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Abstract: Wastewater treatment plants (WWTP) typically have a service life of several decades.
During this service life, external factors, such as changes in the effluent standards or the loading
of the WWTP may change, requiring WWTP performance to be optimized. WWTP modelling is
widely accepted as a means to assess and optimize WWTP performance. One of the challenges for
WWTP modelling remains the prediction of water quality at the inlet of a WWTP. Recent applications
of water quality sensors have resulted in long time series of WWTP influent quality, containing
valuable information on the response of influent quality to e.g., storm events. This allows the
development of empirical models to predict influent quality. This paper proposes a new approach
for water quality modelling, which uses the measured hydraulic dynamics of the WWTP influent
to derive the influent water quality. The model can also be based on simulated influent hydraulics
as input. Possible applications of the model are filling gaps in time series used as input for WWTP
models or to assess the impact of measures such as real time control (RTC) on the performance of
wastewater systems.

Keywords: sewer system; empirical model; influent generator; influent modelling; gap filling

1. Introduction

Modelling of wastewater treatment plants (WWTPs) using activated sludge models (ASM)
has become a standard in both industry and academia for a range of objectives, amongst others
WWTP design [1,2], operation [3], and control [4,5]. Especially the latter objective, developing
control strategies and assessing the performance of control strategies requires high frequency influent
data [6]. In a comprehensive review, [7] discussed the available approaches for generating influent
data. The approaches range from (1) data driven methods based on creating databases with monitoring
and experimental data and derived models using the data; (2) very simple models based on harmonic
functions; and (3) phenomenological models [8,9].

The data driven methods comprise two different approaches. The first method [10] uses pollutant
release patterns derived from literature to generate dynamic influent data aggregating the punctual
emissions from the database. The second method [11] interpolates available influent data at e.g., a
daily timescale to e.g., hourly dynamics.

Water 2017, 9, 491; doi:10.3390/w9070491 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-0170-6721
https://orcid.org/0000-0001-6670-3700
http://dx.doi.org/10.3390/w9070491
http://www.mdpi.com/journal/water


Water 2017, 9, 491 2 of 18

The simple models based on harmonic functions are very well suited for the analyses of dry
weather flow (DWF) situations, but less so for wet weather flow (WWF) situations [7].

The phenomenological models are the most detailed influent models, that can give a
phenomenological representation of dynamics of WWTP influent, including diurnal patterns, weekend,
seasonal, and holiday variations as well as rain events [7,8]. Despite being labelled as ‘promising’ [7],
todays phenomenological models cannot adequately reproduce the dynamics in WWTP influent
during wet weather due to a relatively poor representation of the build-up and wash off of urban
pollutants. This is also true for the most recently published influent generator by [12], who use a mix
of statistical and conceptual modelling techniques for synthetic generation of influent time series.

The limitations associated with the use of influent generators are not surprising given the state
of the art knowledge on the physical-chemical, biological and transport processes occurring in sewer
systems [13–17]. Sediment transport especially is not very well understood and not very successfully
reproduced in deterministic sewer models. This is partly due to the fact that it is currently not possible
to get enough data on the initial sewer sediment conditions throughout an entire sewer network.
It is interesting to note that the developers of influent generators, showing many similarities with
simplified or parsimonious sewer models [18,19], are facing the same issues as sewer modelers in the
past, i.e., how to incorporate the contribution of in-sewer stocks during storm events to the outflow of
sewers via either combined sewer overflow (CSO) or WWTP influent.

In order to overcome the limitations of deterministic sewer models, regression models have
been proposed, which are validated against monitoring data. A recent successful example of this
approach is given by [20], who developed an empirical model for storm water total suspended solids
(TSS), event mean concentrations with rainfall depth, and antecedent dry weather period as input
variables. These empirical relations, that are valid at a CSO or storm sewer outfall (SSO), however, are
not suitable for the prediction of WWTP influent quality, as these models do not predict the influent
quality during DWF. For WWTP influent modelling, the empirical model described by [21], relates the
influent concentration to the daily flows. A weak point of this approach is the impossibility to account
for the dynamics during storm events. This is a major drawback, as storm events typically do not last
a full day.

Recent applications of water quality sensors have resulted in the availability of long time series
of WWTP influent quantity and quality [22,23]. These time series contain a lot of information on
the response of influent quality to storm events and the contribution of in-sewer stocks to WWTP
influent [24].

In this study, time series analysis is used to understand the dynamics of WWF related variations
in WWTP influent quality and to relate the variation in influent quality to influent hydraulics.
This allowed the development of an empirical model based on understanding of the underlying
physical processes.

The paper is organized as follows: first, the available data set of WWTP Eindhoven is described.
Second, the model development and calibration method are presented. Next, the calibration results,
model results and the transferability of the concept are presented, discussed, and finally, some foreseen
applications of the model are introduced.

2. Materials and Methods

2.1. System Description: The Dommel River IUWS

The Dommel river is relatively small and sensitive to loadings from CSOs and WWTP effluent.
The river flows through the city of Eindhoven (the Netherlands) from the Belgian border (south)
into the River Meuse (north). The Dommel receives discharges from the 750,000 people equivalent
(PE) WWTP of Eindhoven and from over 200 CSOs in 10 municipalities. In summer time, the base
flow in the river just downstream of the WWTP comprises 50% of WWTP effluent, increasing to 90%
during small storm events. The Dommel River does not yet meet the requirements of the European
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Union Water Framework Directive (WFD) [25]. The water quality issues to be addressed are dissolved
oxygen (DO) depletion, ammonia peaks and seasonal average nutrient concentration levels [26,27].
Earlier research within the KALLISTO project [18,25] demonstrated that the WWTP effluent is the main
source for the toxic ammonia peaks in the Dommel river and that the ammonium peaks in the WWTP
effluent can be significantly reduced by applied integrated real time control (RTC). In [28], the use
of RTC by activating in-sewer storage volume to reduce and delay the hydraulic peak loading of the
WWTP during storm events has been shown to be an effective measure. Reference [29] introduced a
new RTC concept: the smart buffer, which minimizes the peak load to the biology at WWTP Eindhoven
by applying the aforementioned RTC combined with using only one of the three primary clarifiers
(PC) during dry weather (DWF) and using the other two PCs only during storm events.

The 10 municipalities contributing to the WWTP influent are divided over three catchment areas
that are very different in size and character, each having a separate inflow to the WWTP (see Figure 1).
Wastewater from Eindhoven Stad (ES, municipality of Eindhoven) accounts for approximately 50%
(in practice ranging between 14,000 and 17,000 m3/h) of the hydraulic capacity and is discharged
directly to the WWTP. The other nine (much smaller) municipalities are each connected to one of the
two wastewater transport mains, one to the north (Nuenen/Son or NS, 7 km in length) and one to
the south (Riool Zuid or RZ, 32 km in length), accounting for respectively 7% (3000 m3/h) and 43%
(in practice ranging from 14,000 to 15,000 m3/h) of the hydraulic capacity. An elaborate description of
the studied wastewater system can be found in [23].
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Figure 1. Wastewater system of Eindhoven (Left) and its receiving streams and schematic lay out of
the wastewater system; (Right) Figure reproduced with permission from [23].

2.2. Monitoring Network and Data Validation

At each of the three inflows into the WWTP (locations ‘A’ in Figure 1 at the right) on-line
spectroscopy sensors (UV-VIS) have been installed that measure equivalent concentration values of
wastewater quality parameters: total suspended solids (TSS), chemical oxygen demand (COD), and
filtered COD (CODf), i.e., the dissolved fraction of COD, at an interval of 2 min. In addition, flow is
recorded every minute at these locations and ammonium (NH4, using Hach Lange Amtax sensors)
at the Eindhoven Stad and Riool Zuid catchments. In this study, monitoring data for the year 2012
was used.

The monitoring data were validated manually, focusing on obtaining reliable data for calibration of
wet weather flow processes. Figure 2 shows an example of data and their evaluation. After validation,
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only 38.5% of the data was considered to have an acceptable quality during the condition required.
This percentage of data perceived ‘good enough’ after validation may seem relatively low. During
earlier research projects (2007–2008) at WWTP Eindhoven on UV-VIS sensors, the percentage of ‘good
enough’ data after data validation ranged between 50% and 75%, despite very intensive maintenance
and surveillance [23] and without restrictions on the influent conditions. WWTP influent has shown
to be a very difficult medium for water quality monitoring. The dataset after validation comprises
approximately 30 storm events with good data for each calibration performed. In the model calibration,
these events, including the antecedent dry day and several following dry days, were used. In Figure 2,
and all other Figures, the data used for calibration is represented by the dark grey bullets, data not
used for calibration with light grey bullets. An assessment of routine 24 h water quality samples of
WWTP influent showed that the DWF does not show a noticeable seasonal pattern.
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2.3. Data Analysis

In earlier work [16], a part of this data set was used to study the dynamics of wastewater
composition. This resulted in well described typical diurnal patterns during DWF and typical dynamics
during WWF (Figure 3).
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For WWF, it has been observed that the concentration levels of the wastewater show a typical
pattern during a storm event: a short period called ‘onset’ of the storm event, with an increased
concentration level for particulate matter but not for dissolved matter, a longer period called ‘dilution’,
where dilution of both dissolved and particulate matter takes place, and ‘recovery’, a period where
dissolved and particulate matter slowly return to DWF levels.

2.4. Model Development

The general idea behind the model development is that the measured hydraulic influent data,
i.e., flow and water level in the influent pumping station, can be used to make a distinction between
the four patterns: DWF, onset of WWF, dilution during WWF and recovery after WWF. Each of these
patterns is denoted as a system state, during which a certain relation between flow and concentration
level applies. This allows the incorporation of the contribution of in-sewer stocks on top of the mixing
process between wastewater and stormwater. The latter is a common feature of influent models applied
to simulate both dry and wet periods, while explicitly accounting for the contribution of in-sewer
stocks circumventing the relatively limited knowledge associated in sewer processes.

The water quality average dry weather diurnal pattern is the core of the model. As long as the
system state is ‘DWF’, the average dry weather diurnal pattern based on monitoring data is used,
together with the measured flow data. The average dry weather diurnal pattern has been derived from
flow monitoring data by averaging the monitoring data of 10 dry days over 5 min intervals with the
same timestamp.

During wet weather, the model superimposes a number of processes on the DWF pattern for
water quality to mimic onset, dilution, and recovery. The type of parameter (NH4 or COD) and the
type of event (small, medium or large) determine which of these processes is to be applied. The type
of event is used as characteristic of a storm event, as it was found that the relation between flow and
concentration levels differs very much between small, medium, and large storm events. The measured
hydraulics, in this case the flow and water level in the influent pumping station, are used to determine
which of the described processes should be activated in the model, using the scheme of Figure 4.
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Figure 4. Selection of water quality processes to be superimposed on process 1 during dry weather
(DWF), using information on hydraulics. The abbreviation Th in the figure is short for threshold.
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As indicated in Figure 4, two conditions have to be met to change from DWF to WWF. The first is
that the upper limit for dry weather conditions (QDWF, set at the 95th percentile of the flow values
collected during dry weather at a specific timestamp) has to be exceeded, the second that the volume
should exceed a certain threshold (set at 5000 m3). The second condition is added to exclude apparent
events in the data caused by interference of the pump operation due to for example to maintenance.
The value of 5000 m3, equivalent to the volume of 2 h of DWF, shown to be sufficient to filter flow
values exceeding QDWF due to operational issues during DWF.

A small storm event is defined as an event for which the water level in the influent chamber does
not rise above the DWF threshold value (set at 11.30 m AD) and the flow exceeds the 95 percentile
DWF value with less than a threshold set at 4000 m3/h These events are very small storm events,
where the inflow is less than 0.2 mm/h or 2 m3/ha). Medium events are defined as events where the
water level in the influent chamber does not exceed the DWF threshold value, but the flow exceeds the
95 percentile DWF value with more than the threshold. These events are typically relatively small, low
intensity storm events, where the inflow is less than the available pumping capacity (which is equal to
an interceptor capacity of 0.7 mm/h or 7 m3/ha). Large storm events are defined as events during
which not only flow increases, but also the water level in the influent pumping station increases above
the DWF threshold value. This occurs only if the sewer system starts filling during bigger storm events
exceeding the pumping capacity of the WWTP.

The processes applied in the model are:
Process 1 the basic process for all parameters, is the DWF pattern for water quality. It is derived

from high-frequency monitoring data collected during multiple dry weather days, by averaging over
the same time stamps.

Process 2 mimics dilution and is based on the ratio between the actual flow (Qactual) and the
upper limit for the flow during DWF at that time of the day at the location of the WWTP inlet works
(QDWF). The wastewater concentration is calculated using Formula (1):

CWWF(t) = CDWF(t) (a1 QDWF(t)/Qactual(t) − a1 + 1) (1)

With CWWF = calculated concentration during wet weather, and CDWF = the concentration during
DWF conditions at that time of the day. The dilution factor a1 (-) is introduced to allow adjustment to
the dilution rate if necessary. A value of 1 for factor a1 indicates that the dilution is exactly inverse to
the increase in flow. A value of a1 smaller than 1 would impose an increase in pollutant loads during
the event, which could be necessary to account for pollutant contributions originating from in-sewer
stocks. A value of a1 larger than 1 would impose a decrease in pollutant loads during the event, which
could be expected for a compound where in-sewer stocks are zero and a part of the pollutants would
be discharged via a CSO. For low dilution ratios, i.e., QDWF(t)/Qactual(t) being close to 1, the factor a1

has a limited influence, for higher dilution ratios, the factor a1 contributes to a larger extent.
Process 3 accounts for dilution during the onset of storm events. Process 3 is described by a

parabolic function, valid for the period between the start of the storm event and the moment of the
maximum dilution. The length of this period, the duration of the onset a3, is determined during model
calibration. This process is necessary to account for the delayed dilution observed in the monitoring
data, see Figure 5. During the first part of the event on 28 July 2012, the influent flow increased
rapidly to the maximum flow rate of 14,000 m3/h, while the NH4 concentration gradually reduced to
a minimum of 5 mg NH4/l. Using Formula (1) during the onset of the storm event, would result in an
overestimation of the dilution. Instead, Formula (3) applies during the onset of the storm event:

CWWF(t) = CDWF(t) × (dilution depth/a2
2) × (t − tend onset)

2 - dilution depth + 1 (2)

where a2 = duration of onset and dilution depth = the minimal ratio CDWF(t)/CWWF(t) during the
onset of the storm event. Figure 5 shows how the parameters in the parabolic function of Formula (2)
are defined.
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During the restoration phase, the concentration is calculated by:

CWWF(t + 1) = CWWF(t) (1 + a3) dt. (3)

Process 5 describes a first flush in concentration levels of particulate material (see Figure 3), it
is thus not valid for soluble substances. This initial peak increases the concentrations during the
first stage of storm events, before dilution becomes the dominant process. Process 5 is modeled as a
triangle that causes an instant increase of the COD concentration of a4 mg/l at the onset of the event,
decreasing with a fixed rate a5 (mg/(L·s)).

Process 6 regards dilution and restoration for small events. Process 6 describes the concentration
profile as a fixed-shape triangle, where dilution takes place at a fixed rate a6 (mg/(L·s)) during x h and
recovery at the same rate a6 (mg/L/s) during the next x h. In the case of Eindhoven Stad and Riool
Zuid a duration of 13 h proved to be a good estimate of the duration of process 6.

2.5. Model Calibration

In this study the differential evolution adaptive metropolis (DREAM) algorithm is the
method [30,31] applied to calibrate the parameters of the empirical model to find the minimal difference
between the empirical model output and the monitoring data. The effectiveness of DREAM in water
related model calibration has been demonstrated in many previous studies, e.g., [32–34].

Table 1 shows the model parameters, units and the searching range for the calibration procedure.
The threshold values for selecting the type of event were derived during data analysis before the
calibration of the model parameters and were consequently not included in the model calibration.
Future users of the model on other catchments may include these parameters as part of the model
calibration. For reasons of clarity, these parameters are listed here:

VTh: threshold value for making distinction between real storm events and irregularities in the
DWF due to operational issues. In this study set at equivalent of 2 h of DWF.

QTh: threshold value to distinguish medium from small storm events. Set in this study at an
equivalent of 0.2 mm/h of runoff.

hTh: threshold value to distinguish large from medium storm events. Set in this study at 0.30 m
above the setpoint of the frequency controlled pumps.

x: duration of dilution and restoration for small events: Set in this study at 13 h.
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Table 1. Model parameters, units, and search range. COD = chemical oxygen demand.

Model Parameter Abbreviation Unit Search Range Parameter

dilution factor a1 - 0–2 NH4, COD
dilution delay factor a2 minutes 0–600 NH4, COD

recovery factor a3 mg/(L·s) 0–0.01 NH4, COD
peak first flush concentration a4 mg/l 0–2000 COD

recovery factor first flush a5 mg/(L·s) 0–10 COD
recovery factor small events a6 mg/(L·s) 0–0.01 NH4, COD

The calibration is performed using 5000 iterations in DREAM for the COD model and 2500 for the
NH4 model, as it was found from test runs that the cumulative density functions of the parameters
do not change (within the parameter stability) after a few thousand iterations. The last 50% of the
iterations are used for further analysis: the optimal parameter set and model output are derived, and
the model is run with all these parameter sets to determine the 95% confidence intervals for the NH4

and COD concentrations.

3. Results and Discussion

This section presents an overview of the model results, a discussion of their quality and the
transferability of the model concept. The model was first developed, tested and calibrated on data of
Eindhoven Stad only and the data from the subcatchment Riool Zuid were used to be able to discuss
the transferability of the concept.

3.1. Calibration Results

The DREAM algorithm was applied with a total of 5000 iterations for the COD model and 2500
for the NH4 model. The algorithm uses 2 × n Markov Chains, with n being the number of model
parameters being evaluated. This resulted in 312 iterations for the COD model and 208 iterations for
the NH4 model. Figure 6 shows the variation in model parameter values during the calibration process
for the model for NH4 for catchment Eindhoven Stad for the first Markov Chain of each iteration.
Parameters concerning medium and large storm events are denoted in Figure 6 as subscripts M and

L respectively. The value of each of the model parameters is relatively stable during the calibration
process, showing that the number of iterations was sufficient to converge.
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The correlation between the model parameters was found to be limited from Figure 7, showing a
high identifiability of the model parameters.
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Figure 7. Posterior distribution of model parameters a1 to a6 for the NH4 model for catchment
Eindhoven Stad based on the second 50% of the iterations. The histograms represent the posterior
distribution of individual model parameters and the scatter plots represent the relationships for various
combinations of parameters.

The model parameter values are shown in Table 2 for the NH4 and COD model. For the NH4

model, there is no strong need to make a distinction between large and medium storms, as the model
parameters are rather similar. For COD, however, the model parameters differ strongly for large and
medium storm events. A value of 1 of the dilution factor would mean no contribution of in-sewer
stocks and only perfect dilution, values below 1 would indicate a contribution of in-sewer stocks. The
values for the dilution factor for NH4 are just below 1, indicating that for NH4 the contribution of
in sewer stocks is relatively limited. For the COD, however, the values of a1 are quite low. A value
for a1 of approximately 0.5 leads to CWWF = 0.57 × CDWF based on Formula (1) and the maximum
ratio between Qactual and QDWF (15,000/2100 = 7.1). This means that at a flow of 15,000 m3/h, the
concentration in the WWTP influent is still 0.57 × CDWF. Consequently, the influent load at that
moment will be approximately 4 (7.1 × 0.57) times the DWF load. This peak load factor was observed
regularly in monitoring data for this catchment [23].

Table 2. Model parameters values for NH4 and COD model for Eindhoven Stad Catchment. Subscript

M and L in model parameters denote medium and large storm events.

Model Parameter Abbreviation NH4 Model COD Model

dilution factor, large storms a1,L 0.95 (-) 0.63 (-)
dilution delay factor, large storms a2,L 123 (min) 342 (min)

dilution factor, medium storms a1,M 0.82 (-) 0.47 (-)
dilution delay factor, medium storms a2,M 115 (min) 589 (min)

recovery factor a3 0.00025 (mg/(L·s)) 0.00014 (mg/(L·s))
peak first flush concentration a4 Not applicable 48 (mg COD/(L·s))

recovery factor first flush a5 Not applicable 0.19 (mg COD/(L·s))
recovery factor small events a6 0.00059 (mg/(L·s)) 0.00017 (mg/(L·s))
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3.2. Model Results

Figure 8 shows the resulting predicted water quality and the measured water quality for NH4 in
the WWTP influent for Eindhoven Stad.
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Figure 8. Model vs. monitoring data: NH4 concentration in the wastewater treatment plant
(WWTP) influent.

The results show that the dynamics in the model (solid black line) and the monitoring data (grey
dots) show an overall good agreement in terms of dynamics and values during wet weather during
the large events of 28 and 29 July. In the monitoring data, dilution starts a little bit earlier than in
the model. During the medium event on 31 July, the model fit is less satisfying. During dry weather
(25 July till 28 July), the daily variation in the measured concentration of NH4 is represented well by the
model. The remaining differences are due to the fact that the DWF dynamics in the model represent the
average DWF concentration levels and the DWF varies per day. The root mean squared error (RMSE)
for the NH4 model based on the data used in the calibration is 6.3 mg NH4/l, or nearly 16% related to
the mean DWF concentration. Figure 9 shows the normalized cumulative density function (CDF) of
the model results and the monitoring data for NH4 and COD. Both the RMSE and the CDF are based
on the entire dataset used for modelling, which includes all storm events with sufficient data quality
and the dry days preceding and following the storm event. As expected, the high concentrations,
which occur during DWF, are not captured very well due to the daily variation in DWF concentrations.
At lower concentration levels, the agreement between model and monitoring data is reasonable.
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The COD model also incorporates process 5 describing the peak first flush concentration that
was observed in the monitoring data, see Figure 3. The model results for the COD model for the
Eindhoven Stad catchment are shown in Figure 10. As expected, the model fit is not as good as the
model fit for NH4, which is partly due to the difference in the quality of the monitoring data, illustrated
by the outliers in the monitoring data shown in Figure 10 and partly due to the fact that modelling
suspended solids is much more difficult than modelling of solutes. The RMSE for the COD model
based on monitoring data used in the calibration is 109 mg COD/l, equivalent with 18% of the mean
DWF concentration. This RMSE for COD is in relative terms comparable to the RMSE for NH4.
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4 June, 6 June and 8 June are adequately represented by the model.

The influent model has been developed to be used to deliver input for WWTP models that is
reliable enough to assess WWTP performance and to assess the impact of measures, such as real
time control (RTC) in wastewater systems. An earlier version of this influent model presented has
already been used for this purpose in the KALLISTO project at water board De Dommel [26,28].
The current version is applied in the assessment of the performance of the smart buffer concept at
WWTP Eindhoven [29]. The values for the RMSE for NH4 just meet the quality requirements for
WWTP influent data derived by [35], while for COD they easily meet these requirements. This shows
that the influent model is sufficiently good for the described modelling purposes.

3.3. Transferability of the Concept

The structure of the influent model was developed for the catchment Eindhoven Stad (ES) only.
The data from the catchment Riool Zuid (RZ) were used to verify the concept, using the same routines
for calibration. With respect to the transferability, it has to be noted that the subcatchments ES and RZ
are independent catchments, allowing the transferability of the concept to be tested.

The model parameters are shown in Table 3. For catchment RZ, the model parameters for medium
and large storms are very similar for both the NH4 and COD model, showing that this distinction
between large and medium events is not necessary for this catchment. The model parameter values for
the dilution factor a1 for the RZ catchment show a strong similarity with the model parameters for the
ES catchment. For NH4, the dilution during the storm event, calculated by Formula (1), remains nearly
reciprocal to the increase in influent flow during the storm event. This indicates that during the storm
event, nearly all nitrogen in the WWTP influent stems from the wastewater, with only very limited
contributions from the rainfall runoff and the in-sewer stocks.
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Table 3. Model parameters values for NH4 and COD model for Riool Zuid Catchment. Subscript M

and L in model parameters denote medium and large storm events.

Model Parameter Abbreviation NH4 Model COD Model

dilution factor, large storms a1,L 0.96 (-) 0.49 (-)
dilution delay factor, large storms a2,L 373 (min) 590 (min)

dilution factor, medium storms a1,M 0.98 (-) 0.49 (-)
dilution delay factor, medium storms a2,M 427 (min) 548 (min)

recovery factor a3 0.00033 (mg/(L·s)) 0.00034 (mg/(L·s))
peak first flush concentration a4 Not applicable 60 (mg COD/(L·s))

recovery factor first flush a5 Not applicable 0.06 (mg COD/(L·s))
recovery factor small events a6 0.00027 (mg/(L·s)) 0.00002 (mg/(L·s))

For the COD, the dilution factor of a1 of 0.49 results in COD concentration levels during the high
flow period of storm events of between 250 and 300 mg COD/L and, as a consequence, high influent
peak loads. This additional load arriving via the influent at the WWTP during a storm event originates
mainly from the in-sewer stocks [15], given the fairly low COD concentration in Dutch stormwater of
61 mg COD/L [36].

The overall model performance for the RZ catchment, expressed in terms of RMSE, is comparable
with the performance for the ES catchment. The RMSE amounts to 8.9 mg NH4/L, equivalent with
22% of the mean DWF value for the NH4 model and to 126 mg COD/L, equivalent with 25% of the
mean DWF value for the COD model. As for Eindhoven Stad, the cumulative density function for
model results and monitoring data show reasonable agreement for both NH4 and COD, see Figure 11,
with once again the biggest differences being in the higher (DWF) concentration ranges.
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As there was no need to change the model structure, it was concluded that the model is in
principle transferable to other catchments, provided that the dynamics during WWF show similar
patterns as described in Figure 3. Literature confirms these patterns to be fairly general [37,38], A
number of distinct phases in the influent pollutograph are defined during storm events:

Phase 1) increase of flow rate and subsequently an increase of the load arriving at the WWTP due to the
‘push’ of wastewater with DWF concentration levels. This phase is more distinct the more wastewater
is stored downstream in either large interceptor sewers or rising mains.
Phase 2) increased concentration of suspended solids as eroded sewer sediments start to arrive at the
WWTP. These sediments are usually transported with a velocity lower than the fluid velocity [14].
Phase 3) arrival of diluted wastewater at the WWTP.
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Phase 4) return to DWF equilibrium. Equilibrium for dissolved compounds will be reached as soon as
all remaining storm runoff has been transported (pumped) towards the WWTP. Reaching equilibrium
for suspended solids may last longer since it takes time before all depressions within the sewer system
are filled again with sediment.

Phases 1 and 2 are both part of the onset of the storm event, phase 3 is similar to the dilution
stage, while phase 4 relates closely to the stage of recovery after the storm events. Despite the need of
further research on the transferability, the similarities in system dynamics strongly indicate a wider
applicability of the model then just for Eindhoven Stad and Riool Zuid.

The consistency in the dilution factors for NH4 and COD for Eindhoven Stad and Riool Zuid
(with dilution factors for NH4 just a little smaller than 1, indicating a small contribution of in-sewer
stocks and dilution factors for COD around 0.5, indicating a large contribution of in-sewer stocks)
demonstrate that the empirical model is able to capture the contribution of in-sewer stocks during
the dilution phase of the event adequately. This is an important benefit of the model compared with
influent generators reviewed by [7]. The differences in model parameters related to the first flush
and recovery after the event seem to be linked to the differences in lay out of the sewer system.
Future research is necessary to further elaborate on the relation between parameter values and physical
characteristics of the catchment. The amount of in-sewer storage relative to the pumping capacity of
the WWTP will likely be related to the length of the recovery period, as these characteristics determine
the emptying time of the sewer system, which will be related to the length of the recovery.

The differences in performance, although relatively small, can be attributed to the different
characteristics of the RZ catchment and possibly also to the limited quality of the sensor data. This is
illustrated by Figures 12 and 13. In Figure 12, the results for NH4 are shown for the RZ catchment
for the week after 16 July and in Figure 13 for the first two weeks of December 2012. During the
events of 17 July and 21 July, the monitoring data show two distinct dilution phases during the events.
One dilution phase occurs at the beginning of the storm event and one at the end. This phenomenon
does not occur during the storm events of 2 and 4 December, but to a lesser extent on 10 December.
The Riool Zuid catchment (the light grey catchments in Figure 1, left) has a very different structure
compared with ‘Eindhoven Stad’ (the dark colored central catchment in Figure 1, left). While the ES
catchment is a gravity system draining to one central point, the RZ catchment is 32 km long with a
number of subcatchments of various sizes at different distances. It is assumed that the double dip
is caused by a difference in transport times for two main areas in this catchment, which causes the
concentrations to drop for a second time during a storm event. The double dilution dip is of course
driven by rainfall and as a result, the spatial variation in the rainfall is the main explanatory factor for
the differences per event.

In the model, this effect could be mimicked by dividing the Riool Zuid catchment into two
catchment basins, with a cut at pumping station Aalst, see Figure 1 (left), and to add the transport time
in the transport sewer to one of the basins. However, as the error made in the model results is relatively
small due to the low influent flows, this adjustment was not considered necessary at this moment.

The base line of the model consists of the mean DWF concentration. Data analysis of available 24 h
composite samples of the WWTP influent showed that there was no seasonal trend for NH4 and COD.
Despite the absence of a seasonal trend, the mean DWF concentration varied during the monitoring
period. Due to a lack of sampling data, it could not be determined whether changes in this DWF
concentration level were due to real changes or due to e.g., a temporary drift of the sensor. Differences
in the main DWF concentration levels were observed for NH4, e.g., compare the concentration levels on
16 July in Figure 12 (around 40 mg/L) and 1 December in Figure 13 (around 55 mg/L). This difference
is even bigger for COD, see Figure 14. The mean DWF, derived from monitoring data, is nearly 500 mg
COD/L, while the monitoring data on 2 June are nearly 700 mg COD/L. In this study, the model has
been calibrated using the mean DWF derived from all available monitoring data during DWF.



Water 2017, 9, 491 14 of 18
Water 2017, 9, 491 14 of 18 

 

 

Figure 12. Model vs. monitoring data: NH4 concentration in the WWTP influent catchment Riool-Zuid 
between 16 July and 23 July. ‘Double’ dilution dips occur at 17 July around noon and 18 July around 
midnight and on 21 July at 2:00 a.m. and 12:00 a.m. 

 

Figure 13. Model vs. monitoring data: NH4 concentration in the WWTP influent catchment Riool-Zuid 
between 1 December and 15 December. 

 

Figure 14. Model vs. monitoring data: COD concentration in WWTP influent catchment Riool-Zuid. 

Figure 12. Model vs. monitoring data: NH4 concentration in the WWTP influent catchment Riool-Zuid
between 16 July and 23 July. ‘Double’ dilution dips occur at 17 July around noon and 18 July around
midnight and on 21 July at 2:00 a.m. and 12:00 a.m.

Water 2017, 9, 491 14 of 18 

 

 

Figure 12. Model vs. monitoring data: NH4 concentration in the WWTP influent catchment Riool-Zuid 
between 16 July and 23 July. ‘Double’ dilution dips occur at 17 July around noon and 18 July around 
midnight and on 21 July at 2:00 a.m. and 12:00 a.m. 

 

Figure 13. Model vs. monitoring data: NH4 concentration in the WWTP influent catchment Riool-Zuid 
between 1 December and 15 December. 

 

Figure 14. Model vs. monitoring data: COD concentration in WWTP influent catchment Riool-Zuid. 

Figure 13. Model vs. monitoring data: NH4 concentration in the WWTP influent catchment Riool-Zuid
between 1 December and 15 December.

Water 2017, 9, 491 14 of 18 

 

 

Figure 12. Model vs. monitoring data: NH4 concentration in the WWTP influent catchment Riool-Zuid 
between 16 July and 23 July. ‘Double’ dilution dips occur at 17 July around noon and 18 July around 
midnight and on 21 July at 2:00 a.m. and 12:00 a.m. 

 

Figure 13. Model vs. monitoring data: NH4 concentration in the WWTP influent catchment Riool-Zuid 
between 1 December and 15 December. 

 

Figure 14. Model vs. monitoring data: COD concentration in WWTP influent catchment Riool-Zuid. Figure 14. Model vs. monitoring data: COD concentration in WWTP influent catchment Riool-Zuid.



Water 2017, 9, 491 15 of 18

Finally, the results shown in this paper are based on NH4 and COD only, where NH4 is
representative for solutes predominantly derived from wastewater and COD for parameters for
which the in-sewer stocks, i.e., sediment and biofilm, contribute significantly to the pollutant load in
the influent during storm events [24]. For WWTP modelling other parameters, such as phosphorous,
also need to be taken into account. Total phosphorous is known to exert similar behavior as the COD
and consequently, the COD model may be used to recalculate the total phosphorous concentration.
Ortho-phosphate, on the other hand, is dissolved and behaves in the sewer like NH4 [37] and
consequently, the NH4 model may be used.

3.4. Applications: Influent Generation, Surveillance of Monitoring Equipment and Gap Filling

The influent model as described in this paper generates influent water quality dynamics using
measured influent hydraulics as input. This application was used in [29] to evaluate the performance
of integrated RTC for urban wastewater system Eindhoven.

Another application of the influent model is described in [28], where (an earlier version of)
the influent model was implemented in the WEST software [28] to generate influent water quality
dynamics based on the simulated influent water quantity by the sewer sub model. In this application,
a representative DWF curve based on monitoring data was used [28]. It would also have been possible
to use harmonic functions for DWF and to use the influent model to complement the time series
with WWF dynamics. In other words, the influent model can be applied on measured or simulated
hydraulics and may also be applied in combination with the harmonic functions described in the
introduction. Moreover, as the empirical influent model is developed to adequately mimic WWF
dynamics, it might be included in the phenomenological influent pollutant disturbance scenario
generator [9], which is the latest version of the phenomenological model developed by [8], replacing
the relatively weak sewer model module of this model.

The influent model can also be used for surveillance of monitoring equipment at the inlet of the
WWTP. e.g., earlier research has shown that the hydraulic monitoring data at WWTP Eindhoven is
very reliable with over 99% good data [23]. Running the influent model continuously on measured
hydraulic data and comparing raw monitoring data of the influent water quality with the simulated
influent water quality data would allow easy detection of anomalies in the monitoring data. This
could be used to alarm operators to check the monitoring equipment. Early detection of problems with
sensors will possibly result in a higher yield of good quality data.

A final application of the influent model discussed in this paper is gap filling in time series [39].
Figure 15 shows an example of the application of gap filling. The dots show the measured NH4

concentration in the influent of WWTP Eindhoven. The dark grey dots are data that could be used e.g.,
for assessing the performance of the influent model, the light grey dots show data that are rejected
during the validation. The black line shows the simulated concentrations by the influent model.
By applying gap filling a continuous time series is generated, the final time series is composed of the
dark grey dots and where these are missing data are filled in using the influent model results.

For some of the potential applications of the model, such as gap filling or data validation, it is
advisable to regularly check the absolute value of the sensor data during DWF to ascertain whether
changes in the DWF concentration level are due to real changes or due to a sensor drift. In case these
are due to e.g., seasonal variation in the influent concentration levels during DWF, this should be
accounted for when applying the influent model. The routine 24-h samples typically available for
WWTP influent may be used to check for a seasonal pattern.
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4. Conclusions and Outlook

Modelling of influent quality is an increasingly important tool to enable WWTP models to
optimize the performance of WWTPs during wet weather. The main issue in modelling wastewater
quality during storm events is to account for in-sewer stocks, which have a varying contribution to
the wastewater quality. Neither traditional sewer water quality models nor the available influent
generators are capable of adequately addressing this issue. The proposed empirical model is based
on a detailed study of the observed water quality and predicts it by combining a number of actual
processes such as DWF, dilution, restoration, and first flush. Overall, the model shows that it is able to
reasonably predict NH4 concentration, which is a solute substance, as well as to reasonably predict
COD concentration, which is to a large extent associated with particles.

The model structure was demonstrated to be transferable to a catchment with different
characteristics. Eindhoven Stad is a large catchment with the WWTP located near the center, Riool Zuid
comprises of a long interceptor sewer, which drains the wastewater from seven municipalities with a
range of catchment sizes. Due to spatial variation of the rainfall and variation in travel times, ‘double
dilution’ dips may occur in the influent coming from Riool Zuid. Despite these different dynamics
and characteristics, there was no need to adjust the model structure of the empirical influent model.
Future research in catchments in sewer systems with less in-sewer storage volume is needed to further
explore the transferability of the model concept.

The model concept is used in ongoing research to test the performance of RTC of smart buffers at
WWTP Eindhoven [28]. The model concept could also be used to fill gaps in time series for influent
water quality and be used for advanced data validation to detect outliers and drift of water quality
sensors, as these sensors are still very vulnerable and data quality control remains a difficult issue.
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