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Abstract

Recurrent Neural Networks (RNNs) are useful in temporal
sequence tasks. However, training RNNs involves dense ma-
trix multiplications which require hardware that can support a
large number of arithmetic operations and memory accesses.
Implementing online training of RNNs on the edge calls for
optimized algorithms for an efficient deployment on hard-
ware. Inspired by the spiking neuron model, the Delta RNN
exploits temporal sparsity during inference by skipping over
the update of hidden states from those inactivated neurons
whose change of activation across two timesteps is below a
defined threshold. This work describes a training algorithm
for Delta RNNs that exploits temporal sparsity in the back-
ward propagation phase to reduce computational require-
ments for training on the edge. Due to the symmetric com-
putation graphs of forward and backward propagation during
training, the gradient computation of inactivated neurons can
be skipped. Results show a reduction of ∼80% in matrix op-
erations for training a 56k parameter Delta LSTM on the Flu-
ent Speech Commands dataset with negligible accuracy loss.
Logic simulations of a hardware accelerator designed for the
training algorithm show 2-10X speedup in matrix computa-
tions for an activation sparsity range of 50%-90%. Addition-
ally, we show that the proposed Delta RNN training will be
useful for online incremental learning on edge devices with
limited computing resources.

Introduction
Recurrent Neural Networks (RNN) are widely used in ap-
plications involving temporal sequence inputs such as edge
audio voice wakeup, keyword spotting, and spoken language
understanding. These RNNs are commonly trained once and
then deployed, but there is an opportunity to continually im-
prove their accuracy and classification power without giv-
ing up privacy by incremental training on edge devices.
Training of RNNs on the edge requires a hardware plat-
form that has enough computing resources and memory to
support the large number of arithmetic operations and data
transfers. This is because the computation in RNNs consists
mainly of Matrix-Vector Multiplications (MxV), which is a
memory-bounded operation. An effective method to reduce
the energy consumption for training RNNs is to minimize
the number of memory accesses.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Among various approaches that exploit sparsity in RNN
inference to improve efficiency (Kadetotad et al. 2020; Sri-
vastava et al. 2019; Chen, Blair, and Cong 2022; Lindmar,
Gao, and Liu 2022), a previously proposed biologically in-
spired network model named Delta Network (DN) (Neil
et al. 2017), uses temporal sparsity to dramatically reduce
memory access and Multiply-Accumulate (MAC) opera-
tions during inference. By introducing a delta threshold on
neuron activation changes, the update of slow-changing ac-
tivations can be skipped, thus saving a large number of com-
putes while achieving comparable accuracy. Hardware in-
ference accelerators that exploit this temporal sparsity (Gao
et al. 2018, 2020; Gao, Delbruck, and Liu 2022) can achieve
5-10X better energy efficiency with a custom design archi-
tecture that performs zero-skipping on sparse delta vectors.
However, these accelerators only do inference, i.e., the for-
ward propagation. This paper proves for the first time that
the identical forward delta sparsity can be used in the back-
ward propagation of training RNNs without extra accuracy
loss and extends the DN framework to the entire training
process. The main contributions of this work are:

1. The first mathematical formulation for Delta RNN train-
ing, showing that Delta RNN training is inherently a type
of sparse Backpropagation Through Time (BPTT), uti-
lizing the identical temporal sparsity during both forward
and backward propagation. Moreover, due to this consis-
tent temporal sparsity, any speed improvements seen dur-
ing Delta RNN inference can also be observed during the
training of these networks.

2. Empirical results showing that for a fixed number of
training epochs, a Delta RNN training uses 7.3X fewer
training operations compared to the dense RNN with
only a factor of 1.16X increase in error rate on the Fluent
Speech Commands Dataset (FSCD).

3. Empirical results showing that on the frequently used
Google Speech Command Dataset (GSCD) used for
edge keyword spotting,∼80% training operations can be
saved in an incremental learning setting.

4. Register Transfer Level (RTL) simulation results of the
first hardware accelerator designed for training Delta
RNNs which can achieve 2-10X speedup for an activa-
tion sparsity range of 50%-90%.
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(a) Delta neuron is activated when the activation change |∆| ex-
ceeds the delta threshold Θ at a certain timestep.

(b) Sparse forward propagation: Activated neurons propagate their
∆ to the next layer, while other neurons remain unchanged.

(c) Sparse backward propagation: Only these neurons need to trans-
mit their ∆ errors at that timestep in the backward phase.

Figure 1: Delta network concept for vanilla RNN with re-
current connections omitted.

Methodology
This section summarizes the key concepts of the Delta Net-
work, extends the theory to the BPTT process of RNN train-
ing, and shows its theoretical reduction in computation costs.

Delta Network Formulation
In a vanilla RNN layer, the pre-activation vector Zt and the
hidden state vector ht at time step t are given by:

Zt = Wxxt + Whht−1 + bh (1)

ht = tanh(Zt) (2)
where Wx, Wh are the weight matrices for input and hid-
den states respectively, xt is the input vector, and bh is the
bias vector. In the DN formulation, these are calculated re-
cursively by adding a new state variable vector, Mt holding
a preactivation memory:

Mt = Wx∆xt + Wh∆ht−1 + Mt−1 (3)

ht = tanh(Mt) (4)
if we define delta vectors ∆x and ∆h as:

∆xt = xt − xt−1 (5)

∆ht = ht − ht−1 (6)
with the initial state M0 = bh, where Mt−1 stores the pre-
activation from the previous time step.

Fig. 2a illustrates the xt part of these inference equations
as a graph to clarify the steps and data dependencies. It
shows how x̂t−1 and xt combine to form ∆xt and how it
is multiplied by Wx to compute Mx,t.
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(a) Forward computation graph illustrating input xt.
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(b) Backward computation graph illustrating input xt.

Figure 2: Inference and training computation graphs of
vanilla Delta RNNs illustrating input xt. Graphs illustrating
hidden states ht are similar. Gold and grey arrows denote the
paths for activated and inactivated neurons respectively, and
black arrows include paths for all neurons.

Since the internal states of an RNN have temporal stabil-
ity, the DN zeros out small changes in activations and hid-
den states, i.e. , the DN treats the values in |∆xt| and |∆ht|
as zeros if they are smaller than a given delta threshold Θ,
and those neurons are considered as “inactivated” (Fig. 1a).
Then the DN only propagates the changes of those activated
neurons (Fig. 1b), while the inactivated neurons keep current
states until their changes go over the threshold later.

Formally, x̂i,t denotes the latest value of the i-th element
of the input vector at the t-th time step. The values x̂i,t and
∆xi,t will only be updated if the absolute difference be-
tween the current input xi,t and the previously stored state
x̂i,t−1 is larger than the delta threshold Θ:

x̂i,t =

{
xi,t, if |xi,t − x̂i,t−1| > Θ

x̂i,t−1, otherwise
(7)

∆xi,t =

{
xi,t − x̂i,t−1, if |xi,t − x̂i,t−1| > Θ

0, otherwise
(8)

The same update rules are applied to the hidden state ht.
Eqs. (3-8) summarize the delta principle in (Neil et al. 2017).

Until now, this principle has been applied only to the in-
ference process, i.e., the forward propagation phase. Here
we show that the delta sparsity can also be exploited in the
backward propagation during the training process.
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Figure 3: Sparse MxV in training Delta RNNs.

Intuition In the gradient-descent approach, we adjust the
network weights to reduce the loss, and the gradient of a
state vector depends on: a) how much the vector contributes
to the network output; b) how much the output deviates
from the ground truth. The changes of inactivated neurons
are discarded in forward propagation (Fig. 1b) and make
no contribution to the output, so their gradients are not
needed. Therefore, we only need to propagate the errors of
the changes of activated neurons, and calculate the weight
gradients of the corresponding connections (Fig. 1c). De-
tailed mathematical proofs for vanilla RNN, Gated Recur-
rent Unit (GRU) (Cho et al. 2014), and Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber 1997) are
given in Appendix A (Chen et al. 2023).

Proof Outline for Sparse BPTT in Vanilla Delta RNNs
In the backward phase, to allow skipping of the neurons with
unchanging activations, we store a binary mask vector mt

during forward propagation:

mi,t =

{
1, if |xi,t − x̂i,t−1| > Θ

0, otherwise
(9)

which indicates the neurons that are activated at the t-th time
step during forward propagation. Eq. (8) then reduces to:

∆xt = mt � (xt − x̂t−1) (10)

In backward propagation, as shown in Fig. 2b, we only
compute the partial derivative of the cost C with respect to
the change ∆xt of the activated neurons:

∂C

∂∆xt
=

(
W ᵀ

x

∂C

∂Mt

)
�mt (11)

and calculate the weight gradients of those activated neu-
rons:

∂C

∂Wx
=

T∑
t=1

∂C

∂Mt
∆xᵀ

t =
T∑

t=1

∂C

∂Mt
(mt � (xt − x̂t−1))T

(12)
where C =

∑T
t=1 Lt is the loss function values Lt summed

across all time steps, � denotes the element-wise multipli-
cation, and T is the total number of time steps. The gradi-
ents for ∆ht can be derived similarly. More specifically, the
vector ∂C

∂∆xt
is not sparse, but the gradients of the inactivated

neurons will be zeroed out during backward propagation due
to the non-differentiability of Eq. (8) in the below-threshold
case. So those values in ∂C

∂∆xt
are not needed, and we can

treat them as zeros using mt and skip their computations.
The formulations in Appendix A (Chen et al. 2023) show

that the sparse versions of the backward propagation equa-
tions (Eqs. 11 and 12) are equivalent to the dense versions
for DN, i.e. they result in exactly the same weight changes.
Therefore, exploiting temporal sparsity in backward prop-
agation will not cause extra accuracy loss when the delta
threshold has already been applied in forward propagation.

Fig. 3 illustrates how the DN uses temporal sparsity in
the MxV operations arising from ∆xt in the forward (Eq. 3)
and backward (Eqs. 11 and 12) computations. We can store
the indices of activated neurons at each timestep as a binary
mask mt or a Non-Zero Index List (NZIL) during forward
propagation. Since mt can be applied to Eqs. (10)-(12), the
MxV operations in backward propagation can share exactly
the same sparsity. This sparsity allows for skipping entire
columns of the weight matrices, thus the sparsity pattern is
hardware-friendly.

Theoretical Reduction in Computations and
Memory Accesses
Proposition 1. In training a vanilla Delta RNN layer (model
in Eqs. 3 and 4), the computational cost for calculating the
gradients of weights Wx,t or Wh,t during each BPTT time
step decreases linearly with the sparsity of delta input ∆xt

or delta states ∆ht respectively. The total computation cost
for the gradients of Wx or Wh with BPTT is the sum of terms
proportional to the sparsity of ∆xt or ∆ht at each time step.

Proof. In a Delta RNN layer, the computation in the for-
ward propagation phase is formulated as Eqs. (3, 4, 7 & 8).
In the backward propagation phase, the cost function is the
sum of the loss function at every timestep: C =

∑T
t=1 Lt.

Hidden states ht are a function of Mt associated with any ac-
tivation function and loss function Lt is a function of ht and
ground truth value at that time step. The gradient of weight
Wx is the partial derivative of the cost C w.r.t. Wx:

∂C

∂Wx
=

∂(
∑T

t=1 Lt)

∂Wx
=

T∑
t=1

∂Lt

∂Wx
(13)

For each timestep, according to the chain rule:

∂Lt

∂Wx
=

∂Lt

∂ht

∂ht

∂Wx
=

∂Lt

∂ht

∂ht

∂Mt

∂Mt

∂Wx
(14)
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From Eq. (3) we can expand the last term:

∂Mt

∂Wx
=

∂(Wx∆xt + Wh∆ht−1 + Mt−1)

∂Wx

= ∆xᵀ
t +

∂Mt−1

∂Wx

(15)

Using telescoping we get

∂Mt

∂Wx
= ∆xᵀ

t + ∆xᵀ
t−1 + · · ·+ ∆xᵀ

1 =
t∑

i=1

∆xᵀ
i (16)

Then Eq. (14) becomes:

∂Lt

∂Wx
=

∂Lt

∂ht

∂ht

∂Mt

( t∑
i=1

∆xᵀ
i

)
(17)

For simplicity we write ∂Lt

∂ht
= L′(ht) and ∂ht

∂Mt
= h′(Mt).

By substituting them into Eq. (13), we get:

∂C

∂Wx
=

T∑
t=1

∂Lt

∂Wx

=
T∑

t=1

[
L′(ht)h

′(Mt)
( t∑
i=1

∆xᵀ
i

)]

=
T∑

i=1

T∑
t=i

L′(ht)h
′(Mt)∆xᵀ

i

=
T∑

t=1

[( T∑
i=t

L′(hi)h
′(Mi)

)
︸ ︷︷ ︸

1©

∆xᵀ
t

]

︸ ︷︷ ︸
2©

(18)

1© is a partial sum that has constant complexity in each
timestep in BPTT. 2© is a vector outer product performed at
each timestep.

For a vector ∆xt of size n and occupancy oc (the percent-
age of non-zero elements), the computation cost of 2© is

Ccomp,sparse = oc · n2

which decreases linearly with the sparsity of ∆xt. The total
cost of Eq. (18) is the sum of 2© across all timesteps, thus
proportional to the sparsity of ∆xt at each timestep.

The intuition for Proposition 1 is provided in Figs. 2 and
3. The computational complexities of most commonly used
optimizers (SGD, Adam (Kingma and Ba 2015)) are linearly
related to the complexity of computing the gradients of cost
function w.r.t. the weights.

The memory access cost for 2© is

Cmem,sparse = oc · n2 + 3n

consisting of fetching oc ·n2 weights for Wx, reading n val-
ues for ∆xt and n values for the mask mt, and writing n
values for ∂C

∂Wx,t
. The costs for Eq. (11) can be derived anal-

ogously. Therefore, the cost of matrix operations in back-
ward propagation is reduced to:

Csparse/Cdense ≈ (oc · n2)/n2 = oc.

Threshold Θ - 0.033 0.067

MxV
type*

FP D Sp Sp Sp Sp
BP D D Sp D Sp

Accuracy (%) 92.9 92.2 92.2 91.8 91.8

MACs
(K)

FP 53.2 13.4 13.4 7.7 7.7
BP 106.5 106.5 26.8 106.5 15.5

Sparsity
(%)

FP - 74.8 74.8 85.5 85.5
BP - 0 74.8 0 85.5

* “Sp” means sparse MxV operations and “D” is dense.

Table 1: Dense/sparse BPTT comparison for LSTM training.

Because the sparsity in Eqs. (11) and (12) is exactly the same
as in Eq. (10), the computation and memory access costs of
them are also reduced to oc. For example, for a ∆xt spar-
sity of 90%, the occupancy oc is 10%, the computation and
memory access costs are reduced to 10%, thus the theoret-
ical speedup factor is 1/oc = 10X. This illustrates the nice
property of Delta Networks, that is, once we induce tempo-
ral sparsity in forward propagation, it can be exploited in all
the three MxVs in both forward and backward propagation
with nearly the same efficiency.

The sparse DN training method requires marginal addi-
tional memory storage. Each timestep in forward propaga-
tion we store a binary mask mt for ∆x or ∆h which only
takes up n bits in the memory for a delta vector of size n.

Experiments
In this section, we first compare the accuracy and sparsity
of original RNN models and Delta RNN models to verify
the mathematical correctness of the sparse BPTT training
method. Next, we evaluate the performance of Delta RNNs
on speech tasks, for both batch-32 training from scratch
and batch-1 incremental learning. Finally we establish the
benchmark of a custom hardware accelerator designed for
training Delta RNNs. For software experiments we imple-
ment Delta RNNs in Pytorch using custom functions for for-
ward and backward propagation. Software experiments are
conducted on a GTX 2080 Ti GPU. The hardware acceler-
ator is implemented using Hardware Description Language
(HDL) and benchmarked in the Vivado simulator.

Spoken Language Training from Scratch
Experiments
We use the FSCD (Lugosch et al. 2019) to verify the math-
ematical correctness of the sparse version of BPTT, and
to evaluate the accuracy and cost of the Delta RNNs on
Spoken Language Understanding (SLU) tasks. The dataset
contains 30,043 utterances from 97 speakers for controlling
smart-home appliances or virtual assistants. It has 248 SLU
phrases mapping to 31 intents with three slots: action, ob-
ject, and location, e.g. “Make it softer” is the same as “Turn
down the volume”. The network model is a two-layer LSTM
or Delta LSTM that both have 64 neurons, followed by one
fully connected layer for classification. The model is trained
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Figure 4: FSCD test accuracy vs number of training opera-
tions for LSTMs and Delta LSTMs. For each point, the x-
coordinate is the number of MxV operations performed up
to this epoch, and the y-coordinate is the test accuracy at this
epoch. The top and bottom data labels show the best accu-
racy achieved within 80 epochs and the reduction factor in
operations compared with LSTM.
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Figure 5: FSCD accuracy and sparsity vs delta threshold.

for 80 epochs with learning rate 1e-3 and batch size 32.
We use cosine annealing scheduler, ADAM optimizer, and
weight decay coefficient of 1e-2. Test results are averaged
over 5 runs with different random seeds.

Results Table. 1 compares the training results of dense/s-
parse BPTT (D/Sp on the second row) for Delta LSTM. The
third column shows the baseline of the original LSTM model
with regular dense training (automatic differentiation). The
identical accuracy and sparsity in bold in the two columns il-
lustrates the mathematical equivalence of the masked BPTT
equations with the original ones for Delta LSTM.

Fig. 4 compares the classification accuracy versus train-
ing cost of a standard LSTM model against Delta LSTMs
with various delta thresholds. When the delta threshold Θ in-
creases, the number of operations needed to train the model
to a given accuracy decreases dramatically, but the accuracy
of Delta LSTM only slightly decreases. After a set 80 epochs
of training, the Delta LSTM with Θ=0.067 (green curve) re-
quires 7.3X fewer training operations than the LSTM with
only a factor of 1.155X increase in error rate. When com-
puting resources are limited, the Delta Network can offer

accurate training with an acceptable accuracy loss.
Fig. 5 shows how accuracy and sparsity change with re-

spect to the delta threshold. By carefully choosing a delta
threshold from experiments, one can obtain a good trade-
off between accuracy and sparsity, where the training can be
significantly sped up without hurting accuracy.

Incremental Keyword Learning Experiments

An attractive application of DNs is for online incremental
training, where new labeled data become available in the
field to an edge device and must be incorporated into the
RNN to personalize or improve accuracy. To evaluate the
performance of Delta RNNs on Class-Incremental Learning
(CIL) tasks, we use GSCD v2 (Warden 2018), a dataset fre-
quently used for benchmarking ASIC and FPGA keyword
spotting implementations (Shan et al. 2020; Giraldo, Jain,
and Verhelst 2021). The dataset contains 105,829 utterances
of 35 English words, and it is divided into train/test sets with
the ratio 8:2. We employ iCaRL (Rebuffi et al. 2017) as the
CIL algorithm and use its evaluation method. The test ac-
curacy is averaged over 5 runs with random permutation of
classes, so for each run the order of classes learned by the
model is different. The network model is a one-layer LSTM
or Delta LSTM that has 128 neurons, followed by one fully-
connected layer for classification. We pretrain the model to
learn 20 classes in 20 epochs with learning rate 1e-3 for
batch-32 and learning rate 1e-4 for batch-1. Then we retrain
the model to learn several new classes in 20 epochs with
the same learning rates for each CIL task, during which the
model only has access to a limited set of 2000 exemplars
of the previously learned classes, until the model finishes all
tasks and learns all 35 classes. We use ADAM optimizer and
weight decay coefficient of 1e-2.

Results Table 2 shows the results. The first column is the
CIL setting, and we group the experiment results accord-
ing to 3 different settings. The first setting “35” is the base-
line where the network model learns all 35 classes directly.
“20+3x5” means pretraining the model to learn 20 classes
and then retraining the model to learn 3 additional classes
each step for 5 times. The fourth column shows the final ac-
curacy after learning all 35 classes. The second last column
shows the number of MAC operations per timestep in the
LSTM layer. The last column shows the number of DRAM
accesses for weights or weight gradients per timestep per
batch in the LSTM layer.

It is clear from the table that the Delta LSTM models have
∼80% sparsity and can save this proportion of MAC opera-
tions during training. Moreover, because the weight columns
of inactivated neurons are not used during training and the
memory access of them can be skipped as shown in Fig. 3,
we can also save ∼80% memory access in the batch-1 train-
ing of Delta RNNs. This significantly reduces energy con-
sumption during training, because memory access consumes
at least 10X more energy than arithmetic operations with the
same bit width (Horowitz 2014). In an online setting, updat-
ing the weights using a batch size of 1 is natural and also
desirable if the on-chip memory resources are too limited.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11403



CIL
setting Model Batch

size
Accuracy

(%)
Sparsity

(%)
MACs

(K)
DRAM W accesses

(K words)

35 LSTM 32 90.8 - 221.2 221.2
Delta LSTM 32 90.5 81.7 40.4 221.2

20+3x5 LSTM 1 82.3 - 221.2 221.2
Delta LSTM 1 80.3 79.8 44.7 44.7

20+1x15 LSTM 1 76.6 - 221.2 221.2
Delta LSTM 1 74.8 79.8 44.7 44.7

Table 2: Test accuracy, sparsity, and number of operations for CIL with LSTM models and Delta LSTM models (Θ=0.1) on
GSCD. For all models the network size is 16-128H-12 with 73.7k parameters.
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Figure 6: System architecture and Vivado simulation results
of hardware accelerator for training Delta RNNs.

Hardware Simulation of Delta Training
Accelerator
To demonstrate the speedup of Delta RNNs, we evaluated
the potential performance of a hardware training accelera-
tor, through the clock-cycle accurate RTL simulation of the
design frequently used for logic design on FPGAs and cus-
tom ASICs. The RTL simulation closely emulates the actual
hardware latency and logic costs of a custom silicon im-
plementation. The accelerator (Fig. 6a) mainly consists of a
Processing Element (PE) array where each PE can perform a
MAC operation in parallel at each clock cycle. To efficiently
exploit the temporal sparsity of Delta RNNs, the accelera-

tor stores sparse activation vector data in its Static Random
Access Memory (SRAM) in the format of NZIL and Non-
Zero Value List (NZVL), which enables the accelerator to
skip computation (and Dynamic Random Access Memory
(DRAM) memory access of entire weight columns if the
batch size is 1) for zero elements in delta vectors (Fig. 3)
(Gao et al. 2018). Dynamically skipping weight columns
ideally matches properties of burst mode DRAM memory
access, where addressing DRAM columns is slow but read-
ing them out is fast. The accelerator employs the PE archi-
tecture in (Chen et al. 2021) so that it maintains this burst-
mode memory access pattern for weight matrices during the
forward and backward phases.

Accelerator Computation Flow
• Eq. (3), FP: The accelerator reads the NZIL of input ∆xt,

which is a list containing indices of activated neurons
at t-th timestep, and fetches the corresponding weight
columns from DRAM, then multiply it with the Nonzero
Values (NZV) of ∆xt.

• Eq. (11), BP input gradient: The same weight columns
are fetched using the ∆xt NZIL, and they are multiplied
with the gradient of pre-activation ∂C

∂Mt
to produce the

gradients of activated neurons in ∆xt.
• Eq. (12), BP weight gradient: The accelerator fetches the

gradient of pre-activation ∂C
∂Mt

and multiply it with the
NZVs of ∆xt, producing the gradient of weight columns
∂C
∂Wx

for activated neurons. The NZIL is used for output
indexing in this step.

The same operations are performed for hidden states ∆h.
The accelerator process input samples one by one, i.e., the
batch size of training is 1. This way, the accelerator can skip
both the DRAM access of weight columns of inactivated
neurons and the computation for them.

Experiment Setup Fig. 6a shows the architecture of the
accelerator that we instantiated with 16 PEs. It computes
Eqs. (3), (11) and (12), which are the three MxVs of training
a Delta RNN. We tested three different network sizes: 64,
128 and 256. For each network, the input size equals the hid-
den layer size, which also equals the number of timesteps of
input data. Random input data of different sparsities (50%,
80%, and 90%) are generated to evaluate the performance of
the accelerator. We measure the computation time in clock
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cycles for each MxV equation, starting from the time when
the input data is loaded into memory, to the time when PE
array outputs the last data.

If there is no memory latency or communication over-
head, and PEs are fully utilized, the computation time (in
clock cycles) for a dense MxV during RNN training is

Tdense =
Nl ∗Nl−1 ∗ Ts

P

where Nl, Ts, and P denote the size of the l-th layer, the
length of the s-th input sequence, and the number of PEs in
the accelerator respectively. The speedup factor is given by

Fspeedup =
Tdense

Tmeasured

where Tmeasured is the measured computation time in simu-
lation. We compare the ideal result with the realistic RTL
simulation of the accelerator.

Experiment Results Fig. 6b shows the speedup factors
measured in the RTL simulations for different network sizes
and activation sparsities. For input data of 50%, 80%, and
90% sparsity, the 256I-256H Delta RNN nearly achieves
2X, 5X, and 10X training speedup, which are the theoretical
speedup factors calculated in Section . For smaller networks
such as 64I-64H, the speedup factors for Eqs. (3) and (11)
are lower, especially when the sparsity is high. This is be-
cause the two equations are calculated timestep by timestep,
and the computation time of each timestep is short for small
network or highly sparse data, making the overhead of com-
munication and computation relatively more apparent in this
case. The weight gradient calculation for all timesteps is exe-
cuted at the end of BPTT, so the speedup factors of Eq. (12)
are close to the theoretical values for all tested cases. In a
custom training Delta RNN hardware accelerator using the
NZIL-NZVL data format, we can see a significant boost in
the speedup factor with high activation sparsity. The Delta
RNN training accelerator would improve RNN incremental
batch-1 training by a factor of about 5-10X compared to a
dense RNN training accelerator.

Related Works
The computational efficiency of neural networks can be im-
proved by introducing sparsity into the networks. (O’Connor
and Welling 2016) proposed an approach similar to Delta
Network for CNNs to reduce the inference cost but (Aimar
et al. 2019; Neil et al. 2017) showed that using DN requires
doubled activation memory access because it must be read
to check if it has changed, and then written, which ends up
doubling the CNN inference cost because it is dominated
by activation memory. By contrast, using the DN on RNNs
is beneficial because the fully-connected RNNs are weight-
memory bounded, and the energy savings brought by tem-
poral sparsity is much larger for RNNs. (Gao, Delbruck, and
Liu 2022) and (Hunter, Spracklen, and Ahmad 2022) exploit
both DN activation sparsity and weight sparsity to achieve
impressive inference performance on hardware.

Another method that can create sparsity in neural net-
works is conditional computation, or skipping operations.

Zoneout (Krueger et al. 2017) randomly selects whether to
carry forward the previous hidden state or update it with the
current hidden state during training. It aims to prevent over-
fitting in RNNs and provides only limited sparsity.

Skip RNN (Campos et al. 2017) uses a gating mechanism
to learn whether to update or skip hidden states at certain
timesteps, which is trained to optimize the balance between
computational efficiency and accuracy. The skipping is ap-
plied to the whole RNN layers, rather than element-wise on
activation vectors as in Delta RNNs.

EGRU (Subramoney et al. 2022) uses event-based com-
munication between RNN neurons, resulting in sparse ac-
tivations and a sparse gradient update. While this method
resembles DN, its activation sparsity is different from the
temporal sparsity of our work, and its sparsity in backward
propagation is smaller by a factor of 1.5X to 10X than in
forward propagation, unlike our Delta RNNs where the spar-
sity is identical for FP and BP. This asymmetry in forward
and backward sparsity results from their surrogate gradient
function which is non-zero within a certain range around the
threshold to allow the errors near that point to pass through.
Their surrogate gradient function makes the activation func-
tion differentiable, resulting in more accurate inference, but
it can greatly decrease the sparsity in the backward pass.

(Perez-Nieves and Goodman 2021) also touches on sparse
BPTT but uses Spiking Neural Networks (SNN). In a sim-
ilar spirit, the authors show that computations can be saved
by calculating the gradients only for active neurons (i.e. neu-
rons producing a spike as defined by a threshold). However,
the set of active neurons in backward propagation can be
different from those in forward propagation. In contrast, the
temporal sparsity in our work is identical in both the for-
ward and backward propagation, thus the mask vectors com-
puted in the forward pass can be directly reused in the back-
ward pass. Their asynchronous SNN cannot efficiently use
DRAM for weight memory because the weight memory ac-
cesses are unpredictable.

Conclusion
Training RNNs with BPTT involves a huge number of arith-
metic operations and especially memory accesses, which
leads to inefficient deployment on edge platforms. This pa-
per shows that the temporal sparsity introduced in the Delta
Network inference can also be applied during training lead-
ing to a sparse BPTT process. The MxVs operations in
BPTT can be significantly sped up by skipping the compu-
tation and propagation of gradients for inactivated neurons.
Our experiments and digital hardware simulations demon-
strate that the number of matrix multiplication operations
in training RNNs can be reduced by 5-10X with marginal
accuracy loss on speech tasks. Furthermore, the number of
memory accesses can also be reduced by the same factor
if training with a batch size of 1 on a hardware accelera-
tor specifically designed for Delta RNNs, saving substan-
tial energy consumption. Therefore, our proposed training
method would be particularly useful for continuous online
learning on resource-limited edge devices that can exploit
self-supervised information, such as errors between predic-
tions and measurements.
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