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Abstract During a transcatheter aortic valve implantation, an axisymmetric implant
is placed in an irregularly shaped aortic root. Implanting an incorrect size can cause
complications such as leakage of blood alongside or through the implant. The aim of
this study was to construct a method that determines the optimal size of the implant
based on the 3-dimensional shape of the aortic root. Based on the pre-interventional
computed tomography scan of 89 patients, a statistical shape model of their aortic
root was constructed. The weights associated with the principal components and the
volume of calcification in the aortic valve were used as parameters in a classification
algorithm. The classification algorithm was trained using the patients with no or mild
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Fig. 1 The Graphical Abstract depicts a schematic overview of the methods and main results of this study

leakage after their intervention. Subsequently, the algorithms were applied to the pa-
tients with moderate to severe leakage. Cross validation showed that a random forest
classifier assigned the same size in 65 £ 7% of the training cases, while 57 +-8% of the
patients with moderate to severe leakage were assigned a different size. This initial
study showed that this semi-automatic method has the potential to correctly assign an
implant size. Further research is required to assess whether the different size implants
would improve the outcome of those patients.

Keywords Statistical shape modelling - Aortic root sizing - Transcatheter aortic
valve implantation
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1 Introduction

Aortic valve stenosis is the most commonly acquired valvular heart disease in the
elderly. Despite advances in cardiac surgery and low mortality rates, up to one third
of patients with symptomatic aortic valve stenosis are not considered for surgical
valve replacement, often due to age, frailty or co-morbidities [4, 34]. Transcatheter
aortic valve implantation (TAVI) has been proven to be a reasonable alternative for
the treatment of aortic valve stenosis in elderly (very) high-risk patients [20].

During the TAVI procedure an axisymmetric device is implanted in the patient’s
aortic root. In case of the CoreValve devices (Medtronic Inc., Minneapolis, MN,
USA), four sizes are available, they have a 23 mm, 26 mm, 29 mm, or 31 mm bot-
tom cross-sectional diameter respectively. The CoreValve size range is used to treat
patients with an annulus diameter between 18 mm and 29 mm [16]. The current plan-
ning procedure uses computed tomography (CT) images to size the annulus, the ring
formed by the bottom of each valve leaflet. The annulus diameter can be calculated
based on the perimeter, the cross-sectional surface area or the minimum and maxi-
mum diameter of the line delineating the aortic annulus [10, 15]. However, the aor-
tic root and the implants are 3-dimensional (3D) structures, the aortic root is rarely
cylindrical and a suboptimal implant size can lead to complications such as aortic
regurgitation (AR) [13,19].

Determining the size of the implant based on the 3D shape of the aortic root might
reduce complication and the observer dependency. Therefore, the goal of this research
is to construct a method with which the implant size can be accurately estimated
based on a parametric description of the 3D aortic root shape.

A statistical shape model (SSM) is a common method to generate a paramet-
ric description of a population of 3D shapes. In this type of model, each shape
is described as a deviation from the average of the population along the principal
components of variation [11,36]. SSMs have multiple applications in characterizing
anatomical variability, for example, investigating the difference between the brain
anatomy of healthy people versus schizophrenics [14] or Alzheimer patients [35].
SSMs are also used to investigate the shape variation in bone structures such as the
human ear canal [26] and to reconstruct missing, malformed or fractured bone struc-
tures [29, 37]. In addition, SSMs are used to model the whole body [25] or a part,
such as the scalp [21] to provide a design space for clothing for example.

SSMs of the heart and vascular structures are described in literature. They are
often used for the automatic segmentation of 3D cardiovascular images [17,23, 24],
and 4D images of the aorta [38] for example. Lekadir et al. (2016), Allen et al. (2016)
and Pinto ef al. (2016) used a statistical shape model (SSM) of the heart for the
identification of myocardial infarction and to classify its severity [2,22,28].

2 Material and methods
89 patients (table 1) from two centres, the University hospital in Antwerp and the

Erasmus medical center in Rotterdam, received a contrast enhanced ECG-triggered,
end diastolic CT scan prior to the TAVI procedure in which a CoreValve was im-
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Table 1 Clinical baseline characteristics

Variable All patients (N = 89)
Female 47 (52.8%)
Age [years] 80.3+7.2
Body mass index [kg/m?] 27.7+4.5
EuroSCORE 169£11.1
EuroSCORE2 5.6+4.1

STS 54433
Aortic valve area [cm? 0.66+0.17
Mean gradient [mmHg] 43.6+13.4
Peak gradient [mmHg] 67.9+£21.8

planted. The scan reconstruction resulted in a spatial resolution of 0.6 mm to 0.7 mm
in-plane and 0.4 mm to 0.5 mm through-plane. All patients received an intravenous
injection of 80ml of contrast agent at a flow rate of 4mls~!, followed by 30 ml at
2.5mls~!. The minimum diameter, the maximum diameter, the diameter based on
the perimeter and the diameter based on the surface area of the aortic annulus were
taken into account to determine the size of the implant [30]. One patient received a
23 mm implant, 23 patients received a 26 mm implant, 50 patients received a 29 mm
implant and 15 received a 31 mm implant. AR was graded immediately after the im-
plantation on the procedural angiography, as described by Sellers ef al. (1964) [31].

Starting from the pre-operative CT scans a parametric description of the 3D shape
of the aortic root was generated. Subsequently, those parameters were used to perform
a sizing of the aortic root for the implant size selection. Figure 2 depicts the steps in
the process from CT-images to the classification algorithm used for the automatic
sizing of the aortic root.

2.1 Image analysis

Segmentation was performed on the pre-operative scans to extract the 3D shape of the
aortic root using Mimics 16.0 (Materialise N.V., Leuven, Belgium). The left ventricle
and aorta were extracted from the CT images using a threshold on the contrast agent
in the blood, as depicted in figure 3A. The left ventricle and aorta were separated
from connected structures and each other using a graph cut algorithm [7] (figure 3B).
3D triangulated parts of the blood volume and the separate chambers were created
using a marching cubes triangulation (figure 3C and 3D). Laplacian smoothing was
performed to remove noise and small substructures. The aortic root was cut from the
3D part to create a tubular model using a plane perpendicular to the centerline at the
level of the mitral valve and the aortic arch (3E). Three leaflets were created starting
from the left ventricle model by smoothing and disconnecting the valve surface (3D).
Finally, the calcifications were extracted using a threshold of 800 Hounsfield units,
which is a consistently higher intensity compared to the contrast agent in the vast
majority of patients. A region grow was applied to select the calcifications attached
to the aortic valve, followed by a marching cubes triangulation to convert the pixels
into a 3D model. Finally, the internal volume of the calcifications was computed.
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Fig. 2 flowchart of the data analysis process

2.2 Generate the shape model

The next step was to generate meshes of corresponding points from the population
of surface models. A different method was used for the tubular part of the aortic root
and the leaflets. The calculation of the corresponding points for tubular surfaces was
described in detail in Huysmans et al. (2010) [18]. Briefly, first the tubular shape was
mapped to an open-ended cylinder. Next, the shapes were aligned using their princi-
pal axes, then the alignment of the parameterisations was determined by minimizing
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Fig. 3 (A) Coronal view of a computed tomography scan with the left ventricle and aorta blood pool
coloured yellow. (B) Three dimensional (3D) reconstruction of the geometry. (C) The tubular aortic root
model. (D) Split of the blood pool in aorta and left ventricle. (E) The 3D reconstruction of the left ventricle
and aortic valve calcifications. (F) The individual leaflets and commissure points used in the shape model
generation (LCC: left coronary cusp, RCC: right coronary cusp and NCC: non-coronary cusp).

the description length of the SSM [12]. Finally, both the spatial alignment and the
parameterisations were optimised simultaneously with respect to the minimum de-
scription length.

The correspondence in the leaflets was determined using a mapping of each leaflet
on a disk with diameter one. The mapping was determined by representing each point
on the surface as a linear combination of its neighbours. This resulted in a system of
linear equations that has a unique solution starting from the points on the boundary.
These boundary points were intialised on the disk perimeter at a point to point dis-
tance equivalent to the relative distance along the boundary of the leaflet. The disks
were aligned along the section of the boundary between the two leaflet commissures
which denote the attachment to the aortic wall. Next, a Laplacian smoothing was per-
formed on the first instance of each of the three leaflets, in order to generate a more
uniform mesh to describe all the leaflet meshes. The smoothing substitutes each point
with the average of its neighbours, constructing the master parameterisations. Subse-
quently, the points of this master parameterisations were transformed to each patients’
leaflets. The transformation is determined by the location of the points of the master
inside the triangles of the parameterised target leaflet (figure 4 part 1).

Next, the SSM is built, first the spatial registration derived from the aortic root
parameterisations was applied to the leaflets to position them correctly inside each
shape. Next the shapes of different patients are registered onto each other. The reg-
istration was performed based on the aortic annulus plane in order to minimize the
registration error with respect to the leaflets, and the aortic annulus since that was
considered the region of most interest for sizing (figure 4 part 2). The shapes are
represented as a vector X; = [X;1,¥i1,%i1,- --sXin:Yin,Zin) and put into a matrix as
columns. After subtracting the mean shape X of each column, matrix A contained the
deviation from the mean shape.
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Fig. 4 part 1: (A) parameterisations of the master leaflet on a disk with diameter 1. (B) parameterisations
of a sample leaflet on a disk. (C) Registration of the master parameterisations on the sample using the
commissure points. (D) Transformation of the corresponding points of the master parameterisations to the
sample leaflet. part 2: The registration of two 3D models of two different patients based on the annulus
plane

A=l =z Xl -3 (1)

Next, the principal components were computed by performing a singular value
decomposition. Each aortic root could then be represented as a sum of the mean and
the weighted principal components:

x=X+Ub )

where x is a new shape, U a matrix with the principal components as columns and
b a column vector of the weights of the principal components.

The quality of the SSM was evaluation using the compactness, generalisation
ability and specificity [18,32]. The compactness was calculated as the percentage of
the total variance present in the first n principal components:
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where J; is the variance of the i™ principal component and m the total number

of principal components. The generalisation ability is a measure for the ability of

the SSM to approximate a shape which is not in the model and was calculated using

a leave-one-out experiment. The specificity measures how close random samples,
generated by the model are to the shapes in the population.

C(n) 3)

2.3 Size classification

The principal component analysis aggregates the total shape variation in a limited
number of independent principal components. Therefore, a good approximation of a
shape can be obtained using only those first principal components. In the aortic root
model 95% of all variation was described by the first 20 principal components.

Based on the assumption that the patients with post-operative AR grade 0 - 1
received the correct implant size, the patients were divided in two groups: the first
group had AR grade O - 1, the second group had an AR grade > 2. The first group
was used to train two different classification algorithms, a generalised linear model,
since the parameters are the linear independent modes of variation of the SSM, and a
random forest classifier which does not impose a model on the data [27].

The weights of the first 20 principal components and the aortic valve calcifica-
tion volume were used as parameters to describe each patient. In a first step, these
parameters were ranked using an analysis of variance to determine which parame-
ters discriminated most between the size groups. Next, both classification algorithms
were trained incrementally including additional parameters.

Two parameters describe the random forest used in the classifier: first, the number
of trees determines the amount of independent classifiers that will be part of the forest
from which the majority answer is chosen. Due to the limited size of the training set
and the small number of features, the number of random subsets from which to build
each tree was small. Therefore, a small number of trees was chosen as starting point
(10). Second, the depth of the trees determines the amount of splits available to clas-
sify a sample. Since, the training set and the number of parameters is limited in size,
and there are only three possible outcome sizes, the minimum depth of 5 was taken
as start point. During the investigation of the classification algorithm, the amount of
trees and the depth was varied both increasing and decreasing. The values which gave
the most consistent and best classification with the least amount of computing time
were selected.

Each instance of the models was cross-validated by dividing the training set in 8
subgroups, then the model was trained excluding one group. The sizes of this remain-
ing groups of patients were fitted and compared to their true size. When performed
for each subgroup this resulted in a mean accuracy score and a standard error.

The best scoring classifier was applied to the patients with an AR grade > 2. A
chi-squared test was used to test whether the classification of the patients with an AR
grade > 2 was significantly different from the training set.
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Fig. 5 (L) A coronal view of the post-operative computed tomography scan of patient 5 with the segmented
stent. (R) An overview of the locations of the cross section diameter measurements.

The analysis was performed in python 3.5 using the scikit-learn 0.17 machine
learning module [27].

2.4 Verification through implantation simulation

Of the 36 patients with AR grade > 2 included in this study, a small subset also
received a post-operative CT scan (figure 5L), two of those patients were assigned
a different size implant by the random forest classifier. The implantation of both the
implanted device and the newly assigned device was simulated in both patients using
the method described in [6].

Briefly, a finite element model of the stent and the aortic root of the patient was
made based on a micro-CT of the stent and the pre-operative CT of the patient. First,
the loading of the stent on the catheter was simulated. Next, the stent was introduced
in the aortic root model and released. Subsequently, the result of this simulation was
used to calculate paths on the distance map between the sealing skirt of the implant
and the simulated anatomy as an estimate of the AR after implantation.

First, the implantation of the given implant size is simulated and compared to the
post-op CT in order to assess the accuracy of the simulation for both patients. At 4
axial cross sections (figure SR), the centre of the stent struts was used to draw a line
and calculate its perimeter, to quantify the stent dimensions of both the simulated
stent and the stent from the post-operative CT. Next, the implantation of the different
size implants was simulated and the resulting AR was estimated.

3 Results
Of the 89 patients, 2 parameterisations failed, the algorithm was unable to find the

corresponding points, 2 did not receive an angiographic AR evaluation immediately
after implantation, and only one patient received a 23 mm implant. The remaining 84
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Table 2 Implant sizes distribution in the patient population

CoreValve size [mm] AR grade 0- 1 (n=48) AR grade > 2 (n=36)

26 12 (25%) 9 (24%)
29 30 (62.5%) 18 (49%)
31 6 (12.5%) 9 (24%)
-3 std Average +3 std

Anterior Cranial
Anterior Cranial

‘ ‘ Anterior g &
PC3 , ' \ '

Fig. 6 A visualisation of the first 3 principal components (PC) of the statistical shape model, the anterior,
cranial and lateral view of the average + 3 standard deviations are shown.

patients were included in the analysis, 48 (57%) patients had an AR grade O or 1,
37 (43%) had an AR grade > 2. Table 2 gives an overview of the distribution of the
implant sizes in the population divided according to the severity of AR. The median
aortic valve calcification volume was 195.8 mm?, with the 25% quartile at 83.3 mm?>
and the 75% quartile at 335.7 mm?>.

3.1 Statistical shape model

Figure 6 depicts the first 3 principal components. The first principal component con-
tains a general size variation. The second principal component contains curvature
variations and changes in the angle of the aorta with respect to the annulus plane.
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Fig. 8 The statistical shape model evaluation: left, the generalisation ability & 1 standard deviation and
right the specificity & 1 standard deviation.

The third component contains diameter variations and additional curvature variation.
Figure 7 the compactness, and figure 8 depicts the generalisation ability and the speci-
ficity of the SSM. The compactness analysis shows that 48% of all shape variation
is combined in the first two principal components, 87% of the variation is in the first
10 principal components and 95% of the variation is in the 20 first principal compo-
nents. The generalisation ability shows that using the first 20 principal components,
a new shape can be approximated with a mean absolute distance of 1 mm. Finally, as
described by the specificity analysis (figure 8), randomly generated shapes are at a
mean absolute distance of approximately 3 mm from the closest shape in the training
population.
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Fig. 9 the result of the 8-fold cross-valdition and standard error for both classification algorithms as a
function of the percentile of parameters included in the model.

Table 3 Cross-validation of the training set: confusion matrix of the random forest classifier

predicted
26 29 31
26 7 5 0
actual 29 4 24 2
31 2 4 0

3.2 The sizing algorithm

Figure 9 depicts the result of the parameter selection analysis, both classification al-
gorithms perform best using the 20% most discriminating features. These features are
principal component 1, 10, 7 and 2 respectively. Figure 10 depicts principal compo-
nents 7 and 10. Both principal component 7 and 10 contain local diameter variations
at the level of the aortic root. Principal component 7 also shows variations of the
length of the aortic root model. Principal components 1 and 2 are shown in figure 6.

The linear model assigns 69 4= 7% of the included patients the same size as they
had implanted, the random forest classifier assigns the same size to 96 +-3% when ap-
plying the classifier to the test data. Table 3 gives an overview of the cross-validation
results of the random forest model. The F-score for a 26 mm implant is 0.56, and the
F-score for a 29 mm implant is 0.76.

Table 4 contains the results of the random forest classification algorithms on the
patients with AR > 2. The average difference between the predicted size and the
implanted size is -0.14 £ 2.04 mm for the random forest classifier. The random forest
classifier assigned the same size to 16 out of 36 patients with AR > 2, 10 patients got
one size larger, 1 got two sizes larger and 9 got one size smaller.

Overall, the random forest classifier assigned the same size in 65 = 7% of the
patients with AR grade O or 1, and in 43 & 8 of the patients with AR grade > 2. Due
to the limited size of the included patient population, the classification of the patients
with AR > 2 is not significantly different from the cross-validation of the training
set (p = 0.28). Even, specifically for the 29 mm size subgroups there is no statistical
significant difference (p = 0.33).
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Fig. 10 A visualisation of principal components (PC) 7 and 10 of the statistical shape model, the anterior,
cranial and lateral view of the average + 3 standard deviations are show.

Table 4 Implant sizes assigned to patients with AR > 2

predicted
26 29 31
26 2 6 0
received 29 4 11 3
31 2 7 2

Table 5 The perimeters of the simulated stents that were implanted in the patients and the difference with
the post-op and the alternative stent size

Section A Section B Section C Section D
Patient A perimeter [mm] 68.7 68.4 63.7 81.9
26 mm A post-op [mm] 1.0 0.6 1.7 1.6
A 29 mm [mm] 2.8 5.6 52 -3.2
. perimeter [mm] 74.1 76.4 68.4 96.9
ngt;fﬁf B A post-op [mm] 10.1 5.9 13 0.4
A 26 mm [mm] -3.2 -6.3 -5.7 2.1

3.3 Verification through implantation simulation

Patient A had a 26 mm CoreValve implanted and was assigned a 29 mm implant by
the algorithm with a probability of 90%. Patient B had a 29 mm implant and was
assigned a 26 mm CoreValve with a 71% probability by the random forest classifier.

Table 5 shows the measurements performed on the simulated stents. The compar-
ison with the post-operative data shows that the simulation of patient A is very close
to the measurements on the post-operative scan, while in patient B the simulation
underestimates the perimeter at the bottom of the stent. Comparing the proposed size
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Table 6 The AR estimation with the two different implant sizes

Max-flow [mm] Post-op Angiographic
AR grade [0 - 4]

. 26 mm 177.3 3
Patient A 29 mm 70

. 26 mm 161.6 3
Patient B 29 mm 512

with the implanted size the perimeter change is similar in magnitude, an increase and
decrease respectively of the perimeter with 3 mm to 6 mm.

Table 6 contains the AR estimation based on the simulated implantations. In pa-
tient A, the 29 mm stent results in a significant reduction of the estimated flow. In
Patient B, a threefold increase of the flow is estimated with the proposed 26 mm
stent. Upon further investigation the calculated flow for the 29 mm stent, implanted
in patient B, is low for AR grade 3, and the simulation of patient B was less accurate
with respect to the post-operative CT.

4 Discussion

The goal of this research was to construct a method to perform the sizing of the aortic
root for implant selection based on its 3D shape. The method described in this study
used the weights associated with the principal components of a SSM as a parametric
description of the 3D aortic root shape of each patient. The weights and the vol-
ume of the calcifications were used as parameters in two classification algorithms: a
generalised linear model and a random forest classifier. The classification algorithms
were trained using the patients who did not suffer from AR (grade 0) or only suffered
from mild AR (grade 1) after implantation of the device, assuming that those patients
received the optimal implant size.

The random forest classification algorithm performed best during the training,
assigning the correct implant to 96 + 3% of the patients in the training cohort. The
8-fold cross-validation on the same training cohort resulted in 65 4= 7% correctly as-
signed implant sizes. The cross-validation showed that the robustness of the classifi-
cation algorithm was limited by the number of patients in the implant size subgroups.
For example, the subgroup of patients with a 31 mm implant did not contain enough
patients to train the algorithm when some were left out as part of the cross valida-
tion experiments. The higher prevalence of 29 mm implant patients in the training set
resulted in a better F-score for those patients.

Applying the trained algorithm to the patients with moderate to severe AR showed
43 £ 8 of patients being assigned the same size as was implanted. Compared to the
cross-validation result of the training set, this result implied that there was a differ-
ence between the patients with AR grade 0 or 1 and the patients with AR grade > 2.
The patients could potentially benefit from the alternatively assigned implant size.
However, the difference was not statistically significant.
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The implantation of the stent assigned by the algorithm was simulated in two
patients in order to get some insight in the benefit of the alternative stent size for the
patient. The improvement of patient A is an encouraging result. However, patient B
shows that additional research and data are needed to validate the automatic sizing
algorithm. The evaluation of the implant performance based on a simulation is limited
by the accuracy of the simulation for each patient. Therefore, two patients who had a
post-op CT were used for this test.

In order to determine the size of a new patient’s valve, the shape model needs to be
fitted on the aortic root of that patient. The fit results in the weights associated with the
principal components describing the new patient, these weights are then used in the
classification algorithm. Two approaches can be devised to perform the fitting, either
based on the displacement of corresponding points, therefore, the surface model of
the aortic root needs to be corresponded with the SSM, or based on a fit of the surface
using a non-rigid registration algorithm.

Only AR was investigated in this study, other complication, potentially linked
with sizing, such as conduction problems were not considered.

The study had a number of limitation: first, only images of the diastolic phase
were available, CT images of the systolic phase would show the annulus at its largest
which are suggested to be better suited for the sizing and subsequent implant selection
[3].

The accuracy of the model representing the anatomical variation depends on the
accuracy of the segmentation. The segmentation accuracy of bone tissue was previ-
ously investigated [8]. The segmentation of soft tissue is more difficult to validate.
However, a comparison between manual segmentation by experts and the segmen-
tation performed by the algorithm showed a similar variation between the algorithm
and the manual segmentation as the variation between two manual segmentations.
Further investigation comparing images from different modalities could be used to
validate the segmentation of soft tissue.

Since there are no landmarks that mark the start of the aortic root, a manual cut
is used to determine the upper boundary of the model. It is likely that non anatomical
length variations are part of the statistical shape model which could overshadow the
true anatomical variation of the length.

The distribution and shape of the calcifications could influence the sealing of
the implant, therefore it would be interesting to include both in the sizing research.
However, including the calcifications as part of the shape model is not possible with
the technique used in this study, due to the irregular nature of the their shape and
position. A previous investigation in the same dataset could not find clear evidence of
the significance of calcification distribution described by ratios between the leaflets
[5].

In addition, the model could be extended to include the aortic arch and part of
the descending aorta as an indication of the complexity of the approach to the aortic
root. A tortuous approach could adversely influence correct placement of the implant
leading to a higher risk of post-operative AR grade.

The principal components describing the shape variation that were used in the
classification algorithms had no straightforward physical interpretation. A potential
method to make the model more intuitive is to associate interpretable morphological
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measures with the principal components through correlation as described by Bruse et
al. (2015) [9].

The inclusion of the leaflets caused some artifacts in the SSM, as can be seen in
principal component 3 in figure 6 where the leaflets protrude through the aortic wall
in the -3 standard deviation extreme. This can be due to the separate registration and
parameterisation of the leaflets and the aortic root. Therefore, there is no physical
connection in the model, nor correspondence, between the leaflet border and the aor-
tic root. This can only be solved by constructing the correspondences of the leaflets
and the wall as a whole. A registration based approach using a complete model of
the aortic root, including the leaflets, as a master parameterisation could be a solu-
tion [23].

Another limitation that can cause the anatomically incorrect shapes, is the use
of principal component analysis to perform the dimensionality reduction. It imposes
linearity on the shape variation while the population of aortic roots, including the
leaflets might contain substantial non-linear shape variation. Non-linear dimension-
ality reduction algorithms could improve the shape model [1,24,33].

Finally, the study was limited by the size of the data set therefore, the statistical
analysis showed no significant difference between the cross-validation of the training
set and the sizing of the patients with AR grade >2. Also, the feature selection started
from a rather large number of features with respect to the amount of data points.
Therefore, the results could alter when more patients would be included in the study.

5 Conclusion

The proposed method provides a semi-automatically tool to assign an implant size
based on a pre-operative CT scan of the aortic root. It could provide the clinical
team with additional information during the planning of the intervention. The results
of this study suggest that when the algorithm assigns a larger size implant than the
manufacturing guidelines, choosing the larger size could reduce the occurrence of
AR.

Additional data of patients in the less prevalent implant sizes is needed to make
the algorithm more robust. In addition, further research is required to include the
fitting of the shape model to the work flow, and additional simulations need to be
performed in order to further assess the effectiveness of the alternative implant size
assigned to patients with moderate to severe AR.
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