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Acronyms

AFTC Active Fault Tolerant Control
AINDI Adaptive Incremental Non-linear Dynamic Inversion
CCW Counterclockwise
CFD Computational Fluid Dynamics
CW Clockwise
EKF Extended Kalman Filter
EOM Equations of Motion
FDI Fault Detection and Isolation
FTC Fault Tolerant Control
GPS Global Positioning System
IMU Inertial Measurement Unit
INDI Incremental Non-linear Dynamic Inversion
LMS Least Mean Squares
LPF Low Pass Filter
NDI Non-linear Dynamic Inversion
PFTC Passive Fault Tolerant Control
PID Proportional Integral Derivative
UAV Unmanned Aerial Vehicle

Quadrotor Upset Recovery after Rotor Failure Matthias Baert



vi Acronyms

Matthias Baert Quadrotor Upset Recovery after Rotor Failure



Glossary

G Control effectiveness matrix

Iv Inertia matrix of quadcopter

RIB Rotation matrix

Xb Body X-axis

Yb Body Y-axis

Zb Body Z-axis

αLOC Loss of control angle for altitude control

αpeak Peak angle for altitude control

αtotal Angle between primary axis and primary axis target

4Ωdes Desired change in rotational rate

Ω Rotational rates

ω Rotor speeds

ηred Reduction factor

φ Roll angle

ψ Yaw angle

τ Total moment produced by all rotors

τaero Total moment produced by other aerodynamic effects

A Linear constraint matrix of the QP problem

F Jacobian of state function

H Hessian of the QP cost function

K Kalman Gain

M Jacobian of measurement function
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P Covariance matrix

S Residual covariance

aBref,z desired body acceleration

b Constraint matrix of the QP problem

c Linear part of the QP cost function

c0 Constant part of the QP cost function

d Position vector

g Gravity vector

q Quaternion describing attitude

v Velocity vector

y Measurement residual

θ Pitch angle

ades Desired acceleration vector

az measured acceleration in z-direction

b Half width of quadrotor

cld drag/lift ratio

f State function

fi Lift force rotor i produces

h Measurement function

l Half length of quadrotor

ndes Desired primary axis

nrotaxis Rotation axis

p Roll rate

q Pitch rate

r Yaw rate

u Input to the system

x State of system

xdes Desired x position

ydes Desired y position

z Measurements of the system

zdes Desired z position
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General Introduction

This report summarises the thesis work done between September 2018 and July 2019. The
report consists of three main parts, a scientific paper presented in Part I, the preliminary report
in Part II and appendices to the paper in Part III. All essential information can be found
in the paper which is a stand-alone document. However, more elaborate or extra information
is presented in the appendices. The thesis aims to give an answer to the following research question:

How can a quadrotor with rotor failure recover from an upset condition and how does
it compare to upset recovery in the nominal case?

Layout Scientific Paper

The paper is written following the IEEE standards. The introduction in Chapter I shows
the importance of the research as well as a literature review is presented. The quadrotor model
is presented in Chapter II where quaternions are used in order to model the dynamics. The
methodology in Chapter III explains all parts of the proposed controller. This is the core of the
paper. The experimental setup is briefly explained in Chapter IV and the results are presented
in Chapter V. The report concludes with Chapter VI.

Layout Preliminary Report

The preliminary thesis report was first handed in at the end of November 2018. The in-
troduction is presented in Chapter 1. The research motivation and research questions can be
found in Chapter 2. A literature review is conducted in Chapter 3. The methodology in Chapter 4
presents the thesis focus and goals as well as the expected planning from that point in time. Some
preliminary results can be seen in Chapter 6 where upset recovery of a nominal (not damaged)
quadrotor is tested.

Layout Appendices

In Appendix A the quaternion based Extended Kalman Filter (EKF) will be explained
more elaborate. The EKF was shortly mentioned in the paper but not worked out in detail
as it was not the essence of the research. As the measurements of the EKF are not always
available, this requires an interesting solution. The control allocator is a big part in the paper,
however there are more practical details that were not mentioned in the paper. Therefore more
information about the control allocation is given in Appendix B. The attitude control has become
a complex system. An attempt has been made to explain it as short as possible in the paper but
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xiv General Introduction

in Appendix C some extra details about the estimated time to rotate will be explained. In order
to develop all the methods presented in the paper, a simulator was built. This work is presented
in Appendix D. The developed control system has to be deployed on the quadrotor. For this the
PX4 framework was used. This is further explained in Appendix E. Additional visualisation of
the results presented in the paper are presented in Appendix F.
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Conclusion and recommendations

The conclusion is already presented in the scientific paper. In this chapter the answers to the
research questions will be given as well as some recommendations for future research.

Answer to research questions

Although most of the research questions can be answered by the information presented in
the paper and the appendices, this section will specifically address the answers to the research
questions established in the preliminary report.

The main research question: How can a quadrotor with rotor failure recover from an
upset condition and how does it compare to upset recovery in the nominal case?

is what the paper is all about. Recovery of the nominal case and the damaged case is explained
in detail. Although the recovery in both cases is quite different, the basics are the same. In
the damaged case there are some extra steps required, but once the quadrotor is controllable the
same controller method is used as in the nominal case. In the damaged case the quadrotor is less
powerful as it basically loses half of its thrust, which causes the recovery to take longer.

Next to the main research question some sub-questions were also presented. An important ques-
tion that is not answered in the paper is: How can an upset condition be defined for a
quadrotor?

The definition of an upset condition depends on the context. One could state that an upset
condition exists when some states are uncontrollable and/or unstable. One could also state that
an upset condition is a condition in which the vehicle does not normally operate or a condition
which is far away from the desired condition. For this paper the first definition is most applicable.
One could even expand the definition and say that the state has to be uncontrollable for a certain
time horizon for it to be an upset condition. Otherwise the hover condition would already be
an upset condition as lateral position can not be controlled directly. One could also expand the
definition by stating that one has to give up control or find a balance between states in order to
recover from the upset condition. For example, when the quadrotor is upside down, altitude can
not be controlled and has to be given up initially. Some steps have to be taken in order to make
altitude controllable again.

How does a fully functional quadrotor recover from an upset condition?

This question is clearly answered in the paper. The key is to find the right balance between the
different control demands. Prioritising pitch and roll demands seemed to be essential for recovery.

Can the same upset recovery methods be used for an undamaged and a damaged
quadrotor?

Quadrotor Upset Recovery after Rotor Failure Matthias Baert



xvi Conclusion and recommendations

Recovery for both undamaged and damaged condition are presented in the paper. Some parts of
the control system can be used in both cases (eg. the control allocator, position control, altitude
control, ..), however some extra controllers are needed in the damaged case.

Is there a specific set of upset conditions for which the damaged quadrotor can re-
cover?

The quadrotor is able to recover from any condition, the real question is how much altitude loss
is permitted. It was proven that for any initial position and attitude the quadrotor was able to
recover, assuming no rotational rates.

Is there a specific set of upset conditions for which the damaged quadrotor cannot
recover?

Initial conditions with specific initial rotational rates are harder to recover from. If initial yaw
rate is given in the opposite direction of the natural yaw rate the quadrotor will generate, recovery
takes significantly longer. Initial rotational rate around the uncontrollable axis also has a big
impact on the recovery performance. From this research it does not seem that there are initial
conditions that are impossible to recover from, assuming enough altitude available. If limited
altitude is taken into account, then there are definitely conditions for which the quadrotor will
not be able to recover.

Can a passive Fault Tolerant Control (FTC) be developed?

Although not clearly mentioned in the paper, the proposed control system is passive FTC. The
control allocator will prioritise pitch and roll commands due to which yaw rate control will au-
tomatically be given up. The recovery performance of the passive FTC is significantly worse
though.

How quick should the fault detection be?

This depends on the available altitude. As the quadrotor is passive FTC fault detection is not
even needed. This however goes at serious cost in performance. During indoor tests fault detection
delays were emulated up to 0.1s which the control system was still able to handle without losing
more than 3m of altitude.

Can INDI be used in all cases?

The INDI principle can definitely be used for recovery, however the usual implementation which
is proposed in several literature sources is not ideal [1, 7, 8]. As not all control requirements can
always be met, a balance has to be made by the control allocator. This is solved by creating a
QP-INDI as explained in the paper and Appendix B.

Recommendations

The state of the art control methods before this research were not able to recover a dam-
aged quadrotor from an upset condition. During this research a lot of new strategies and methods
were developed and validated, some more successful than others. When solving certain problems,
new problems always arise. The final product presented in this thesis project still has plenty of
aspects to be improved on which will be discussed in this section.

The current recovery strategy is very successful in recovering the damaged quadrotor from any
initial attitude. However, in the case of big rotational rates the recovery is less successful, especially
when there are rotational rates that either create an opposite yaw rate or rotational rates around
the uncontrollable axis. Currently, the first two recovery steps consist of flipping the quadrotor to
point up and then generate yaw rate. Looking at this from a different perspective one might say
that the goal is to generate a certain angular momentum in the inertial frame. With this concept
more abstract solutions might come out that could potentially improve the recovery performance
significantly.
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In order to determine how the quadrotor will rotate, the estimated time of rotation is calculated in
both directions around a certain rotation axis. This assumption is valid as long as there are only
rotational rates around that rotation axis (during a flip manoeuvre for example). However, in the
case of rotational rates around the other axes, this time estimation will not be correct anymore
and a better rotation trajectory might exist. In future research this should be improved on, but
one should realise that this will add a lot of complexity to the problem.

For this thesis project all the tests were conducted in an indoor facility with limited space. Due
to the limited space the quadrotor was not always able to recover in time. From simulation one
can show that the quadrotor can recover in limited altitude, this however is not validated. If
the quadrotor would be able to fly outdoors one can validate if the quadrotor is really able to
recover within a certain altitude. Flying outdoors can be quite challenging with respect to state
estimation. Indoors, position and attitude are given quite accurately, outdoors this is not the case.
In the damaged case the quadrotor will spin very fast which will make state estimation even more
challenging. It will be interesting to see if future research can manage to move the research to an
outdoors environment.
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Abstract—A fault-tolerant controller is presented that is able
to recover a quadrotor from an upset condition in the case
of a single rotor failure. With only 3 rotors the quadrotor is
not fully controllable anymore, however by using precession the
quadrotor can be made controllable again in roll and pitch. A
step-by-step recovery strategy is proposed in which controllability
is actively recovered before recovery of attitude and altitude.
Control allocation is based on the Incremental Non-Linear
Dynamic Inversion (INDI) principle and takes rotor saturation
into account by solving a constrained quadratic optimisation
problem. The controller is validated in a real life test environment
where the quadrotor is thrown into the air with only 3 propellers
from which it has to recover using the techniques presented in
this paper.

Index Terms—Robot Safety, fault-tolerant, recovery, sensor-
based control.

I. INTRODUCTION

In recent years, multi-rotor aerial vehicles have received a
lot of attention. These aerial vehicles are usually unmanned
robots that can perform various tasks, in some cases without
human intervention. Multi-rotors are mainly used outdoors for
agricultural purposes, architecture and construction, delivery,
emergency services, media purposes or to monitor and con-
serve the environment [1]. As these vehicles will become more
involved in daily life, safety can not be overlooked.

One of the most common multi-rotors is the quadrotor
due to its simplicity and energy efficiency [2]. As the name
implies, a quadrotor has four rotors positioned in a rectangular
profile on the vehicle. Quadrotors are extremely powerful
which makes them very agile and able to fly under many
different circumstances. However, because this vehicle is not
over-actuated, this type of multi-rotor suffers most from an
actuator failure and might not be able to continue its mission
or worse, might not be able to land safely.

Fault-tolerant control for quadrotors has been the subject
of various literature sources. Some research is focused on the
partial damage of a rotor [3, 4], while other research considers
the complete loss of one or multiple rotors [5, 6, 7].

A solution to the case of a complete loss of a rotor is
presented in Lanzon et al. where the author proposes to give
up on yaw control in order to maintain control over the other
states [6]. Mueller and D’Andrea present an analytical solution
when one, two or three propellers are completely lost [5].
Lippiello et al. present both a PID and backstepping approach
focusing on an emergency landing in case of failure [8, 9]. A
fault tolerant controller using INDI is presented by Lu and Van
Kampen where fault detection is also implemented [10]. An
interesting view on hover conditions is presented in Mueller
and D’Andrea where the hover conditions are relaxed such that

hover solutions can be found for the under actuated damaged
quadrotor [11].

In Sun et al. the theory is put into practise by showing
that a quadrotor with loss of single rotor is able to fly in high
speed conditions [7]. This research also uses the INDI method
with reduced attitude control. The research does not take rotor
saturation into account. This means that at high speeds (9
m/s) the quadcopter loses control as the rotors start saturating.
In Höppener, D an improved INDI control allocation method
is presented which takes rotor saturation into account [12].
This method is validated with partial damage on one of the
propellers. In Zhang et al. fault detection in combination with
fault-tolerant control is presented and validated in a real life
environment [13] .

Recovery or more specific upset recovery is rarely consid-
ered in quadrotor research. In Faessler et al. the recovery of
a quadrotor is discussed, but the focus is on the recovery of
the vision-based state estimation [14]. The quadrotor is thrown
into the air by hand in order to create an upset condition. For
airplanes upset recovery is a more common field of study.
Many literature sources propose a step-by-step recovery pro-
cess when an airplane is in an upset condition [15, 16]. Plenty
of literature sources cover trajectory generation and control
for quadrotors, which is also related to recovery [17, 18, 19].
Hehn and Andrea presents a trajectory generation solution, that
should be able to solve the recovery problem in an abstract
way [20].

The combination of a fault-tolerant controller and upset
recovery however, is not considered yet. When a failure occurs,
it is likely that the quadrotor will be in an upset condition.
In this paper a fault-tolerant solution is presented which is
able to recover from upset conditions. A quaternion based
Extended Kalman Filter is used for state estimation while
some modifications to existing position control methods are
applied. A new look on attitude control is presented in which
controllability is considered. This combined with an INDI
control allocator that takes rotor saturation into account and is
able to prioritise between different commands. The methods
are validated in a real-life environment where the quadrotor
is thrown into the air to simulate upset conditions. This paper
uses the work presented in Sun et al. as a starting point [7].

In Section II the model of the quadrotor used is explained.
Section III presents the proposed fault tolerant control system
that is able to recover from an upset condition. In Section IV
the experimental setup is explained while in Section V the
results are presented. The paper concludes with Section VI.



Fig. 1. Quadrotor with axis definitions

II. QUADROTOR MODEL

The Parrot Bebop 2 quadrotor as well as the axis definitions
are shown in Figure 1. The inertial frame is defined by the
vectors xI , yI , zI and will be used as the reference coordinate
system. The body frame is defined by the vectors xB , yB , zB .
Alternatively one can also use the non-orthogonal body frame
defined by x′B , y

′
B , zB which has interesting properties. The

quadrotor has 4 rotors (ω1−4) which are located at a distance
of b along the yB axis and l along the xB axis. The spinning
direction is also indicated in Figure 1.

The equations of motion are based on [21] and [19] and are
given as

ḋ = v (1)

v̇ = g + q ⊗ 1

m
FB ⊗ q∗ (2)

IvΩ̇ = −Ω× IvΩ +MB (3)

q̇ =
1

2
Ω⊗ q (4)

where position and velocity are denoted by d and v re-
spectively. q is the quaternion expressing the attitude of the
quadrotor, g is the gravitational acceleration, m and Iv are
the mass and inertia of the vehicle, FB and MB are the
forces and moments acting on the quadrotor. The ⊗ operator
represents the Kronecker product and is used when quaternions
are involved [21]. The rotational rate is denoted by Ω.

The aerodynamic forces and moments acting on the quadro-
tor come from two sources: rotors (r) and body (b) as shown
in

FB = F r + F b (5)

MB = M r +M b (6)

The aerodynamic force produced by the rotors (F r) can be
described by

fi ∼ cfω2
i , F r =




0
0

−∑ fi


 (7)

where cf is a lift coefficient. Note that this force acts in the
zB axis. The moments created by the rotors (M r) is described
as follows

M r =



b −b −b b
l l −l −l
1
cld

− 1
cld

1
cld

− 1
cld







f1

f2

f3

f4


 (8)

where the coefficient cld is the lift-over-drag ratio of the rotors.
The aerodynamic moments coming from the body (M b) are
approximated by

M b = − ‖ Ω ‖KdΩ, F b = 0 (9)

whereKd is a drag coefficient matrix. The aerodynamic forces
coming from the body (F b) are neglected.

III. METHODOLOGY

A controller will be presented that is able to recover from
any condition in both nominal (no damage) and single rotor
failure condition. In order to do this the controller is split up in
several subsystems. The controller is presented in Figure 2 and
consists of a state estimation part, a P + PI position controller,
a complex attitude controller and a control allocator based on
Incremental Nonlinear Dynamic Inversion (INDI). It will be
assumed that the failure is known by the system, as estimation
of the failure is beyond the scope of this paper.

stateEstimators
(EKF)

ndes

aref,z

Position Control
(P + PI)

Ωdes

Kyaw

Attitude Control
ωset

Control Allocator
(INDI)

sensors

Fig. 2. Controller overview



A. State Estimation

Attitude and position information is available via a motion
capture system but in some cases the motion capture system
might lose tracking. In order to cope with these situations as
well as enhancing the attitude, position and velocity estimation
in general, a quaternion based Extended Kalman Filter (EKF)
was used based on the model presented before. In the case
where the motion capture system does not update anymore,
only the state ahead prediction of the EKF will be used.

Additionally a free-fall detection has been implemented to
allow a person to throw the quadrotor into the air from which
it has to recover. Free-fall is detected if rms(ameas) ≤ alim
for a certain amount of time. As the quadrotor has some
aerodynamic drag during free-fall, the accelerometer will not
measure 0 m/s2. From empirical data alim was chosen to be
4 m/s2.

B. Position control

For position control a cascaded P + PI controller is used as
follows

vref = kposp (ddes − d),

aref = kvelp (vref − v) + kveli

∫
(vref − v)dt− g (10)

The output is a desired normalised acceleration vector. (nIdes).
kposp , kvelp , kveli are the gains of the position controller. An
integrator has been added in the velocity loop to counteract
any disturbances like wind. Note that the position controller
acts in the inertial frame. Limits on the desired acceleration
vector are necessary to make sure the quadrotor would not
push itself into an upset condition. A maximum angle from
the normal (θmax) is applied as follows

λ =

√
a2
ref,x + a2

ref,y

aref,z · tan(θmax)
(11)

aref,xy =
aref,xy
max(λ, 1)

(12)

nIdes =
aref
‖ aref ‖

(13)

If the initial reference is outside of the bounds, λ will be
greater than 1 and will scale aref down. This vector is then
normalised, indicating the desired thrust direction (nIdes) of
the quadrotor.

Altitude control requires an extra step as it is related to the
amount of thrust the rotors have to produce, which is in the
body frame. The desired z-axis acceleration is converted from
the inertial frame to the body frame as follows

aBref,z =
aIref,z
cos(θ)

(14)

where θ indicates the total angle from the normal described
as
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Fig. 3. Altitude control scaling visually presented. At extreme angles the
altitude action will be reduced.

cos(θ) =
−g · nI

‖ g ‖ · ‖ nI ‖ (15)

where nI is the thrust vector in the inertial frame. However, in
extreme conditions (θ = ±π2 ) Equation (14) becomes singular
and can not be used. Also, at extreme angles this method
would create a lot of lateral displacement. A balance has to
be made where altitude control is given up at some point. An
extra scaling factor β is introduced which is capped between
0 and 1 as shown in

β = 1− θ − θ1

θ2 − θ1
, 0 ≤ β ≤ 1 (16)

The scaling factor β will linearly reduce the altitude control
demand from θ1, at θ2 altitude control is given up completely.
The revised calculation of aBref,z is

aBref,z =
aIref,z

cos(min(θ, θ1))
· β (17)

where θ1 and θ2 are chosen to be 30 deg and 70 deg respec-
tively. Additionally the total angle used is also capped in the
denominator. The effect of this revised calculation is visualised
in Figure 3 where aIref,z = 1 is assumed.

C. Attitude Control

The goal is to come up with rotational rate setpoints in
order to control the attitude. Attitude control plays a major
role in recovery of the quadrotor. First the nominal case
(without damage) will be considered.

1) Nominal Case: From position control a desired thrust
vector (nIdes) is given in the inertial frame and has to be
converted to the body frame (nBdes) as follows

nBdes = q ⊗ nIdes ⊗ q∗ (18)

where q represents the quaternion describing the quadrotor
attitude. A normalised rotation vector (ρB) is calculated as

ρB =
nBdes × nB
‖ nBdes × nB ‖

(19)



with the thrust vector nB = [0, 0,−1]. The desired pitch and
roll rate (Ωxy,des) can be calculated using

Ωxy,des = krotp (ρB · α) (20)

where the total angle (α) is calculated as

cos(α) =
nBdes · nB

‖ nBdes ‖ · ‖ nB ‖
(21)

Using this method, the desired pitch and roll rates are deter-
mined, the desired yaw rate (rdes) comes from a separate yaw
controller

rdes = kyawp (ψdes − ψ) (22)

where ψ and ψdes indicates the yaw angle and desired yaw
angle of the vehicle respectively. If the quadrotor has some
rotational velocity already, the aforementioned solution might
not be the optimal solution. The shortest route might not be
the quickest route, therefore an estimate of the time it takes
to rotate is calculated

0 =− α0 + Ωt+ Ω2
0

(
t · amin + Ω0

amin − amax

)
amax
amin

+

(
t · amin + Ω0

amin − amax

)2(
1 +

amax
amin

)
amax

2

(23)

where t is the time it takes to rotate α0 given an initial Ω0 and
minimum and maximum rotational acceleration amin, amax.
Ω0 is the rotation speed around the desired rotation vector ρB

and is calculated as follows

Ω0 = Ω · ρB (24)

One is now able to determine the time to rotate around
ρB and −ρB and decide which direction is quickest. This
rotation vector will then be chosen.

2) Failure Case: In case of failure, attitude control becomes
more challenging. Without loss of generality, failure on rotor
1 will be assumed. Looking at the achievable moments in
Figure 4, which gives an indication on controllability, it can
be seen that no positive moment around the y′B axis can
be produced (red area), meaning this axis is uncontrollable.
Note that the non-orthogonal body frame (x′B , y

′
B) is now

being used as this simplifies calculations. In order to make the
vehicle controllable again, precession can be added. Precession
can be generated as shown in

My′prec = ΩzΩx′(Iy′ − Iz) (25)

meaning rotational rates in the zB (Ωz) and x′B (Ωx) axis
are needed, which are controllable. In Figure 4 one can see
the shift in the achievable moments (green area), making the
quadrotor controllable again. Note that in the case of failure
on rotor 1, the quadrotor will end up having negative yaw rate.

Fig. 4. Achievable moments in the x′B , y′B axis frame following failure on
rotor 1. Red area is no precession while green area does have some precession
added. The green area is controllable while the red area is not.
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Fig. 5. Recovery strategy overview

In order to recover the quadrotor from an upset condition,
a set of recovery steps have to be taken as shown in Figure 5.
The first step is to rotate the quadrotor such that the thrust
vector is pointing ’up’, hence in the negative z direction.
Secondly controllability has to be recovered by generating
yaw rate (Ωz) and some roll rate (Ωx′). Once the quadrotor
is controllable again, attitude, altitude and position can be
recovered.

First step is to recover general attitude, meaning the thrust
vector of the quadrotor should point up. Yaw rate will be
generated eventually, so it is important to have the quadrotor
point upwards first, otherwise it will require a lot of energy
to flip the quadrotor. With failure on rotor 1, rotation around
the x′B axis is still fully controllable, so this axis will be used
to flip the quadrotor. The same procedure is followed as in
the nominal case, but nBdes and nB are projected on the y′B
axis, meaning the x component of the vector is zero. However,
cases exists in which the x′B axis is parallel with the normal
meaning the quadrotor can not be flipped around that axis. In
this case first some yaw rate will be generated, causing the
x′B axis to move and eventually the quadrotor can flip around
this axis again.

Once the general attitude is recovered and the quadrotor
is pointing upwards, controllability will be recovered. This is
done by generating precession. A high yaw rate demand is set
in order to generate precession as quickly as possible. Because
this is so important, the weight of the yaw action in the control
allocator is increased as shown in

dWyaw = kpriop (Ωz,des − Ωz), 0 ≤ dWyaw

Wyaw = W 0
yaw + dWyaw

(26)

where kpriop is the gain, Wyaw is the yaw action weight



and dWyaw is the additional weight in order to increase the
priority. The weight priority is only increased in case there
is not enough yaw rate, once the yaw rate is sufficient the
priority will be at the original level again. The magnitude of
Ωz,des is a tuning parameter and is chosen to be 15rad/s.
The sign of Ωz,des in this case is negative but depends on
which rotor failed as there will only be one feasible yaw rate
direction. The amount of precession needed (My′prec,des) can
be calculated as shown in

My′prec,des = Mctrl −My′max (27)

where Mctrl is a tuning parameter indicating the minimum
controllability margin and My′max is the current maximum
moment that can be produced around the y′B axis. If My′max ≥
Mctrl no precession will be added because the quadrotor is
controllable enough. Using Equation (25) the required Ωx′ can
be determined.

This results in a conflicting requirement with the attitude
controller as Ωx′ is used to control the roll angle of the
quadrotor. The requirement from the precession module can
be regarded as a bias added to the attitude control demand but
another method is by tilting the thrust vector (nB) slightly,
causing the quadrotor to ’wobble’ and have a steady-state
roll/pitch rate [5]. Previously nB was chosen to be [0, 0,−1],
however from



ṅ1

ṅ2

ṅ3


 =




0
0
0


 =




0 −n3 n2

n3 0 −n1

−n2 n1 0


Ω (28)

where nB = [n1, n2, n3], one can see that in case Ωz 6= 0 there
exist stable solutions where n1 6= 0 and/or n2 6= 0. In this
example Ωx′ 6= 0 and Ωy′ = 0, this means that n1 = Ωx′n3

Ωz

and n2 = 0. In this way precession can be generated without
influencing the attitude control. This is an elegant solution and
does not require any change in the other parts of the controller.

Once the controllability has been recovered, the attitude
control as presented in Section III-C1 is able to control the
attitude again. To optimise the overall performance of the
controller even further the rate setpoints are hedged such that
only achievable targets are requested to the control allocator,
also known as pseudo control hedging [22]. The hedging also
protects the quadrotor from pushing itself into an uncontrol-
lable situation. Desired pitch and roll rate limits are calculated
in

Ωx′y′,des,min = Ωx′y′ − Ω̇x′y′,min · thoriz
Ωx′y′,des,max = Ωx′y′ + Ω̇x′y′,max · thoriz

(29)

where the time horizon (thoriz) is a tuning parameter and
chosen to be 0.05s. Assuming the rotor failure is known, an
estimate can be made on Ω̇x′y′,min and Ω̇x′y′,max. An example
calculation is shown in

Ω̇x′,max =
(cfω

2
4,max − cfω2

2,min)s

Ix′
(30)

where s =
√
b2 + l2 is the distance from the rotor to the

center of gravity. This equation can be used to calculate the
other limits as well. In order to make sure the quadrotor does
not push itself into an uncontrollable condition, an extra limit
is applied as shown in

Ω̇x′y′,min = max(Ω̇x′y′,min,−Ω̇x′y′,max)

Ω̇x′y′,max = min(Ω̇x′y′,max,−Ω̇x′y′,min)
(31)

which is a symmetric limit that is applied such that the
quadrotor will not generate rotation rates that can not be
dissipated.

D. Control allocation

The goal of the control allocator is to match the rotational
rate setpoints (Ωdes) and the altitude control demand (aBref,z).
It is not always feasible to match all the demands, certainly not
in the failure case. This means there has to be some balance
between the different demands, which also gives the ability
to prioritise certain demands. The control method that will be
used is based on INDI, which has proven to be very powerful
in the field of quadrotors [23, 7]. In order to balance out the
demands, a quadratic cost function has been set up that will be
minimised. This makes it a quadratic programming problem
that can be solved. This method will be called Quadratic
Programing INDI (QP-INDI).

A P-controller is used to determine the required change in
rotational rate and as can be seen in

4Ωdes = kpriop (Ωdes −Ω) (32)

where kpriop is the gain. Assuming the control effectiveness
matrix G is known, or an estimate is available, the required
change in rotor speeds can be calculated using [7]

E =

[4Ωdes

aBref,z

]
−
[
Ω̇
az

]
(33)

E = G4 ω → 4ω = G−1E (34)

In the basic form, all demands have to be followed and there
is no balance between the demands. In order to solve this a
new cost function is presented in

min (G4ω−E)TK(G4ω−E) +4ωTK24ω (35)

where K indicates the weights for each demand. In case that
all demands can be met, the small penalty K2 will make sure
the solution of least change in rotor speeds will be chosen.
Next to the cost function there are constraints as well as shown
in

4ωmin ≤ 4ω ≤ 4ωmax (36)

This problem can be solved by using Quadratic Programming
(QP). If the problem can be rewritten to the form shown in



minimise
1

2
xTHx+ cTx+ c0

subject to Ax ≥ b
(37)

then the optimum can be found by solving the KKT conditions
[24] shown in

(1) Hx+ c = ATy,

(2) Ax ≥ b,
(3) y ≥ 0,

(4) yT (Ax− b) = 0

(38)

where the solution (x) is the incremental change in rotor speed
(4ω). Solving this problem comes down to finding the correct
Lagrange multipliers (y), which is similar to an active-set
method. Given a choice of Lagrange multipliers, the solution
is given by

[
H AT

eq

Aeq 0

] [
x
y

]
=

[
−c
beq

]
(39)

where Aeq and beq are the A and b matrices with only the
rows of the active Lagrange multipliers. If the solution satisfies
the requirements from Equation (38) then the optimum is
found. The QP problem is solved on board in real time. The
Lagrange multipliers from the previous timestep can always be
used as the first guess, which greatly reduces the computation
time. Rewriting Equation (35) into the standard QP form,
results in the values presented in

H = GTKG+K2,

c = GTKE + (ETKG)T ),

c0 = 0

(40)

The choice of K and K2 can be found in Equations (41)
and (42). These weights determine which demands are pri-
oritised. The first two elements on the diagonal represent the
pitch and roll weight, which are assigned a high weight as
they are essential for overall control. The third element is the
weight for yaw action, which is assigned a low gain. The last
element on the diagonal is the weight for altitude control. With
this method, the quadrotor is passive fault tolerant to a certain
degree as it will give up on yaw control as a consequence of
the weights given.

K = diag(1× 104, 1× 104, 1, 1× 102) (41)

K2 = I × 10−4 (42)

IV. EXPERIMENTAL SETUP

To verify and validate the methods developed in Section III
a variety of experiments are set up. The quadrotor that is
used in all the experiments is the Parrot Bebop 2. For some
experiments the nominal configuration with 4 rotors is used,
while in other experiments the 3 rotor configuration is used

Fig. 6. Parrot Bebop 2 in 3 rotor configuration.

TABLE I
PARROT BEBOP 2 PARAMETERS

m [kg] 0.374 l [m] 0.088
Ixx [kgm2] 1.67× 10−3 b [m] 0.115
Iyy [kgm2] 1.38× 10−3 ωmax [rpm] 12000
Izz [kgm2] 2.82× 10−3 ωmin [rpm] 3000

as shown in Figure 6. The quadrotor is modified by removing
the camera and changing the battery in order to reduce overall
mass. The mass, inertia, geometry and rotor parameters can
be found in Table I. The vehicle is equipped with a Parrot
P7 dual-core CPU Cortex 9 while the onboard IMU is a
MPU6050 with 512 Hz sampling rate. On the top side of the
quadrotors there are at least 6 reflecting markers which are
used by a motion capture system from Optitrack in order to
provide position and attitude information to the vehicle. The
information is sent via WiFi to the quadrotor. PX4 is used
as framework in which modules are added that contain the
developed control system. The control systems are developed
in MATLAB Simulink. By creating a simulation environment
in Simulink, the first tests can already be done to verify the
control logic. The same tests can then be performed in a real-
life environment to validate. The real-life environment that is
used is the Cyberzoo at the TU Delft, The Netherlands. The
Cyberzoo is a safe area of about 6x6x6 meters surrounded
by nets such that aerial vehicles can never escape in case
something goes wrong.

The tests that will be performed and analysed can be
categorised as follows: A) upset recovery without rotor failure,
B) recovery from sudden rotor failure in hover C) upset
recovery with rotor failure.

A. Upset recovery without rotor failure

The quadrotor has to be able to recover from upset condi-
tions in the nominal (no damage, 4 rotor configuration) case
first, before making it more challenging with rotor failure.
Upset recovery will be tested by throwing the quadrotor by
hand into a random condition, from which it has to recover.
If free-fall is detected, the control systems will take over
and recover from the condition it is in. Various throws will
be performed in which the person throwing will be given a



certain intention (throw gently, give a lot of rotation, etc..).
The quadrotor will always aim to fly towards a given position
setpoint. An analysis on the chance of recovery can be
performed depending on the initial state.

B. Recovery from sudden rotor failure in hover

In this test the quadrotor will take-off with 4 rotors and fly
to a position setpoint. Once in stable hover, a failure will be
simulated in which one of the rotors will be set to minimum
speed. The quadrotor then has to recover from this failure and
fly back to the position setpoint.

C. Upset recovery with rotor failure

In this test one of the propellers will be removed from one
of the rotors in order to simulate a full rotor failure. Similarly
as before, the quadrotor can be thrown by hand into a random
condition from which it has to recover. The effect of the
initial condition will be analysed as well as the effect of the
precession controller and the effect of the yaw rate priority
controller. The precession controller can be disabled as well
as the yaw rate priority controller in order to see the impact.

V. RESULTS

In this section the results of the tests described in section IV
will be elaborated upon. First upset recovery of a fully func-
tional quadrotor is tested, secondly recovery from a sudden
rotor failure is tested and finally upset recovery of a quadrotor
with single rotor failure is tested. A video summary of the
results can be seen in https://youtu.be/5UUsu7OlGd0.

A. Upset recovery without rotor failure

In Figure 7 The response of the quadrotor following a throw
can be seen. Initially the rotor speeds are set to idle speed.
Once free-fall is detected, the quadrotor recovers from the
condition it is in. Important to note that the quadrotor is thrown
with upwards velocity, giving some extra room in terms of
altitude. One can see that pitch and roll are prioritised over
yaw angle. A 3D plot of the position and attitude can be seen in
Figure 8. Here one can clearly see that the quadrotor is thrown
into the air, recovers and returns to the position setpoint. The
control allocation is visualised in Figure 9 where one can see
the priority to the roll and pitch commands over the yaw and
acceleration demands.

This test is performed 10 times with the same person
throwing the quadrotor. In all of the cases the quadrotor
manages to recover.

B. Recovery from sudden rotor failure in hover

In this test the quadrotor takes off in the 4-rotor configura-
tion and while in hover, one of the rotors will be disabled by
setting it to idle speed. One of the test results can be seen in
Figure 10. One can see that the quadrotor immediately starts to
generate yaw rate as well as some roll and pitch rate in order
to create precession. At a certain point the quadrotor is fully
controllable again and attitude and position can be recovered.
Note the constant pitch and roll rate in the hover condition at
the end.
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Fig. 7. Quadrotor thrown into the air. (a) Position. (b) Attitude. (c) Rotational
velocity. (d) Rotor speeds. The controller detects free-fall, re-enables and
manages to recover.
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This test is performed 10 times. In all of the cases the
quadrotor manages to recover. The quadrotor loses a maximum
of 0.2m in altitude and has a maximum lateral displacement
of 0.5m in all the tests. Due to the yaw rate priority when
rotor failure occurs, the quadrotor is able to generate up to 9
rad/s of yaw rate in 0.5s. Failure on other rotors were also
tested and give similar results.

C. Upset recovery with rotor failure

In this test the quadrotor with one propeller removed is
thrown into the air by hand. The result can be seen in Figure 11
where the quadrotor is thrown with high pitch rate and some
pitch angle from which it has to recover. The vehicle first
makes sure it is ’pointing up’ before generating precession.
Once there is enough yaw rate the quadrotor is controllable
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Fig. 9. QP-INDI allocation during recovery from throw. (a) roll command.
(b) pitch command. (c) yaw command. (d) acceleration demand. Roll and
pitch command are prioritised.

7 7.5 8 8.5 9 9.5 10

time [s]

-2

-1

0

[m
]

(a)

x

y

z

7 7.5 8 8.5 9 9.5 10

time [s]

-200

0

200

[d
e
g
]

(b)

Roll

Pitch

Yaw

7 7.5 8 8.5 9 9.5 10

time [s]

-20

-10

0

10

[r
a
d
/s

]

(c)

Roll rate

Pitch Rate

Yaw Rate

7 7.5 8 8.5 9 9.5 10

time [s]

200

400

600

800

1000

w
R

o
to

r 
[r

a
d
/s

]

(d)

1

2

3

4

Failure rotor 1

Recovery complete

Fig. 10. Quadrotor sudden failure on rotor 1 from hover condition. (a)
Position. (b) Attitude. (c) Rotational velocity. (d) Rotor speeds.

again and attitude and position can be recovered easily. A 3D
plot of the quadrotor during this manoeuvre can be found in
Figure 12.

This test is performed 65 times with different people throw-
ing the quadrotor. In 46 of the cases the quadrotor manages
to recover, while in 19 cases it did not fully recover as can be
seen in Figure 13. In the case the quadrotor did not recover,
13 times did the quadrotor already recover attitude and was
in progress of recovering altitude resulting in a rough landing
(< 3m/s) causing no damage to the vehicle. In 6 cases the
quadrotor was still recovering attitude which resulted in a hard
crash. From this data it can be concluded that there is a 71%
chance of full recovery, 20% chance of partial recovery with
rough landing and a 9% chance of a crash. This conclusion
however is biased, as recovery rate highly depends on the
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Fig. 11. Quadrotor thrown into the air with 3 rotors. (a) Position. (b) Attitude.
(c) Rotational velocity. (d) Rotor speeds. The controller detects free-fall,
re-enables and manages to recover. First the quadrotor is flipped using the
controllable axis (1.), secondly yaw-rate is being generated (2.). In (3.) altitude
is being recovered. In (4.) one can see the constant pitch rate that is generated
to create precession.
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way the quadrotor is thrown into the air. This test was also
performed in simulation. 500 throws were simulated and it
could be seen that in the worst case the quadrotor needed
less than 30m of altitude in order to recover completely. The
simulations had no limit on initial attitude, the rotational rates
were limited to ±10 rad/s for Ωx and Ωy and ±5 for Ωz . No
initial velocity or position was given in order to be able to
analyse the required altitude in a fair way.

In Figure 14 a scatter plot is made in which the state of



Fig. 13. Recovery rate of 65 throws in damaged (3 rotor configuration)
condition
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Fig. 14. Single rotor failure recovery depending on initial state after being
thrown into the air - 3D scatter.

recovery is plotted versus some initial conditions. The initial
conditions are defined as the conditions at which the quadro-
tor detects free-fall and is re-enabled. The initial conditions
selected are the rotational rates Ωx′ , Ωy′ and Ωz . The test
data does not cover the whole range of possibilities, so it is
hard to identify a clear tend.

A 2D scatter plot where Ωz versus the z-component of
the thrust vector (nz) is compared can be seen in Figure 15.
Although there is little data, one can see that in case of positive
yaw rate, the quadrotor has more difficulties recovering. This
makes sense as it will take the quadrotor longer to generate
the correct yaw rate, which is negative for failure on rotor 1.

Upwards velocity would also be a good candidate to
consider as initial condition, however during all the tests
performed the upwards velocity was more or less the same.

As the 3D figure of real data was inconclusive, 500 addi-
tional simulations were performed in order to see if a more
clear trend could be found. The altitude needed to recover is
presented in Figure 16 where Ωx′ , Ωy′ and Ωz are considered
as initial conditions. It can be confirmed that having initial
positive Ωz is bad for recovery, but one can also see that having
negative Ωy′ is also bad for recovery. This can be explained by
the fact that around this axis, the quadrotor is uncontrollable.
So negative Ωy′ can not be dissipated as there is a failure on
rotor 1.

-10 -8 -6 -4 -2 0 2 4 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Crash

Rough landing

Recovery

Fig. 15. Single rotor failure recovery depending on initial state after being
thrown into the air - 2D scatter.
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In Figure 17 a scatter of recovery altitude is made in similar
fashion but with nx, ny and nz as initial conditions (initial
attitude) and only small initial rotation rates are considered
(rms(Ω) < 2 rad/s). One can see that in all these cases the
quadrotor manages to recover in less than 10m. This result
shows that the controller is robust to initial attitude, but has a
harder time recovering from initial rotation rates.

In Section III a yaw rate priority controller was proposed
which would push the quadrotor to generate yaw rate in case
of failure. Some tests were done in which this controller was
switched off, the results can be seen in Figure 18. Clearly
the recovery rate is much lower without this controller. When
analysing the data in Figure 19, one can clearly see that yaw
rate was generated too slow, causing a slower recovery. In case
there is more altitude available, the quadrotor would also be
able to recover eventually, as yaw rate is generated passively
anyways.

The importance of tilting the thrust vector to actively
generate precession was tested as well. The results can be seen
in Figure 20. One can see that these results are comparable to
the results presented in Figure 13. Looking at Figure 21 one
can see that there is still some roll rate creating precession,
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Fig. 18. Recovery rate of 4 throws in damaged condition without yaw rate
priority

although one would expect this to be zero in this mode.
Comparing with Figure 11 one can see that less precession is
generated as the rotor speeds ω3 are quite different. Although
with this mode the quadrotor is closer to neutral stability, it is
still sufficient to recover and hover.

VI. CONCLUSION

A fault-tolerant controller is presented that is able to recover
from an upset condition in both nominal (without damage)
and single rotor failure configuration. The control system
is validated in a real-life test environment by throwing the
quadrotor by hand in order to bring the quadrotor in a random
state from which it has to recover. The research shows that
even with a rotor failure, the quadrotor is able to recover. Given
the limited altitude in the test facility, the quadrotor was able
to recover in 71% of the cases, 20% of the cases resulted in a
rough landing and 9% resulted in a crash. Analysis of the data,
supported with extra simulation data, shows that the quadrotor
can easily recover from any initial attitude. However, initial
rotational rates have more impact on the recovery performance.
From simulation it can be shown that the quadrotor can recover
from any condition in less than 30m assuming no initial
downwards velocity.
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Fig. 19. Quadrotor thrown into the air with 3 propellers without yaw rate
priority. (a) Position. (b) Attitude. (c) Rotational velocity. (d) Rotor speeds.
The controller detects free-fall, re-enables but does not manage to recover.

Fig. 20. Recovery rate of 10 throws in damaged condition without actively
generating precession

A key element of this research is to actively recover
pitch/roll controllability by adding precession to the system.
Instead of completely ignoring yaw rate control, it is used to
make the quadrotor controllable again. Another key element
is the introduction of QP-INDI, which is an INDI based
control allocator that is able to take rotor saturation into
account. A weight is given to every demand such that the
allocator can prioritise the most important commands. This
makes the control system fault-tolerant as automatically the
control systems will be able to maintain control over certain
states while others are given up.
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Chapter 1

Introduction

In recent years, multi-rotor aerial vehicles have received a lot of attention. These aerial vehi-
cles are usually unmanned robots that can perform various tasks, in some cases without human
intervention. Multi-rotors are mainly used outdoors for agricultural purposes, architecture and
construction, delivery, emergency services, media purposes or to monitor and conserve the envi-
ronment [9]. As this technology is still in its early days, the amount of applications is growing
every day and existing applications can still be improved. Multi-rotors will get more and more
involved in the daily life. It is therefore important that research continues to improve the quality,
reliability and safety of these aerial vehicles [10].

One of the most common multi-rotors is the quadrotor due to its simplicity and energy efficiency
[11]. As the name implies, a quadrotor has four rotors positioned in a rectangular profile on the
vehicle. Quadrotors are extremely powerful which makes them very agile and able to fly under
many different circumstances. The agility of the quadrotor makes it suitable to solve certain
problems that otherwise require a complex structure or human intervention. As quadrotors will
become even more common in daily life, safety cannot be neglected and should be taken into
account when designing the vehicle and its mission.

When thinking about safety one should consider what happens when a quadrotor is damaged. Is
the quadrotor then still able to continue its mission, or is it able to land in a safe manner? Say one
of the rotors fails during flight, the quadrotor will become under actuated which might have critical
consequences for the quadrotor and the mission it is performing. The partial or complete failure
of a rotor has been described by various authors and solutions do exist in which the quadrotor is
capable of controlling position [12]. This means the quadrotor can at least fly to a certain position
and land safely using FTC.

Research in fault tolerant control for quadrotors is young but promising as shown. Most literature
assumes to detect failure or damage immediately and the quadrotor to be in a favourable initial
position, however in reality this is most likely not the case. The transition from nominal flight
condition to damaged flight condition is very abrupt and can cause the vehicle to end up in an
abnormal attitude and position, also called upset condition. The longer the failure detection takes,
the more the quadrotor will have deviated from the hover condition. Although a quadrotor is very
agile, recovering from an upset position might not always be that straight-forward, certainly if the
quadrotor is damaged.

This thesis project will therefore focus on the upset recovery for damaged quadrotors. As little
research has been conducted on this subject but promising developments are being made in FTC,
the subject is suitable for a thesis assignment.
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18 Introduction

The outline of the report is as follows: in Chapter 2 the motivation for this research will be
elaborated on as well as the research question. In Chapter 3 the literature review will be presented.
The methodology can be found in Chapter 4 while the thesis plan can be found in Chapter 5. In
Chapter 6 some preliminary tests are performed and the results are presented.
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Chapter 2

Thesis Project

This thesis project will conduct research in the field of FTC and more specifically in the recovery
of damaged quadrotors. The research motivation will be presented in Section 2-1 followed by the
research question and sub-questions in Section 2-2.

2-1 Research Motivation

Unmanned Aerial Vehicles (UAVs) are becoming increasingly popular, not only in military use
but also in commercial use. Especially the multi-rotors are popular due to the extreme power and
agility. The industry is starting to focus more on the usage of these aerial vehicles for various
tasks [10]. However, the current regulations [13] concerning the usage of UAVs are very strict and
do not allow the full potential of the UAVs to be used. There are various reasons why the rules
are so strict, but the main reason is safety. An UAV that loses control can cause significant harm
to people in the neighbourhood, especially heavy UAVs. The current commercial UAVs do not
have fault tolerant control capabilities yet, so more research needs to be done to make UAVs safer.
Once it can be proven that UAVs are safe, the regulations can be relaxed so that the full potential
can be exploited.

FTC for multi-rotors is a young but promising field of development. Specifically when taking
quadrotors into consideration, damage or a complete rotor failure causes the vehicle to be under
actuated. This means that not all states can be controlled anymore at the same time, therefore an
alternative control strategy is required. As the literature review will show, various FTC solutions
for quadrotors are being developed and some have already proved to be very effective. However,
all these solutions assume a favourable initial condition and do not consider initial conditions
that are way outside the normal hover conditions, which will be called upset condition. When a
quadrotor gets damaged, this can either be due to an internal failure or due to a collision. In the
case of a collision, the vehicle will most likely be in a weird state or upset condition. In the case
of another failure, take for example a sudden rotor failure, the control systems need some time to
detect the fault and act accordingly. During this time the quadrotor will deviate from the hover
condition and could enter an upset condition. To be useful, the FTC needs to be able to recover
from these conditions.

Little literature about recovery of quadrotors is available, certainly in case of damage. Therefore
more research into this subject has to be done so that the flight envelope of the quadrotor with
FTC can be expanded.
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2-2 Research Questions

The research question defines the thesis project. It is therefore important to come up with a good
research question. In order to make the research question specific enough, the research will focus
on rotor failures for a quadrotor and how they compare to the nominal case. In sub-questions one
can then expand to see how other forms of damage would affect the result. The thesis project is
particularly interested in the recovery from a specific state, which will be called an upset condition.
Therefore the research question for this thesis project will be:

• How can a quadrotor with rotor failure recover from an upset condition and how does it
compare to upset recovery in the nominal case?

In order to answer these questions some sub-questions need to be answered and can be seen as
intermediate goals for the thesis project.

As there is little literature about upset conditions with quadrotors, the author needs to define the
upset condition of a quadrotor.

• How can an upset condition be defined for a quadrotor?

Assuming upset conditions exist for both nominal and the damaged case, the author needs to
figure out how a quadrotor can recover. This is closely related to the main research question as if
there is no solution there is no way to recover.

• How does a fully functional quadrotor recover from an upset condition?

• Can the same upset recovery methods be used for an undamaged and a damaged quadrotor?

• Is there a specific set of upset conditions for which the damaged quadrotor can recover?

• Is there a specific set of upset conditions for which the damaged quadrotor cannot recover?

In the case that recovery is not possible, the main research question can be answered negatively,
one can again expand the thesis project and wonder why this is the case.

• Why does a quadrotor fail to recover from an upset condition?

• Why does a quadrotor with rotor failure fail to recover from an upset condition?

The research question asks how the quadrotor can recover. This means some questions regarding
the control methods used need to be answered.

• How quick should the fault detection be?

• Can INDI be used in all cases?

• Can a passive FTC be developed?

Clearly, many questions arise when performing this research and one could possibly think of many
more. The research questions above form a solid basis to start the thesis project.
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Chapter 3

Literature Research

A literature research is performed to get an overview of the state-of-the-art technology concerning
FTC for quadrotors. In order to truly understand the problem, the author will familiarise himself
with the modelling of quadrotors in Section 3-1. Before one can design a fault tolerant controller
one needs to have sufficient knowledge about the control of a quadrotor in nominal condition,
which will be presented in Section 3-2. The FTC literature research is presented in Section 3-3
and finally upset recovery will be treated in Section 3-4.

3-1 Quadrotor Model

A quadrotor is a type of multi-rotor that uses, as the name suggests, four propellers to generate
lift. The propellers are fixed pitch blades all pointing upwards. Control of the vehicle is therefore
completely done by altering the lift each propeller produces. A quadrotor does not depend on big
lifting surfaces (eg. wings) that require the vehicle to have some airspeed. This makes a quadrotor
very agile and able to operate in many circumstances. In Figure 3-1 one can see an example of a
quadrotor as well as the definition of the body axis system and the numbering of the rotors used
in this thesis project. Remark that rotors 1 and 3 rotate counterclockwise while rotors 2 and 4
rotate clockwise. This direction difference enables the quadrotor to control its rotation around the
Zb axis.

Figure 3-1: Bebop axis definitions [1]

In this section the modelling of a quadrotor will be discussed. It is important to have a good
representation of the system and to know what the limits of the model are. A problem in the
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model will likely propagate into the final system. The quadrotor model will be the basis from where
the development can start. In most papers about control of quadrotors the quadrotor model used
is presented. This is done by deriving the Equations of Motion (EOM) and simplifying where
necessary. The EOM are generally split up in two parts being the translational part and the
rotational part. One might argue that the aerodynamic model should also be part of the EOM,
but most literature consider it as a separate subject. Attitude representation is usually done in
two ways; either using Euler angles or using quaternions [14]. Euler angles are used far more often
than the quaternion approach as it is more intuitive but it has its limitations. Two forms of EOM
will therefore be presented in Section 3-1-1 and Section 3-1-2.

Before going into depth into the EOM, some variables will be defined. Every rotor i produces a
force fi which is aligned with the Zb axis. The total moment produced by the rotors around the
centre of gravity is denoted by τ . The calculation can be seen in Equation (3-1) where dimensions
b and l are used as well as a drag/lift coefficient cld. Note that the Zb points downwards. How
the forces themselves are generated will be shown in Section 3-1-3.



τx
τy
τz


 =




−f1b+ f2b+ f3b− f4b
−f1l − f2l + f3l + f4l

−f1cld + f2cld − f3cld + f4cld


+ τaero (3-1)

3-1-1 EOM using Euler angles

The translational EOM of a quadrotor are quite straight forward as the quadrotor is not a complex
model. They can be seen in Equation (3-2) and Equation (3-3) and are represented in the inertial
frame [15]. The rotation matrix used is presented in Equation (3-4) [15] where sine and cosine are
abbreviated by s and c respectively. The rotation matrix is used to convert the forces from the
body frame to the inertial frame. From the EOM one can already see that the quadrotor can only
control its lateral position by using roll (θ) and/or pitch (φ).

ḋ = v (3-2)

v̇ =




0
0
g


+RIB ·

1

m




0
0∑
fi


 (3-3)

RIB =



cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ
cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ
−cφsθ sφ cφcθ


 (3-4)

The rotational EOM are slightly more complex. The change in rotation matrix can be seen in
Equation (3-5) while the rotational acceleration is calculated as shown in Equation (3-6) [15] [1].
The rotational velocity of the quadrotor is denoted by Ω (= [p, q, r]) while the inertia of the
quadrotor is denoted by Iv. Using this method one does not know what the actual Euler angles
are, which can be essential to know. Equation (3-7) [16] offers a solution to this problem and can
be used either next to Equation (3-5) to only calculate the Euler angles or can also be used to
calculate the rotation matrix RIB . In order to calculate the Euler angles one has to perform a
matrix inversion, which can be dangerous and lead to singularities. This method is therefore only
valid if −π2 < φ < π

2 and −π2 < θ < π
2 [17].

ṘIB = RIBΩ (3-5)

IvΩ̇ = −Ω× IvΩ + τ (3-6)
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φ̇

θ̇

ψ̇


 =




1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ



−1 

p
q
r


 (3-7)

3-1-2 EOM using Quaternions

Less popular is the quaternion approach to model the quadrotor due to the increased complexity.
As all info about the attitude is condensed into one 4 dimensional vector, it can be hard to see
what is going on, making it less intuitive to use. Quaternions are 4 dimensional vectors that are
an extension to the complex numbers, or also called the hyper complex numbers [18]. Quaternions
are used in pure mathematics but come of good use for practical purposes such as modelling the
rotation dynamics of a quadrotor. Quaternions can be expressed in various ways, but the two
most common are shown in Equation (3-8) and Equation (3-9). Equation (3-10) shows how one
can convert Euler angles to a quaternion where α is the total rotation angle around the vector.
In Figure 3-2 a multiplication table is shown where one can already see the unique properties of
quaternions.

q = q0 + q1i+ q2j + q3k (3-8)

q = [q0 + q1 + q2 + q3] (3-9)




q0
q1
q2
q3


 =




cos(α/2)
sin(α/2)cos(ψ/2)
sin(α/2)cos(θ/2)
sin(α/2)cos(φ/2)


 (3-10)

Figure 3-2: Quaternion multiplication table [2]

The translational EOM can be found in Equation (3-11) and Equation (3-12) [19] [20]. They
are very similar to the ones presented in the Euler angle approach but now the rotation matrix
is replaced by quaternions. The ⊗ symbol represents the Kronecker product [19]. In MATLAB
one can use quatmultiply in order to perform the Kronecker product on two quaternions. The
conjugate of a quaternion is denoted by q∗.

ḋ = v (3-11)

v̇ =




0
0
g


+ q⊗ 1

m




0
0∑
fi


⊗ q∗ (3-12)
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The rotational EOM using quaternions is different, although similarities can be seen. Equation (3-
6) can still be used but Equation (3-13) replaces Equation (3-5). At any time, the Euler angles
can be calculated from the quaternion using Equation (3-14) or by using the MATLAB function
quat2eul. Although quaternions are not as intuitive to use as the Euler angle approach, quaternions
do not have any singularities and can be used for any attitude. As this thesis project will focus
on recovery of quadrotors, it is very likely that more extreme angles will occur. Therefore the
quaternion approach is the preferred one for this thesis project.

q̇ =
1

2
Ω⊗ q (3-13)



φ
θ
ψ


 =



atan2(2(q0q1 + q2q3), q20 − q21 − q22 + q23)

asin(2(q0q2 − q3q1))
atan2(2(q0q3 + q1q2), q20 + q21 − q22 − q23)


 (3-14)

3-1-3 Aerodynamics

So far aerodynamics were left out in the EOM. As one can imagine, aerodynamics play a big
role in an aerial vehicle like a quadrotor. There are two main parts that will be discussed: the
aerodynamics concerning the rotors and the body aerodynamics. Rotor aerodynamics have been
extensively studied in the past century with the development of the helicopter [15]. The lift a rotor
produces can be modelled in a simple way as shown in Equation (3-15). For most applications this
equation is accurate enough, but one should be aware that more complex aerodynamic effects are
taking place, certainly in highly dynamic manoeuvres. If the vehicle has some airspeed, the rotors
will behave differently compared to the hover condition. The extra airspeed can create a different
angle of attack on the rotors, causing them to behave differently. Rotors are not infinitely stiff
either, so a difference in thrust on one side compared to the other can create an effect called rotor
flapping [15] or thrust variation [21]. The assumption is made that the air is in the same state
everywhere, but in reality this is not the case. A rotor leaves turbulent air behind and if it flies
through that again, the resultant lift will change. This is probably hard to model as it does not
only depend on the current state, but also on the time-history of the states. One could try and
analytically determine all these effects, but alternatively one can perform tests and map the cf
coefficient used in Equation (3-15) over a range of states. In order to do so one needs sufficient
test data, which might not always be available.

fi = cfω
2 (3-15)

Body aerodynamics are mostly just drag components. If the quadrotor moves through the air,
some drag will be present. In most literature only yaw damping is considered. In M. Mueller, R.
D’Andrea the body drag is simply modelled as shown in Equation (3-16) where γ is a constant that
is determined from test data [12]. In this paper the yaw drag was added to make sure the quadrotor
would find a steady-state yaw rate. One can add drag in the same fashion for pitch rate and roll
rate. In [22] pitch and roll drag is added to the equation and the drag is not linear but quadratic
with respect to rotational velocity. The resulting equation can be seen in Equation (3-17).

τaeroSimple = (0, 0,−γr) (3-16)

τaeroQuadratic = − ‖ ω ‖ Kdω (3-17)

For some applications a more detailed aerodynamic model is required. There are several options
to model this. One could use a live Computational Fluid Dynamics (CFD) simulation of the
quadrotor in order to find al aerodynamic forces and moments on the vehicle. This would be very

Matthias Baert Quadrotor Upset Recovery after Rotor Failure



3-2 Nominal quadrotor control 25

computationally intensive, and would therefore be extremely slow. Another option is to perform
some CFD simulations and make a mapping of the aerodynamic forces and moments depending on
a wide range of states. This might be a viable option, depending on the amount of CFD simulations
that will be needed to cover all relevant states. Instead of performing CFD simulations, one could
also perform the tests in real life and map the forces and moments. The estimation of the forces
and moments might be hard to perform as well as getting the quadrotor in the required states.

In order to use the gathered data from either CFD simulations or real life testing, one has to use
some sort of an interpolation algorithm such that the aerodynamic model is continuous. A lot of
research has been performed in this field. In [23] a solution using multivariate splines is proposed
while in [24] a neural network is used to create the aerodynamic model.

3-2 Nominal quadrotor control

In order to fully understand the dynamics and controls of a damaged quadrotor one first has
to understand how a fully functional quadrotor works. Therefore a literature review on nominal
quadrotor control will be conducted in this section. Although many literature sources are available
concerning quadrotor control, most of them are based on the same concepts. First a general
overview of how a quadrotor can be controlled will be presented in Section 3-2-1. Secondly the
different concepts in position control will be dealt with in Section 3-2-2. Next the attitude control
will be presented in Section 3-2-3. To finish this section some info about state estimation for the
quadrotor will be given in Section 3-2-4.

3-2-1 Basic Control

In this section the basic principles in quadrotor control will be explained. The quadrotor has 4
rotors which can be controlled individually. Each rotor is set up to rotate only one direction,
either Clockwise (CW) or Counterclockwise (CCW), which allows for yaw control. In order to
control the attitude of the vehicle, moments can be created by distributing the force in a specific
way. From Equation (3-1) one can see how moments can be created around all axes. For example;
if one increases the lift force on rotors 1 and 4 the roll angle will be controlled. The sum of the
forces (

∑
fi) will cause an acceleration of the vehicle in the direction the rotors are pointing. If

the quadrotor is level, this will result in an altitude acceleration. If the quadrotor is at a certain
angle, it will also cause some acceleration laterally. Important to note that rotors can saturate,
meaning either they cannot spin faster or the maximum lift force has been reached. This can
become relevant in extreme manoeuvres.

3-2-2 Position Control

Position control is an essential part in the control systems of a quadrotor. It is usually the first
controller in the whole system as it will come up with targets for the following subsystems. In
most literature the position controller will output a pitch and roll target, either directly or by first
calculating the required accelerations in each direction [25] [26] [27]. Altitude control is done in a
different way, as the total force upwards (inertial) is important. A more complex option is the use
of predictive control in which a trajectory is generated [28] and followed. Altitude control is then
incorporated in the trajectory. The first case where the position controller comes up with pitch
and roll targets will be elaborated on. A PID controller compares the desired lateral position
with the actual lateral position. The output of this controller is a desired lateral acceleration.
The desired acceleration is then converted to a pitch and roll angle using the yaw angle as well,
which can be seen in Equation (3-18) and Equation (3-19) [25]. Some literature calls this the
backstepping method. The position controller is visualised in Figure 3-3.
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Figure 3-3: Position Control

φdes =
1

g
(ẍdes · sin(ψ)− ÿdes · cos(ψ)) (3-18)

θdes =
1

g
(ẍdes · cos(ψ) + ÿdes · sin(ψ)) (3-19)

Altitude control is done separately as mentioned before. Usually a PID controller is used similar
to the one in the lateral position control but instead of converting it to a pitch or roll angle, it
is converted into a total force. This is done using a simple Non-linear Dynamic Inversion (NDI)
described in Equation (3-20). In this way the PID is still controlling a linear system. This altitude
controller only works in situations where pitch and roll angle are not extreme. If one of the two
angles becomes too big, the resultant required total force will cause the rotors to saturate. This
equation also has singularities when roll and pitch are −π2 or π

2 . Note that the inertial z-axis is
pointing downwards, so the total force in hover will be negative.

∑
fi =

m(z̈des − g)

cos(θ)cos(φ)
(3-20)

3-2-3 Attitude Control

While the position controller is considered as a slower outer loop, the attitude controller is the fast
inner loop. The goal of the attitude controller is to track the desired roll, pitch and yaw angle. In
literature various different concepts are proposed with varying complexity.

The simplest method is having a single PID or cascaded PID that compares the current attitude
with the desired attitude [27]. The outputs are the moments required around each axis. By
using Equation (3-1) and the requirement that the sum of all forces should be the target value
coming from the altitude controller, one can calculate the required force on each rotor. Using the
aerodynamic model, the rotor speed can be found. The control scheme is visualised in Figure 3-4.
In extreme conditions where rotational velocities are high, this method will likely fail, or perform
badly. This due to the non-linear nature of the rotational EOM. In Equation (3-21) the rotational
EOM has been written out. Clearly the control of the pitch, roll and yaw attitude is not only
affected by the moment applied but also by the gyroscopic precession. For example, in Mellinger
[25] and Dong et al. [26] this is taken into account so that the system becomes an NDI controller.
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Figure 3-4: PID Attitude Control
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 =




qr(Iy−Iz)+τx
Ix

pr(Iz−Ix)+τy
Iy

pq(Ix−Iy)+τz
Iz


 (3-21)

The simple PID controller method with or without NDI part does assume that the aerodynamic
properties of the rotors are relatively constant. If this is not the case, due to disturbances or an
inaccurate model in the NDI, then the overall performance will decrease as the system will seem
more non-linear for the controller.

A solution to this problem is proposed in Smeur et al. [7] where initially an Incremental Non-linear
Dynamic Inversion (INDI) controller is used. An INDI controller is less model dependent and is
thus more robust to model inaccuracies. Instead of directly using the model to determine the
angular acceleration in a certain state to get the rotor output, an incremental change in output
is made based on the relative change in state and desired state. In this way disturbances and
other unmodeled effects are compensated [7]. A drawback of the INDI approach is that it requires
derivatives of certain states, which can lead to noisy signals. Appropriate filtering is therefore
needed and is one of the challenges when implementing an INDI.

The core of an INDI controller is the control effectiveness matrix as it is used to determine the
incremental change in output. Although the INDI method is very robust, it requires a correct
control effectiveness matrix. For the quadrotor this would mean that one needs to map the
behaviour of the rotors as well as possible, which goes against the reason why an INDI controller
is used in the first place. Instead one can adaptively determine the control effectiveness matrix
during flight. This is called an Adaptive Incremental Non-linear Dynamic Inversion (AINDI)
controller [7].

In an AINDI controller the expected accelerations are compared to the measured accelerations and
used to adapt the control effectiveness matrix. One could use a Least Mean Squares (LMS) filter
to adapt the matrix. An example of this is shown in Equation (3-22) [7] where G is the control
effectiveness matrix and µ1 and µ2 are diagonal matrices that are used to set the adaptation
constant for specific inputs or dimensions. One can see that the expected rotational acceleration

(G(k− 1)

[
4w
4ẇ

]
) is compared to the measured change in rotational acceleration. Other filters can

be used as well in order to adapt the control effectiveness matrix. When designing such a filter it
is important to decide whether a finite or infinite horizon will be used. Both have advantages and
disadvantages. When using a finite horizon filter, the filter might ’forget’ essential data during
hover, as the system is not being excited. But when using a infinite horizon filter, the adaptation
to sudden changes might be slower. Imagine a sudden rotor failure, past data will not help and
quick changes to the matrix have to be made.

G(k) = G(k − 1)− µ2(G(k − 1)

[
4w
4ẇ

]
−4Ω̇)

[
4w
4ẇ

]T
)µ1 (3-22)
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3-2-4 State Estimation

So far many control problems have been posed and different solutions have been found. In the
previous sections the assumption was made that the states are accurate and precise. In reality
however, this is not necessarily the case. Depending on the environment, certain states will be
hard to measure well and need some sort of estimator to get decent values. Indoor test facilities
are usually equipped with an optical tracking system that is able to determine position, velocity,
attitude and rotational velocity of the quadrotor very accurately. The acceleration and angular
acceleration can still be obtained from an Inertial Measurement Unit (IMU) onboard but could in
theory also be derived from the optical tracking system.

In an outdoor test environment, an optical tracking system is usually not available as the test
area is not bounded. This means that the quadrotor needs a different way of estimating the
aforementioned states. Most important is the estimation of the attitude and rotational velocity,
as these are very important for the basic functionality of the quadrotor. Assuming the quadrotor
has an IMU and a magnetometer onboard which can measure the earth magnetic field, a Kalman
filter can be made that uses these sensors to estimate these states [15]. The gyro’s in the IMU
are used for the state-ahead prediction while the magnetometer and accelerometers are used as
measurements of the attitude. In this way the rotational velocity can be estimated and the
attitude estimation will be more robust and possibly quicker. Note that the attitude estimation
from the accelerometers need some extra processing. The same principle is used for the estimation
of position. The gyro’s and accelerometers from the IMU will be used as well as the estimated
attitude. However, there is still need for a measurement of position somewhere. Most commonly
Global Positioning System (GPS) is used, but this only gives position updates every 10 Hz [15]. So
a Kalman filter is definitely needed to speed up the frequency at which the position is determined.
With the Kalman filter one can estimate the velocity as well. More complex systems do exist
which use vision in order to determine position and/or velocity. The use of optical flow is a good
example of that. Altitude can theoretically be obtained from GPS but most likely another system
will be needed for this. Depending on the application, one can choose for laser-ranging, infrared
or acoustic sensors for low altitude, and barometers for higher altitudes.

3-3 Fault Tolerant Control

In this section a literature review on FTC is performed. As the name suggests, this field of study
looks into control systems that are able to control the quadrotor in case of a failure. FTC for
quadrotors is quite new and still in its early days. Currently a lot of research is being done, but
not all issues are solved yet. In the introduction and research motivation it was stated that there is
a high demand to make quadrotors safer. One way to make quadrotors safer is to have a working
FTC in which the quadrotor can at least land in a safe manner if a failure occurs. Faults or
damage can occur due to various reasons. An electrical problem with one of the rotor motors can
cause the motor not to work anymore. Overheating of a motor is a common failure as well. As the
rotors are spinning at high speed, a collision with a wall or some object can cause the rotors to
take damage. This may mean that the rotor is completely broken, but it might also be partially
broken (eg. one side of the propeller breaks off). A system that can cope with these issues would
enhance the safety of quadrotors significantly.

This thesis will focus on a single rotor failure, meaning one rotor does not provide any lift force
anymore. In this case the solution is not trivial. Without loss of generality it is assumed that
rotor 1 failed. Looking at Equation (3-1) one can see that if f1 = 0 the solution to hover (τxyz =
0) is the null solution, meaning all rotors have to stop generating lift. This is not a useful solution
as this would mean the quadrotor would fall out of the sky. The sum of the forces should still
meet the altitude controller demands. Note that fi >= 0 as the lift cannot be inverted. Clearly a
quadrotor needs all rotors in order to have full control over its attitude. However, this does not
mean a quadrotor is completely uncontrollable if a rotor failure occurs.
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Mueller and D’Andrea [12] conducted research if there are analytical solutions for a damaged
quadrotor in hover. They consider one, two and three propeller failures and show that analytical
solutions exist, although the definition of hover had to be revised. The solution is to give up on
yaw control. In this way both roll and pitch can still be controlled. This also means the position
can be controlled. Using this solution a quadrotor can stay on a certain position (hover) and still
go to a certain position despite the quadrotor spinning in yaw.

Two types of FTC exist; Active Fault Tolerant Control (AFTC) and Passive Fault Tolerant Control
(PFTC) which are presented in Section 3-3-1 and Section 3-3-2 respectively.

3-3-1 Active Fault Tolerant Control

In AFTC the control laws are reconfigured when a fault or problem is detected [29]. The system
actively has to check if there are faults and to act accordingly. Currently, most literature in FTC
for quadrotors use a AFTC system. The field of study is still young and most papers even assume
the fault is a given. In this section the AFTC solution from literature will be presented. Mainly
the differences compared to the nominal control presented in Section 3-2 will be highlighted.

As yaw control will be given up and the quadrotor will start spinning around its Zb, some concepts
from the nominal control systems will have to be revised or be made more abstract. In Sun et al.
[1] the concept of a primary axis is introduced. The primary axis of a quadrotor is a vector with
coordinates [0, 0,−1] in the body frame, so it is ’pointing up’. Using this vector, position control
can be done independently of yaw angle. This also makes the attitude control a bit more abstract,
as no pitch or roll angle targets are given directly, but instead a vector. Position control works in a
similar way as in the nominal quadrotor. PID controllers come up with acceleration targets which
are used to calculate the desired primary axis. The calculation can be seen in Equation (3-23).
Note that g is the gravitation vector. ndes is defined in the inertial frame and is normalised. This
method is used in various papers [12] [8] [27].

ndes =
ades − g
‖ ades − g ‖

(3-23)

The primary axis is the output of the position controller. As the desired primary axis is in the
inertial frame, it has to be converted to the body frame. This can be done using the rotation matrix
described in Equation (3-4). The goal of the attitude controller is now to follow this primary axis
target as well as possible. This is done in various ways across all literature. In Lippiello et al.
[27] the desired primary axis is converted to a pitch or roll angle target depending on which rotor
failed. The body axis system is different in this paper due to which roll and pitch are defined
differently as well. Using the pitch or roll target a PID controller is used to determine the required
torque. The opposing rotor will thus not be used either in this system.

A different concept is to come up with a desired pitch and roll rate from the desired primary axis.
This is done in [1] and [8]. Using an NDI, the desired pitch and roll rate can be determined. The
outcome can be seen in Equation (3-24) where the virtual input νout is defined in Equation (3-25).
ndes = [h1, h2, h3] is used to simplify some notations. ˆ̇nBdes denotes the desired primary axis x
and y components in the body frame. The virtual input is basically a proportional controller that
compares the current primary axis and the primary axis target. Usually the x and y components
of the current primary axis are zero. Once the target pitch and roll rates are determined a simple
PID controller can be used to determine the desired pitch and roll accelerations. These can then
be fed into an INDI or AINDI can be used to determine the target rotor speeds.

[
pdes
qdes

]
=

[
0 1/h3

−1/h3 0

] (
νout −

[
h2
−h1

]
r − ˆ̇nBdes

)
(3-24)
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νout =

[
kx(nBx − h1)
ky(nBy − h2)

]
(3-25)

As mentioned before, AFTC needs to know if there is a failure in order to adapt the control
strategy. The controller will then go into primary axis control mode and the INDI or AINDI will
not use the failed rotor anymore. This principle is called Fault Detection and Isolation (FDI).
Little literature treats the fault detection, but in Lu and Van Kampen [8] and Zhang et al.
[30] some research has been conducted into fault detection. Similarly as the AINDI the control
effectiveness of each rotor is estimated. If the control effectiveness deviates too much from the
expected aerodynamic model, it can be assumed that the rotor has failed. The biggest challenge
in doing this is the trade-off between how quickly one can detect a failure and not detect failures
when there are none. Therefore it is important to select a suitable filter.

3-3-2 Passive Fault Tolerant Control

In PFTC the control systems are robust to faults or problems. This means the same control
laws will be used for nominal control as when a fault occurs. Little literature about PFTC for
quadrotors can be found as currently AFTC is already challenging enough. The advantage of
having a PFTC is that there is no need to detect the fault, as the system itself is robust enough
that it can handle faults. Ideally this is the preferred method, however in practice this might not
be easy to achieve. A PFTC has to work in all situations, the increased flexibility usually means
that the peak performance in a certain situation will decrease. In this section possible PFTC
concepts will be presented.

In Section 3-3-1 the primary axis was introduced for position control. This concept can also be
used in nominal quadrotor control. This would mean that position control is a PFTC and thus
the control law does not have to be changed if a fault occurs. The NDI part of the attitude
controller used in AFTC can also be used in nominal quadrotor control. This gives the pitch and
roll rate command. For nominal control, a yaw controller is also needed that comes up with the
desired yaw rate. The next step of the control system is where the problems start to occur. An
AINDI will try to match pitch, roll and yaw rate commands, however when a rotor fails, this is
not possible to do anymore. In order to make this part PFTC a new strategy will be needed. If
one can find a way to prioritise roll and pitch and regard yaw control as a secondary tier target,
a method could be developed that is PFTC. This could be a system that hedges the pitch, roll
and yaw rate inputs into the final force distributor. Pseudo control hedging in FTC is described
in [31]. A perfect force distributor for PFTC is the AINDI. The AINDI will estimate the control
effectiveness of the rotors, so if a failure occurs, the control effectiveness should go to zero and the
rotor will not be used anymore. With this configuration a PFTC for a quadrotor could possibly
exist if one does not prioritise yaw control. However no example of this is present in literature.

3-4 Upset Recovery

Upset recovery is rarely considered in quadrotor research. This is due to various reasons. First of
all, upset conditions are not well defined for quadrotors. As quadrotors are very agile and have
a high power-to-weight ratio upset conditions do not seem to exist. Secondly, quadrotors do not
rely on lifting surfaces that need vehicle airspeed and a certain angle of attack making them less
vulnerable to complete loss of control. In Section 3-4-1 it will be shown that upset conditions
for a quadrotor do exist. It will also be shown that it is likely that the quadrotor will enter an
upset condition when damage takes place. A literature review concerning upset conditions for
multirotors and trajectory generation will be conducted as well. In Section 3-4-2 a short review
of the literature about upset recovery in the airplane industry will covered.
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3-4-1 Upset recovery for quadrotors

As mentioned, upset condition for a quadrotor is not well defined. An upset condition does not
mean a condition from which recovery is not possible, it indicates that a specific set of manoeuvres
is required to get the vehicle back in full control. Using this knowledge, one can review again what
an upset condition could be for a quadrotor. When the quadrotor is not damaged and in normal
hover condition the attitude and altitude can be controlled all together. Clearly this is not an
upset condition. Now consider a quadrotor in an upside down situation. In this case the altitude
cannot be controlled. In fact some force will be needed to rotate the quadrotor meaning the
quadrotor will be accelerated down even more. This can be seen as an upset condition. First the
attitude has to be recovered before the altitude can be controlled again. A counter intuitive move
has to be made (eg. accelerating down) in order to recover. Even when the quadrotor is at high
pitch or roll angles, it might be beneficial to give up on altitude control for a moment and give
more authority to the attitude controller. Otherwise a too big lateral displacement might occur.
This also depends on the space the quadrotor can fly. If the quadrotor is very close to the ground,
giving up altitude might not be an option. On the other hand, if the quadrotor is close to a wall
there is no room for any lateral displacement in that direction. This is only considering a healthy
quadrotor. If the quadrotor suffers from a rotor failure the flight envelope becomes smaller and
more upset conditions will exist. Clearly upset conditions for a quadrotor do exist.

From the literature study one can conclude that little research into upset recovery for quadrotors
or multirotors has been conducted so far. A very relevant paper for this subject is from Beffa
et al. [32]. In this paper recovery for both state estimation and control is considered and is tested
for extreme manoeuvres. As the state estimation is based on vision one can imagine this being
very challenging. Regarding control this paper proposes a step-by-step recovery method in which
attitude is recovered first, followed by altitude and position.

Literature with regards to trajectory determination and following is relevant for upset recovery
as well. Plenty of research is being conducted with regards to this subject. From [33], [34] and
[35] one can conclude that a big challenge in trajectory generation is to make it computationally
efficient enough such that it can run on a real-time system. In Hehn and Andrea [35] a method is
proposed in which a trajectory is generated to bring the quadrotor from any initial state to a target
position in rest. This method can thus be used to recover the quadrotor from an upset condition
as well. Generation of the trajectory is done in less than a tenth of a second. In Mueller et al. [33],
[34] a similar method is proposed but with a different focus, for example catching a ball mid-air.
All methods use some pre-defined model properties and limits, which do not necessarily correspond
to the real limits of the vehicle. In this case they are probably on the safe side. However in case
of damage the vehicle properties change significantly in which case these trajectory generation
methods will fail. In order to use these methods, a modification will be needed in order to use it
for damaged quadrotors. Ideally the limits can be set dynamically, although this will probably go
at cost of computation time. External disturbances are also not considered in these methods.

Looking back to the current control systems of quadrotors presented in Section 3-2 and Section 3-
3, they are likely not to recover from an upset condition. Looking at Equation (3-20) one can
already see that the required total force at 90◦pitch or roll will become infinite. Also at higher
pitch or roll angles the required total force will grow and might saturate the propellers, causing
the vehicle to lose attitude control. Looking at Equation (3-24) one can see that if the primary
axis and desired primary axis are at 90◦of each other, h3 becomes zero and no meaningful solution
will be found. Clearly, some of the systems will have to be made more robust and a strategy has
to be developed in order to recover from an upset condition even in the undamaged case. With a
damaged quadrotor the flight envelope is even smaller, so recovery will be even harder.
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Figure 3-5: Upset recovery strategy [3]

3-4-2 Upset recovery for airplanes

For airplanes a lot of research has been conducted in this field. In [36] and [3] an analysis on
upset recovery for airplanes is presented. Although an airplane is not the same as a quadrotor,
similarities can be found in approach to the problem. Some of the upset conditions considered in
the papers are: nose-up, nose-down, inverted flight, stall, deep stall, spin and high sideslip [36]. In
order to recover form these situations, several strategies are tested. The strategies always consist
of a set of manoeuvres that are performed in series. This usually means giving more authority to
a certain controller and less to another. In Figure 3-5 a proposed upset recovery strategy can be
seen. Clearly, the recovery of some states is more important than others.
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Methodology

In this chapter the methodology for the thesis project will be presented. The literature review is
done and the research can start. In section Section 4-1 the plan of attack for the remaining part of
the research will be explained. In section Section 4-2 the experimental set-up will shown. Finally
in section Section 4-3 the risks of this thesis project will be presented.

4-1 Plan of attack

In this section the plan of attack will be explained. The author has conducted a literature survey
and is up to date with the state-of-the-art developments in the field of FTC and upset recovery.
The research question has been set-up so now the actual research can start to answer it.

In the literature review many concepts for different sub-systems were presented. From the liter-
ature study some conclusions can be made on what concepts are promising and which are not.
The research will use the work from Sun et al. [1] as a baseline. The system proposed has been
validated even in high speed conditions. Using this baseline system gives a solid basis to start from
and conduct the research without the need of first having to develop a complete FTC controller
from scratch. The author has access to the code used in Sun et al. which will speed up the process.

4-1-1 Controller approach

The controller can be subdivided into five parts namely; position controller, altitude controller, yaw
controller, attitude controller and the INDI control allocator. This can also be seen in Figure 4-1.
The intention is to keep this structure and adapt some parts, preferably in the outer loop (eg.
position controller and altitude controller). Ideally, a fault detection subsystem is added as well,
as the current system assumes the fault is known. As faults are artificially added it is possible to
give the information to the control systems. However in practice when an actual fault occurs this
will not be the case and proper fault detection is required.

Regarding position control, little changes will have to be made. The primary axis method can be
used for the nominal and damaged case and is therefore an ideal candidate for the FTC. Currently,
there are no limits applied to the orientation of the primary axis. In order to avoid pushing the
quadrotor in an upset condition due to itself, smart limits can be applied to the primary axis.
Without limits the primary axis could end up pointing level with the ground, requiring either 90
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Figure 4-1: Control overview

◦pitch or roll, which is an undesired condition. The position controller is a double PID controller
in series. It is important that the integrals do no windup, so an anti-windup system might also
be added.

The altitude controller will need some adaptations as currently it cannot handle upset conditions.
From Equation (3-20) it can be seen that there are singularities. The current altitude controller
works in nominal conditions, so only for extreme conditions it needs to be adapted. As proposed in
[36] the altitude controller can be disabled when an upset condition is present, however one could
make a more clever system. One could make a trade-off between lateral and altitude displacement,
and scale the output of the altitude controller based on that. The trade-off parameter can then
either be kept constant, or be varied if more info about the surroundings is known.

The normal yaw controller is only used when the quadrotor is in a healthy condition, so no effort
will be put in this system. However, in the damaged case yaw rate can help the quadrotor to
stabilise itself. This means that in order to recover properly, the quadrotor needs to have some
yaw rate. One step of the recovery process could therefore be to increase the yaw rate as much
as possible on purpose. Although yaw control is given up, it does not mean it should not be
considered anymore in the research.

The attitude controller presented in Equation (3-24) has to change as currently it cannot handle all
orientations of the quadrotor. The attitude controller will most likely be the core of the research
because it will determine how the quadrotor will recover from an attitude perspective. Using the
knowledge of the rotor failure, the attitude controller can made clever decisions on what angular
rates are required. It is expected that most of the work done during the thesis project will be in
the attitude controller, stating this with the current view.

The current INDI control allocator can be replaced by an AINDI in order to detect rotor damage
and update the control effectiveness matrix. The use of an AINDI is not neccesary. If one knows
what the damage on the quadrotor is and what the effect is on the control effectiveness, one can
use the INDI. Implementing the AINDI could enhance robustness though. The FDI and AINDI
system could work together. Feedback from the AINDI can be used to detect rotor failures. As
presented in [8] the control effectiveness can be estimated. If this exceeds a certain threshold, the
rotor is assumed to be damaged.

4-1-2 Code development

In this subsection the code development approach will be explained. The author has performed a
literature survey and is now up to date with the latest developments in the field of FTC and upset
recovery. New ideas and concepts for the controller are presented above. At some point this has
to be translated into actual control systems in the form of code.
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The bebop quadrotor (see Section 4-2-4) that will be used needs control systems in the form of
C code. Different frameworks exist that can handle the basic functionality of a quadrotor. Two
examples of this are the Paparazzi UAV [37] framework and the PX4 [38] framework. Using the
framework allows the author to focus more on the specific parts of the control systems that are
related to this thesis project. In the framework specific subsystems can be altered while keeping
the other subsystems. For this thesis project the PX4 framework will most likely be used due to
its flexibility. The control system will be developed in a structure that allows to implement new
subsystems in the PX4 framework.

The control system will be developed using Simulink from MATLAB. In Simulink a framework
will be setup in which the control systems can be developed and tested. In the framework a
quadrotor simulator is present which replicates the real quadrotor as accurate as possible. The
sensor inputs into the control systems are simulated as well. This enables the author to develop
control systems quickly without having to use actual hardware. Using a virtual simulator can boost
the development significantly. One can disable translational movement and only allow rotational
movement in order to test the attitude controller separately. Once this works, one can move on
to translational movement etc.. Using an isolated situation it is often easier to see the issues and
solve them. This would be very hard to do in a real environment.

In order to deploy the code onto the quadrotor, the code will be built from Simulink. Not the
entire control block will be built, but the built will be split up in a few different subsystems. These
subsystems can then be implemented in the PX4 framework. A Simulink code wrapper will be
needed that can call the automatically built code and manage the interface between the code and
the PX4 framework. It is important that in the Simulink model all the interfaces are implemented
the same as they will be in the PX4 framework. Otherwise the controller will not work the same
in real life as it does in the virtual environment. In Figure 4-2 a very basic visual representation
is given. Three arbitrary subsystems are used to show how they live in both Simulink and PX4.

Figure 4-2: Code environment overview

In a big project where people have to collaborate, a source control system is needed to organise
and manage the code. All the code in this thesis project will be source controlled using the git
protocol. Using this method allows the users to track code progress and to develop different
concepts without losing other progress. git allows users to collaborate in an efficient way. It
manages differences in code between two users so that two users can work on the same subject
at the same time. In git one can make use of branches in order to control the work that is being
done. A convention that can be used is proposed by Driessen [4] and can be seen in Figure 4-3.
The master branch is where the latest release of a code lives. During development, everyone works
on the develop branch from which users can make feature branches in order to add new features or
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try other ideas. One can at any time switch between branches. Every line in the figure represents
a branch while every dot represents a commit. A commit is a package of work the user sends to
git. Once the development of a feature is done, it can be merged into the development branch.

Figure 4-3: Git branching model [4]

4-1-3 Verification, validation and testing

In this subsection the verification, validation and testing approach will be explained. In the
previous sections it was shown how the controller will be developed and how the code will be
structured. It was also mentioned that the control systems will be developed with help of a virtual
environment created in Simulink. This is an ideal place to do the first verification. With verification
one will check if the design is doing what it is intended to do. As the virtual environment is very
flexible, every part of the developed control system can be verified. Once the code is deployed on
the bebop, another verification step needs to take place. Using basic inputs-output tests one can
check that the deployed code is behaving in the same way as in the virtual environment. If this is
the case, then the deployed code will also do what is intended.

When developing, many tests will be performed in the virtual environment. This is the first step
of the validation process. With validation one will check if the intended design solves the problem
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as expected. If a recovery strategy does not work in the virtual environment, it is validated to a
certain extend that it does not work. Of course, in validation it is important that all conditions
are representative enough in order to make a correct conclusion. If a recovery strategy works in
the virtual environment, it does not mean it will work in real life necessarily. After testing in
the virtual environment, testing in a real environment with a real quadrotor will take place. This
will be done in the cyberzoo at TU Delft. More info about this in Section 4-2-2. The controlled
environment is the perfect place to test the developed control system. During testing, problems
will occur and the control systems will need to be updated. This will then be tested in the virtual
environment again before testing in the cyberzoo. Once the results in the cyberzoo are satisfactory,
testing in the wind tunnel will take place. More info about this in Section 4-2-3. In the wind
tunnel more realistic wind or vehicle airspeed can be simulated, making it more realistic. For this
project, this will likely be the final step of validation.

4-1-4 Work Flow Diagram

A work flow diagram can be seen in Figure 4-4. Important to note that there is an iterative
structure in place. Developments are always made in the Simulink model which are then tested in
the virtual environment before going to the cyberzoo and the wind tunnel. Using the test data,
the controller can be improved and another development iteration can start.

Figure 4-4: Work Flow Diagram

4-2 Experimental Set-up

The experimental setup can be split up into four parts; the simulator, cyberzoo, wind tunnel and
the bebop quadrotor. For each element some info will be given as well as the limitations of the
system.

4-2-1 Simulator

A simulator will be developed in which control systems can be developed very easily. The simulator
will be made using MATLAB Simulink which is an excellent tool for this purpose. This tool also
allows to compile the control systems code to deployable code onto the quadcopter in the future.
Using the simulator, the control systems can be tested in ways that are hard to test in real life.
for example, any initial condition can be given. In the simulator one can disable certain degrees
of freedom such that only attitude control can be tested for example.

A disadvantage of using a simulator is that it might not resemble real life good enough. The
dynamics of the system are most likely to be different to a certain degree. Also the sensor readings
and sensor quality can be different in practise. A control system that works in the simulator might
therefore not necessarily work in real life.
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4-2-2 Cyberzoo

At the Aerospace faculty of TU Delft one can make use of the cyberzoo to test UAVs. The
cyberzoo is an aera where UAVs can be tested in a safe manner as the whole area is surrounded
by a net. The cyberzoo also features an OptiTrack system that is able to track the position and
attitude of the vehicle at any time.

The cyberzoo has its limitations. The size is limited and is thus not suitable for high speed tests.
This could also have consequences for the upset recovery, as the maximum altitude achievable in
the cyberzoo might not be enough. During testing, problems can occur meaning the quadcopter
can possibly crash. A crash in the cyberzoo can lead to damage to the quadcopter making it a
non-ideal development tool. The OptiTrack system is a very accurate measuring system, but in
real life where one has to use GPS or other systems the position and attitude data will not be as
accurate. The data in the cyberzoo is therefore not realistic for applications where one wants to
fly outdoors.

4-2-3 Wind tunnel

At the Aerospace faculty of TU Delft a wind tunnel (Open Jet Facility) is available for testing
during a select amount of time. In the wind tunnel the quadcopter can be tested in high speed
conditions (+10m/s). The wind tunnel also features the same OptiTrack system as the cyberzoo
making transisiton from cyberzoo to wind tunnel more easy. Wind tunnel tests will show how big
the aerodynamic effects are and how good or bad these were modelled and taken into account in
the control systems.

The wind tunnel is also limited in size, this is specifically important during the high speed tests as
a small instability will cause the quadcopter to deviate from its position very rapidly. The wind
tunnel will only be available a couple of days for this project which can be vital for the results and
outcome of this project. If the wind tunnel tests are unsuccessful for some reason, it is unlikely
that an extra test session can be planned in.

4-2-4 Bebop Quadrotor

The quadcopter that will be used is the Parrot Bebop 2 Drone which is an off-the-shelve quad-
copter. However some edits are made to the drone to optimise it for this problem. The camera
is taken out to make the quadcopter lighter, resulting in a quadcopter that only weighs 0.41kg
[1]. Four grey markers are added onto the drone such that the OptiTrack is able to track the
vehicle while it is flying. The off-the-shelve software can be overwritten by self developed software
making it a suitable drone for this project. Propellers can also be replaced such that damage can
be simulated for example.

Although the problem is made as general as possible, by only using this quadcopter the thesis
project will be biased towards this quadcopter only. It is not guaranteed that the outcome of
this thesis will also apply to other quadcopters. The Electronic Control Unit (ECU) of the drone
has processing limits meaning one has to write code efficiently and the code cannot be expanded
infinitely. Trajectory generating is a computationally intensive project and might not be possible
to perform in real time on board.

4-3 Risks

Every project has risks associated with it. Risks are defined as things that can go wrong and have
an impact on the project. Some risks can be mitigated but others might not. It is important to
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have a good view on the project risks in advance. Below some of the risks will be enumerated
with impact, description and how they could be mitigated. The risks are ordered arbitrarily. First
some practical risks are presented.

• Description: If a computer or laptop with all the code on breaks down, or gets lost all
progress can be lost.
Impact: Code and data lost.
Mitigate: All code is on a remote server and source controlled using git. Actual data needs
to be saved on a remote server as well such that it can be accessed from several computers.

• Description: No working quadrotors available.
Impact: No testing is possible.
Mitigate: By testing in a virtual environment it is less likely to break quadrotors. Having
a clear planning when people are using certain drones also decreases the chance of this risk.

• Description: No test opportunities in the cyberzoo. The cyberzoo might be too busy or
not available.
Impact: No real life testing in controlled environment.
Mitigate: Apart from using the wind tunnel to test, there is no mitigation for this problem.

• Description: No wind tunnel test opportunities. There are only a select amount of test
days in the wind tunnel for this thesis project.
Impact: No validation in high speed conditions.
Mitigate: One can mitigate this by preparing well for the wind tunnel tests to reduce the
chance of this risk. There will be two separate test weeks in the wind tunnel with some time
in between such that problems that occurred during the first test week can be solved.

• Description: Illness or other unexpected situations causing the author not to be able to
continue working.
Impact: No work can be performed.
Mitigate: Making sure all work is done in time such that unexpected events at a crucial do
not have a big impact.

• Description: Code deployment on the quadrotor fails.
Impact: The developed control systems cannot be tested on the quadrotor.
Mitigate: By checking if other people have done it before gives an indication if it is possible
or not.

• Description: The PX4 framework does not work on the quadrotor.
Impact: The PX4 framework cannot be used.
Mitigate: Alternatives to the PX4 framework exist. It is important to check beforehand if
the framework works for the selected quadrotor. This information should be available.

Secondly, risks regarding the research itself are presented.

• Description: The current control systems are able to recover the quadrotor from an upset
condition. There is no problem to solve.
Impact: The research becomes less useful.
Mitigate: By doing the literature study, it should become clear if this is the case or not.

• Description: No upset recovery strategy can be found for the damaged quadrotor.
Impact: The research question cannot be answered positively. The goal of the thesis project
is not met.
Mitigate: The literature study should give an indication how hard the problem is, reducing
the chance of this risk. If it is not possible to recover however, answering the sub-questions
posed still make the research useful.
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• Description: The research takes too long. Either the problem is too hard, or too much
work is required in certain areas.
Impact: The thesis project is not done in the time span. The research question is not
answered.
Mitigate: Focus should remain on the research itself. Time should not be wasted on
elements that are not essential to the research. Go for the easy solution if it is not essential
for the research.

• Description: Virtual environment does not represent reality.
Impact: All progress using the virtual environment might be useless.
Mitigate: Know the limits of the virtual environment. Check with other papers how the
correlation to reality is and what to look out for. Plan a simple test as soon as possible in
order to validate the virtual reality.
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Chapter 5

Thesis Plan

In this chapter the thesis plan is presented. In short the thesis focus and goals will be discussed
in Section 5-1. The planning of the thesis project is presented in Section 5-2.

5-1 Thesis Focus and Goals

In this section the thesis focus and goals of the thesis project will be briefly explained. As
mentioned before, the focus of this thesis project will be on the upset recovery of a damaged
quadrotor. The focus will be on a rotor failure as form of damage. Both single and double rotor
failures will be considered. From the literature review it seems that for three rotor failures only
an analytical solution is available. The focus is on recovery of the quadrotor, this means that
preferably the inner loop controls are kept the same as presented in literature. The focus should
be on the setpoints towards the inner loop controls instead.

The goal of the thesis project is to manage to recover a damaged quadrotor from any condition.
This because when damage occurs, the transition will cause the quadrotor to be in an upset
condition from which it is hard to recover. The author is expected to develop such a system and
deploy it on an actual quadrotor. The author is expected to perform tests in the cyberzoo as well
as in the wind tunnel. From a performance point of view, the goal is to create a recovery strategy
that works in both nominal case as the damaged case. The recovery strategy should be robust in
the sense that it should be able to recover the quadrotor at all times.

5-2 Planning

In this section the planning for the thesis project will be presented. Different activities will be
presented in Section 5-2-1 which are then visually presented in Section 5-2-2 using a Gantt chart.
By making a planning, the author can see which deadlines are critical for the project. From the
planning it will become clear how much time has to be invested in each part of the project. It is
easy to get stuck on some part causing the project to be delayed.
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5-2-1 Activity Plan

1. Upset recovery development
An upset recovery strategy has to be developed in the virtual environment. First for a
quadrotor without damage, then for a damaged quadrotor.

1.1. Upset recovery for healthy quadrotor 1 week

1.2. Upset recovery for damaged quadrotor 4 weeks

2. Code deployment 1 week
When the upset recovery has been developed, the code has to be compiled and deployed on
the quadrotor. A lot of work for this has already been done by a colleague.

3. Cyberzoo testing
When code is deployed on the quadrotor, testing in the cyberzoo can take place. First the
basic functionality has to be tested. Checking that the quadrotor can fly and perform basic
manoeuvres. Now the upset recovery of a healthy quadrotor can be tested. This can be done
by inducing a high roll angle which can be done by a feed forward action. The quadrotor then
has to recover from this condition. Next the FTC has to be tested. Giving some yaw rate
before disabling one of the rotors can help the quadrotor not entering an upset condition.
Once this is successful, the upset recovery for the damaged quadrotor has to be tested. This
can be done by disabling one of the rotors and notifying the quadrotor with a small delay.

3.1. Test basic quadrotor functionality 1 week

3.2. Test upset recovery for healthy quadrotor 1 week

3.3. Test damaged quadrotor hover 1 week

3.4. Test upset recovery for damaged quadrotor 1 week

4. Wind tunnel testing
The wind tunnel has been booked from 28 Jan to 1 Feb, and 18 Feb to 22 Feb. During this
time various tests will take place from various people in the group. Some of the features
developed in this thesis project will be tested in week 2.

4.1. Test week 1 1 week

4.2. Test week 2 1 week

5. Data analysis
Data analysis is a continuous process and will be performed after every test. When testing
in the cyberzoo, data analysis will probably be part of the design iteration. Between the
two wind tunnel tests there is some time to analyse the data properly and make changes to
the control systems. After the wind tunnel test 2 there is more time to analyse the data in
depth.

5.1. Data analysis during/after cyberzoo testing 1 week

5.2. Data analysis after wind tunnel tests 1 week

6. Cyberzoo testing 2
After the wind tunnel tests there is time left to do some extra testing in the cyberzoo.
Depending on the progress the system can be improved even further or more data can be
gathered. Some suggestions are given below:

6.1. Increase controller performance 3 weeks

6.2. Improved state estimator 1 week

6.3. Data generation starting from various initial conditions 1 week
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7. Midterm review
The midterm review will take place April 1, 2019.

8. Greenlight review
The greenlight review will take place June 3, 2019.

9. Thesis defence
The thesis will be handed in on June 24, 2019. The thesis defence will take place on July
1, 2019.

9.1. Finalise results 1 week

9.2. Writing 6 weeks

9.3. Presentation preparation 1 week

5-2-2 Gantt Chart

The items from the activity plan presented in Section 5-2-1 can be seen in the gantt chart in
Figure 5-1. The gantt chart was created using instagannt.
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Chapter 6

Preliminary results

Using the knowledge gathered during the literature research, some preliminary tests were setup.
In this chapter the preliminary results will be presented. In Section 6-1 some initial tests are
performed with the current control methods presented in the literature study. In particular, the
control systems presented in [1] will be used as a baseline. In Section 6-2 some adaptations to the
control system will be made in an attempt to solve some of the issues already. The results of the
adaptations are presented in Section 6-3.

6-1 Initial testing

As a first step in the research, the current method presented in [1] was tested. The author was
given the Simulink model of the control system as well as a Simulink model in which a simulator
was present. This greatly helps understanding the control method and gives the opportunity to
test the system and discover the limitations of it. In the simulator the Euler angle approach was
used for the EOM. As this research is interested in attitudes beyond the normal conditions, a
solution had to be found. The simulator was rewritten such that it would use the quaternion
approach as described in 3-1-2. The tests will only vary the initial condition and see how the
quadrotor reacts to it. The tests will only consider the quadrotor without damage. In further
research the damaged case will also be investigated. The three tests that will be performed are:

1. Level flight with a position offset from the target.

2. A high initial roll angle of 80 ◦and see how the quadrotor recovers.

3. An upset condition where the drone is completely upside down. An initial roll angle of 180
◦will be used.

Test 1
In this test only a position offset is given. The initial position of the quadrotor is at x = −1, y = −1
and the target is at x = 0, y = 0. The result is shown in Figure 6-1. One can see that without
issue, the quadrotor flies towards the target location. During hover, the rotor speeds are very
stable.
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Figure 6-1: Test 1 with base controller

Test 2
In this test a roll offset of 80 ◦is given as initial condition. This is a very high roll angle in which
the drone cannot properly control altitude anymore. The result can be seen in Figure 6-2. Clearly,
something goes wrong. The attitude cannot be recovered and the quadrotor starts spinning as can
be seen in the roll angle plot. The y position drifts further and further away and the altitude is lost
as well (note that positive z-axis is ’falling’). When looking at the rotor speeds it becomes clear
that all propellers quickly saturate, resulting in a loss of attitude control. The saturation is due to
the altitude controller requiring full force. This becomes clear when looking at Equation (3-20).

Figure 6-2: Test 2 with base controller

Test 3
In this test a roll angle of 180 ◦is given as initial condition. This is basically an upside down
position. The result can be seen in Figure 6-3. As one can see, the quadrotor more or less stays
exactly in the upside down condition and loses altitude drastically. Looking at Equation (3-24)
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one can see that if the quadrotor is in an upside down position (ndes = [0, 0, 1] = [h1, h2, h3]) no
attitude action is required from the controller. Hence, the method only works for conditions where
−π2 or π

2 .

Figure 6-3: Test 3 with base controller

6-2 Adaptations

In this section some adaptations that will be made are presented. In order to get the control
systems to work in extreme conditions, only small changes have to be made to certain controllers.
Some concepts that were thought of will be implemented and the tests will be performed again to
see how it affects the performance.

Limit on desired primary axis
One way to solve the upset recovery problem is to prevent an upset condition from happening.
Currently there is no limit on the output of the position controller. This means that if the position
error is too big, the desired primary axis will be more or less level with the ground. The attitude
controller will try to match this desired primary axis and by doing so entering an upset condition
similarly to what is described in test 2. In order to avoid these situations, a limit on the desired
primary axis is introduced. The limit defines the maximum angle between the inertial z-axis and
the desired primary axis. The limit can be set by the user, but should in future developments also
take damage and other effects such as wind into account.

NDI Attitude controller
In the baseline controls the desired roll and pitch rate are derived from Equation 3-24. However,
at 90◦, h3 becomes zero and thus there is no solution. Also in case h3 is positive (so drone is
’upside down’) the solution would control the drone into upside down position.

A different solution was implemented in order to solve this problem. Given the current primary
axis and the target primary axis, the rotation axis is calculated using the cross product between
target and current primary axis which can be seen in Equation (6-1). The rotation axis will be
normalised as well. Using this rotation axis and the total angle αtotal between the two vectors, a
simple proportional controller can be made described in Equation 6-2. More research is needed in
order to improve this controller such that it also takes yaw rate into account as in 3-24. If nBdes
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and nB are aligned, no rotational axis will be found using the method. In this case an arbitrary
rotational axis can be chosen as long as it is perpendicular with the vectors.

nrotaxis = nBdes × nB (6-1)



pdes
qdes
∼


 = nrotaxis · αtotal · kp (6-2)

This method allows for more research into the rotation axis. The determination of the rotation
axis could depend on the current state of the quadrotor in terms of what damage is present or
what angular velocities are working on the quadrotor. One can imagine that if a rotor has failed,
it is more favourable to rotate the quadrotor around a certain axis.

Altitude controller
In the baseline controls, the altitude controller takes roll and pitch angle into account as described
in Equation (3-20). This method works perfect for normal conditions but will be singular at 90
◦. Also the control action at high pitch and roll angles will become very high, causing saturation
of the propellers. A simple solution to this problem is implemented in which limits to θ and φ
are applied in Equation Equation (3-20), but also a reduction factor is implemented such that at
extreme angles the altitude control would be given up. Calculation of the reduction factor (ηred)
can be found in Equation (6-3) and Equation (6-4) where αpeak and αLOC are settings and αtotal
is the combined pitch and roll angle. The reduction factor is limited between 0 and 1. Practically
this means that for all αtotal < αpeak, ηred = 1 and for all αtotal > αLOC , ηred = 0. In this way
the altitude control is scaled down if pitch and roll angle are too extreme. Equation (6-5) shows
the final form.

ηred = 1− (αtotal − αpeak)/(αLOC − αpeak) (6-3)

ηred = min(max(ηred, 0), 1) (6-4)

∑
fi =

m(z̈des − g)

cos(min(θ, θmax)cos(min(φ, φmax)
· ηred (6-5)

6-3 Results

The tests performed in Section 6-1 can now be performed again to see if the adaptations solve
some of the issues. The tests are presented in the same fashion.

Test 1
In this test only a position offset is given. The initial position of the quadrotor is at x = −1, y = −1
and the target is at x = 0, y = 0. The result is shown in Figure 6-1. The quadrotor moves to the
target smoothly without any issue. The tuning of the controller is clearly a bit more aggressive
compared to the baseline controller.

Test 2
In this test a roll offset of 80 ◦is given as initial condition. This is a very high roll angle in which
the drone cannot properly control altitude anymore. The result can be seen in Figure 6-2. The
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Figure 6-4: Test 1 with adapted controller

quadrotor seems to recover well. The attitude controller manages to recover the high initial roll
angle in about half a second. The quadrotor does not lose more than 0.5m in altitude and does
not deviate more than 0.5m laterally. The rotors are not being saturated which can be seen in
the rotor speed graph.

Figure 6-5: Test 2 with adapted controller

Test 3
In this test a roll angle of 180 ◦is given as initial condition. This is basically an upside down
position. The result can be seen in Figure 6-6. The quadrotor manages to recover without any
issue. The roll angle is recovered in less than a second. This means less than 1m is lost in altitude.
These are very promising results and show that the quadrotor can quickly recover. Again one can
see that the rotors are not being saturated.

Test conclusion
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Figure 6-6: Test 3 with adapted controller

Clearly, with the small adaptations to the baseline controller significant performance gains are
obtained with regards to recovery of a nominal quadrotor. The two key aspects that caused the
baseline controller to have difficulties were the saturation of the rotors due to the altitude controller
and the handling of high pitch and roll angles in the attitude controller. These results are very
promising for the research. The next step in the research is to develop a recovery strategy that
also works for the damaged quadrotor.
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Appendix A

State estimation

The presented control system needs position, velocity and attitude information. Position and
attitude are measured using an external motion capture system from Optitrack, velocity has to be
estimated. The external motion capture system consists of 12 cameras tracking reflecting markers
on the quadrotor. However, in case the markers are not visible for the cameras, no position
and attitude information can be given. Tracking can get lost if the quadrotor has extreme pitch
and/or roll angles. One can imagine that when the quadrotor is upside down, the cameras are not
able to see the markers anymore. Also at high rotational rates the quality of the motion tracking
decreases. The update frequency of Optitrack is lower than the update frequency of the control
system. In order to improve the quality of the position and attitude estimation and estimate the
velocity of the vehicle, an Extended Kalman Filter is proposed. The Extended Kalman Filter
also has to cope with the temporary unavailable measurements from Optitrack and the different
update frequency.

A-1 Solution

An Extended Kalman Filter was chosen due to the non-linear nature of the quadrotor dynamics.
A general non-linear system can be described by

ẋ = f(x, u) + w (A-1)

z = h(x, u) + v (A-2)

where x indicates the state of the system, u indicates the inputs to the system, z are the measure-
ments, w is the process noise while v is the measurement noise. f is the state update function and
h is the measurement function. The states that will be chosen for the quadrotor are the position,
velocity and attitude described by a quaternion. The state update function (f) for a quadrotor
can be described by



ḋ
v̇
q̇


 =




v
g + q ⊗ aB ⊗ q∗

1
2Ω⊗ q


+ w (A-3)
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where d is the position, v is the velocity, q is the quaternion describing attitude, g is the gravity
vector, aB is the body acceleration measurement and Ω are the measured rotational rates. The
⊗ indicates the Kronecker product which is used in quaternion mathematics. The measurement
function (h) can be described by

[
dmeas
qmeas

]
=

[
d + q ⊗4d⊗ q∗

q

]
+ v (A-4)

where 4d indicates the offset position between the center of gravity and the measurement from
Optitrack. dmeas and qmeas indicate the measured position and measured quaternion.

In order to solve the EKF first the Jacobian of the state update function (Fk) and the measurement
function (Mk) have to be calculated as shown in

Fk =
∂f

∂x
|xk

(A-5)

Mk =
∂h

∂x
|xk

(A-6)

This is not done manually but by using the jacobian function in MATLAB. Subscripts k and k−1
indicate if the value is from the current or previous step. A combination like k, k − 1 indicates a
prediction of the current step from the previous step. The prediction part of the EKF is given by

xk,k−1 = f(xk−1,k−1,uk) (A-7)

Pk,k−1 = FkPk−1,k−1F
T
k + wk (A-8)

where P is the state covariance matrix. The measurement part of the EKF is given by

yk = zk − h(xk,k−1) (A-9)

Sk = MkPk,k−1M
T
k + vk (A-10)

Kk = Pk,k−1M
T
k S

−1
k (A-11)

where y is the measurement residual and S is the residual covariance. K is the Kalman gain.
The state estimation is completed with

xk,k = xk,k−1 + Kkyk (A-12)

Pk,k = (I −KkMk)Pk,k−1 (A-13)

where xk,k is the final estimated state and I the identity matrix.

To check if the measurement has updated one can compare it to the previous value and see if it
changed as shown in

zk − zk−1 < δ (A-14)

where δ is tunable. In the case the measurement did not update, the measurement part of the
EKF is skipped and only the prediction is used. Practically one can achieve this by forcing a
Kalman gain K of 0.
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Figure A-1: State estimation during flip. Red line measurement, green line estimated value. (a)
x-position. (b) y-position. (c) z-position. (d) roll angle. (e) pitch angle. (f) yaw angle.

A-2 Results

In order to show the performance of the EKF, the attitude and position estimation during a flip
is shown in Figure A-1. The red line indicates the measured value while the green line indicates
the estimated value. One can see that at some point the measured value is not updating anymore
and is ignored. Once the measurement comes back online, it is immediately used to correct
the estimation. A more detailed view is given in Figure A-2 where one can see that even for
brief amounts of time the measurements are not updating due to the update frequency difference
between the control systems and Optitrack. In Figure A-3 the velocity estimation is shown in
green, while the red line is the derivative of the position measurement. Clearly the EKF is needed
for velocity estimation, although one could try to estimate the velocity by smoothing the derivative
shown, or by only using the position measurements when they are updated.
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Figure A-2: State estimation during flip (detail). Red line measurement, green line estimated value.
(a) x-position. (b) y-position. (c) z-position. (d) roll angle. (e) pitch angle. (f) yaw angle.
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Figure A-3: Velocity estimation during flip. Red line position derivative, green line estimated value.
(a) x-velocity. (b) y-velocity. (c) z-velocity.
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Appendix B

Control Allocation

The control allocator has been discussed in detail in the paper. However some extra information
on how the quadratic programming problem is solved will be given in this chapter. A big issue
when solving a problem of this kind is the execution speed. As the control allocator has to run
real-time on-board, some execution speed optimisation was required.

B-1 Solution

The quadratic programming problem that will be solved is of the standard form shown in Equa-
tion (B-1)

minimise
1

2
xTHx + cTx + c0

subject to Ax ≥ b
(B-1)

where H, cT , c0 describe the cost function, A and b describe the constraints and x is the solution
to be found. The key to finding the solution to the quadratic programming problem is to find
the active Lagrange multipliers (y). As there are 8 constraints and the constraints can either be
active or not, this leaves us with 28 = 256 options to choose from. However, as a rotor cannot be
at its minimum and maximum constraint at the same time (unless they are equal but then this
assumption still works) there are only 34 = 81 feasible options left.

An initial guess for the active Lagrange multipliers (y) can be made by looking at the previous
solution of the problem. By taking the same Lagrange multipliers as the final result of the previous
step the execution performance of the optimisation is greatly increased.

Another option for the initial guess of the active Lagrange multipliers is by solving the INDI
problem without taking rotor saturation into account as shown in

E =

[4Ωdes

aBref,z

]
−
[
Ω̇
az

]
(B-2)

E = G4 ω → 4ω = G−1E (B-3)
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where 4Ωdes is the desired change in rotational rate, Ω̇ is the measured change in rotational rate,
aBref,z is the desired body acceleration in the thrust direction and az is the measured acceleration.
G is the control effectiveness matrix and 4ω is the desired change in rotor speed. If the solution
4ω > ωmax or 4ω < ωmin the according Lagrange multiplier can be made active as an initial
guess. Once an initial guess is made, the solution according the active Lagrange multipliers can
be found by solving

[
H AT

eq

Aeq 0

] [
x
y

]
=

[
−c
beq

]
(B-4)

where Aeq and beq are the A and b matrices with only the rows of the active Lagrange multipliers.
The solution x represents the incremental change in rotor speeds 4ω. The solution for y are
the values of the chosen Lagrange multipliers. Finding a solution does not mean the quadratic
programming problem has been solved. The solution has to satisfy

Ax ≥ b (B-5)

y ≥ 0 (B-6)

In the case that these equations are not satisfied, a new iteration has to be performed with different
Lagrange multipliers. Depending on which condition has been breached the according Lagrange
multiplier will change as can be seen in Algorithm 1.

if y < 0 then
Remove biggest violation from Lagrange multipliers

else
Add biggest constraint violation (Ax < b) to Lagrange multipliers;

end
Algorithm 1: Update Lagrange multipliers

B-2 Results

In this section the execution performance of the optimisation algorithm is presented. The amount
of iterations for the different methods to select the initial Lagrange multipliers can be seen in
Figure B-1. One can see that using the previous Lagrange multipliers results in the best perfor-
mance. Using the INDI solution to determine the Lagrange multipliers is slightly better compared
to using no initial guess.
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Figure B-1: Control allocator iterations. (a) No initial guess for y. (b) Previous y as initial guess.
(c) INDI solution as initial guess for y. (d) Cumulative iterations for the three methods.
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Appendix C

Estimated time to rotate

In the paper the time estimated to rotate was estimated in order to determine which direction
would be quickest given initial rotational rate (Ω0) and an initial angle (θ0) around a certain axis
as visualised in Figure C-1. Assuming bang-bang control, so fully accelerating followed by full
braking, the total time (t) is given by

t = tA + tB (C-1)

where tA is the time accelerating and tB is the time braking. There should be no rotational rate
at the end of the manoeuvre meaning

0 = Ω0 + tAamax + tBamin (C-2)

where amax and amin are the maximum and minimum rotational accelerations around that axis.
The total rotation angle can be described as follows

θ0 = Ω0t+
t2Aamax

2
+
t2Bamin

2
(C-3)

Using the above three equations, one can come up with the following equation

Figure C-1: Rotation of the quadrotor
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0 = −θ0 + Ωt+ Ω2
0

(
t · amin + Ω0

amin − amax

)
amax
amin

+

(
t · amin + Ω0

amin − amax

)2(
1 +

amax
amin

)
amax

2
(C-4)

Solving for t will give the time needed to rotate the quadrotor. In order to calculate the time
to rotate for the other direction one has to change the sign of Ω, switch amax and amin and the
conjugate angle of θ.

This method only considers rotational motion around a single static axis, which makes it a linear
motion and easy to solve. In the case of significant rotational rates around another axis, the
estimation of time rotate will not be correct and a quicker way to rotate might exist. This is
however not considered in this thesis project.
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Simulation

In order to develop a control system, one needs a platform to develop and test new concepts.
As real life testing is costly, time consuming and requires a good setup in order to analyse data
properly, a simulation environment is used for developing and testing the control systems. Once the
performance is sufficient, real life tests can take place. In this chapter the simulation environment
will be elaborated upon as it is an essential part of the development of the final control system.

D-1 Framework

A common tool for developing control systems is Simulink. For this thesis project a framework
was setup in Simulink in which different controllers can be tested in the same environment. The
framework is setup to be as similar as real life as possible, this means that the controller and the
vehicle dynamic simulations are separated completely. Sensor simulation is also done, which means
the sensors will be rotated, biased and noise will be added as required. The interface between the
controllers and the other parts of the framework are the same as it would be when deployed in
real-life. The framework can be seen in Figure D-1.

Model referencing is used as much as possible in order to separate the files. This makes source
controlling the project a lot easier as Simulink files are binaries. As mentioned before, different
controllers can be tested in this environment. This is done by model referencing in a variant
selector block as shown in Figure D-2. This makes the framework easy to use for other people in
the project.

The vehicle simulation part of the framework also consists of several modules namely: wind
simulation, actuator dynamics, aerodynamic model, and equations of motion based on quaternions.
For every model one can make several modes. In this project for example, a high and low fidelity
aerodynamic model is available. For initial testing of a controller it can be useful to test with a
simple model in which the output is quite straight-forward.

Another advantage of having a common framework is that data analysis can be made standardised.
This means that several controllers can be simulated and analysed in the same way, which makes
comparing performance very easy.
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Figure D-1: Simulink framework

Figure D-2: Simulink variant controllers

Matthias Baert Quadrotor Upset Recovery after Rotor Failure



D-2 Actuator Model 65

D-2 Actuator Model

The actuator response is also modelled in the simulation. This is very relevant as the actuator has
some delayed response to inputs. This delay has a major effect on the inner loop control system.
A common way of modelling the actuator is to use a simple Low Pass Filter (LPF) as shown in
Equation (D-1)

ω = LPF(ωset) (D-1)

where ω and ωset are the rotor speeds and rotor speed setpoints. Although this method is very
simple to implement there are some downsides. The behaviour when the rotor speeds are increasing
or decreasing is different, which is not modelled with the LPF. Another downside is that an LPF
implementation is hack-able. Requesting a very high rotor speed delta will give a quicker response
meaning that if more subtle changes are requested, the actuators will react very slowly. This
behaviour can be solved by using a rate limiter instead of a LPF as shown in Equation (D-2)

ω = ω + (4ωmin ≤ ωset − ω ≤ 4ωmax) (D-2)

where 4ωmin and 4ωmax should be set according to the rotors used. In this method a LPF with
smaller delay is still used as the response of the rotors will never be instantaneous. In this project,
the rotors were not able to produce negative torque, meaning that the response of decreasing rotor
speed is slower compared to increasing rotor speed. This is now able to be modelled. Modelling
the aerodynamic drag of the propellers would increase the model fidelity even more, but this was
not done in this project.

D-3 Aerodynamic Model

As mentioned, one can implement various aerodynamic models in the framework. In this project
two models are used: a low fidelity model and a high fidelity model. The low fidelity model
assumes the lift force to have a quadratic relationship with rotor speed as shown in

fi = cf,iω
2
i (D-3)

where fi is the lift force of rotor i, cf,i is the lift coefficient of rotor i and ωi the rotor speed of
rotor i. One can make the lift coefficient of each rotor slightly different from each other in order
to create some disturbance in the model to test the robustness of the controller. In real-life the
propellers will also have slightly different properties. Given the individual rotor force, the total
force and moment on the vehicle can be calculated which is presented in the paper. As body drag
force is not modelled, wind can not be simulated or has no effect.

The high fidelity model is a lot more complex and uses wind tunnel test data in order to make an
estimation of the forces and moments acting on the quadrotor. With this model wind can also be
taken into account. The model takes air speed, rotational rate and rotor speeds into account as
shown in

[Fb,Mb] = aeroMap(Vair,Ω,ω) (D-4)

where Fb and Mb are the forces and moments acting on the vehicle. Vair is the airspeed of
the vehicle which depends on the inertial velocity of the vehicle and the wind. This model was
developed by Sihao Sun.
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D-4 Sensor simulation

In simulation it is often tempting to forget about imperfect sensor measurements. Noise and bias
is always present on sensor measurements in real-life and should also be modelled in order to truly
test the robustness of the controller. In this project, every sensor is simulated by adding a bias
and band-limited noise with a certain power

msens = msim + v + b (D-5)

where m is the measured state, b the bias and v the noise. The values for the bias (b) and noise (v)
power can be determined from real-life data, however one can also change them in order to check
the consequences. The noise on the sensors is generally not that high in standstill, however when
the quadrotor is flying the noise seems to be a lot higher. This ’noise’ comes from high frequency
vibrations caused by the rotors. In the simulator this is simplified to more powerful noise.

As mentioned in Appendix Appendix A the Optitrack external motion capture system is not able
to track the quadrotor in extreme conditions. This is also modelled in the sensor simulation. If
the attitude exceeds a certain threshold (nz > clim), the signal will not update anymore like in
real-life.
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Software implementation

In this chapter the practical information concerning the implementation will be given. In order
to validate the developed control strategy the code has to be converted into C/C++ and de-
ployed onto the quadrotor. In Appendix E-1 the code generation and code deployment will be
explained. In order to control the quadrotor before, during and after flight an application called
QGroundControl is used which is further explained in Appendix E-2.

E-1 Code Generation and Deployment

As mentioned in Appendix D the control systems are being developed in Simulink in a framework
together with the simulator. The goal of this framework was to emulate the real world as good
as possible. It is important that in the framework the interface (inputs/outputs) are exactly the
same as when deployed on the real quadrotor. It will now become clear why this is so important.

Code developed in the Simulink environment can not be used directly on a real-time machine
(* Simulink does offer hardware-in-the-loop solutions, but these are not being used). The code
therefore has to be converted into C++. In many projects the developed control system is then
being written into C++ by hand, which is very time-consuming and often not error-prone. For
this project the Simulink code will be compiled using the Simulink compiler, meaning the code
will automatically be converted into C++ code.

The compiled code can then be implemented on the quadrotor. PX4 is used as framework on the
quadrotor. In PX4 one can add modules which is very useful for this project. A module is made
that is able to connect the correct input and outputs to the compiled code. Using this method,
one can be sure that the control system used in the simulator is the same as the one deployed
on the quadrotor. This method also allows for very quick development as a change in the control
strategy can be tested in the simulator, compiled, deployed and validated in the timespan of 5
minutes. This process is visualised in Figure E-1.

Because the inputs/outputs of the code in the Simulink framework are the same as the ones of
the deployed code on the real quadrotor, the test data can be logged and replayed in the Simulink
environment in order to analyse the results even better. Problems or bugs can be quickly identified,
solved and re-compiled using this method. This also allows for easy tuning of filters, controllers
etc.. without having the risk of a crash.
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Compile
Simulink code

Deploy
Compiled code (C++)

Test

PX4

Module

Compiled code (C++)

Simulink framework

Replay
Test data

Figure E-1: Code generation and deployment

E-2 QGroundControl

Once the code is compiled and deployed, there has to be some way of controlling the quadrotor
during the test. Several applications contribute to a flying drone but one will be highlighted
which is QGroundControl. QGroundControl is the interface that the operator can use to control
the quadrotor. An example use of QGroundControl is shown in Figure E-2. Using this interface one
can easily calibrate the sensors, check battery voltage, check sensor outputs etc.. QGroundControl
also has an interface to change parameters for the control system as shown in Figure E-3. With this
interface the position setpoints can be changed, different controller modes can be enabled/disabled
or specific controller parameters such as position control gains can be tuned before, during or after
flying.
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Figure E-2: QGroundControl main overview page example [5]

Figure E-3: QGroundControl changing control parameters example [6]
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Appendix F

Extra results

In this chapter some extra graphs will be presented in order to visualise the 3D recovery data
presented in the paper.

Figure F-1 visualises the recovery altitude needed based on Ωx′ vs Ωy′ . One can see that negative
Ωy′ has a bad impact on recovery, which makes sense as this is an uncontrollable rotation due to
the failure on rotor 1.
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Figure F-1: Rotor 1 failure recovery altitude needed in meter. Ωx′ vs Ωy′ - Simulation data - 2D
scatter.

In Figure F-2 the impact of positive Ωz can very clearly be seen. With rotor 1 failed, the natural
yaw rate will be negative, meaning recovery from an initial positive yaw rate will take longer.
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Figure F-2: Rotor 1 failure recovery altitude needed in meter. Ωx′ vs Ωz - Simulation data - 2D
scatter.

In Figure F-3 the combination of Ωy′ and Ωz is plotted and one can still see the same effects as
observed before. Negative Ωy′ and positive Ωz are hard to recover from given failure on rotor 1.
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Figure F-3: Rotor 1 failure recovery altitude needed in meter. Ωy′ vs Ωz - Simulation data - 2D
scatter.

In Figure F-4 Ωz is plotted vs nz which is the z-component of the thrust vector. It was expected
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that a positive nz (upside down) with yaw rate would significantly impact recovery performance,
this however can not be confirmed from this figure.
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Figure F-4: Rotor 1 failure recovery altitude needed in meter. Ωz vs nz - Simulation data - 2D
scatter.

In Figure F-5 the recovery of various initial attitudes without significant initial rotation rate is
plotted. One can see that the performance is very good and the quadrotor manages to recover
from any initial attitude in 10m or less.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2

4

6

8

10

12

14

16

18

20

Figure F-5: Rotor 1 failure recovery altitude needed in meter assuming no significant initial rates.
nx vs nz - Simulation data - 2D scatter.
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