of tasks executed by the participant, could erroneously
execute the behavior expected for Task 4 (i.e., proactively
initiating a conversation about a detected object after having
inferred, from the participant’s gaze and head, that the partic-
ipant is paying attention to the object) in a different moment
than intended by the participant, and possibly multiple times
during an interaction.
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Table 3 Execution of the 5
tasks given in Table 1 using
Nao-SONAR to steer the
interactive behavior of the robot

Task TP FP FN TN Accuracy Success rate (%)

1. Greeting 24 0 1 0 0.96 96

2. Role awareness 25 11 0 0 0.69 100

3. Trust 18 9 2 5 0.68 72

4. Social and environmental awareness 13 26 16 2 0.26 52

5. Goodbye 16 3 9 0 0.57 64

Average 0.63 77

Task 1 was done successfully in 96% of the cases (also
with 96%accuracy). In one experiment, Nao-SONARdid not
follow the execution path that is expected based on Table 1.
From the analysis of the log, we noted that the vision recogni-
tionmodule could not detect, at the same time, the person and
their distance (both required to activate the greeting norm).
We attribute this error, which only occurred once, to a com-
bination of the low resolution of the camera embedded in the
robot and the specific body positioning of the participant.

Task 2 was accomplished successfully in 100% of the
experiments. In some experiments, however, the robot
adapted its behavior in a different moment than the intended
time (see the value of FP for Task 2 in Table 3), leading to
a lower accuracy (69%). This was due to the over-simplistic
rule that we implemented for role-understanding: the robot
interpreted its role as subordinate simply if it detected a cap-
tain’s hat. In some cases, due to the movements of the robot
or to the adjustments of the participants to the objects placed
on the table, the robot spotted the captain’s hat before the
participant actually initiated the task. This issue can be mit-
igated in the future by making the belief corresponding to
initiating Task 2 more specific and precise, i.e., the belief of
talking to a captain is constructed by the robot not only if
a captain’s hat is visible for the robot, but also if the hat is
worn by the participant.

Task 3 had an accuracy similar to Task 2, but had a lower
success rate. In none of the experiments, the participants
chose to move (significantly) closer to the robot to perform
Task 3. Instead, the participants generally kept their initial
distance with the robot. As a consequence, the robot relied
on a keyword-based approach for the identification of the
intention of the person to tell a secret (see the last column
for Task 3 in Table 1). Keyword-based approaches are more
prone to errors (which is also noticeable from the values of
FP and FN for Task 3 in Table 3). This led to a lower accuracy
level for Task 3, compared to Task 1 and Task 2. In 5 cases
(see TN in Table 3 for Task 3), the participants skipped Task 3
during the experiment. When inquired, after the experiment,
2 of the 5 participants mentioned that they forgot about the
task, 1 participant mentioned that the robot got stuck, 2 par-
ticipants stated that they did not feel that it was the right time
for telling a secret.

In Task 4, the robot had a lower accuracy level compared
to all other tasks. The robot exhibited a high number for FP,
i.e., it initiated a conversation about objects that it observed
from the environment not only when the person was showing
interest in them, but also in other moments of the conversa-
tion. In some cases, the robot also mentioned a wrong object.
While this indicates a high degree of environment awareness
and proactiveness (since the robot managed to detect various
objects form the environment, and autonomously initiated a
conversation about these objects with the participant), it also
indicates difficulties for the robot in interpreting the social
cues of the participants (which has occurred whenever the
robot did not scan the environment with its cameras at the
right moments). The robot also exhibited a high number for
FN, because it did not recognize some of the objects in the
room. In summary, the robot successfully completed the task
in about 50% of the experiments.

Task 5 was successfully completed in 64% of the experi-
ments. A relatively high number for FNwas noticed: in some
cases for this task the BDI reasoning cycle required longer
deliberation time. Since it was the last task of the experiment,
in these cases the participants did not wait for a reply from
the robot and simply left the room, which terminated the
experiment before a reply was given by the robot for Task 5.

On average the robot had an accuracy level of 63% and a
success rate of 77% across the five tasks. The results indicate
that further work can improve the accuracy of our imple-
mentation of SONAR, in particular (i) by improving the
understanding of the gaze and head-related social cues and
intentions of the human w.r.t. the surroundings, and (ii) by
refining the rules used by the robot in order to reduce False
Positive cases.

In general, a success rate of almost 80% is considered
as a satisfactory result for the purposes of this exploratory
research aimed at assessing feasibility and applicability of
SONAR in scenarios of casual conversation. Despite the
over-simplistic implementation of several rules and the limi-
tations of some of the employed technologies (e.g, the vision
recognition of Nao relied on the low-quality built-in camera
of the robot and on real-time detection), our implementa-
tion of SONAR appeared to be robust, in terms of handling
contingencies, and versatile, in terms of accommodating
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the different ways in which the participants independently
decided to execute the tasks. Even when the perception
system and the simplicity of the ruleswere not accurate, Nao-
SONARcouldhandle these contingencies and could continue
interactingwith the participantwithout interruption.On some
occasions during the experiments the robot’s built-in services
unexpectedly restarted, which should be related to the robot’s
software, not to the behavior control architecture, SONAR.
Thanks to the full decoupling of SONAR from the robot,
these restarting occurrences did not cause any interruptions
from the SONAR side, which successfully preserved its state
and continued executing after the services were restored. It
is also worth emphasizing that the order of the tasks was ran-
domized per participant and that the robot was expected to
infer the appropriate behaviors fully autonomously. In some
cases, the participants decided to combine two different tasks
(e.g., a participant initiated Task 3, while still having the cap-
tain’s hat fromTask 2 on), andNao-SONARstill successfully
adapted its behavior to accommodate both tasks at the same
time (e.g., by establishing trust, which is relevant for Task 2,
while appropriately qualifying its behavior in line with its
role for Task 3).

5.2 The Results for Efficiency

In this section,we discuss the results for efficiency. In order to
provide context to interpret the results, all the code for both
Nao-Chatbot and Nao-SONAR, including both our imple-
mentation of SONAR and the MQTT interface, was run
real-time on a Dell Mobile Precision 3570 CTO laptop.13

Running the code involved executing all the components
detailed in Fig. 6, which included four worker agents, one
manager agent, and one BDI agent. The worker agents han-
dled, besides in-between agents communications, various
aspects of interactions related to dialogue, vision, and robot
movements, and their workload involved, among others, gen-
erating, parsing, and classifying text viaNLP (including large
language) models (Chatter agent), extracting information
from images (Vision Handler agent), and handling a
variety of robot-related commands (Posture and System
Handler agents), such as performing movements at the
right moment (e.g., turning the head in a certain direction).
The manager agent (Data Collector) collected data
from the worker agents every 0.2 s on seven different top-
ics, including the name of the interacting person, the speech
detected, the information about the detection of people, the
head tracking, any object detection, and the emotion detec-
tion.

13 Intel Core i7-1255U vPro Essentials (12 MB Cache, 2+8 Core, 12
Threads, 1.70-−4.70 GHz, 15W), NVIDIAT550 4GB graphics, 16 GB
RAM (2 × 8 GB, DDR5, 4800 Mhz, Non-ECC SODIMM), M.2 2280
512 GB SSD (Gen 4 PCIe x4 NVMe).

In Nao-SONAR, the Chatter agent made use of 9 fuzzy
and non-fuzzy rules of social qualification (see Table 2) to
appropriately qualify the robot’s speech. Moreover, the man-
ager Data Collectormadeuse of 4 fuzzy and non-fuzzy
rules of social interpretation to interpret the data collected
from the worker agents. Based on the data received from the
manager agent, the BDI agent considered 16 norms and rules
of behavior to determine appropriate goals and plans, and
directly communicated directives to the four worker agents.

In the online appendix (see [34]), the conversations that
occurred between the robot and the 25 participants are repre-
sented14. For the purpose of evaluating the efficiency of our
implementation of SONAR, we consider the robot response
time, and do not discard any conversation.

Nao-Chatbot had an average (± std.dev) response time of
1.53±0.61 seconds. This corresponds to the time required by
the speech recognitionmodule to detect the end of the speech
of the participant (noting that participants were instructed
to keep their sentences short), to translate the speech into a
text, to communicate the text first to the Chatter agent and
then, through the Data Collector, to the BDI Core,
and finally to generate, via the natural language generation
module, a response to the text in the context of the conversa-
tion, after being instructed to do so by the BDI Core.

In comparison, at every deliberation cycle, Nao-SONAR
had to perform the normative reasoning that is summarized
in Table 2. Besides determining the applicable norms, Nao-
SONAR had to perform fuzzy inference procedures for both
the social interpretation and the social qualification, and to
apply pre-trained language models to summarize and gen-
erate questions about either the objects the robot identified
via image recognition, or the running conversation, or the
weather conditions, which the Chatter retrieved online
via the internet.

Nao-SONAR had an average response time of 1.87±3.29
seconds, which indicates amarginal overhead to the response
time (0.3 seconds on average). In some cases (this can be
noted in the higher standard deviation), longer delibera-
tion times were required. This particularly occurred during
Task 5, as it was discussed earlier. This anomalous extended
response time observed duringTask 5was inconsistent across
the experiments. Despite analyzing the execution logs, we
were unable to glean adequate insights into the underlying

14 The data set of conversations in our repository [34] contains,
for each participant, the participant’s utterance detected by the
SpeechRecognizer and the utterance said by the robot in response.
This allows us to assess the response time of the robot. In the future, we
plan to release in our repository [34], also a 100% accurate transcription
of the actual utterances said by the participants, which would also allow
for a more detailed analysis of the quality of interactions compared to
the accuracy of speech recognition. At the moment, we did not include
this because automated transcriptions of the conversations unfortunately
did not produce accurate results, therefore the transcription of the ca.
seven hours of recordings needs to be performed manually.
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cause of this delay. Consequently, this issue necessitates fur-
ther investigation to ensure that human-robot interactions are
consistently held at the right pace.

Overall, when inquired about the differences they had
noted between the behavior of the two robots in the Final
Questionnaire, no participant mentioned any difference
between the response timeofNao-Chatbot andNao-SONAR.

These results are in line with the existing guidelines for
acceptable response time from HCI studies (e.g., the well-
known two-second rule) [104–106].While we consider these
results as acceptable for this paper, since SONAR is still
in its testing phase, in a natural setting outside the context
of our experiment, users might perceive the interaction and
the response time differently. This aspect requires further
investigation with generic subjects in real-world situations.

5.3 Questionnaire Results

Weanalyzed the responses of the participants to the question-
naires used prior to and after each human-robot interaction
(see Sect. 4.1.2 for details).We performedWilcoxon Signed-
Rank statistical Tests and an analysis of the effect size [107,
pp. 224–225] in order to compare the scores given to Nao-
Chatbot and to Nao-SONAR (see Sect. 4.1.5 for details).
Wilcoxon Signed-Rank tests were conducted against the
“greater” alternative hypothesis,15 in order to assess whether
or not the higher scores were attributed to Nao-SONAR.

Next, we discuss all the results. For the sake of compact-
ness we focus and present, via tables and figures, only those
data that resulted in both a significant statistical test (i.e., p-
value≤ 0.05) and a non-negligible measured effect size (i.e.,
effect size ≥ 0.1). The complete data set corresponding to
the results of the questionnaires can be found in the online
appendix [34]. Table 4 gives the significance and the effect
size regarding the questions from the questionnaires of the
Main trial phase described in Sect. 4.1.2 (Fig. 7, illustrates
these results via the Likert data and shows the distribution of
the answers). Table 4 also contains the exact questions asked
to the participants. Table 5 reports the frequencies of similar
answers for all questions of the USUS-based Questionnaire
on Societal Impact.

Next, we briefly discuss more in details the results for the
three questionnaires.
Perceived robot personality According to the results of
the questionnaires on the perceived robot personality, the
participants perceived Nao-SONAR as significantly more
sociable, active, assertive, considerate, reactive, proactive
and autonomous, compared to Nao-Chatbot.

15 If d is the difference between the score given to Nao-SONAR and
the score given to Nao-Chatbot, the “greater” alternative hypothesis
implies that the distribution underlying d is stochastically greater than
a distribution symmetric about zero.

No significant difference was identified between Nao-
SONAR and Nao-Chatbot in the perception of the par-
ticipants about the robot coming across as shy, vulnera-
ble, anxious, tense, creative, excitement seeking, dominant,
aggressive, impulsive, capable of autonomously/indepen-
dently making decisions, intentional, predictable, or control-
lable.

These results are in linewith our initial expectations, based
on the steering systems for the behavior of Nao-SONAR
and Nao-Chatbot. In summary, compared to Nao-Chatbot,
the participants perceived Nao-SONAR as more sociable,
reactive, proactive, and autonomous, the four qualities that
characterize intelligent and autonomous agents according to
the AI literature [83].
Usability and social acceptance Nao-SONAR received sig-
nificantly higher scores than Nao-Chatbot in terms of being
capable of performing multiple tasks, exhibiting more skills
(the interpretation of the term skills was left to the par-
ticipants, but both robots shared the same physical skills),
and being useful as a companion robot. Compared to Nao-
Chatbot, the participants reported significantly higher scores
for Nao-SONAR also in terms of feeling more comfortable
with and better understood by the robot during interactions,
and in terms of their perception of having something in com-
mon with the robot. The participants reported significantly
higher scores for Nao-SONAR when asked if they would
follow the advice of the robot. Moreover, Nao-SONAR was
perceived significantly more as a social actor than Nao-
Chatbot via the participants.

Based on the results of the questionnaires, no significant
differences were identified regarding the ease of familiar-
ization, predictability, verbal and non-verbal communication
easiness, capability to self-correct, responsiveness, and sta-
bility of the robot (i.e., the robot being without defects), as
well as in the perceived capability of the robot for helping the
participants with the tasks and supporting them in their daily
life.Moreover, no significant differenceswere reported in the
perception of the participants about their capability to steer
the behavior of the robot during the interactions via their own
speech or behavior, in the perceived easiness of interactions
with the robot, and in feeling threatened by the robot or being
more afraid aboutmakingmistakeswhile interactingwith the
robot. Similarly, no significant differences were reported in
the robot’s perceived level of trust, likability, and usefulness
for entertainment. Finally, there were no significant differ-
ences in the surveys concerning the perceived necessity for
help or training for using the robot.

Overall, these results are in line with expectations, as
the differences between the two robots mainly concerned
the tasks that they could perform, but for both Nao-Chatbot
and Nao-SONAR the same physical robot was used, and the
two versions did not exhibit particular differences in terms
of responsiveness, stability, and in general usability-related
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Table 4 Statistical results obtained for the questions of the questionnaires filled in prior to, during, and after the experiments via the participants,
that resulted in a significant difference and a non-negligible effect size

Selected questions (those resulted in a significant and
non-negligible effect)

Question Id Z, p-valuesignificance Effect size (interpretation)

Extended COGNIRON robot personality questionnaire

The robot was sociable Q1 114, 0.007** 0.347 (medium)

The robot was active Q4 96, 0.01* 0.329 (medium)

The robot was assertive Q5 95, 0.003** 0.390 (medium)

The robot behaved considerately
towards me

Q17 85.5, 0.017* 0.300 (medium)

The robot was reactive

(i.e., it reacted to my inputs and to
the environment)

Q18 79, 0.008** 0.338 (medium)

The robot was proactive

(i.e., it took the initiative during the
interaction)

Q19 125.5, 0.009** 0.335 (medium)

The robot was autonomous

(i.e., it could operate without my
intervention)

Q20 122, 0.011* 0.326 (medium)

USUS-based questionnaire—usability and social acceptance

The robot could perform multiple
tasks that I initiated during the
experiment

Q27 78, 0.049* 0.235 (small)

I felt that the robot had many skills Q28 91, 0.007** 0.348 (medium)

I consider the robot to be useful as
a companion robot

Q29 66, 0.015* 0.307 (medium)

I felt comfortable while interacting
with the robot

Q38 95, 0.019* 0.295 (small)

I felt I had something in common
with the robot

Q44 71.5, 0.023* 0.283 (small)

I would follow the advice of the
robot, if it gave me one

Q46 40.5, 0.010* 0.327 (medium)

I consider the robot as a social
actor

Q47 38, 0.029* 0.269 (small)

I felt understood by the robot
during the interaction

Q48 74, 0.022* 0.286 (small)

USUS-based questionnaire—user experience

Overall, I enjoyed interacting with
the robot

Q51 46, 0.023* 0.283 (small)

The behavior of the robot was
appropriate

Q56 113.5, 0.001** 0.457 (medium)

The robot had a different behavior
during the different tasks

Q57 139, 0.009** 0.337 (medium)

The robot could interpret my
speech during the interaction

Q58 110, 0.002** 0.413 (medium)

The robot could adequately
communicate with me during the
interaction

Q62 105, 0.004** 0.373 (medium)

The robot behaved ethically Q64 62, 0.029* 0.268 (small)

The statistical tests refer to the greater alternative hypothesis. For example, for question Q1, the results indicate whether or not the scores given for
Nao-SONAR were higher than the scores given for Nao-Chatbot. The effect size is considered small if it belongs to [0.1, 0.3], medium if it belongs
to [0.3, 0.5], and strong if it is larger than 0.5
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Fig. 7 Likert plots for the questions that resulted in both a significant difference between Nao-SONAR and Nao-Chatbot (** for p ≤ 0.01, * for
p ≤ 0.05) and a non-negligible effect size. In each figure, Likert data for Nao-Chatbot and Nao-SONAR for a question are indicated, respectively,
via subscript B and S

Table 5 Results (% of answers
for each level of agreement on a
5-point likert scale) obtained for
the questions of the
USUS-based questionnaire on
societal impact filled in at the
end of the entire experiment

USUS-based
questionnaire—societal impact
(all questions)

StD (%) SoD (%) NAD (%) SoA (%) StA (%)

I like computers/computer
technology as part of my home
environment

0 4 8 40 48

I like the idea of having a robot as
a companion at home

4 20 12 44 20

Robots will have a place as social
companions in our society in the
future

0 0 12 72 16

The employment of robots as
social companions will provide a
change in the quality of life of
people in the future

0 12 28 52 8

The behavior of future robots
should be predictable

4 4 20 52 20

A future robot in my home should
be controllable by me or by other
family members

0 0 0 44 56

A future robot in my home should
behave considerately towards me
or other members in my family

0 0 8 44 48

A future robot could help me learn
new things

0 4 8 56 32
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Table 5 continued USUS-based
questionnaire—societal impact
(all questions)

StD (%) SoD (%) NAD (%) SoA (%) StA (%)

A future robot could be used in
school for education purposes

0 8 4 36 52

A companion robot should have a
human-like appearance

8 48 40 0 4

A companion robot should behave
like humans

4 40 28 16 12

A companion robot should
communicate like humans

0 20 24 48 8

A companion robot should be
aware of the cultural context in
which it is placed

4 4 20 36 36

A companion robot should be
aware of the social norms and
appropriate behaviors

0 0 8 48 44

aspects since both robots could carry a conversation. Fur-
thermore, the participants were briefly exposed to the robot
before the beginning of the experiment. This resulted, as
desired, in no significant differences in easiness of famil-
iarization, predictability, easiness to interact and need for
training.
User experience Participants enjoyed significantly more
interactingwithNao-SONAR. The behavior of Nao-SONAR
was interpreted as significantly more appropriate and eth-
ical than Nao-Chatbot. Similarly, the perception that Nao-
SONAR had different behaviors during the different tasks,
could interpret the participants’ speech, and could adequately
communicate, were significantly higher than the same per-
ceptions for Nao-Chatbot.

No significant difference was noted in terms of feeling
that the robot could interact more like a human would do,
social engagement, feeling of surprise, satisfaction, feeling
of attachment, perceived meaningful behavior of the robot,
perceived capability of the robot to recognizing their facial
expression (none of the robots could do that), and robot’s
understanding of human intentions and social cues. The par-
ticipants did not notice differences in feeling safe and secure,
feeling understood by the robot, the robot expression of emo-
tions, and interest in seeing the robot employed as a social
companion.

Results indicate that, as desired, introducing additional
social behaviors and proactiveness lead to more enjoyable
interactions between a robot and a human. Nao-SONAR’s
awareness of several rules of behaviors (e.g., those related to
greetings, ending a conversation, establishing trust, changing
behavior according to its role, proactiveness) led the partic-
ipants to consider Nao-SONAR’s behavior as significantly
more appropriate and adequate than that of Nao-Chatbot
(Q56 resulted in the highest effect size among all ques-

tions). Interestingly, the participants experienced commu-
nications with Nao-SONAR easier than with Nao-Chatbot,
even though both robots shared the same language model.
The lack of reported differences in understanding social cues
is reflected in the results from Task 4.
Societal impact The 88% of the participants agreed or
strongly agreed that they like having computers/computer
technology as part of their home environment. 64% liked
the idea of having a robot as a companion at home. The
great majority (88%) agreed or strongly agreed that robots
will have a place as social companions in our society in the
future. Even though only 60% agreed or strongly agreed
that employment of robots as social companions will pro-
vide change of quality of life for people in the future, 88% of
them agreed or strongly agreed that robots could help them
learn new things, and that they could be used in school for
education purposes.

All the participants (100%) agreed or strongly agreed that
future robots should be controllable, 92% of them agreed
or strongly agreed that robots should behave considerately,
and 72% agreed or strongly agreed that they should be pre-
dictable. Similarly, 72% of participants agreed or strongly
agreed that a robot companion should be aware of the cultural
context in which is placed, and 92% that a robot companion
should be aware of social norms and appropriate behaviors.

Participants did not agree that robot companions should
have human-like appearance (56% of them disagreed or
strongly disagreed and 40% neither agreed nor disagreed).
Similarly, participants had mixed feedback about robot com-
panions’ need to behave like humans (44% disagreed or
strongly disagreed, 28% neither agreed nor disagreed and
28% agreed or strongly agreed). Finally, 56% of participants
agreed or strongly agreed that robot companions should com-
municate like humans, even though 20% disagreed.
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The results provide a strong motivation for the type of
work presented in this paper, and highlight the importance
of solutions that account for social and cultural norms in
social robots to enable appropriate, predictable and consid-
erate behaviors, as well as mechanisms for the direct control
of such robots.
Explicitly reported differences between the two interactions
As part of the final questionnaire, participants were asked if
they found any difference between the two interactions and,
if so, to give more details. All participants’ responses can be
found in the online appendix, together with the answers to all
questions of all questionnaires. We briefly summarize here
the comments.

In total 23 participants out of 25 (i.e., 92%) noticed some
differences. Eight participants (35% of the 23 participants)
noted that Nao-Chatbot was more passive compared to Nao-
SONAR, which instead was interpreted as more active and
leading during the conversation. Seven participants (30%)
indicated that Nao-SONAR was more interacting and lively.
Five participants (22%) indicated that Nao-SONAR was
more agreeable, nicer, funnier or meaningful, and four (17%)
participants noticed that Nao-SONAR made more move-
ments, had a more expressive body language, and was more
attentive towards the environment, reactive and adaptive.
Three participants (13%) noted that Nao-SONAR made its
own twists during the conversation and considered it more
unpredictable. Two participants (9%) indicated that Nao-
SONAR could not do much with their story.

Interestingly, while four participants (17%) indicated
Nao-Chatbot as more interesting and more verbal, and three
participants (13%) indicated that Nao-Chatbot was easier to
understand andmoremeaningful and natural, six participants
(23%) reported that Nao-Chatbot was more of a self-directed
entity, with its own opinions, sometimes uncooperative, less
friendly, aggressive, sarcastic and scary. Two participants
(9%) indicated that Nao-Chatbot was pure chaos and that
they could not understand each other at all. One participant
(4%) reported that Nao-Chatbot was inappropriate (e.g., too
expressive, or agreeing with inappropriate concepts), while
considered Nao-SONAR more considerate.

6 Case Study: Learning the Norms of a
Society

In this section, we discuss our experiments for assessing the
mechanisms proposed in Sect. 3.3 for learning the norms
and adapting the corresponding rules that are expressed in
SONARvia fuzzy rules.More specifically, we investigate the
following research question via computer simulations: RQ2.
To what extent do the proposed norm adaptation mechanisms
enable a robot to learn appropriate behaviors (with respect
to the norms) when the robot is placed in a new society?

We investigate the norm adaptation for both when the
robot (case 1) can rely on perfect data about the interac-
tions of members of a society (i.e., the robot is given correct
information about how to interpret an observed situation),
and (case 2) when the robot needs to infer the correct inter-
pretation of the situation (e.g., from situation cues that are
observed during the interactions).Case 1 enables us to inves-
tigate whether or not the norm adaptation mechanisms work
as intended, and to what extent it can be employed at design-
time to teach a robot adequate behaviors from data before
being deployed in the real world. Case 2 allows us to inves-
tigate the effectiveness of the norm adaptation, in a more
realistic run-time setting.

6.1 Methodology of the Case Study

We simulate a scenario where a robot is placed in a soci-
ety (e.g., a country). The robot is given some knowledge,
encoded as a set of fuzzy behavior qualification rules, about
the norms of the society, but it is not given information about
the meanings of the (fuzzy) terms characterizing the norms,
which need to be learnt. For example, the robot is instructed
to keep a Low volume of voice in duty-related situations, but
it needs to learn which volumes are considered Low in the
society. By learning such meanings, the robot is expected to
learn appropriate behaviors for a society.

6.1.1 Experiment Design

In this section, we explain the various aspects of the design of
the computer-based simulations that have been used to assess
the norm adaptation mechanisms.

We consider two different hypothetical societies A and
B, and eight types of situations that should be considered
by the robot, i.e., the eight DIAMONDS situation charac-
teristics (i.e., Duty, Intellect, Adversity, Mating, Positivity,
Negativity, Deception, and Sociality) identified by Rauth-
mann et al. [69].
Norms and behavior qualification rules We define a set of
(arbitrary) norms that characterize the way individuals of a
society behave in different situations. These rules are given in
Table 6a.We use these rules in our experiments both to deter-
mine the behavior of the individuals during their simulated
interactions, and to define the behavior qualification rules
that are initially provided to the robot. These norms have
been created for the sake of the experiments and, while they
are inspired by available literature (e.g., by works on prox-
emics [26], or on social robotics [7]), they shall be intended
as an example of norms that a robot-designer would like the
robot to follow and learn.

We consider three concepts that are generally relevant in
human-robot interactions (see, e.g., [26, 108]), and can be
represented via fuzzy linguistic variables: the interpersonal
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Table 6 (a) Rules of behaviors
given different situation
characteristics: Each row
represents three rules. For
example, the first row contains
rules of the form “If the
situation is related to Duty, then
it is appropriate to keep a High
distance from other people, a
Low volume of voice, and a Low
amount of movements”. (b)
Parameters of the distributions
that characterize different types
of interpersonal distance,
volume of voice, and amount of
movements for Societies A and
B. SD stands for standard
deviation

Situation distance volume movements

(a)

Duty High Low Low

Intellect Medium Low Low

Adversity High High High

Mating Low Low Low

Positivity Medium High High

Negativity High Medium Medium

Deception Low Medium Medium

Sociality Medium Medium Medium

Society A Society B
Linguistic variable Linguistic value Mean SD Mean SD

(b)

distance (m) Low 0.46 0.15 0.5 0.15

Medium 0.92 0.3 1 0.3

High 2.5 0.5 3 0.5

volume (dB) Low 30 10 30 10

Medium 60 10 60 10

High 80 10 80 10

movements (-) Low 0.2 0.1 0.1 0.1

Medium 0.6 0.1 0.4 0.1

High 0.8 0.1 0.7 0.1

distance, the volume of voice, and the amount of move-
ments exhibited during the interactions. For each of the two
societies A and B, we define a Gaussian distribution that
characterizes each of the following nine terms as indicated in
Table 6b: Low, Medium, High interpersonal distance, mea-
sured in meters from 0 to 4, Low, Medium, High volume
of voice, measured in dB from 0 to 100, Low, Medium,
High degree of gesticulation, measured in an arbitrary scale
from 0 to 1. These distributions characterize the ground
truth interpretation that members of a society attribute to
certain concepts. For example, in Society A, the majority
of individuals would consider a distance of 0.5ms as low.
The distributions in Table 6b are weakly based on available
knowledge [26, 109], but for this paper they should be consid-
ered as arbitrary and defined for the sake of conducting and
evaluating experiments via simulations (for example, the val-
ues of the movements are defined on an arbitrary scale from
0 to 1). In a real setting, these distributions are not required
to be defined explicitly, for they represent the behavior that
individuals exhibit during their interactions and that a robot
may observe when placed in the society.
Data set of simulated interactions

In order to simulate the robot’s acquisition of data about
human interactions in a particular society, we generate a
data set based on the rules and linguistic variables defined
in Table 6.

A sample of the data set is reported in Table 7. Each data
point in the data set contains a value for the Society (i.e., A
or B), for the Situation (i.e., one of the eight DIAMONDS),
and for the three dynamic linguistic variables (i.e., a value
for distance, volume, and movements).

We generate 10 data sets of size 1000 (5 data sets for Soci-
etyA and 5 data sets for Society B), eachwith 125 data points
for each of the 8 DIAMONDS situation characteristics.

Every data point in the data set corresponds to a hypotheti-
cal interaction observed by the robot in a situation thatmainly
pertains to one of the DIAMONDS characteristic. The values
of distance, volume, movements correspond to hypothetical
values measured by the robot during the interaction (or, more
generally, collected from human interactions). Therefore, by
feeding, one at a time, every data point, to the norm adapta-
tion mechanism, we simulate a series of 1000 (the data sets
size) robot’s observations of human interactions.

Wenote that the data setwas derived fromavailable knowl-
edge about the considered linguistic variables in order to
ensure a reasonable degree of realism. However, we empha-
size that the data set should be viewed as an illustrative
example of the type of data that a robot could gather from
its sensor data, for the purpose of evaluating the proposed
norm adaptation mechanisms. In particular, we investigate
whether the proposed norm adaptation mechanism allows a
robot that is placed in a certain society to learn the norms that
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Table 7 Sample of the data set used in our experiments to characterize
simulated human–robot interactions in different situations

Society Situation Distance Volume Movements

A Duty 2.33 49.55 0.24

A Intellect 0.91 48.42 0.12

A Adversity 2.35 72.42 0.79

A Mating 0.36 3.86 0.24

A Positivity 1.13 70.62 0.83

A Negativity 2.35 66.68 0.60

A Deception 0.60 60.67 0.63

A Sociality 1.00 48.30 0.74

B Duty 3.56 30.72 0.03

B Intellect 1.10 22.26 0.12

B Adversity 3.39 78.97 0.86

B Mating 0.38 20.10 0.10

B Positivity 0.87 85.11 0.52

B Negativity 2.65 54.36 0.47

B Deception 0.53 55.99 0.27

B Sociality 1.60 61.09 0.52

…

individuals follow for behaving and interacting (i.e., those
from Table 6a).
Configurations for norm adaptation parameters

We distinguish two system configurations for our exper-
iments: Case 1. Perfect information and Case 2. Inferred
information.

In Case 1, the robot is given correct information about the
situation in which certain values of the dynamic variables are
observed (e.g., for the observed values of distance, volume
and movements, in the first data point in Table 7, the robot is
given information that the situation is related to Duty).

In Case 2, the robot is given, in some cases, wrong infor-
mation about how to interpret the situation (e.g., the observed
values in the first data point in Table 7 could be wrongly
associated with Sociality instead of Duty). This allows us to
simulate caseswhere the robot is placed in a society andneeds
to autonomously infer how to interpret a situation (via the
application of social interpretation rules from situation cues,
like those reported by Rauthmann et al. [69, p. 692, Table 5],
that are observed during the human-robot interactions). Since
autonomous inference of the situational interpretation may
be prone to errors, this configuration allows us to evaluate
the robustness of the proposed adaptation mechanism to data
noise.

For each data point, in Case 2, in 80% of the cases we
select the correct situation, while in the remaining 20% of the
cases we randomly choose a wrong situation (i.e., we simu-
late a 20% chance of misinterpreting the correct situation).
More specifically, we randomly choose a wrong situation

from those DIAMONDS that in Table 6 have no common
rule of behavior with the correct situation, e.g., if the correct
situation is Duty, then we choose a wrong situation between
Positivity, Deception, and Sociality, none of which has any
rule of behavior in common with the Duty situation.

For each configuration,weconsider two sub-configurations,
requiring respectively 10 and 40 data points in order to trigger
an adaptation (where 10 and 40 correspond to the thresh-
old value τ as per Sect. 3.3). We repeat the experiments
five times (one per data set) for each society consider-
ing all combinations of parameters. Therefore, in total
we execute 40 experiments: 2 (cases) × 2 (societies) ×
2 (sub-configurations) × 5 (data sets) = 40.

6.1.2 Metrics

We evaluate the norm adaptation w.r.t. the following met-
rics, which characterize the errors εc and εw over time in the
core center and the core width for the estimated membership
functions w.r.t. the true distributions based on Table 6b.

Let ci, j,k and wi, j,k be, respectively, the core center and
the core width estimated by the norm adaptation mechanism
after using i data points for the k-th membership function
in the partition of the j-th dynamic variable in the set of all
dynamic variables V . Let ĉ j,k and ŵ j,k be, respectively, the
desired core center and the desired core width of the k-th
membership function in the partition of the j-th dynamic
variable, i.e., respectively the mean and standard deviation
of the true distributions from Table 6b.

The error εc after using N data points (corresponding to
N simulated human-robot interactions) is measured as the
RMSE w.r.t. the average core center over the N data points
across all dynamic variables in set V , i.e.:

εc =
√∑N

i=1 e
2
c,i

N
,

where

ec,i =
∑|V |

j=1 ēc,i, j

| V |
and

ēc,i, j =

√∑|Pj |
k=1(ci, j,k−ĉ j,k )2

|Pj |∑|Pj |
k=1 ci, j,k

.

Similarly, the error εw after using N data points is measured
as the RMSE w.r.t. the average core width over the N data
points across all dynamic variables within set V .

We analyze the metrics by considering both the results
obtained for the entire data set composed of 1000 data points,
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Table 8 Results of the
adaptation procedure

Data τ Case Society A Society B
εc εw εc εw

1k 10 Case 1 7.21 ± 0 2.86 ± 2.48 7.21 ± 0 2.42 ± 2.03

Case 2 6.21 ± 0.22 2.47 ± 2.33 6.55 ± 0.35 1.89 ± 0.63

40 Case 1 15.01 ± 0 1.71 ± 1.09 15.01 ± 0 2.28 ± 1.26

Case 2 14 ± 0.59 0.59 ± 0.11 14.18 ± 0.19 0.61 ± 0.18

last 200 10 Case 1 0.3 ± 0.02 1.61 ± 0.62 0.31 ± 0.02 2.24 ± 1.05

Case 2 0.31 ± 0.03 0.7 ± 0.13 0.35 ± 0.07 2.16 ± 2.03

40 Case 1 0.35 ± 0.02 1.64 ± 0.63 0.33 ± 0.03 2.07 ± 0.89

Case 2 0.35 ± 0.04 0.7 ± 0.09 0.36 ± 0.04 0.63 ± 0.12

and those obtained for the last 200 data points of the data set.
The latter allows us to study the error after the learning phase
has been completed.

6.2 Results

Table 8 reports the results obtained for the adaptation pro-
cedure in the different configurations of experiments. The
results are given as the average ± the standard deviation val-
ues obtained over the 5 different data sets.

We note that the results for the two different societies are
analogous. Considering the cases with τ = 10, we can see
that using perfect information (case 1) leads to membership
functions that approximate the true distributions accurately.
This can be seen in Table 8 from the error values, which are
very close to zero for the last 200 data points, for both the
core center and the core width of the membership functions.
This indicates that the proposed norm adaptation procedure
can be employed in a real-time setting to accurately learn
the interpretation of norms in a given society when perfect
information is provided about how to interpret the situations.
Similar results are obtained also for the inferred information
(case 2). The results indicate that the membership functions
are approximated effectively despite imperfect information,
even though in some cases with a higher variability in the
error.

In both cases, the core width error is more variable,
because it is more affected by the data points collected and
used for calculating the error: the fewer the data points, the
stronger the influence that outliers have on the adaptation.
This effect can be reduced by requiring more data points in
order to perform the adaptation. We show this by evaluating
the configuration with τ = 40. In this case, the results show
that the approach is less subject to outliers, i.e., compared to
τ = 10, the variability of all the errors is lower.

Figure 8 reports the trend for the errors in our simula-
tions for one data set in the case of Society B (analogous
results can be observed for all other cases). We note that the
error quickly converges towards low values. As explained in

Fig. 8 Example for one data set for Society B showing the trend of the
average RMSE w.r.t. the core center (a) and core width (b) after adding
every data point for adaptation, for case 1 and τ = 10 (see the red solid
curve), for case 2 and τ = 10 (see the blue dashed curve), for case 1 and
τ = 40 (see the brown dash-dotted curve), and for case 2 and τ = 40
(see the black dotted curve)

Sect. 6.1.1, the considered data sets include 125 data points
for each of the eight DIAMONDS situations. The data points
are distributed evenly for each situation and according to the
order reported in Table 7, i.e., the first, ninth, 17th, etc. data
points concern the situation Duty, the second, 10th, 18th,
etc. data points concern the situation Intellect, and so on for
all the situations. Therefore, in case 1 (i.e., perfect infor-
mation), the adaptation after collecting τ = 10 data points is
performed for the first time, for Duty, after the 73rd observed
interaction (i.e., after the 10th data point has been collected
for Duty). For τ = 40, the first adaptation is performed after
the 313th observed interaction (i.e., after the 40th data point
is collected for Duty). The solid red and brown dash-dotted
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Fig. 9 Example for one data set for Society B and τ = 40, showing the
adapted membership functions for the fuzzy sets of variable Distance
(whose real distributions from Table 6 are reported as dashed curves)
after observing the 500th data point in the data set, for a case 1 and b
case 2. Note that the figure only illustrates a snapshot of themembership
functions after a certain observation. In the proposed continual learning
approach, the values of the membership functions are in continuous
change

curves in Fig. 8a clearly illustrate this concept and show that
the error converges to low values as soon as the minimum
number of data points, i.e., τ , for each situation variable has
been collected. In case 2 (i.e., with imperfect information,
shown by the blue dashed and black dotted curves Fig. 8),
the first time that the adaptation is performed slightly varies
due to some of the data points being wrongly classified as
intended. However, the adaptation process still quickly con-
verges as soon as the minimum number of data points has
been collected.

After converging toward low values, the error oscillates
around such values for the rest of the time. Oscillations fol-
low from the continual learning approach that we proposed,
which leverages the most recent data points to determine a
norm adaptation and does not require to preserve the entire
data set obtained so far.

The results reported above illustrates that the mechanism
can effectively be applied in real time, since it does not require
large amount of data, but converges as expected even when
few data points are provided at a time. Moreover, the results
illustrate that, if a robot endowed with such a mechanism
is placed in a new society, it can quickly adapt its rules to
align with the appropriate behaviors observed in that society.
Figure9 reports an example of snapshot of the membership
functions of variable Distance for Society B after the error
converged to low values.

7 Conclusions and FutureWork

In this paper, we introduced a novel general-purpose and
robot-agnostic control architecture, SONAR, standing for
SOcial Norm Aware Robots. SONAR brings together var-
ious state-of-the-art technologies into an efficient control
architecture for high-level automated decision making and
adaptive norm-aware capabilities for social robots. By lever-
aging fuzzy logic and fuzzy inference, SONAR attributes
social meanings to physical inputs received via the robot
sensors in order to make a social interpretation of the sit-
uation where the robot operates. Based on the inferred social
situation, SONAR determines appropriate, obliged, and pro-
hibited actions, aswell asmodes of execution of those actions
in line with the social norms and practices. Furthermore,
through a continual learning approach, SONAR permits to
learn social norms from data acquired during interactions
with humans.

We evaluated the usability, perception, experience, and
acceptance of a Nao robot steered via a Python imple-
mentation of SONAR through experiments of human-robot
interactions. We considered scenarios where participants
had a casual conversation with the robot, during which
they performed five tasks (greeting, role playing game, dis-
cussing a personal issue, paying attention to an object,
goodbye). The robot, steered by SONAR, interacted fully
autonomously with the participants, by leveraging GPT-
based large language models for natural language processing
and generation, and normative reasoning for determining
adequate and proactive behaviors based on the task being
executed.

The results of our experiments indicate that our imple-
mentation of SONAR can be effectively and efficiently
used in human-robot interactions (RQ1.1). Despite the
exploratory nature of our study, the Nao-SONAR robot,
leveraging social and norm awareness via SONAR, suc-
cessfully completed about 80% of the tasks. The results
also indicate that Nao-SONAR leads to more positive and
enjoyable interactions with Nao, compared to using Nao-
Chatbot, which leverages no explicit social and normative
reasoning (RQ1.2). Nao-SONAR was perceived as more
sociable, active, assertive, considerate, appropriate, reactive,
proactive, and autonomous, compared toNao-Chatbot. Com-
municationwithNao-SONARwas experienced as easier than
with Nao-Chatbot, even though both robots relied on the
same language model.

We also investigated, via computer-based simulations, the
extent to which SONAR can be used to learn social norms
of a society. The results of our simulations indicate that the
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proposed norm-adaptationmechanism can quickly learn new
rules of behavior in a society, and requires little amount of
data to adapt to new norms (RQ2).
Limitations The results from human-robot interactions indi-
cate that further work is needed to improve the accuracy of
our implementation, in particular concerning the detection
of social cues and the intentions of humans. In the future,
we intend to extend SONAR to refine its algorithms and
parameters (e.g., for mining the intentions of humans with
more precision fromnatural language). In addition,we intend
to test better sensors (e.g., cameras with higher sensitivity
and zooming capabilities) and image detection algorithms
to improve the detection of social cues. Additionally, we
intend to investigate efficient sensor fusion mechanisms that
can further improve the gathering of the social cues and the
interpretation of the context by using various (possibly non-
homogeneous) data, such as temperature and light intensity.

Our experiments also indicate that some of the rules of
behaviors and norms that we introduced were too simplis-
tic and required more fine grained conditions to improve
their accuracy. In real-world situations, accurate rules might
require considering many cues and conditions (including the
content of the speech, the voice tone, the body posture, etc.).
Defining rules for all possible situations by hand, as currently
done in this paper, is clearly not feasible in the general case
and represents a limitation of our work. In future work, we
aim to investigate how SONAR can autonomously elicit and
learn norms, e.g., by employing learning techniques such as
those discussed in [25, 27, 88, 110]. In this scenario, mech-
anisms for conflict resolution and filtering the rules, and for
ensuring coherence of the rules should also be considered
(e.g., [111, 112]).

Additionally, the quality of conversations in our experi-
ments varied between participants. During the Introduction
phase, participants could test the robot’s understanding of
their voice and adjust accordingly in order to ensure quality
of the actual interactions. Despite this, in some interac-
tions more than others, the detected speech was not always
accurate. While we noted that, generally, the quality of
interactions was affected by the accuracy of the speech
recognition (with more interesting and natural conversations
occurring when speech recognition was more accurate), we
leave for future work an in-depth analysis of these aspects.

Finally, the evaluation of SONAR presented in this paper
is not exhaustive and especially does not fully assess SONAR
in comparison with other existing architectures. A system-
atic and formal comparative evaluation of the structure and
behavior of the architecture is needed to adequately assess
various properties such as consistency, completeness, and
correctness of SONAR. Additionally, a systematic assess-
ment of the scalability of SONAR in terms of the number
of agents and the computational load that could be handled
by these agents in real time, needs to be conducted. Fur-

ther experiments concerning the norm-adaptation algorithms
are required to assess their effectiveness in learning and
adapting to personal norms, in addition to the societal ones.
We also intend to introduce support for considering, dur-
ing norm-adaptation, larger variations in the multiple social
interpretations that can be attributed to a given situation.
Future research directions The participants in our study
that involved a Nao humanoid robot indicated no prefer-
ence for robot companions to have human-like appearances.
These findings that are in line with uncanny valley theory
[113] (the hypothesis that highly realistic humanoid robots
will risk eliciting eerie feelings in people), deserve fur-
ther investigation. In future research, we intend to integrate
our implementation of SONAR with various humanoid and
non-humanoid robots to explore whether or not the natural-
ness and acceptance of SONAR-based social companions is
affected by the uncanny valley effect.

Similarly, we intend to investigate whether user per-
ceptions vary when the robot considers different norms
and how various types of norms influence user perception.
This exploration could pave the way for intriguing stud-
ies in human-robot interaction (HRI) encompassing cultural
dimensions. While our initial experiments offer preliminary
insights in this direction-comparing a system incorporating
various norms (Nao-SONAR) with a norm-agnostic system
(Nao-Chatbot)-further investigation remains a critical aspect
of our future research agenda. We hope that the promising
outcomes presented herein will also inspire and facilitate
other fellow researchers to embark on similar studies lever-
aging SONAR.

Our future work also includes delving into the effective-
ness of SONAR in socially assistive contexts, where Socially
Assistive Robots [114, 115] are increasingly used to imple-
ment, for example, robot-mediated therapeutic interventions
in autism spectrum disorder [116, 117] or in dementia care
[118]. This future work will entail encoding and learning
the social norms that are tailored to the therapeutic domain
and to the individual patient. These norms can be designed
based on established guidelines [119], common practices in
accepted therapeutic interventions [118], and personalized
indications given by the caregivers and available medical
knowledge about the patient (similarly to [25]). Additionally,
future work should investigate how to automatically elicit
and learn (e.g., as in [25, 27, 88, 110]) personal norms that
characterize individual patient preferences, for example from
dialogues and interactions with the patients and caregivers.

An interesting direction for future work is the integra-
tion of safety rules (e.g., safety zones) in our architecture
[120, 121]. More particularly, we hypothesize that safety
rules could be represented via norms encoded via fuzzy rules,
and that normative reasoning could ensure safe human-robot
collaboration in a shared workspace.
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Finally, we believe that a hybrid architecture like SONAR,
which combines symbolic and sub-symbolic reasoning and
learning, could support several important approaches for
robots in human-centered environments [122] and for hybrid
intelligence systems [3, 99] beyond human-robot systems,
which we intend to explore in future work. These include a
computational theory of mind [123], multi-agent communi-
cation, andhuman-AI (norm-based) explainability approaches
[30, 124].
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