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Safe & Intelligent Control: Hybrid and Distributional
Reinforcement Learning for Automatic Flight Control

Lucas Vieira dos Santos 1, Erik-Jan van Kampen2

Delft University of Technology, Kluyverweg 1 2629HS, Delft, The Netherlands

The critical challenge for employing autonomous control systems in aircraft is ensuring
robustness and safety. This study introduces an intelligent and fault-tolerant controller
that merges two Reinforcement Learning (RL) algorithms in a hybrid approach:
the Distributional Soft Actor-Critic (DSAC) and the Incremental Dual Heuristic
Programming (IDHP). The integration combines the strengths of DSAC in learning a
robust control strategy and IDHP in allowing real-time control adaption. Compared
to earlier controllers, such as a hybrid using the Soft Actor-Critic (SAC) algorithm
and strictly offline DSAC and SAC, our hybrid demonstrates enhanced robustness
against changing flight conditions and in the face of sensor noise and bias. During
fault tolerance tests, it maintains superior control even when the effectiveness of the
aircraft’s ailerons and elevators is compromised. By demonstrating the potential of
RL-based controllers to provide robustness and fault tolerance, this research advances
the feasibility of safe and autonomous flight control operations.

I. Introduction

The advancements in Reinforcement Learning (RL) have led to remarkable achievements in various fields
[1]. Notably, RL applications have outperformed humans in video games [2] and enabled robots to handle

objects [3] and walk [4]. In the aerospace sector, RL can improve the robustness and fault-tolerance of
autonomous systems. Those benefits are reflected in the growing research on RL-based control for aircraft
[5], helicopters [6], and unmanned aerial vehicles [7] showing their potential in overcoming the limitations of
traditional systems.

Though well-established, traditional Flight Control System (FCS) requires gain scheduling for different points
of an aircraft’s operational range, introducing complexity to the design and limiting adaptability to adverse
conditions, such as system faults and malfunctions [8]. Moreover, Loss of Control (LOC) continues to
be a major factor contributing to aviation accidents. Alone, LOC is responsible for 60 % of all fatalities
in commercial aviation [9]. This underlines an urgent need for intelligent and adaptive control systems.
RL-based FCS emerge as a promising solution. By learning from experience, these systems can offer better
control autonomy, simplify the design process, and potentially reduce accidents caused by loss of control.

In the context of autonomous flight control, various RL-based controllers employing different algorithms
and strategies have been explored. Offline algorithms, such as Soft Actor-Critic (SAC) and Distributional
Soft Actor-Critic (DSAC), have demonstrated their capability to produce robust and efficient aircraft control
strategies. However, these offline algorithms have their limitations, as they are not well-suited for adapting
the strategies in-flight [10]. In contrast, online algorithms, such as IDHP, can adapt in real-time but raise
questions about their robustness and the risks involved in learning while flying. Interestingly, a policy that
combines SAC and IDHP has been shown by Teirlinck [11] to leverage the advantages of both algorithms.
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Most recently, DSAC has caught attention for its ability to create safer policies compared to SAC, as Seres
[12] demonstrated the improvement of aircraft control in challenging conditions such as near stalls.

In light of these findings, this study develops an RL-based attitude control system that integrates the offline
DSAC algorithm with the online IDHP algorithm. This hybrid model combines the robustness derived from
pre-learned policies with the adaptability of online real-time learning. Differently than SAC, DSAC can
learn complete distributions of possible outcomes providing deeper insights into the risks associated with
different actions. During online operation, IDHP utilises the policy trained by DSAC and dynamically adjusts
it according to the flight conditions.

The contributions of this paper are in developing safe and autonomous control systems by constructing
fault-tolerant RL-based controllers. We assess the pros and cons of a hybrid offline-online controller,
comparing DSAC and SAC as the offline component. Furthermore, we investigate how the hybrid controller
contrasts with offline-only policies. At the core of this research is the innovative approach to flight control
systems, which combines the hybrid and distributional reinforcement learning approaches to enhance safety
without compromising performance.

The remainder of this article is organised as follows. Section II introduces the fundamental concepts of
reinforcement learning and the algorithms employed to develop the hybrid controller. Section III delineates
the formulation of the flight control task as a reinforcement learning problem and defines the hybrid controller.
Section IV presents a discussion on the results of the experiments comparing the different controllers.

II. Background
This section establishes the Reinforcement Learning fundaments and notation, including the algorithms used
for developing the hybrid attitude controller.

A. Fundamentals of Reinforcement Learning
Reinforcement Learning is a subfield of machine learning that primarily uses a trial-and-error approach to
learn optimal strategies. In RL, an agent learns to make optimal decisions in a task by interacting with an
environment. It chooses an action 𝒂𝑡 ∈ R𝑁 at time 𝑡. This action changes the environment state from 𝒔𝑡 to
𝑠𝑡+1 ∈ R𝑀 with a probability 𝜌. Then, the environment informs how satisfactory the state transition was by
returning a scalar reward 𝑟𝑡+1 ∈ R [13].

The objective for the agent is to identify the action it should select at each given time to maximise the total
rewards, also known as return 𝑅𝑡 =

∑𝑇
𝑖=𝑡 𝛾

(𝑖−𝑡 )𝑟 (𝒔𝑖 , 𝒂𝑖). The return includes a discount factor 𝛾 ∈ [0, 1] that
balances the objective of striving for near or long-term rewards.

Actor-critic is a specific type of RL algorithm that divides the tasks of policy learning and return estimation
into two separate structures [14]. The Actor, the first structure, is a Neural Network (NN) that learns the
policy 𝜋. It determines which action 𝒂𝑡 should be taken given the state 𝒔𝑡 . For a stochastic policy, the action
is sampled from 𝒂𝑡 ∼ 𝜋(· | 𝒔𝑡 ). In contrast, for a deterministic policy, the action is directly derived from
𝒂𝑡 = 𝜋(𝒔𝑡 ).

The Critic, the second structure of actor-critic algorithms, approximates the expected return. There are two
types of return functions the Critic can approximate: (1) the state-value function in Eq. (1), which informs the
expected return for a given state, and (2) the action-value function in Eq. (2), which informs the expected
return for a specific state-action pair:

𝑉𝜋 (𝒔𝑡 ) � E𝜋
[
𝑅𝑡 | 𝒔𝑡

]
(1) 𝑄 𝜋 (𝒔𝑡 , 𝒂𝑡 ) � E𝜋

[
𝑅𝑡 | 𝒔𝑡 , 𝒂𝑡

]
(2)
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Often, the action-value function is used in its recursive form, better known as the Bellman equation:

𝑄 𝜋 (𝒔𝑡 , 𝒂𝑡 ) = 𝑟 (𝒔𝑡 , 𝒂𝑡 ) + 𝛾E𝒔𝑡+1∼𝜌,𝒂𝑡+1∼𝜋
[
𝑄 𝜋 (𝒔𝑡+1, 𝒂𝑡+1)] (3)

B. Incremental Dual Heuristic Programming (IDHP) Algorithm
Incremental Dual Heuristic Programming [15] is an online actor-critic RL algorithm characterised by three
parametric structures: the Actor, the Critic and the Incremental Model. Differently from conventional
actor-critic algorithms, IDHP incorporates an incremental model to learn an approximation of the system
dynamics. The Incremental Model makes IDHP model-free, enabling the online learning process to use an
approximation of the system dynamics. The Actor and Critic retain their traditional role in learning the policy
and value function.

1. IDHP’s Incremental Model
The incremental model learns a linear approximation of the system’s non-linear state transition function,
denoted as 𝑓 . The first-order Taylor series expansion is used to approximate the state transition:

𝒙𝑡+1 = 𝑓 (𝒙𝑡 , 𝒖𝑡 ) ≈ 𝒙𝑡 + 𝐹𝑡−1Δ𝒙𝑡 + 𝐺𝑡−1Δ𝒖𝑡 (4)

where, 𝒙 ∈ R𝑛 represents the aircraft state vector, and 𝒖 ∈ R𝑚 represents the action vector. 𝐹𝑡−1 is the system
transition matrix, and 𝐺𝑡−1 is the control effectiveness matrix.

As IDHP is a model-free algorithm, the matrices 𝐹𝑡−1 and 𝐺𝑡−1 are unknown. The algorithm learns an
approximation of those matrices with Recursive Least Squares (RLS). During each interaction with the
environment, the incremental model uses the observed states to enhance the prediction of these matrices,
thereby refining the estimation of the system’s state transition.

To express the incremental model’s update in matrix notation, we define the parameter matrix 𝚯 ∈ R(𝑛+𝑚)×𝑛

as in Eq. (5), and the input information matrix 𝑿𝑡 as in Eq. (6). With these matrices, the incremental model
can predict the state transition with Eq. (7). The prediction error, denoted as 𝜖𝑡 ∈ R(1,𝑛) , is computed with
Eq. (8), which takes into account the observed change in state Δ𝒙𝑡+1 from the environment.

𝚯𝑡−1 =

[
𝐹𝑇
𝑡−1

𝐺𝑇
𝑡−1

]
(5) 𝑿𝑡 =

[
Δ𝒙𝑡

Δ𝒖𝑡

]
(6)

Δ�̂�𝑇𝑡+1 = 𝑿𝑇
𝑡 · �̂�𝑡−1 (7) 𝝐 𝑡 = Δ𝒙𝑡+1

𝑇 − Δ�̂�𝑡+1
𝑇 (8)

The update to improve the Incremental Model’s matrices requires computing the estimation covariance matrix
Λ𝑡 with Eq. (9). In this equation 𝛾RLS is the discount factor. It is important to note that this equation is
recursive and relies on the covariance matrix from the previous timestep. Consequently, the covariance matrix
is unknown at the start of the learning process and must be randomly initialised.

With the prediction error from Eq. (8) and the covariance error from Eq. (9), the Incremental Model’s
parameter matrix is updated according to Eq. (10). Subsequently, the model makes new predictions on the
changes in the system’s states and iteratively refines the matrices 𝐹 and 𝐺 until their convergence.

Λ𝑡 =
1

𝛾RLS

(
Λ𝑡−1 −

Λ𝑡−1𝑿𝑡𝑿
𝑇
𝑡 Λ𝑡−1

𝛾RLS + 𝑿𝑇
𝑡 Λ𝑡−1𝑿𝑡

)
(9) �̂�𝑡 = �̂�𝑡−1 +

Λ𝑡−1𝑿𝑡

𝛾RLS + 𝑿𝑇
𝑡 Λ𝑡−1𝑿𝑡

𝝐 𝑡 (10)
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2. IDHP’s Actor-Network
The Actor-network of the IDHP agent is parameterised with weights denoted as 𝜃. The architecture of this
network includes a single hidden layer without a bias term. For attitude tracking, the reward is defined as the
negative value of the tracking error, thereby penalising the agent for not following the reference signal. The
Actor’s loss, denoted as L𝜋 , is the negation value of the of the return:

L𝜋 (𝑡) = −𝑉 (𝒔𝑡 ) = −[𝑟𝑡+1 + 𝛾𝑉 (𝒔𝑡+1)] (11)

Updating the weights of the Actor-network, 𝜃, requires computing the gradient of the loss function with
respect to each layer in the network:

∇𝜃L𝜋 (𝑡) =
𝜕L𝜋 (𝑡)

𝜕𝜃
=

𝜕L𝜋 (𝑡)
𝜕𝒂𝑡

𝜕𝒂𝑡
𝜕𝜃

= −
[ 𝜕𝑟𝑡+1
𝜕𝒔𝑡+1

+ 𝛾�̂�(𝒔𝑡+1)
]
�̂�𝑡−1

𝜕𝒂𝑡
𝜕𝜃

(12)

Here, �̂�(𝒔𝑡+1) represents the Critic’s prediction and 𝜕𝒂𝑡/𝜕𝜃 is computed using backpropagation through the
Actor network. Subsequently, the weights of the Actor-Network are updated through gradient descent with a
learning rate 𝜂𝜋 .

3. IDHP’s Critic-Network
The IDHP’s Critic network 𝜆 is parametrised with weights denoted as 𝜙. This network distinguishes itself
from traditional critic networks by estimating the derivative of the value function with respect to each state of
the aircraft, i.e., 𝜆 = 𝜕𝑉/𝜕𝒔, as opposed to estimating the value function directly. The loss of the Critic is
calculated as the mean squared error of the Temporal Difference (TD):

L𝜆(𝑡) =
1
2

[
𝜆(𝒔𝑡 ) −

(
𝛾�̂�(𝒔𝑡+1) +

𝜕𝑟𝑡+1
𝜕𝒔𝑡+1

) 𝜕𝒔𝑡+1
𝜕𝒔𝑡

]2
(13)

The term 𝜕𝒔𝑡+1/𝜕𝒔𝑡 is derived from the Incremental Model’s approximation of the state transition dynamics.

The Critic’s weights, denoted as 𝜙, are updated by computing the gradient of the loss function with respect to
the network layers:

∇𝜙L𝜆(𝑡) =
𝜕L𝜆(𝑡)
𝜕𝜙

=
𝜕L𝜆(𝑡)
𝜆(𝒔𝑡 )

𝜕𝜆(𝒔𝑡 )
𝜕𝜙

=

[
𝜆(𝒔𝑡 ) −

(
𝛾�̂�(𝒔𝑡+1) +

𝜕𝑟𝑡+1
𝜕𝒔𝑡+1

) (
𝐹𝑡−1 + 𝐺𝑡−1

𝜕𝒂𝑡
𝜕𝒔𝑡

)] 𝜕𝜆(𝒔𝑡 )
𝜕𝜙

(14)

In this equation, 𝜕𝒂𝑡/𝜕𝒔𝑡 is determined through backpropagation within the Actor-network. In contrast,
𝜕𝜆(𝒔𝑡 )/𝜕𝜙 is computed by backpropagation through the Critic network. With the loss gradient, it is possible
to update the weight values with gradient descent and a learning rate 𝜂𝜆.

C. Soft Actor-Critic (SAC) Algorithm
The SAC [16, 17] algorithm is distinguished by three attributes. Firstly, it is an Actor-Critic RL algorithm,
which implies that it learns an approximation for both the policy and the value function. Secondly, it is based
on an off-policy formulation, which allows for the reuse of previously collected data, thereby enhancing
sample efficiency. Lastly, it incorporates concepts from entropy maximisation into the RL objective, which
promotes exploration and enhances stability.
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1. SAC’s Actor-Network
SAC introduces an entropy regularisation term to the conventional RL objective, resulting in the objective in
Eq. (15). The additional entropy term H transforms the learning objective into a dual maximisation problem,
emphasising both the expected return and the entropy of actions. As a result, this encourages the Actor to
explore the environment more extensively.

𝜋∗ = argmax
𝜋

∑︁
𝑡

E(𝒔𝑡 ,𝒂𝑡 )∼𝜌𝜋
[𝑟 (𝒔𝑡 , 𝒂𝑡 ) + 𝛼H(𝜋(· | 𝒔𝑡 ))]

with, H(𝜋(· | 𝒔𝑡 ))] = E𝒂∼𝜋 ( · |𝒔) [− log(𝜋(𝒂 | 𝒔))]
(15)

Here, the temperature parameter, denoted by 𝛼, balances the trade-off between entropy maximisation and
expected return. Specifically, setting the temperature to zero reduces the objective to its conventional form,
focusing exclusively on maximising expected return.

The actor in SAC aims to find the optimal policy defined in Eq. (15). The loss in achieving this objective is
the negative of the value function. Therefore, it includes the Critic value estimation and the entropy term.
This loss is shown in Eq. (16).

𝐿 𝜋 = −𝑉 (𝒔𝑡 ) = E𝒂𝑡∼𝜋 [𝛼log𝜋(𝒂𝑡 | 𝒔𝑡 ) −𝑄(𝒔𝑡 , 𝒂𝑡 )] (16)

Nevertheless, the loss in Eq. (16) can lead to policies that make actions oscillate and change rapidly,
especially in complex environments. To overcome this issue, we implement the Conditioning for Action
Policy Smoothness (CAPS) [18] regularisation method, which adds two additional terms to the loss function,
analogous to the approach adopted by Teirlinck [11].

The first term of the CAPS method is the temporal regularisation loss, which encourages each action to be
near the immediate previous action. This temporal loss is defined in Eq. (17). The second term, called
spatial regularisation, encourages the actions to be close to a randomly chosen action from the distribution
𝒔 ∼ 𝑁 (𝒔, 0.05). The spatial loss is defined in Eq. (18). It is important to note that temporal and spatial
regularization distances are calculated using the L2 normalisation. By combining these CAPS terms with the
actor loss, we get the full actor loss function shown in Eq. (19), where 𝜆𝑇 and 𝜆𝑆 are the scaling factors for
the temporal and spatial terms, respectively.

L𝑇 = 𝐷 (𝜋(𝒔𝑡 , 𝒔𝑡+1)) = ∥𝜋(𝒔𝑡 ) − 𝜋(𝒔𝑡+1)∥2 (17) L𝑆 = 𝐷 (𝜋(𝒔𝑡 , 𝒔)) = ∥𝜋(𝒔𝑡 ) − 𝜋(𝒔)∥2 (18)

LCAPS
𝜋 = L𝜋 + 𝜆𝑇L𝑇 + 𝜆𝑆L𝑆 (19)

2. SAC’s Critic-Network
The SAC’s Critic estimates the action-value function 𝑄 with a NN parametrised with weights denoted by 𝜙.
The network aims to approximate the target value in Eq. (20). This target value is a function of the following
state’s reward and expected value, scaled by a discount factor 𝛾. Even though the target value relies on the
state-value function 𝑉 (𝒔), there is no need to create a parameterisation for this function. This is because the
state-value function and the action-value function are related, as demonstrated in Eq. (22). Therefore, the
target value can be expressed in terms of the action-value function, as shown in Eq. (21).
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𝑦(𝒔𝑡 , 𝒂𝑡 ) = 𝑟 (𝒔𝑡 , 𝒂𝑡 ) + 𝛾E𝒔𝑡+1∼𝑝 [𝑉 (𝒔𝑡+1)] (20)
= 𝑟 (𝒔𝑡 , 𝒂𝑡 ) + 𝛾 min

𝑖=1,2
[𝑄𝜙targ,𝑖 (𝒔𝑡+1, �̃�𝑡+1) − 𝛼log𝜋𝜃 ( �̃�𝑡+1 | 𝒔𝑡+1)] (21)

𝑉 (𝒔𝑡 ) = E𝒂𝑡∼𝜋 [𝑄(𝒔𝑡 , 𝒂𝑡 ) − 𝛼log𝜋(𝒂𝑡 | 𝒔𝑡 )] (22)

Note that Eq. (21) uses a Clipped Double Q-learning strategy to reduce overestimation bias. Therefore, it
learns two separate Critic networks and takes the smaller value between them. Besides that, the equation uses
Target Networks, which are updated less frequently than the actual Critic-Network, providing more stable
learning. The �̃�𝑡+1 term indicates that the action is sampled from the actor instead of using an action from the
replay buffer; therefore, �̃�𝑡+1 = 𝜋𝜃 (𝒔𝑡+1).

The Critic Network’s learning process involves minimising its prediction’s TD error. As such, the loss of
the Critic Network, given in Eq. (23), is the squared difference between the estimated action-value function
𝑄(𝒔, 𝒂) and the target value 𝑦.

𝐿𝑄 =
∑︁
𝑖=1,2

[𝑄(𝒔𝑡 , 𝒂𝑡 ) − 𝑦(𝒔𝑡 , 𝒂𝑡 , 𝒔𝑡+1)]2 (23)

D. Distributional Soft Actor-Critic (DSAC) Algorithm
The DSAC [19, 20] algorithm is an extension of the standard SAC.The key differentiation between DSAC and
SAC lies in the learning approach adopted by the Critic Network: DSAC learns the distribution of returns
rather than their expected values. Therefore, the Critic in DSAC approximates a function that describes the
distribution of returns.

1. DSAC’s Actor-Network
In DSAC, the Actor-Network denoted as 𝜋𝜃 , retains the same parameterised structure used in SAC. Therefore,
the SAC’s Actor loss function (as shown in Eq. (16))remains applicable to DSAC. However, since the Critic
in DSAC estimates the distribution of returns 𝑍 (𝒔, 𝒂), a transformation function is necessary to convert this
distribution into a real-valued action-value function, 𝑄. This transformation is facilitated through a risk
measure function Ψ, represented as follows:

𝑄(𝒔, 𝒂) = Ψ[𝑍 (𝒔, 𝒂)] (24)

One possible risk measure function could be an expectation operator, E[·], which effectively converts the
Actor loss into a conventional SAC format. Within the context of DSAC, the expectation risk measure is
known as risk-neutral. This research uses the Wang risk measure [21]. Furthermore, the CAPS regularisation
technique is added to the loss function the same way as done for the SAC

2. DSAC’s Distributional Critic-Network
In the DSAC algorithm, the Critic Network aims to approximate the distribution of returns instead of the
expectation of returns in the traditional SAC.Specifically, it approximates the quantile function 𝑍𝜙 (𝒔𝑡 , 𝒂𝑡 ; 𝜏𝑖),
where 𝜏𝑖 denotes the 𝑖-th quantile, and 𝜙 represents the parameters of the NN. The quantile function, which is
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the inverse of the Cumulative Distribution Function (CDF), indicates the value corresponding to a specific
distribution quantile. For example, if 𝑍 (10%) = 5, this indicates a 10% or lower probability of sampling a
value of 5 or less from the given distribution.

To approximate the return distribution, the DSAC’s Distributional Critic Network has multiple output neurons,
each representing the quantile function at different quantiles. When combined, those quantile functions
describe the distribution of return. The network input is the environment states, the Actor action, and the
quantiles’ values.

The error of the Critic Network is theTD error between two quantile fractions, as defined in Eq. (25). A quantile
fraction, denoted as 𝜏, is the mean value between two subsequent quantiles. Therefore, 𝜏𝑖 = (𝜏𝑖 + 𝜏𝑖+1)/2.
The TD error quantifies how the shape of the action-value distribution has changed after the action.

𝛿𝑡𝑖 𝑗 = 𝑟𝑡 + 𝛾
[
𝑍 �̄� (𝒔𝑡+1, 𝒂𝑡+1; 𝜏𝑖) − log 𝜋𝜃 (𝒂𝑡+1, 𝒔𝑡+1)

]
− 𝑍𝜙 (𝒔𝑡 , 𝒂𝑡 ; 𝜏𝑗) (25)

The loss of the Critic Network in DSAC, denoted as L𝑍 , is computed as the Huber loss L𝐻
𝑘

[22] of the TD
error across all quantile pairs, as defined in Eq. (26). The Huber loss behaves as a mean squared error when
the error value is smaller than the threshold 𝑘 and behaves linearly beyond this threshold. This loss is chosen
because it is less sensitive to outliers than pure mean squared error. The aggregate loss is calculated as a
weighted sum of the Huber loss for each quantile pair, where the weight is the difference in the value of the
quantile pair.

L𝑍 =

𝑁−1∑︁
𝑖=0

𝑁−1∑︁
𝑗=0

(𝜏𝑖+1 − 𝜏𝑖)L𝐻
𝑘 (𝛿𝑡𝑖 𝑗) (26)

III. Methodology
This section describes the methodology for developing and evaluating the RL-based attitude controllers.

A. Reinforcement Learning for Attitude Tracking Task
This study’s Reinforcement Learning environment uses the DASMAT high-fidelity simulation of the Cessna
550 Citation II aircraft. The aircraft simulation has as input the states in Eq. (27) and as actions the vector in
Eq. (28). Note that the aircraft states vector 𝒙 is not the same as the environment observation vector 𝒔, as the
latter is tailored for each RL algorithm.

𝒙 =

[
𝑝 𝑞 𝑟 𝑉 𝛼 𝛽 𝜃 𝜙 𝜓 ℎ

]𝑇
(27) 𝒖 =

[
𝛿𝑒 𝛿𝑎 𝛿𝑟

]𝑇
(28)

In the state vector in Eq. (27), 𝑝 is the roll rate, 𝑞 the pitch rate, 𝑟 the yaw rate, 𝑉 the airspeed, 𝛼 the angle of
attack. 𝛽 the sideslip angle, 𝜃 the pitch angle, 𝜙 the roll angle, 𝜓 the heading angle, and ℎ the altitude. In the
action vector in Eq. (28), 𝛿𝑒 is the elvator deflection, 𝛿𝑎 the aileron deflection, and 𝛿𝑟 the rudder deflection.

The aircraft model and controller are discretised with a sampling frequency of 100 Hz. The model represents
the aircraft in a clean configuration and is trimmed at 2000 m altitude and 90 m s−1 airspeed. Furthermore, the
DASMAT model includes a built-in yaw damper and auto-throttle. Consequently, throttle control is managed
by the model, while the RL agents manage the control surfaces in Eq. (28).

The main objective for the agents within the Citation environment is to control the aircraft such that its attitude
match a reference signal. The reference attitude vector 𝒙ref , which represents the desired aircraft state, is
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defined in Eq. (29). The actual aircraft attitude, 𝒙att is extracted by filtering the state vector 𝒙 as shown in
Eq. (30).

𝒙ref =
[
𝜃𝑟 , 𝜙𝑟 , 𝛽𝑟

]𝑇
(29) 𝒙att =


0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0

 𝒙 (30)

The tracking error is computed as the difference between the actual aircraft attitude 𝒙att and the reference
signal 𝒙ref . A weighted sum of the errors is employed to aggregate the tracking error across all attitude angles
into a single metric, utilising the weights specified in Eq. (31). These weights serve the purpose of scaling
each state, thereby ensuring they have comparable magnitudes. The values of the scaling factors employed in
this study are retrieved from the work by Teirlinck [11]. Consequently, the attitude tracking error is defined in
Eq. (32).

𝒄att =
180
𝜋

[
1
30

1
30

1
7.5

]𝑇
(31) 𝒆att = (𝒙att − 𝒙ref) × 𝒄att (32)

The offline (IDHP) and online (DSAC and SAC) agents are built with different reward functions and observation
vectors. For the IDHP, the observation vector, defined in Equation Eq. (33), includes some of the aircraft
states and the squared tracking error. The reward is calculated as the negative of the squared tracking error,
as in Eq. (35). For the DSAC and SAC algorithms, use the observation vector in Eq. (34), and the reward
function in Eq. (36).

𝒔IDHP
𝑡+1 =

[
𝑝 𝑞 𝑟 𝛼 𝜃 𝜙 𝛽 𝒆att

𝑡

]𝑇
(33)

𝒔DSAC
𝑡+1 =

[
𝑝 𝑞 𝑟 𝒆att

𝑡

]𝑇
(34)

𝑟 IDHP
𝑡+1 = −𝒆att

𝑡 × 𝒆att
𝑡 (35)

𝑟DSAC
𝑡+1 = −∥clip[𝒆att

𝑡 ,−®1, ®1] ∥ (36)

B. Design of the Hybrid RL-Based Flight Controller
The controller developed in this study comprises a hybrid RL agent that combines the offline DSAC and
online IDHP algorithms. This section describes the working principles underlying this controller.

1. Motivation For a Hybrid Controller
An autonomous flight controller must be robust and adaptable to handle unexpected conditions, such as
system failures, during flight. Offline RL-based controllers are robust but inefficient in adapting to changing
conditions. Online RL controllers are good at adapting in real-time but can be unreliable, and there are safety
concerns as they learn during the flight. This study introduces a Hybrid controller that uses IDHP and DSAC
to bring together their strengths.

The research by Teirlinck [11] demonstrated the advantages of a hybrid controller that combines IDHP with
SAC. Recent studies [12] suggest that DSAC is a safer option than SAC without sacrificing performance.
DSAC, being risk-sensitive, tends to avoid states with high uncertainties, as Seres [12] demonstrated a DSAC
controller that avoided near-stall conditions.

DSAC also exhibits more stable learning performance. It is more consistent and reliable in learning an
optimal policy with a high return and low variance. This research aims to evaluate the performance of a
hybrid controller that uses DSAC as an offline algorithm, comparing it with standalone DSAC and SAC, as
well as the hybrid that uses SAC.
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Input  
Layer

Hidden 
Layer

Output 
Layer

(a) Hybrid’s Critic-Network.

Input  
Layer

Hidden 
Layer 1 
(DSAC)

Hidden 
Layer 1 
(IHDP)

Hidden 
Layer 2 
(IHDP)

Hidden 
Layer 2 
(DSAC)

Output 
Layer

(b) Hybrid’s Actor-Network.

Figure 1. Topology of DSAC-hybrid’s Critic and Actor-Network. ℎ̂ are the hidden layers derived from
the DSAC agent, which are frozen during online learning. ℎ are the layers from the IDHP agent, which
can adapt during online learning.

2. Naming Conventions for Hybrid Controllers
Throughout this paper, the SAC algorithm combined with IDHP is referred to as SAC-hybrid, while its
standalone version is called SAC-only. Likewise, when DSAC is combined with IDHP, it is called IDHP-hybrid,
and DSAC-only when it operates alone.

3. Hybrid Controller architecture
The hybrid controller’s architecture is based on the one developed by Teirlinck [11]. In this setup, the
Actor-Network of the IDHP algorithm is modified to include neurons from the offline algorithm. That means
layers from both offline agent and IDHP are intertwined in a single network. The layers derived from the
offline algorithm retain the weight values learned during offline training, while IDHP layers are set to the
identity matrix at the beginning. This ensures that at time zero, the Actor-network functions as the network of
the offline agent.

The Hybrid Actor Network, which combines layers from IDHP and DSAC, is shown in Fig. 1b. During the
online learning phase, the network only updates the IDHP layers, while the layers associated with the offline
algorithm remain unchanged. Because only the layers derived from IDHP change, the algorithm update logic
discussed in Section II.B does not alter.

On the other hand, the Critic Network of the Hybrid controller does not combine layers from the offline
and online algorithms. This network is the same as the one from IDHP, as shown in Fig. 1a. This design
choice is due to the IDHP’s Critic output, which is significantly different from the one in SAC and DSAC.
Consequently, reusing the offline Critic would change the logic of the IDHP algorithm.

C. Training Process for the Hybrid Controller
To create the Hybrid agents, the SAC or DSAC algorithms are first trained offline. For this study, both
algorithms were trained over three random seeds with f 1 M steps each. The training episode consisted of 2 K
steps(or 20 s) where the agents should track a smoothed step function with variable amplitude. Figure 2 shows
the averaged learning curves of the two algorithms across the three random seeds. All agents converged to
similar performance levels, with SAC achieving convergence slightly sooner than DSAC.

During offline training, the agents update their networks to improve tracking performance. After each episode,
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Figure 2. Learning performance curves for the SAC and DSAC algorithms. Each curve represents
the average performance of three independent runs. The training was conducted over a total of 10 M
learning steps, partitioned into episodes of 2 K steps each.

the policy is evaluated. The optimal policy at the end of training is the one that showed the best performance
during evaluation. The metric used for the evaluation is the normalised Mean Absolute Error (nMAE). This
metric normalises the tracking error by dividing it by the range of each tracked state, which enables the
comparison of scores across different tracking tasks. The policies learned during this process are shown in
Table 1 alongside their best nMAE. It is important to note that, the nMAE quantifies the normalised error;
therefore, a lower value indicates superior performance.

Table 1. Evaluation performance of SAC and DSAC agents during training. This table provides the
best nMAE score the agents achieved during evaluation after each episode in the training process. The
training was conducted over a total of 10 M learning steps, partitioned into episodes of 2 K steps each.

Id Agent nMAE Id Agent nMAE

SAC-1 SAC 8.36 % DSAC-1 DSAC 7.57 %
SAC-2 SAC 10.02 % DSAC-2 DSAC 11.80 %
SAC-3 SAC 8.03 % DSAC-3 DSAC 7.03 %

IV. Results & Discussion
In this section, we present the results of evaluating the performance of the proposed hybrid controller. These
results clarify the controller’s robustness to changes in reference signals and under conditions of sensor noise
and bias, as well as its fault tolerance when subjected to reductions in control surface effectiveness.

A. Analysis of Robustness
This subsection is dedicated to examining the robustness of the hybrid controller under different reference
signals and in the presence of sensor noise and bias.

1. Robustness to Different Reference Signals
An important goal for the RL-based controller is to ensure that the policy it learns is general enough to
track reference signals different from those used during training. To better understand how the hybrid and
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non-hybrid controllers behave under different conditions, we compare their performance in response to three
distinct reference signals, shown in Fig. 3.

5

0

5

 [d
eg

]

Task 1 Task 2 Task 3

10
0

10

 [d
eg

]

0 25 50 75 100
Time [s]

0.05

0.00

0.05
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eg
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0 25 50 75 100
Time [s]

0 25 50 75 100
Time [s]

Figure 3. The three tracking tasks used in the robustness experiment, each providing a different attitude
reference.

The first reference signal requires tracking a sinusoidal signal with a fixed amplitude and period for the pitch
(𝜃) and roll (𝜙) angles while maintaining the sideslip angle (𝛽) at zero. The second task involves keeping the
three attitude angles constant throughout the flight. The third task involves holding both the pitch and sideslip
angle at zero while the roll angle follows a pseudo-random sinusoidal trajectory.

The robustness of the agents across different tracking tasks is summarised in Table 2. Each agent was
evaluated in a task for five different random seeds using each of the three offline-learned policies. Therefore,
a total of 15 runs for each agent. The results indicate that, on average, both SAC-hybrid and DSAC-hybrid
improved the performance of their respective offline-only versions.

Furthermore, the table also shows how the nature of the tracking task can influence the algorithms’ performance.
When the evaluation task is significantly different from the trained task, the agent may not be able to achieve
low tracking errors. This is particularly evident in Task 1, where the hybrid agents improve performance
compared to the offline agents but are less substantial than in the other tasks.

Table 2. Evaluation of hybrid and non-hybrid agents subjected to varying tracking tasks. The table
presents the mean and variance of their tracking nMAE.

SAC-only SAC-hybrid DSAC-only DSAC-hybrid

Task 1 20.1 ± 1.8% 14.9 ± 1.5% 22.5 ± 7.0% 11.3 ± 0.6%
Task 2 11.1 ± 3.6% 4.5 ± 1.8% 13.4 ± 8.8% 2.9 ± 0.9%
Task 3 16.6 ± 2.2% 4.1 ± 0.8% 18.7 ± 9.8% 3.0 ± 0.7%

It is noteworthy from the results that, between the offline agents, the SAC-only outperforms the DSAC-only in
all tasks, with lower variance. However, in hybrid form, the DSAC-hybrid manages to surpass the SAC-hybrid
performance. The hybrid configuration enhances the offline policies, making them more robust. The key
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takeaway is that the hybrid setup yields more consistent tracking performance results, irrespective of the
initial performance of the offline model.

Across all the agents, the DSAC-hybrid consistently achieved the lowest average nMAE in all tasks while
also maintaining low variance. Figure 4 shows the extent of improvement in nMAE performance that the
hybrid agent brings compared to its offline-only version. The figure reveals that, on average, the DSAC-hybrid
enhances performance more effectively than the SAC-hybrid. However, this improvement comes with higher
variance. Additionally, during Task 2, the DSAC-hybrid had one run using the DSAC-2 offline policy (as
referenced in Table 1), which resulted in reduced performance. This occurred because the DSAC-2 offline
policy had the lowest nMAE, highlighting the importance of carefully selecting the initial policy for the
hybrid, favouring those with low nMAE.

Task 1 Task 2 Task 3

0%

5%

10%

15%

20%

SAC-hybrid DSAC-hybrid

Tracking Task

nM
AE

 Im
pr

ov
em

en
t

Figure 4. Box plot showing the extent of improvement innMAE that each hybrid algorithm (SAC-hybrid
and DSAC-hybrid) brings compared to their respective offline algorithms across different tasks during
the evaluation phase.

2. Robustness under Sensor Noise and Bias
The final robustness experiment involves testing the agents in a more realistic setting by introducing noise
and bias into the aircraft’s sensors. In this test, the hybrid agents aim to track a reference signal, while noise
and bias are added to the states 𝑝, 𝑞, and 𝑟. The noise and bias are sampled from the normal distribution
N(𝜇 = 3 · 10−5, 𝜎 = 4 · 10−7), which are based on expected values for the Citation aircraft as found in
Grondman et al. [23]. Only these three states are modified because they are the only ones shared between the
observation functions of the offline algorithms and IDHP, as shown in Eq. (34) and Eq. (33), respectively.

Each offline learned policy was evaluated in a hybrid configuration under noise and bias conditions using five
different random seeds for this experiment. This amounts to 15 runs for SAC and 15 runs for DSAC. The
results from this experiment are summarised in Table 3. Despite the presence of noise and bias, both hybrid
controllers managed to enhance the performance compared to the offline-only versions. The DSAC algorithm
again showed a more substantial improvement. The graphs showing the average tracking performance of
the agents during the task with noise and bias can be seen in Fig. 5a for DSAC-only, and in Fig. 5b for
DSAC-hybrid.
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Table 3. Evaluation of hybrid and non-hybrid agents subjected to sensor noise and bias. The table
presents the mean and variance of their tracking nMAE.

Non-hybrid Hybrid Improvement

SAC 16.6 ± 2.2% 4.0 ± 0.9% 12.6 ± 2.7%
DSAC 18.7 ± 9.8% 2.8 ± 0.5% 15.9 ± 9.5%
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(a) DSAC-only evaluation performance.
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(b) DSAC-hybrid evaluation performance.

Figure 5. Aircraft states during the evaluation of DSAC agents in Task 3, including sensor noise and
bias.

B. Assessment of Fault Tolerance
The fault-tolerance experiment examines the performance of the hybrid controllers under reduction in the
effectiveness of its control surfaces. First we consider a the elevator effectiveness by 70 %. Then, a reduction
in the aileron effectiveness by 90 %. In each condition, the agents are evaluated over 5 random seeds, each
tracking Task 3 from Fig. 3 while the fault stats at 𝑡 =10 s.

1. Performance under Reduced Elevator Effectiveness
The evaluation of the hybrid and non-hybrid agents with reduction in the elevator effectiveness by 70 % at
time 10 s is summarised in Table 4. Those results shows the hybrid compensate to the failure and improve the
performance of the offline-only agents. The DSAC-hybrid achieves the lowest nMAE.
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Table 4. Evaluation of hybrid and non-hybrid agents subjected to a reduction of elevator effectivess by
70 %. The table presents the mean and variance of their tracking nMAE.

Non-hybrid Hybrid Improvement

SAC 18.4 ± 3.1% 4.1 ± 0.9% 14.3 ± 3.7%
DSAC 22.4 ± 11.8% 3.2 ± 0.6% 19.2 ± 11.4%

The average tracking performance of the DSAC-hybrid and DSAC-only agents is shown in Fig. 6. While
DSAC-only does adequate tracking of the roll angle, it struggles to hold the pitch angle and sideslip angle at
zero. For the sideslip angle it is visible that the deterioration start at the start of the fault. The DSAC-hybrid,
on the other hand, has a worst start on the tracking of the roll angle, but it picks up the tracking of the signal
within the first seconds. Additionaly, it is also visible the impact of the fault on pitch and sideslip angle at
start of fault. However, the hybrid is able to account for the fault and do a better regulate those angles.
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(a) DSAC-only evaluation performance.

5

0
q 

[d
eg

/s
]

25

0

p 
[d

eg
/s

]

2

4

 [d
eg

]

2.5

0.0

2.5

r [
de

g/
s]

0.0

2.5

 [d
eg

]

20

0

20

 [d
eg

]

89.5

90.0

V 
[m

/s
]

0.0

2.5

 [d
eg

]

1500

2000

h 
[m

]

0

10

a [
de

g]

0 50 100
Time [s]

2.5

0.0

e [
de

g]

0 50 100
Time [s]

2.5

0.0

2.5

r [
de

g]

State Reference Fault

(b) DSAC-hybrid evaluation performance.

Figure 6. Aircraft states during the evaluation of DSAC agents in Task 3, including a reduction in
elevator effectiveness by 70 % at the 10 s mark.
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2. Performance under Reduced Aileron Effectiveness
The evaluation of the hybrid and non-hybrid agents with a reduction in the aileron effectiveness by 90 % at
time 10 s is summarised in Table 5. The results show that DSAC-hybrid is the controller that achieves the
lowest nMAE, followed by SAC-hybrid. This is the experiment where the hybrid architecture showed the
greatest nMAE improvement concerning the non-hybrid agents.

Table 5. Evaluation of hybrid and non-hybrid agents subjected to a reduction of aileron effectiveness by
90 %. The table presents the mean and variance of their tracking nMAE.

Non-hybrid Hybrid Improvement

SAC 28.5 ± 8.5% 9.1 ± 2.5% 19.4 ± 10.7%
DSAC 28.7 ± 17.0% 6.1 ± 0.7% 22.6 ± 16.8%

The results of the average tracking performance of the DSAC-hybrid in the evaluation task with the aileron
fault is shown in Fig. 7. With the deteriorated aileron, the DSAC-only strugles to track the roll angle, as
shown in Fig. 7a. Note how different the tracking becomes when compared to Fig. 7b. The DSAC-hybrid,
however, is able to track the roll angle considerably well while still managing to hold the other attitude angles.
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(a) DSAC-only evaluation performance.
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(b) DSAC-hybrid evaluation performance.

Figure 7. Aircraft states during the evaluation of DSAC agents in Task 3, including a reduction in
aileron effectiveness by 90 % at the 10 s mark.
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C. Reliability Analysis of the Controllers
One of the challenges in RL is evaluating the reliability of results. Because the training time is computationally
intensive, the number of experiments that can be practically conducted is limited. Consequently, it becomes
difficult to assert that the results are reliable and not only an outlier due to randomness in the problem. To
address this issue, the study performed a reliability analysis to evaluate the likelihood of obtaining similar
results if the same experiments were performed with different random seeds.

The methodology employed for this reliability analysis uses the framework set by Agarwal et al. [24]. A
central component in the analysis is the stratified bootstrap confidence intervals, which is an aggregated score
built by random sampling, with replacement, a set of nMAE values from each experiment. The sample size is
proportional to the number of evaluations in that experiment.

1. Performance Profile
The performance profile graph shows the distribution of nMAE across all runs. It uses the data derived from
the stratified bootstrap confidence intervals to build a cumulative distribution of the model’s scores. The
results for the agents are shown in Fig. 8a. The 𝑦 values in the curve represent the fraction of runs that lead to
an nMAE lower than the threshold in the 𝑥 axis. Therefore, the higher the curve, the better.

In the performance profile graph, the hybrid agents exhibit comparable performance relative to one another,
as do the non-hybrid agents. The curve for the DSAC-hybrid is above the others, signifying that this agent
demonstrates statistical dominance. This implies that, for this particular agent, the runs are more likely
to yield lower nMAE. Among the non-hybrid algorithms, SAC-only exhibits slightly better performance
compared to DSAC-only.

2. Probability of Improvement
A subsequent analysis is the probability of improvement, which quantifies the likelihood that a given algorithm
will yield performance improvement compared to others. In other words, it calculates the probability that the
performance of algorithm 𝑋 exceeds that of algorithm 𝑌 . The calculation involves a pairwise comparison of
the nMAE between the two algorithms, isolating instances where the performance of 𝑋 surpasses that of 𝑌 .
The probability of improvement is then computed as the ratio of instances where 𝑋 performed better to the
total number of pairwise comparisons made.

The outcomes of the probability of improvement analysis for the algorithms are shown in Fig. 8b. The data
indicate that both hybrid algorithms have greater than 80 % probability of increasing the performance of the
offline-only agents. Furthermore, the DSAC-hybrid also has a high probability of improving the SAC-hybrid.
Among the offline-only agents, SAC has a slightly above 60 % chance of improving DSAC. However, this is
together with high variance, confirming that the performance of those offline algorithms is similar.

V. Conclusion
Robustness and fault tolerance are critical for autonomous flight control systems. Reinforcement Learning
(RL) flight controllers emerge as a promising method to achieve these characteristics. While offline RL
algorithms are good in providing robustness, they are constrained by a limited capacity to adapt during
flight. In contrast, online RL algorithms are highly adaptive but may compromise reliability due to uncertain
convergence properties and the inherent risks associated with learning to control during flight. In light of
these observations, this research investigated the potential of hybrid controllers, combining the strengths of
offline Distributional Soft Actor-Critic (DSAC) and online Incremental Dual Heuristic Programming (IDHP)
algorithms, referred to as DSAC-hybrid.
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Figure 8. Reliability analysis of the hybrid and non-hybrid controllers. Results from studying the
stratified bootstrap confidence intervals of the aggregated nMAE scores across the experiments.

The DSAC-hybrid controller demonstrated enhanced robustness compared to a hybrid using Soft Actor-Critic
(SAC) as the offline algorithm (denoted to as SAC-hybrid). Besides that, the DSAC-hybrid outperformed
controllers exclusively utilising DSAC and SAC. The robustness comparison included evaluating the controllers’
ability to track reference signals that deviate from those encountered during training and in scenarios with
noisy and biased observation vectors.

Furthermore, the DSAC-hybrid controller showed superior fault-tolerance capabilities. Specifically, in
an assessment involving a scenario where elevator effectiveness was reduced by 70 %, the DSAC-hybrid
maintained its capacity to track a reference signal. At the same time, the strictly offline agents encountered
difficulties. The same was observed with a 90 % reduction in aileron effectiveness. The SAC-hybrid agent
also coped with the fault effectively but with lower performance than the DSAC-hybrid.

Overall, the hybrid approach proved to effectively combine offline algorithms’ robustness with an online
algorithm’s real-time adaptability. The DSAC-hybrid emerged as the highest performance model, with
SAC-hybrid also demonstrating superiority over the strictly offline algorithms. A reliability analysis provided
additional validation to these conclusions, indicating that both hybrid algorithms have a greater than 80 %
likelihood of outperforming offline algorithms regarding tracking performance.

This research is a step towards developing safe and autonomous RL-based controllers. By combining offline
and online learning algorithms, the hybrid approach opens up new possibilities for flight control. In particular,
the DSAC-hybrid controller sets an example of robustness and adaptiveness in attitude tracking. Therefore,
these findings have significant implications for future research in autonomous flight control.
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Appendix

A. DSAC and IDHP Hyperparameters
This section provides the hyperparameters employed during the training process of the Reinforcement Learning
algorithms used in this research. The DSAC hyperparameters are shown in Table 6a and IDHP ones in
Table 6b.

(a) Hyperparameters for DSAC algorithm, adapted
from Seres [12] and Duan et al. [20]

Hyperparameter Symbol Value

Learning rate 𝜂 4.4 · 10−4

Discount Factor 𝛾 0.99
Hidden Neurons 64 × 64
Replay buffer size |D| 1 · 106

Batch Size |B| 256
Polyak Step 0.995
Optimiser Adam
Network Activation ReLu
CAPS Scaling 𝜆𝑇 , 𝜆𝑆 400
Nr. of Quantiles 8
Huber Threshold 𝑘 1
Risk Measure Ψ Wang

(b) Hyperparameters for IHDP algorithm, adapted
from Teirlinck [11] and Zhou et al. [15]

Hyperparameter Symbol Value

Actor Learning Rate 𝜂𝐴 0.1
Critic Learning Rate 𝜂𝐶 0.001
Discount Factor 𝛾 0.7
RLS Discount Factor 𝛾RLS 0.7
Hidden Neurons 10
Optimiser SGD
Network Activation Tanh

Table 6. Value of hyperparameter for DSAC and IDHP algorithms.
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