
Compressing code generation language models on CPUs
Using Group Lasso pruning and post-training quantization

Dan Sochirca

Supervisor(s): Prof. Dr. Arie van Deursen, Dr. Maliheh Izadi , ir. Ali Al-Kaswan

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Dan Sochirca
Final project course: CSE3000 Research Project
Thesis committee: Prof. Dr. Arie van Deursen, Dr. Maliheh Izadi, ir. Ali Al-Kaswan, Avishek Anand

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Parts of the document were generated using the following AI tools: ChatGPT.

Abstract
Code generation models have become more popu-
lar recently, due to the fact that they assist devel-
opers in writing code in a more productive manner.
While these large models deliver impressive perfor-
mance, they require significant computational re-
sources and memory, making them difficult to de-
ploy and expensive to train. Additionally, their
large carbon footprint raises environmental con-
cerns. To address these challenges, there is a need
to develop techniques for compressing these mod-
els while maintaining their performance.
In this work, we study the effectiveness of Group
lasso pruning and post-training quantization tech-
niques on CPUs, applied to the code generation
model CodeGPT. We evaluate the performance
of the compressed model using the Exact Match
(EM) and Edit Similarity (ES) metrics and study
the model size on disk, memory footprint, and
CPU inference. In contrast with the original
CodeGPT model, our solution offers a 48% rela-
tive reduction in disk size, with only a mild drop
in the accuracy metrics: 8.51% absolute drop in
ES and a 5.5% in EM. Using the ONNX runtime
on a regular laptop, we are able to deliver a 2x
inference speedup at a 32.6% reduction in size.
Our code is publicly available at https://github.
com/AISE-TUDelft/LLM4CodeCompression/tree/
main/CodeGPT-on-Intel.

1 Introduction
Language models have witnessed significant advancements
in various natural language processing tasks, including
question-answering, translation, sentiment analysis, and text
classification. Among these tasks, automatic code comple-
tion plays a crucial role in enabling software developers to
write code more efficiently. However, deploying large lan-
guage models (LLMs) poses challenges due to their compu-
tational complexity and high memory requirements. Their
carbon footprint also raises concerns: the CO2 emission of
training the GPT-3 model amounts to three times that of a
whole jet plane from San Francisco to New York [28]. There-
fore, there is a need to explore techniques that can compress
these models, making them use less energy and be more fea-
sible for local deployment.

In recent years, tools such as Github Copilot1 and Amazon
CodeWhisperer2 have experienced a surge in popularity due
to their ability to improve developer productivity. These tools
aim to provide developers with intelligent real-time code sug-
gestions based on the user’s coding context. The technol-
ogy leverages the power of the GPT model architecture [30],
which builds upon the advancements introduced by the origi-
nal transformer [39]. As a result of these breakthroughs, mod-
ern GPT-based models have achieved remarkable progress

1GitHub Copilot: https://github.com/features/copilot
2Amazon CodeWhisperer: https://aws.amazon.com/

codewhisperer/

in comprehending and generating human-like text. Further-
more, this paradigm shift in code generation has revolution-
ized the way developers interact with their integrated devel-
opment environments (IDEs). Instead of relying solely on
manual coding or limited code completion features, develop-
ers can now benefit from sophisticated AI-powered assistants
that augment their coding experience.

Compression techniques such as pruning, quantization,
and distillation have been proposed to make code-generation
models more efficient. However, their application to GPT
models for code completion remains limited, due to their nov-
elty and the higher popularity of BERT models. While some
studies have explored compression techniques for GPT mod-
els [21; 27; 38; 43], they have not focused on code completion
tasks specifically.

Our work specifically focuses on CodeGPT, a transformer-
based model fine-tuned by us for code completion. We target
the compression and deployment of this model on CPU archi-
tectures, which is a more accessible resource to the everyday
person rather than GPUs. We investigate pruning and quanti-
zation techniques applied post-training. In particular, we aim
to answer the following research questions:

• RQ1: How does the performance of the CodeGPT
model change after applying Group Lasso pruning?

• RQ2: How does the performance of the pruned model
change after applying post training quantization?

Our study proposes a two-stage approach to tackle the re-
search questions. Firstly, we use group lasso structured prun-
ing at varying levels of sparsity to selectively remove unnec-
essary elements from the neural network. Next, we apply dy-
namic post-training quantization to further test the compres-
sion of the model. We experiment with different quantization
mapping techniques and quantization scales to identify the
best trade-off between model size, CPU inference, and per-
formance.

Our results vary depending on what configuration is used
when compressing. We identify a sweet spot at the 60% spar-
sity level in group lasso pruning, which results in a relative
decrease in size by 48%, accompanied by an 8.51% absolute
reduction in the ES score and 5.5% in EM. However, with the
compression library we used, quantization did not to provide
any speedups. Using the ONNX model format also provides
double the inference speed when run on a regular laptop using
an i9 11900H processor.

Our contribution can be summarized as follows:

1. The application of different compression techniques
to our CodeGPT model: Group Lasso (post-training)
pruning for different target sparsities (40-90%) and
post-training quantization (PTQ) with channel-wise and
tensor-wise quantization scales.

2. The evaluation of each technique and finding the optimal
model.

3. Comparing our best approach to models part of other
concurrent work: [5; 23; 37].

4. Publishing the used scripts on Github, for others to re-
produce our work.

1

https://github.com/AISE-TUDelft/LLM4CodeCompression/tree/main/CodeGPT-on-Intel
https://github.com/AISE-TUDelft/LLM4CodeCompression/tree/main/CodeGPT-on-Intel
https://github.com/AISE-TUDelft/LLM4CodeCompression/tree/main/CodeGPT-on-Intel
https://github.com/features/copilot
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/

By implementing these techniques, we aim to pave the way
for more efficient and lower-carbon use of GPT-based lan-
guage models in code completion tasks and to contribute to
the advancement of this field.

2 Preliminaries
In this section, we provide an overview of the necessary con-
cepts and techniques that support a better understanding of
our study.

2.1 Transformers
Transformers [39] are the building block of many Large lan-
guage models (LLMs) that we see today. A transformer takes
in one sequence of words (like a sentence) and ”transforms”
it into another sequence (like a translation of that sentence).
It’s really good at this task because it can understand the con-
text and meaning of the words in the sequence using what’s
called a ”self-attention” mechanism.

A transformer is composed of two components: an en-
coder and a decoder. The encoder processes the input se-
quence and produces a sequence of hidden states, while the
decoder uses the encoder’s hidden states and the output se-
quence to generate a new sequence of output values. Both
components consist of two sub-components: multi-head at-
tention (MHA) and fully connected feed-forward network
(FFN).

Currently, the two most popular LLM models in existing
literature are BERT [7] and GPT [30]. BERT’s architecture
consists of bidirectional transformer encoders, while GPT
uses unidirectional transformer decoders. ”Bidirectional”
means that the model considers the context of a word from
both directions, i.e., it examines the words that come before
and after a particular word in a sentence. This allows BERT
to be better suited for tasks that require a deeper understand-
ing of the relationships between different parts of a text, such
as question-answering and sentiment analysis. GPT however
processes words in a sentence sequentially (from left to right
for example). This type of model is more suited for tasks
that require generating coherent and fluent natural language
text because it takes into account all the previously generated
words when generating the next word. Because we study the
code completion task, in this paper we focus on compressing
a fine-tuned version of the CodeGPT-small model3, based on
the GPT-2-small architecture.

The GPT-2 [31] architecture is made of a stack of homo-
geneous Transformer decoder blocks, each of which consists
of a masked MHA layer followed by a point-wise FFN layer.
Specifically, an MHA layer consists of H independently pa-
rameterized attention heads [19]:

MHA(x) =

H∑
i=1

Atti(x ·mask) (1)

xMHA = LayerNorm(x+MHA(x)) (2)

3CodeGPT-small model: https://huggingface.co/microsoft/
CodeGPT-small-py/tree/main

Figure 1: Pruning a neural network. The pruned model has fewer
connections than the original model. Source: [16]

where Att is a masked dot product attention head, and x is the
input sequence. The output of the MHA layer is then fed into
the FFN layer, which consists of N filters:

FFN(x) = σ(XW (1)) ·W (2) (3)

xout = LayerNorm(xMHA + FFN(xMHA)) (4)

where W (1) and W (2) are the FFN parameters, and σ is the
activation function, typically GELU. Both MHA and FFN
layers are followed by a layer-normalization step, denoted by
xMHA and xout. H is 12 for GPT-2.

2.2 Distillation
Knowledge distillation [10] is the process of training a stu-
dent model to reproduce the behavior of a teacher model
(training against the teacher’s outputs). It leverages the log-
its (the input of softmax in the classification tasks) of teacher
and student models to minimize the difference between their
predicted class distributions, this can be done by minimiz-
ing the loss function LKD = D(zt, zs), where D is a dis-
tance measurement (for example the Euclidean distance and
Kullback–Leibler divergence), and zt and zs are the logits of
teacher and student model.

Distillation is not the main focus of this work. We do con-
sider it however in our discussion section.

2.3 Pruning
Pruning removes redundant parameters/weights from a model
by forcing them to zero. A nice visual representation is dis-
played in Figure 1. Pruning can be either unstructured,
where individual weights are pruned, or structured where
structured groups of weights are pruned, e.g. entire blocks,
channels, layers. Pruning results in sparse neural networks
that reduce the computation and the memory footprint of the
trained model [9; 46].

Pruning can be applied to transformer LLMs in several
ways: by pruning layers (a pair of MHA and FFN layers) [8;
33], attention heads [40; 25], FFN layers [29; 4; 24; 12]. In
this work, however, we are going to prune all components.

A common way to prune is in iterative steps, each of which
removes weights until a desired sparsity level is reached,
where sparsity is computed as the number of pruned param-
eters divided by the full model size [18]. The motivation be-
hind iterative pruning is that removing one weight can cause
the remaining weights to become more important and change

2

https://huggingface.co/microsoft/CodeGPT-small-py/tree/main
https://huggingface.co/microsoft/CodeGPT-small-py/tree/main

their values [18]. However, in this paper, we used one-shot
pruning, which is less effective but computationally cheaper
[3], because it prunes the entire model at once.

Additionally, pruning requires a fine-tuning step, in order
to reduce the loss it induced. Therefore, the model needs to
be retrained during/after it was pruned in order to preserve its
accuracy.

2.4 Quantization
Quantization uses fewer bits to represent weights and activa-
tions. It converts a floating-point tensor to tensors with inte-
ger values, operations on which are more efficient [11]. The
(linear) quantization formula is as follows:

Xq = round(
Xfp32

s
+ z), where s =

2B−1

α
(5)

Here s is the quantization scale, z is the zero point, B is the
bitwidth (8 in case of int8) and α is the quantization range.
Int8 is the most popular int range in literature, so we are going
to use it as well. Two common range mapping techniques are
affine/asymmetric quantization, where:

s =
127

|Xfmax
−Xfmin

|
, z = −128−Xfmin

· s (6)

which maps the min/max range in the float tensor to the inte-
ger range (int8), and scale/symmetric quantization:

s =
127

max(abs(Xfmax), abs(Xfmin))
, z = 0 (7)

which uses the maximum absolute value in the float tensor as
the float range.

We distinguish 2 methods to obtain a quantized network:
• Quantization Aware Training (QAT). QAT requires

training the model from scratch with additional sim-
ulated quantization operations during training. This
method is expensive due to the high cost of training but
can lead to higher accuracy compared to PTQ because
the model better adapts to the introduced quantization
noise.

• Post Training Quantization (PTQ). PTQ quantizes an ex-
isting network without the need for the original training
pipeline [17]. Models quantized by PTQ are highly sus-
ceptible to quantization noise since the model is not orig-
inally trained with quantized parameters. However, the
low cost of applying this method makes it a very popular
choice, which is why we decided to use it.

There are also different methods to choose the activation
scale, which can be categorized as follows:

• Dynamic quantization: The quantization range α and
scale s are determined on the fly and differ for each ten-
sor. Additional scanning cost is incurred because the
max value needs to be found for each tensor.

• Static quantization: The quantization range and scale
are determined using a calibration dataset and are the
same for all tensors. This method however can be sus-
ceptible to more quantization noise, though lower com-
putational cost during inference [42].

The main problem with quantization is that it introduces
additional noise in the network that can lead to a drop in
the model’s performance. This is mainly caused by outliers
present in the tensor. To reduce the quantization noise and
avoid outliers, column-wise (or channel-wise) quantization
scales can be used [42], where the quantization scales are
determined based on the max value in each tensor colum-
n/row/channel instead of the entire tensor. Outliers can also
be avoided with data clipping before quantization is used
[42].

In this work, we are using dynamic PTQ because of its low
cost. We also used the popular int8 as the quantization range,
due to its popularity and increased support.

3 Related Work
There has been significant research on compressing and quan-
tizing large language models such as BERT and GPT, and
several methods have been proposed for this purpose. How-
ever, none of them study the application of compression tech-
niques on LLMs for the code completion task, therefore re-
search in this specific area is limited. In this section, we pro-
vide a brief overview of some relevant works that are related
to our research question.

Distillation-based methods have been widely used for com-
pressing language models. For example, Sanh et al. intro-
duced DistilBERT and showed that it’s possible to reduce the
size of a BERT model by 40% while retaining 97% of its lan-
guage understanding capabilities and being 60% faster [34].
Shleifer and Rush proposed a pre-trained summarization dis-
tillation technique that can be used to compress summariza-
tion models [36].

Another way of compressing language models is pruning.
Wang et al. proposed structured pruning of large language
models, which uses a structured pruning technique based on
adaptive low-rank factorization, to remove a certain percent-
age of weights from a model, resulting in a smaller model
[41]. Similarly, Zafrir et al. proposed Prune Once For All
(POFA), a technique that uses Gradual Magnitude Pruning
(GMP) and Learning Rate Rewinding (LRR) to prune a pre-
trained model only once and then fine-tune it to obtain a
smaller model with minimum accuracy loss [45].

Quantization is another technique that has been used to
compress language models. Hu et al. evaluated several post-
training quantization methods for language tasks and pro-
posed an empirical evaluation framework for comparing these
methods [13]. Bondarenko et al. proposed three solutions to
overcome the challenges of efficient transformer quantization
[2], while Yao et al. introduced ZeroQuant, an efficient and
affordable post-training quantization method for large-scale
transformers [44].

There are also works that combine pruning and quantiza-
tion techniques for compression. Kwon et al. proposed a fast
post-training pruning framework for transformers [20], while
Jiao et al. introduced TinyBERT, a distilled BERT model that
combines both pruning and distillation [15]. Kurtic et al. pro-
posed an optimal BERT surgeon that uses second-order prun-
ing for large language models [18].

Perhaps the most significant research for this paper would

3

be the work of Shen et al., who developed a pipeline for ac-
celerating Transformer models on CPUs [35]. By making
use of several software acceleration techniques, their pipeline
outperformed the state-of-the-art Neural Magic’s DeepSparse
runtime performance by up to 50%. Their work is critical, as
we used their toolkit4 to apply compression techniques in this
paper.

4 Methodology
In this section, we introduce our chosen technique for com-
pressing the CodeGPT model. We employ a two-step pro-
cess: pruning and quantizing. We consider group lasso prun-
ing for different percentages of sparsities and quantization for
different layers and quantization scales. Each of these meth-
ods comes with its own trade-offs, which is why there can be
more than one appropriate solution.

4.1 Group lasso structured pruning
In this study, we implement Group Lasso pruning, a method
that extends the conventional Lasso technique by considering
the group structure of the input variables. This approach al-
lows us to remove whole groups of neurons or layers rather
than individual nodes, resulting in a smaller dense network.
Using this technique, we aim to reduce the complexity and
size of our model.

Given a matrix w split into non-overlapping groups of pa-
rameters G, the Group Lasso pruning problem is formally de-
fined as [1]:

R(w) = λ

G∑
g=1

√
sg ||wg||1 (8)

where the 1-norm takes the square root of the squared sum
of all weights in a group, to force them to go towards 0 to-
gether. The sg scalar applies scaling and represents the group
size (i.e. number of elements in a group). λ is the regular-
ization parameter, controlling the degree of sparsity in the
pruned model. In our experiments, λ is controlled through
the sparsity level as a parameter in the intel-extension-for-
transformers library [14]. Finally, the regularization term
R(w) is added to the original training loss function, and fine-
tuning the model using this new function will successfully
prune it.

We apply the pruning method for all layers in our model,
at different levels of sparsity: 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.
We prune the model in one step (one-shot pruning), instead
of doing it iteratively, to speed up the compression. While
the model is pruned it is also fine-tuned on 128 samples (we
chose a relatively small number since this takes place on
CPUs) in the dataset in order to reduce some of the loss in-
curred. Based on the evaluation results, we further compress
the best-performing model using quantization.

4.2 Dynamic Post Training Quantization
After pruning, the model undergoes post-training quantiza-
tion (PTQ) to further compress it. Specifically, we utilize dy-

4Intel Extension For Transformers: https://github.com/intel/
intel-extension-for-transformers

Figure 2: PTQ visualized, where the weight clipping range is de-
termined dynamically. Each input prompt has a different max abs
value and therefore gets a different scale. Source: [42]

namic post-training quantization (PTQ) with the int8 quanti-
zation range, as explained in section 2.4. An example of how
the technique works is provided in figure 2.

We apply dynamic PTQ with different mapping tech-
niques: symmetric and asymmetric, and at different scales:
channel-wise and tensor-wise. We also vary the layers to
which quantization is applied: in one scenario, we quantize
all layers of the model, and in another, we only quantize the
weights (excluding the activations). As we did in pruning, we
also fine-tune the model after it was quantized on 100 samples
to reduce some of the quantization noise. The impact of the
differing scopes of quantization is evaluated in our results.

5 Experimental setup
Model. The model5 we use in this work is a version of the
CodeGPT-small model6, fine-tuned on the code completion
PY150 dataset7 with one training epoch. The model con-
tains 124.24 million parameters and its disk size is 486MB.
Its score (evaluated on the test partition of the dataset) is ES
of 39.05 and EM of 14.50%. We proceeded to use this model
for our compression experiments.

Hardware. For running the experiments we use the Delft-
Blue [6] high-performance computer (HPC). We utilize the
standard compute nodes, made of Intel XEON E5-6248R 24C
3.0GHz CPUs. Our setup is made of 8 CPUs, each with 4GB
of memory. This amount of processors however is only used
for parallel tokenization of data and model evaluation. Com-
pressing the models was sadly not possible to parallelize on
CPUs, and due to that fact, it can only run serially. Pruning a
model takes almost 5 hours to complete, quantizing - around
30 minutes, and evaluating it takes ∼10 minutes. An example
Unix shell executable script as well as outputs of our python
programs can be found in our repository.

Frameworks and libraries. Our deep learning library
of choice is PyTorch8. To prune and quantize the models

5CodeGPT fine-tuned on the Py150 dataset: https://huggingface.
co/AISE-TUDelft/CodeGPT-Py150/tree/main

6Original CodeGPT created by Microsoft: https://huggingface.
co/microsoft/CodeGPT-small-py

7PY150 code completion dataset: https://huggingface.co/
datasets/0n1xus/codexglue

8PyTorch: https://pytorch.org/

4

https://github.com/intel/intel-extension-for-transformers
https://github.com/intel/intel-extension-for-transformers
https://huggingface.co/AISE-TUDelft/CodeGPT-Py150/tree/main
https://huggingface.co/AISE-TUDelft/CodeGPT-Py150/tree/main
https://huggingface.co/microsoft/CodeGPT-small-py
https://huggingface.co/microsoft/CodeGPT-small-py
https://huggingface.co/datasets/0n1xus/codexglue
https://huggingface.co/datasets/0n1xus/codexglue

we make use of the intel-extension-for-transformers toolkit9,
which provides APIs for various model compression tech-
niques. We also use the ONNX runtime10 to convert the Hug-
ging Face models into the ONNX format, which delivers sig-
nificantly better inference results.

Evaluation. The resultant compressed models are evalu-
ated on 1000 samples taken from the test partition of the same
PY150 dataset, using the EM and ES metrics. For each ap-
proach, we study the model size on disk, memory footprint,
and CPU inference time. The Exact Match metric measures
the percentage of instances where the model’s output exactly
matches the expected output. The Edit Similarity metric how-
ever is based on the Levenshtein distance, which measures the
minimum number of single-character edits (insertions, dele-
tions, or substitutions) needed to change one string into an-
other. Inference times are measured in samples/sec, while
memory usage and disk size are in MB. Both the inference
time and memory footprint will be computed by inferring the
same samples from the test set.

The Exact Match metric. Our goal is to generate code
that is functionally equivalent to a reference implementation
rather than identical to it. Therefore the ES metric is to be
considered more important than the EM metric, even though
we are not getting a character-for-character match.

Measuring disk size. Regarding the disk size measure, we
would like to point out that we report the size of the model
after compression as a zip archive, instead of the actual file.
For example, pruning sets the pruned weights to zero but does
not actually remove them from the binary file, thus keeping
the model’s architecture and size the same. Zipping the model
however does reduce its size, and this is reflected in our re-
sults. As a reference, zipping the baseline model reduces its
size from 510 MB down to 462 MB.

6 Results
In this section, we present our evaluation results and examine
how our model performs when converted to the more efficient
ONNX format.

Pruning (RQ1). In Figure 3, we compare the metrics of
the pruned model at different sparsity levels. As expected,
the sparser the model - the more compressed it is and the
lesser its disk size. The memory usage seems to slightly go
up, but the CPU inference does not present any significant
change. Both the ES and EM scores decrease as the model
is pruned more, but we see a sweet spot at the 60% sparse
model, which achieves a reduction in size by almost a factor
of 2 while having an absolute ES decrease of 8.51%. The
model has achieved pruning of a total of 74.43 million pa-
rameters out of a total of 124.2 million (hence where 60%
sparsity comes from), leaving it with only 49.77 million. The
disk size reduction in particular makes it an attractive choice,
which is why we went forward with it.

Quantization (RQ2). We proceed to quantize the 60%
sparse model. As explained in section 4.2, we apply quanti-
zation with various configuration options, resulting in a total

9See footnote 4.
10The ONNX runtime library: https://huggingface.co/docs/

optimum/main/en/onnxruntime/overview

Model
name

Disk size Mem usage CPU inf Edit sim EM

original 462.26 2184.49 0.80 39.05 14.5
compressed 240.52 2189.63 0.80 30.54 9.0

ONNX
inference

311.75 4166.37 1.59 30.54 9.0

Table 1: Measuring the impact on inference of using the ONNX
model format. The inference improvement is highlighted in bold.

of eight quantized models. Results are plotted in Figure 4.
Memory usage remains relatively constant, while other mea-
sures vary depending on the quantization scheme. One thing
that remains consistent is that the performance continues to
decline, even more drastically for the EM metric. Another
observation that can be made is that quantizing the weights
alone, rather than the entire layer, results in better overall
scores. Here, the best solution in terms of preserving accu-
racy seems to be the one where weights are quantized sym-
metrically per tensor, with an ES of 20.76 and an EM of 0.5.

Local ONNX inference. We convert the optimal model
(which in our opinion is the 60% sparse model) to the ONNX
runtime format and we examine if there are any inference im-
provements. ONNX inference is supposed to boost the num-
bers thanks to hardware optimizations, but we were unable
to test this on the DelftBlue cluster due to constant missing
module errors we could not resolve. This might indicate that
the library is not supported on Linux. Despite that, ONNX
inference worked successfully on our local machine, which
uses an i9 11900H processor. Results are shown in table 1.
We report a significant increase in CPU inference by a factor
of 2, at a cost of higher disk size and memory usage.

Summary. From our results, pruning at a sparsity
level of 60% provides a good balance between model
size and performance. Our solution offers a 48% re-
duction in disk size (relative to the original size) with
a mild drop in accuracy: 8.51% absolute drop in ES
and a 5.5% in EM. Running the model locally in the
ONNX format (on an i9 11900H processor) delivers a
2x speedup at a 32.6% reduction in size.

7 Discussion
In this section, we reflect on our results, compare them with
those of similar work, and discuss the limitations, implica-
tions and possible threats to validity.

7.1 Reflection
Disk size. When pruning, the disk size consistently de-
creases, which is expected. However, we observe no pattern
in quantization, and in some cases, we notice the number go-
ing up. We believe that the reason for this is that the quan-
tization process has added additional metadata to the model
file, storing additional information such as scale and zero-
point parameters for each quantized layer. The parameters
are necessary to dequantize the values back to the original
range during inference.

5

https://huggingface.co/docs/optimum/main/en/onnxruntime/overview
https://huggingface.co/docs/optimum/main/en/onnxruntime/overview

Figure 3: Evaluation results of pruning at different sparsities.

Figure 4: Evaluation results of quantizing with different configurations.

6

Variability in Memory usage and CPU inference. There
is variability present in our memory usage and CPU infer-
ence measurements. We noticed the effect over multiple runs
too. We have made all efforts to delete unused variables
and induce manual garbage collection, so our assumption is
that this can be attributed to the variable system load due
to background processes over which we do not have con-
trol. Therefore, we can regard approaches that have rela-
tively close memory usage/inference times as similar in per-
formance. This leads to us concluding that we do not see any
memory or inference improvement in our measurements.

CPU inference. We report no CPU inference improve-
ment in the results. This is because even with fewer pa-
rameters, the model’s architecture remains the same and the
operations present on each layer still have to be performed.
We also could not use an Inference Engine optimized for
low-precision computations (such as int8), due to their miss-
ing support of our GPT-2 architecture and the text-generation
task. This approach would potentially lead to better outcomes
for inference in our quantized models, and we think this is
something that needs to be further investigated in future re-
search.

Quantization. Compared to pruning, quantization deliv-
ered significantly less accuracy. In our opinion, quantizing,
in this case, is only worth the effort if an optimized Inference
Engine is used. We also notice that, on average, using per-
channel scales delivers slightly higher accuracy. This aligns
with the findings of Wei et. al. [42], which claimed that us-
ing per-column scales reduces the quantization noise. In our
case, however, the difference is not that pronounced, which
might be because we are using a different model.

7.2 Comparison with concurrent work
In table 2 we compare our method with several other com-
pression techniques applied to the CodeGPT model. In par-
ticular, the compressed models are:

• CodeGPT on XTC [5] - A hybrid model compressed
using a 6-layer knowledge distillation reduction, then
quantized on 1-bit precision weights and 8-bit precision
activations.
Their method demonstrates the highest reduction in disk
size and the most impressive CPU and GPU inference
speed increases. However, this achievement does not
come without an accuracy compromise, which is very
acceptable considering the low disk size.

• Distill-CodeGPT [23] - Compressed using in-training
knwoledge distillation, and made up of 4 attention
heads.
The distilled model delivers quite a low GPU model size,
and considerable memory usage and inference speed im-
provements. It has an ES score of 34.6, a slightly higher
score than our solution and CodeGPT on XTC.

• MP and PEG PTQ on CodeGPT [37] - This work
presents 2 equally performing models, that use post-
training quantization with mixed precision and PTQ ap-
plied per embedding group. The paper simulates the
quantization without changing the data type of the Py-
Torch tensor, and because of that, it does not provide

any evaluation results other than the model size and the
accuracy metrics.
This model achieves the highest accuracy metrics but
lacks empirical results for memory usage and inference
speedups. It does not provide a complete picture due to
its theoretical approach, so we cannot examine it in more
detail.

It seems that each method offers unique advantages, and
the results suggest that the MP and PEG PTQ methods work
best in terms of accuracy. However, this method only pro-
vides simulated results, and if we consider both efficiency and
performance, CodeGPT on XTC appears to be the best. In
comparison, our method still achieves a significant reduction
in model size and contains the lowest number of parameters.
This result comes with its own trade-offs, but we think the
model maintains a solid level of accuracy and performance.

7.3 Limitations
Compression library. Our work uses the intel-extension-
for-transformers toolkit, which does not officially support the
GPT-2 architecture that makes up our CodeGPT model11.
This is reflected in our quantization results and the compar-
ison with concurrent work, where we clearly see that some
models outperform our method. While the compression pro-
cess was successful, we were unable to use certain function-
alities such as using the library’s ONNX-export functionality
and its optimized pipeline, which at the time of writing only
supports the text classification task. That is the reason why
we do not notice any inference speedup in our results.

Model. The CodeGPT model we used has a relatively
small architecture, consisting of 124.2M parameters. More-
over, the model was fine-tuned for the code completion task
only for a single epoch. This decision, while efficient in terms
of time and computational resources, might have limited the
baseline accuracy of the model, and furthermore can be the
reason why the model performs so poorly when compressed.
It is because of their higher size that code-generation mod-
els such as GitHub Copilot perform significantly better at this
task. Using a bigger model, or training the current one for
more epochs could potentially have led to improved results.

Despite these limitations, we believe our study provides a
valuable starting point for future research in this area.

7.4 Implications
Accessible models. By compressing the CodeGPT model at
almost half its size without a significant loss in performance,
we have shown that it is possible to have efficient code com-
pletion tools that are more accessible for local deployment.

Carbon footprint and computational cost. Both the size
reduction and the inference speedup achieved using ONNX
inference indicate that less storage and data transfer are re-
quired to run and store the models. In turn, this means that
fewer computational resources are needed to generate code
suggestions. This further reduces overall energy use and
shows great potential for making the deployment of large lan-
guage models more environmentally friendly.

11Intel Extension model support: https://github.com/intel/
intel-extension-for-transformers/blob/main/docs/examples.md

7

https://github.com/intel/intel-extension-for-transformers/blob/main/docs/examples.md
https://github.com/intel/intel-extension-for-transformers/blob/main/docs/examples.md

Model Disk size GPU size CPU
Mem.
Usage
decrease
(%)

GPU
Mem.
Usage
decrease
(%)

CPU inf.
increase
(%)

GPU inf.
increase
(%)

Edit sim EM Parameters
(Mil.)

Baseline 510 510 - - - - 39.05 14.5 124.2
Our solution 240.5 - -6.7 - 4.89 - 30.54 9 49.8
CodeGPT on
XTC

32.3 341.8 10.58 -9.66 100 60 33.9 10.9 81.72

Distill-
CodeGPT

280 280 19.05 37.8 41.2 39.5 34.6 8.3 68

MP & PEG
PTQ

127.5 - - - - - 40 17 -

Table 2: Comparison with concurrent work. The highest values are highlighted in bold. We report only the approximate percentage improve-
ment (i.e. increase/decrease) for some of the measurements due to the usage of different evaluation environments for each model.

7.5 Threats to validity
Insufficient documentation. The lack of comprehensive
documentation for the intel-extension-for-transformers li-
brary posed several challenges. The toolkit’s code lacks com-
ments that would otherwise provide a better understanding
of its inner workings, and its GitHub documentation only
scratches the surface. This may have led to misinterpretations
and potential misuse of certain functions, thereby impacting
our study’s outcomes and affecting the reliability of our re-
sults.

Overlooked bugs. We reviewed our code multiple times,
and our results are consistent across multiple runs. We are ex-
tremely confident in our solution, but one can never say that
their code is bug-free. There is always the risk of overlooked
bugs, in both our code and the library’s code. These poten-
tial errors could have significant effects on our experimen-
tal outcomes. To mitigate this, besides multiple inspections,
we open-sourced our code and we welcome any contributions
from the community, which might uncover potential errors.

Novelty of GPT model compression. The relative com-
plexity of GPT models compared to BERT models and the
limited research done so far in this specific area might have
limited our ability to draw on established methods and com-
pare our results. Our methods and results might not be en-
tirely generalizable, and the real-world applicability of our
approach to a broader range of GPT and other models remains
uncertain. Nonetheless, we do contribute significantly to a
better understanding of these methods and their trade-offs,
and pave the way for future research in this exciting area.

Noise in measurements. As mentioned in subsection 7.1,
we observed frequent fluctuations in CPU inference and
memory usage metrics when rerunning our experiments.
These variations are caused by background processes running
concurrently on the same system, which we could not com-
pletely shut off. We have taken steps to reduce this threat,
which involves conducting the tests with minimal system ac-
tivity, testing all models in the same run, and inducing manual
garbage collection. However, the noise is still present and
can affect the overall reliability and reproducibility of our
measurements, therefore readers should consider these fac-

tors when interpreting or reproducing our results.

8 Conclusions and Future Work
In this paper, we explored the effect of group lasso pruning
and dynamic post-training quantization on a code generation
model. Using pruning at 60% target sparsity, we successfully
reduced the model’s size by 48% with a mild drop in accu-
racy, which is a good outcome considering the difficulty of
this task. We did not find any speedups by applying post-
training quantization. Using the optimizations offered by the
ONNX runtime we were able to achieve a twice increase in
inference on a regular laptop. The results are impressive since
the smaller-sized model makes it faster to use, reduces its car-
bon footprint, and makes it more accessible to the everyday
developer. Going forward, future work could explore more
complex models, longer fine-tuning periods, the use of more
mature compression libraries, and the exploration of more ad-
vanced compression techniques than the ones explored in this
paper.

9 Responsible Research
In this section, we reflect on the ethical aspects of our re-
search and the reproducibility of our methods. We conducted
this research within the guidelines provided by the Nether-
lands Code of Conduct for Research Integrity [32].

Data. Our research involved the use of the PY150 dataset
[22] consisting of Python code, for training and evaluation of
our models. This dataset is part of the CodeXGlue bench-
mark [22], a scientific peer-reviewed work that has been used
by many others in the field. Furthermore, strings and numbers
have been removed from this dataset, to respect user privacy.
Therefore, the data was collected ethically and responsibly.
There are no exclusions that we performed on it (that some-
how would yield better results), and this can be checked in
the code and by reproducing our results.

Reproducibility. We have made efforts to ensure that
our experiments can be replicated by other researchers. We
have provided detailed descriptions of our methods and have
made our code available for review. Moreover, we used seeds

8

in pseudo-number generators, which guarantees that running
our code will produce identical results.

Honesty and Independence. Firstly, we reported our en-
tire research process in the most detailed manner we could
come up with and presented all the setbacks we stumbled
upon. Everything is presented thoroughly, from the prelimi-
naries down to our results. Secondly, our research was guided
by the pursuit of knowledge and understanding, not by a com-
mercial or any other personal interest. Surely, finishing a
Bachelor’s degree as soon as possible would make a plausible
reason for one to influence their results, however, this is not
the case here. We openly acknowledge that our quantization
results are not the greatest out there, and we invite everyone
to reproduce our work to confirm they are real.

Broader implications. We acknowledge the broader im-
plications of our work. We thoroughly considered the im-
pact on the environment and the everyday user: compressing
LLMs will help make them better for the environment and
more accessible to the public, especially programmers.

The use of language models. ChatGPT [26] was used in
this research to speed up the writing process. We would like
to point out that all our research and information presented in
this work is based on the state of the art techniques for com-
pression and we have appropriately cited all relevant studies.
We came up with our own ideas, with ChatGPT being solely
used for rephrasing sentences to a more academic and formal
style, and asking for directions and advice for academic writ-
ing. We have never used raw outputs but instead cleaned them
up and corrected them to our liking. Examples of the prompts
used are provided in Appendix A.

Acknowledgements
We thank Dr. Maliheh Izadi, ir. Ali Al-Kaswan and Prof. Dr.
Arie van Deursen for their help and guidance. Their assis-
tance and invaluable feedback greatly enriched this research,
and we are truly grateful for the support.

A Appendix
A.1 ChatGPT prompts used to write this paper
Most prompts we used relate to rephrasing, asking for help
to generate tables and references, and putting information to-
gether in a paragraph. We only provide a few examples, be-
cause the rest of the used prompts are similar and repetitive,
like: ”Please rephrase the following: ...”, or ”Please put the
following discussion points in a paragraph ...”. See Figures 5,
6, 7, 8 for prompt examples.

References
[1] Maximiliana Behnke and Kenneth Heafield. Prun-

ing neural machine translation for speed using group
lasso. In Proceedings of the Sixth Conference on Ma-
chine Translation, pages 1074–1086, Online, November
2021. Association for Computational Linguistics.

[2] Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. Understanding and Overcoming the Chal-
lenges of Efficient Transformer Quantization. In Pro-
ceedings of the 2021 Conference on Empirical Meth-

ods in Natural Language Processing, pages 7947–7969,
Online and Punta Cana, Dominican Republic, Novem-
ber 2021. Association for Computational Linguistics.

[3] Tianyi Chen, Bo Ji, Tianyu DING, Biyi Fang, Guanyi
Wang, Zhihui Zhu, Luming Liang, Yixin Shi, Sheng Yi,
and Xiao Tu. Only train once: A one-shot neural net-
work training and pruning framework. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing
Systems, 2021.

[4] Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan,
Zhangyang Wang, and Jingjing Liu. Earlybert: Efficient
bert training via early-bird lottery tickets, 2021.

[5] Aral D de Moor. Codegpt on xtc, 2023.
[6] Delft High Performance Computing Centre (DHPC).

DelftBlue Supercomputer (Phase 1). https://www.
tudelft.nl/dhpc/ark:/44463/DelftBluePhase1, 2022.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding, 2019.

[8] Angela Fan, Edouard Grave, and Armand Joulin. Re-
ducing transformer depth on demand with structured
dropout. arXiv preprint arXiv:1909.11556, 2019.

[9] Song Han, Huizi Mao, and William J. Dally. Deep com-
pression: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding, 2016.

[10] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network, 2015.

[11] Mark Horowitz. 1.1 computing’s energy problem (and
what we can do about it). volume 57, pages 10–14, 02
2014.

[12] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. Dynabert: Dynamic bert with adap-
tive width and depth, 2020.

[13] Ting Hu, Christoph Meinel, and Haojin Yang. Empirical
Evaluation of Post-Training Quantization Methods for
Language Tasks, October 2022. arXiv:2210.16621 [cs].

[14] Intel. Intel extension for transformers. https://github.
com/intel/intel-extension-for-transformers, 2023. Ac-
cessed: 13-06-2023.

[15] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. Tiny-
BERT: Distilling BERT for Natural Language Under-
standing. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, pages 4163–4174,
Online, November 2020. Association for Computational
Linguistics.

[16] Kelvin. Model compression via prun-
ing. https://towardsdatascience.com/
model-compression-via-pruning-ac9b730a7c7b,
2020. Accessed: 2023-06-05.

[17] Raghuraman Krishnamoorthi. Quantizing deep convo-
lutional networks for efficient inference: A whitepaper,
2018.

9

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://github.com/intel/intel-extension-for-transformers
https://github.com/intel/intel-extension-for-transformers
https://towardsdatascience.com/model-compression-via-pruning-ac9b730a7c7b
https://towardsdatascience.com/model-compression-via-pruning-ac9b730a7c7b

Figure 5: Asking ChatGPT about the findings and research proposal in the introduction section.

Figure 6: Asking ChatGPT to generate a reference of a website.

10

Figure 7: Asking ChatGPT to write a section using the provided
discussion points.

Figure 8: Asking ChatGPT to improve a section.

11

[18] Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran-
tar, Mark Kurtz, Benjamin Fineran, Michael Goin, and
Dan Alistarh. The Optimal BERT Surgeon: Scalable
and Accurate Second-Order Pruning for Large Lan-
guage Models, October 2022. arXiv:2203.07259 [cs].

[19] Woosuk Kwon, Sehoon Kim, Michael W. Mahoney,
Joseph Hassoun, Kurt Keutzer, and Amir Gholami. A
fast post-training pruning framework for transformers,
2022.

[20] Woosuk Kwon, Sehoon Kim, Michael W. Mahoney,
Joseph Hassoun, Kurt Keutzer, and Amir Gholami. A
Fast Post-Training Pruning Framework for Transform-
ers. October 2022.

[21] Tianda Li, Yassir El Mesbahi, Ivan Kobyzev, Ahmad
Rashid, Atif Mahmud, Nithin Anchuri, Habib Hajimo-
lahoseini, Yang Liu, and Mehdi Rezagholizadeh. A
short study on compressing decoder-based language
models, 2021.

[22] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn
Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,
Linjun Shou, Long Zhou, Michele Tufano, Ming Gong,
Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun
Deng, Shengyu Fu, and Shujie Liu. Codexglue: A ma-
chine learning benchmark dataset for code understand-
ing and generation, 2021.

[23] Emil Malmsten. Distilling code-generation models for
local use, 2023.

[24] J. S. McCarley, Rishav Chakravarti, and Avirup Sil.
Structured pruning of a bert-based question answering
model, 2021.

[25] Paul Michel, Omer Levy, and Graham Neubig. Are six-
teen heads really better than one?, 2019.

[26] OpenAI. Chatgpt (may 24 version). https://chat.openai.
com/chat, 2023. Large language model.

[27] Minseop Park, Jaeseong You, Markus Nagel, and
Simyung Chang. Quadapter: Adapter for gpt-2 quan-
tization, 2022.

[28] David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild, David
So, Maud Texier, and Jeff Dean. Carbon emissions and
large neural network training, 2021.

[29] Sai Prasanna, Anna Rogers, and Anna Rumshisky.
When bert plays the lottery, all tickets are winning,
2020.

[30] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by
generative pre-training. 2018.

[31] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

[32] Royal Netherlands Academy of Arts and Sciences
(KNAW), Netherlands Federation of University Medi-
cal Centres (NFU), Netherlands Organisation for Scien-
tific Research (NWO), Associated Applied Research In-
stitutes (TO2), Netherlands Association of Universities
of Applied Sciences (VH), Association of Universities
in the Netherlands (VSNU). Netherlands code of con-
duct for research integrity. https://https://www.nwo.nl/
en/netherlands-code-conduct-research-integrity, 2018.
Accessed: 13-06-2023.

[33] Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav
Nakov. On the effect of dropping layers of pre-trained
transformer models, 2022.

[34] Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter. October 2019.

[35] Haihao Shen, Ofir Zafrir, Bo Dong, Hengyu Meng,
Xinyu Ye, Zhe Wang, Yi Ding, Hanwen Chang, Guy
Boudoukh, and Moshe Wasserblat. Fast DistilBERT on
CPUs, December 2022. arXiv:2211.07715 [cs].

[36] Sam Shleifer and Alexander M. Rush. Pre-
trained Summarization Distillation, October 2020.
arXiv:2010.13002 [cs].

[37] Mauro Storti. Leveraging efficient transformer quanti-
zation for codegpt: A post-training analysis, 2023.

[38] Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang, Xin
Jiang, Qun Liu, Ping Luo, and Ngai Wong. Com-
pression of generative pre-trained language models via
quantization, 2022.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need,
2017.

[40] Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. Analyzing multi-head self-
attention: Specialized heads do the heavy lifting, the
rest can be pruned, 2019.

[41] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Struc-
tured Pruning of Large Language Models. In Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6151–
6162, 2020. arXiv:1910.04732 [cs, stat].

[42] Xiaokai Wei, Sujan Gonugondla, Wasi Ahmad, Shiqi
Wang, Baishakhi Ray, Haifeng Qian, Xiaopeng Li,
Varun Kumar, Zijian Wang, Yuchen Tian, Qing Sun,
Ben Athiwaratkun, Mingyue Shang, Murali Krishna Ra-
manathan, Parminder Bhatia, and Bing Xiang. Greener
yet Powerful: Taming Large Code Generation Models
with Quantization, March 2023. arXiv:2303.05378 [cs].

[43] Xiaoxia Wu, Zhewei Yao, Minjia Zhang, Conglong Li,
and Yuxiong He. Extreme compression for pre-trained
transformers made simple and efficient, 2022.

[44] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. ZeroQuant:

12

https://chat.openai.com/chat
https://chat.openai.com/chat
https://https://www.nwo.nl/en/netherlands-code-conduct-research-integrity
https://https://www.nwo.nl/en/netherlands-code-conduct-research-integrity

Efficient and Affordable Post-Training Quantization for
Large-Scale Transformers. October 2022.

[45] Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao
Shen, and Moshe Wasserblat. Prune Once for All:
Sparse Pre-Trained Language Models, November 2021.
arXiv:2111.05754 [cs].

[46] Michael Zhu and Suyog Gupta. To prune, or not to
prune: exploring the efficacy of pruning for model com-
pression, 2017.

13

	Introduction
	Preliminaries
	Transformers
	Distillation
	Pruning
	Quantization

	Related Work
	Methodology
	Group lasso structured pruning
	Dynamic Post Training Quantization

	Experimental setup
	Results
	Discussion
	Reflection
	Comparison with concurrent work
	Limitations
	Implications
	Threats to validity

	Conclusions and Future Work
	Responsible Research
	Appendix
	ChatGPT prompts used to write this paper

