
 
 

Delft University of Technology

Solving (Max) 3-SAT via Quadratic Unconstrained Binary Optimization

Nüßlein, Jonas; Zielinski, Sebastian; Gabor, Thomas; Linnhoff-Popien, Claudia; Feld, Sebastian

DOI
10.1007/978-3-031-36030-5_3
Publication date
2023
Document Version
Final published version
Published in
Computational Science – ICCS 2023 - 23rd International Conference, Proceedings

Citation (APA)
Nüßlein, J., Zielinski, S., Gabor, T., Linnhoff-Popien, C., & Feld, S. (2023). Solving (Max) 3-SAT
via Quadratic Unconstrained Binary Optimization. In J. Mikyška, C. de Mulatier, V. V. Krzhizhanovskaya, P.
M. A. Sloot, M. Paszynski, & J. J. Dongarra (Eds.), Computational Science – ICCS 2023 - 23rd International
Conference, Proceedings (pp. 34-47). (Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 14077 LNCS). Springer.
https://doi.org/10.1007/978-3-031-36030-5_3
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-36030-5_3
https://doi.org/10.1007/978-3-031-36030-5_3


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Solving (Max) 3-SAT via Quadratic
Unconstrained Binary Optimization
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Abstract. We introduce a novel approach to translate arbitrary 3-sat
instances to Quadratic Unconstrained Binary Optimization (qubo) as
they are used by quantum annealing (QA) or the quantum approximate
optimization algorithm (QAOA). Our approach requires fewer couplings
and fewer physical qubits than the current state-of-the-art, which results
in higher solution quality. We verified the practical applicability of the
approach by testing it on a D-Wave quantum annealer.
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1 Introduction

In recent years, many well-known optimization and decision problems have been
translated to the model of quadratic unconstrained binary optimization (QUBO)
[13,18]. The main motivation behind this is that QUBO models can be used
as a problem specification for various early quantum algorithms, most notably
the quantum approximate optimization algorithm (QAOA) [9,24] and quantum
annealing (QA) [16,17]. Current quantum computers are noisy and limited in
size; thus it is important to encode problems as efficiently as possible. However,
quantum hardware is conjectured to further grow in capability and a first demo
application recently suggested that it might already have a substantial advantage
over classical hardware for specific tasks [1].

The most promising problems to be solved using quantum algorithms cer-
tainly include problems of the complexity class NP-hard, which are hard to
solve for classical computers (unless P = NP) [7,11]. Many NP-hard problems
like scheduling [23], quadratic assignment [19], or travelling salesman [10] are
of immense practical importance and practical instances often challenge cur-
rent computing hardware. Thus, the eventual benefit of making these kinds of
problems faster to solve may be especially appealing.

The canonical problem for the class NP-complete is 3-satisfiability (3-sat),
which we focus on in this paper [8]. A 3-sat instance is a formula in Boolean
algebra and its solution is the binary answer to whether the formula is satisfiable.
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Our contributions in this paper are:

– We present two novel 3-sat-to-qubo translations: Nüßlein2n+m and
Nüßleinn+m

– We empirically show that Nüßlein2n+m performs slightly better than Chan-
cellorn+m despite the bigger QUBO matrix

– We show that Nüßleinn+m requires fewer couplings and fewer physical
qubits than the current state-of-the-art approach Chancellorn+m

– We empirically show that Nüßleinn+m performs best, compared to three
other 3-sat-to-qubo translations

2 Foundations

In this section, we introduce the mathematical foundations of the problems
involved in the translation algorithms: 3-sat and qubo.

2.1 Satisfiability Problems

The satisfiability problem (sat) of propositional logic is informally defined as
follows: Given a Boolean formula, is there any assignment of the involved vari-
ables so that the formula is reduced to “true”? The problem occurs in every
application involving complex constraints or reasoning, like (software) product
lines, the tracing of software dependencies, or formal methods [12].

All sat problem instances can be reduced with only polynomial overhead to
a specific type of sat problem called 3-sat, in which the input propositional
logic formula has to be in conjunctive normal form with all of the disjunctions
containing exactly three literals.

Definition 1 3-SAT. A 3-sat instance with n variables and m clauses is given
as (i) a list of variables (vj)0≤j≤n−1, from which a list of literals (li)0≤i≤3m−1

can be built of the form
li ∈

⋃

0≤j≤n−1

{vj ,¬vj},

and (ii) a list of clauses (ck)0≤k≤m−1 of the form

ck = (l3k ∨ l3k+1 ∨ l3k+2).

A given 3-sat instance is satisfiable iff there exists a variable assignment
given by the structure (vj �→ bj)0≤j≤n−1 with bj ∈ {�,⊥} so that

∧

0≤k≤m−1

ck

reduces to � when interpreting all logical operators as is common. The problem
of deciding whether a given 3-sat instance is satisfiable is called 3-sat.
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For example, we may write a 3-sat instance as Boolean formula F = (a∨b∨c)
∧ (a ∨ ¬c ∨ ¬d) consisting of m = 2 clauses and featuring the n = 4 distinct
variables {a, b, c, d}. Obviously, F is satisfiable, for example via the variable
assignment (a �→ ⊥, b �→ �, c �→ �, d �→ ⊥).

3-sat was the first problem to be shown to be NP-complete, which means
that all problems in NP can be reduced to 3-sat [8]. In fact, as many proofs for
NP-completeness for other problems build upon their reduction to 3-sat, 3-sat
solvers can be used as tools to solve many different decision problems.

As 3-sat is central to many proofs of NP-completeness, it is somewhat sur-
prising that when we generate random 3-sat instances with random amounts of
variables n and clauses m, most of these instances will be really easy to solve for
standard sat solvers. It is only as the ratio of clauses per variable approaches
m
n ≈ 4.2 that we can see the problems take exponential computing time. Know-
ing that many 3-sat instances are relatively easy to solve even for classical
computers, we focus our attention regarding new methods (like quantum-based
ones) on the critical 3-sat instances with m

n ≈ 4.2.
max-3-sat is an optimization problem that corresponds to the decision prob-

lem 3-sat. Instead of checking whether an assignment exists that fulfils the whole
formula, i.e., reduces all clauses individually to �, we try to find the assignment
that fulfils as many clauses as possible. Note that max-3-sat is a generalization
of 3-sat as max-3-sat’s optimal result is an assignment that fulfils all clauses
and thus proves the satisfiability of the whole formula.

Definition 2 MAX-3-SAT. A max-3-sat instance is given the same way as
a 3-sat instance (cf. Definition 1). The objective of a max-3-sat instance is to
find a variable assignment of the structure (vj �→ bj)0≤j≤n−1 with bj ∈ {�,⊥}
so to

maximize
m−1∑

k=0

{
1 if ck reduces to �,

0 otherwise.

2.2 Quadratic Unconstrained Binary Optimization

In quadratic unconstrained binary optimization (qubo) we are looking for a
binary vector x = 〈xi〉0≤i≤k−1 of length k that minimizes the value of a formula
that at most contains quadratic terms in x.

Definition 3 QUBO. A qubo instance with k variables is given as a k × k
matrix Q ∈ R

k×k. The objective of a qubo instance is to find a binary vector
x ∈ B

k so to
minimize H(x) =

∑

i

Qiixi +
∑

i<j

Qijxixj .

H(x) is also called the energy of a qubo solution x. Note that the lower
triangle of the matrix Q is always empty (since its values do not occur in the
formula for the energy H). Finding the ideal solution vector x of a given qubo
Q is NP-hard.
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When solving qubo instances using a quantum annealer, the solution vector
x is mapped to a set of qubits. These qubits have connections whose strength
can be manipulated to emulate the values in the qubo matrix. As the limiting
factor in current hardware is the size of problems that can be solved, we seek
translations to qubo that require as few qubits (i.e., minimal size of the qubo
matrix) and as few connections between them (i.e., minimal density within the
qubo matrix) as possible.

3 Related Work

There are currently two main approaches for translating 3-sat to qubo, which
we refer to as Chancellorn+m [5] and Choi3m [6]. We will review them in
more detail in Subsects. 3.1 and 3.2 respectively.

In [12], the authors examined the critical region of the problem domain for
3-sat, i.e., instances with m

n ≈ 4.2. They observed that the clause-to-variable
ratio has a great impact on the solution quality even on the quantum annealers.

Quantum annealing has previously been regarded as a solution to satisfia-
bility problems: [2] focuses on embedding an originally sat-related qubo into
the architecture of the most common quantum annealing chip. [20] shows a
method to derive formulation for the optimization energy and proves mathemat-
ical bounds for the mapping of general k-SAT problems. Similarly, [14] shows an
approach justifying feasibility but provides no empirical data. In [15], Grover’s
search algorithm was used to solve k-SAT. In [21], a qubo formulation for k-SAT
is proposed which only scales logarithmically in k compared to the linear scaling
in [6] and [5]. In [22], a method is proposed to not hard-code a qubo to sat
translation but to learn it using gradient-based methods.

3.1 Chancellorn+m

Let a
(l)
i be the i-th literal of clause a(l). The idea in [5] is to present a qubo

formulation for an arbitrary clause that assigns the energy g to the one variable
assignment which does not fulfil the clause and the energy 0 to all other possible
variable assignments. The energy spectrum is therefore given by:

Spec({a(l)}) =
{

g a
(l)
i = 0 ∀i,

0 otherwise.

Thus we can create the qubo formulation for the whole 3-sat formula by
superimposing all clause-formulations: H =

∑
l Spec({a(l)}). For g > 0 the min-

imum energy bit-string will always be the one which satisfies the most clauses.
To move from logical values to spin variables, one can map each logical vari-

able ai = 0 to a spin variable with value σz
i = −1 and each logical variable

ai = 1 to a spin variable with value σz
i = +1. Negation of the logical variable

is then implemented through gauges on the spin variables. More precisely, ai is
mapped to c(i)σz

i with c(i) = 1 and ¬ai to c(i)σz
i with c(i) = −1.
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The authors subsequently present the clause-formulation in the following
way: The energy spectrum of the clause (a1 ∨ a2 ∨ a3) can be rewritten as
a1 + a2 + a3 − a1a2 − a1a3 − a2a3 + a1a2a3 (with ai ∈ {−1,+1}). The terms
a1, a2, a3, a1a2, a1a3 and a2a3 can be directly inserted into the Ising Hamilto-
nian. For the triple term a1a2a3, however, an ancilla qubit is necessary. The
authors then present an Ising Hamiltonian for the triple term:

H = h

3∑

i=1

c(i)σz
i + Ja

3∑

i=1

c(i)σz
i σ

z
a + haσz

a

in which up to the gauge choice c(i) ∈ {−1, 1} the 3 variables σz
i are coupled

with equal strength Ja to the same ancilla spin variable σz
a.

There are some constraints for the choice of the hyperparameters h, Ja,
ha, and J . We chose h = g = 1, ha = 2h = 2, J = 5 and thus Ja = 2J =
10 as values for the variables in the “specials cases” section of Chancellor et
al. [5]. It is important to note that the choice of these values has no influence
on the number of couplings needed. Any clause-translation will produce a fully-
connected Ising/qubo matrix (Note that Ising and qubo are isomorphic).

For each clause exactly one ancilla qubit Ci is needed. Thus the whole qubo
matrix will have size n+m. The 3-sat formula (¬a∨¬b∨¬c)∧ (a∨b∨c) would,
for example, be represented by the qubo matrix in Table 1.

Table 1. qubo matrix using Chancellorn+m for the 3-sat formula (¬a∨¬b∨¬c)∧
(a ∨ b ∨ c).

a b c C1 C2

a −88 48 48 40 40
b −88 48 40 40
c −88 40 40
C1 −56 0
C2 −64

3.2 Choi3m

Choi [6] provides a translation of 3-sat to qubo that takes up 3m qubits, i.e.,
three qubits per clause in the original 3-sat formula (or one qubit per literal).
It is inspired by the maximum independent set problem (to which 3-sat is first
reduced, then to qubo). Given a 3-sat instance with m clauses and n variables,
Choi3m reserves a qubit xk,i, 0 ≤ k < m, 0 ≤ i ≤ 2, for every literal. Thus
Choi3m needs 3m qubits in total. One can interpret a solution candidate x for
this qubo formulation in the following way:
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– If xk,i = 1 and the corresponding literal l3k+i = v for some variable v, then
we add the assignment (v �→ �) to the solution candidate for 3-sat.

– If xk,i = 1 and the corresponding literal l3k+i = ¬v for some variable v, then
we add the assignment (v �→ ⊥) to the solution candidate for 3-sat.

– If xk,i = 0, then we do nothing.

Note that a solution candidate for the qubo may thus be illegitimate from
the 3-sat perspective when it assigns different truth values to the same variable.
Further note that Choi3m, even when returning the perfectly optimal solution,
does not necessarily assign a truth value to every variable that occurs in the
original formula.

For the detailed algorithm, we refer to [6] and will instead provide a small
example. Note that the incentive and penalty values X,Y,Z can be chosen rather
freely as long as Y > 2|X| and Z > 2|X|. Given the example 3-sat instance
(a ∨ b ∨ c) ∧ (a ∨ b ∨ ¬c), we can then write a qubo matrix as follows:

(a ∨ b ∨ c) ∧ (a ∨ b ∨ ¬c)

Q x0,0 x0,1 x0,2 x1,0 x1,1 x1,2

x0,0 −X Y Y
x0,1 −X Y
x0,2 −X Z
x1,0 −X Y Y
x1,1 −X Y
x1,2 −X

Intuitively, we need to penalize setting a pair of qubits from the same clause
(Y ) and penalize setting a pair of qubits which correspond to contradicting
literals of the same variable (Z). Since so far we only assigned penalties, we need
to set negative energy values on the diagonal (−X) in order to incentivize setting
any qubits at all (and avoid the trivial solution x = 0).

4 Approaches

We now describe two new approaches for translating a given 3-sat instance
to qubo. We introduce a new approach Nüßlein2n+m in Sect. 4.1, which uses
2n+m logical qubits, where n is the number of variables and m is the number of
clauses. In Sect. 4.2 we then propose another formulation Nüßleinn+m, which
requires n+m qubits. This is on par with the state-of-the-art Chancellorn+m;
however, Nüßleinn+m uses fewer couplings, which leads to a reduction of phys-
ical qubits.
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4.1 A 2n + m Approach

We now introduce a novel approach for the translation of 3-sat to qubo:
Nüßlein2n+m. Like Choi3m and Chancellorn+m, Nüßlein2n+m actually
solves max-3-sat by trying to accumulate as many solvable clauses as possible.
We build on the idea of [21] to use an algorithm to describe the qubo translation
instead of an arithmetic notation.

We use the qubits in the following way:

– For each variable vj , 0 ≤ j ≤ n − 1, occurring in the 3-sat instance, we use
two qubits to encode if the variable is to be assigned � or if the variable is to
be assigned ⊥. Thus, (vj �→ �) occurs in the variable assignment if x2j = 1.
Likewise, (vj �→ ⊥) occurs in the variable assignment if x2j+1 = 1. Note that
assigning both v2j = v2j+1 the same value makes for an illegitimate 3-sat
solution candidate.

– Beyond those qubits, we further use one qubit for every clause in the 3-sat
instance.

Effectively, the approach then uses 2n + m qubits for a 3-sat instance with
n variables and m clauses. This may be less or more than the 3m qubits used
in Choi3m; however, consider that difficult 3-sat instances are categorized by
m
n ≈ 4.2 (cf. Sect. 2). Thus, for the 3-sat instances which actually require exten-
sive computations on classical computers, Nüßlein2n+m manages to generate
substantially smaller matrices. For the detailed instructions of Algorithm1, we
first need to introduce the following definitions:

– We write L = (v0,¬v0, ..., vn−1,¬vn−1) for the list containing all possible
literals given variables (vj)0≤j≤n−1. Note that |L| = 2n.

– We write vj ∈ ck when clause ck contains a literal of the form vj . Likewise, we
write ¬vj ∈ ck when ck contains a literal of the form ¬vj . We subsequently
write Li ∈ ck when ck contains the literal Li.

– We define

R(Li) =
m−1∑

k=0

{
1 if Li ∈ ck,

0 otherwise.

Thus R(Li) is counting how often the literal Li occurs in the formula.
– We define

R(Li, Li′) =
m−1∑

k=0

{
1 if Li ∈ ck and Li′ ∈ ck,

0 otherwise.

Thus R(Li, Li′) is the number of occurrences of the literals Li and Li′ together
in the same clause.

Intuitively, Nüßlein2n+m (cf. Algorithm1) encodes how many clauses are
fulfilled by the solution. For example, if the minimal energy H∗ of a given
Nüßlein2n+m-qubo is −20 this means that 20 clauses are fulfilled. If the for-
mula, however, has more than 20 clauses this means that the formula is not
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Algorithm 1. Nüßlein2n+m

1: procedure Nüßlein2n+m

2: Q = 0 ∈ R
2n+m × 2n+m

3: for i := 0 to 2n+m do
4: for j := i to 2n+m do
5: if i = j and j < 2n then
6: Qij := −R(Li)
7: else if i = j and j ≥ 2n then
8: Qij := 2
9: else if j < 2n and j − i = 1 and i mod 2 = 0 then

10: Qij := m+ 1
11: else if i < 2n and j < 2n then
12: Qij := R(Li, Lj)
13: else if j ≥ 2n and i < 2n and li in cj−2n then
14: Qij = −1
15: end if
16: end for
17: end for
18: return Q
19: end procedure

satisfiable. We can consider the example formula (a∨ b ∨ ¬c)∧ (a∨ ¬b ∨ ¬c) and
its translation to qubo using Nüßlein2n+m:

(a ∨ b ∨ ¬c) ∧ (a ∨ ¬b ∨ ¬c)

Q a ¬a b ¬b c ¬c (a
∨

b
∨

¬c
)

(a
∨

¬b
∨

¬c
)

a −2 3 1 1 0 2 −1 −1
¬a 0 0 0 0 0 0 0

b −1 3 0 1 −1 0
¬b −1 0 1 0 −1
c 0 3 0 0

¬c −2 −1 −1
(a ∨ b ∨ ¬c) 2 0

(a ∨ ¬b ∨ ¬c) 2

4.2 An n + m Approach

In this section we present Nüßleinn+m, which is a 3-sat (again actually max-
3-sat) to qubo translation, which only requires n+m logical qubits. This is on



42 J. Nüßlein et al.

par with Chancellorn+m. However, we will show that our approach requires
fewer couplings, which leads to a reduction of needed physical qubits in the
hardware embedding.

We use the qubits in the following way:

– For each variable vj , 0 ≤ j ≤ n − 1, occurring in the 3-sat instance, we use
one qubit to encode the value it is assigned. Thus, (vj �→ �) occurs in the
variable assignment iff xj = 1. This implies that (vj �→ ⊥) occurs in the
variable assignment iff xj = 0.

– Beyond those qubits, we again use one qubit for every clause in the 3-sat
instance.

For the algorithm, we start with an empty qubo matrix as a canvas and
then add specific patterns of values for each clause. As these pattern stack, we
acquire the final value of Qij as a sum of all stacked values. The algorithm thus
needs to iterate over all clauses and repeatedly update the qubo matrix while
doing so. As we need to look at each clause individually, we can assume without
loss of generality that all clauses are sorted, i.e., all negated literals appear as far
towards the back of the clause as possible. This leaves us with only four possible
patterns for clauses:

(a ∨ b ∨ c), (a ∨ b ∨ ¬c), (a ∨ ¬b¬c), (¬a ∨ ¬b ∨ ¬c)

We now want to arrange the energy levels for each of the four cases such
that a satisfied clause (no matter in which way it was satisfied, i.e., with one
literal, with two, or with three) has the energy H∗ and the one state which does
not satisfy the clause has the energy H+ = H∗ + 1. See Table 2 for all pattern
matrices that might occur. The final qubo matrix is then constructed by adding
the pattern matrices’ values to the cells in the qubo matrix that correspond to
the involved variables. For a 3-sat formula with p clauses where there are no
negated literals and q clauses where there are only negated literals, a variable
assignment that satisfies the entire formula has the energy H∗ = −p − q.

We can now consider the example formula (a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ ¬c) and its
translation to qubo using Nüßleinn+m:

(a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ ¬c)

Q a b c (a
∨

b)

(a
∨

¬b
)

a 0 + 2 2 − 2 0 + 0 −2 −2
b 0 + 0 0 + 0 −2 2
c −1 + 1 1 −1

(a ∨ b) 1 0
(a ∨ ¬b) 0
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Table 2. Pattern matrices for the four different types of clauses.

(a ∨ b ∨ c), H∗ = −1

a b c (a
∨
b)

a 2 −2
b −2
c −1 1

(a ∨ b) 1

(b) (a ∨ b ∨ ¬c), H∗ = 0

a b c (a
∨
b)

a 2 −2
b −2
c 1 −1

(a ∨ b) 2
(c) (a ∨ ¬b ∨ ¬c), H∗ = 0

a b c (a
∨

¬b
)

a 2 −2 −2
b 2
c 1 −1

(a ∨ ¬b)

(d) (¬a ∨ ¬b ∨ ¬c), H∗ = 1

a b c (¬
a

∧
¬b

∧
¬c

)

a −1 1 1 1
b −1 1 1
c −1 1

(¬a ∧ ¬b ∧ ¬c) −1

A possible optimal solution to this qubo would be x = 〈1, 0, 0, 1, 1〉, which
corresponds to the variable assignment: (a �→ �, b �→ ⊥, c �→ ⊥) with the energy
H(x) = −1. Note that this qubo matrix uses 5 logical qubits and 6 couplings
(non-zero weights in the qubo matrix). We can compare that to the Chancel-
lorn+m formulation, which requires 5 logical qubits as well but 9 couplings:

(a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ ¬c)

Q a b c C1 C2

a −88 40 40 40 40
b −88 48 40 40
c −88 40 40

C1 −64 0
C2 −64

Another notable feature of Nüßleinn+m is the possibility to use the same
clause-qubit for more than one clause. For example in the formula (a∨b∨c)∧(a∨
b ∨ ¬c) the logical sub-formula (a ∨ b) appears in both clauses thus we just need
one clause-qubit instead of two. In total, we thus would need 4 logical qubits
instead of 5.
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5 Empirical Evaluation

To empirically verify that Nüßleinn+m requires fewer couplings than Chan-
cellorn+m we created random 3-sat formulas, applied both approaches, and
counted the number of non-zero elements in the corresponding qubo matrices.
The results are shown in Fig. 1. The x-axis describes the number of variables V
in the 3-sat formula. We then created random formulas with �4.2V � clauses. As
can be seen in the charts, for both approaches the number of non-zero couplings
in the qubo matrices scales linearly in the number of variables V of the 3-sat
formula. However, Nüßleinn+m only requires roughly 0.7 of the couplings that
Chancellorn+m needs.

Fig. 1. Relation of the number of variables in the 3-sat formula to the number of
non-zero couplings in the qubo matrix for the approaches Chancellorn+m and
Nüßleinn+m.

In the next experiment, we evaluated how this reduction of couplings trans-
lates to a reduction of physical qubits. Note that both approaches Nüßleinn+m

and Chancellorn+m require n+m logical qubits. However, to run a qubo on a
quantum annealer the qubo has to be embedded into the hardware graph, which
currently follows the Pegasus graph design [3]. We again created random 3-sat
formulas for different V , applied both approaches to create the corresponding
qubo matrices and then ran the minorminer to find an embedding [4]. Finally,
we counted how many physical qubits were needed. The results (Fig. 2) show
that for both approaches the number of physical qubits scales linearly with V
but the chart of Chancellorn+m has again a bigger gradient than the chart
of Nüßleinn+m. The line represents the median of 20 formulas and the shaded
areas enclose the 0.25 and 0.75 quantiles.
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Fig. 2. Relation of the number of variables in the 3-sat formula to the number of
needed physical qubits for the approaches Chancellorn+m and Nüßleinn+m. The
shaded areas enclose the 0.25 and 0.75 quantiles.

In a final experiment, we created random 3-sat formulas and solved them
with all four methods on the D-Wave Quantum Annealer. We tested three sizes
for the 3-sat formula and for each we created 20 random formulas. Table 3
shows the mean number of fulfilled clauses with the best-found variable assign-
ment. For example for the size (V = 5, C = 21) we created a random for-
mula and solved it using Nüßlein2n+m on the D-Wave. For the best answer
of the D-Wave, we calculated the variable assignment and how many clauses
are fulfilled with this assignment. We repeated this procedure for 20 3-sat for-
mulas. As can be seen, Nüßleinn+m was the best approach for every size of
the formula. Another very interesting result is that Choi3m was mostly bet-
ter than Nüßlein2n+m and Nüßlein2n+m was mostly better than Chancel-
lorn+m which indicates that the size of the qubo matrix is not an optimal
predictor for performance. The code for all four approaches can be found here:
https://github.com/JonasNuesslein/3SAT-with-QUBO.

Table 3. Performance of four 3-sat to qubo translations on random formulas. The
values represent the mean number of fulfilled clauses of the best-found solution vector.

(V = 5, C = 21) (V = 10, C = 42) (V = 12, C = 50)

Nüßlein2n+m 20.4 39.0 45.0
Nüßleinn+m 20.6 41.2 49.0
Chancellorn+m 18.6 37.8 47.0
Choi3m 20.0 39.8 47.2

https://github.com/JonasNuesslein/3SAT-with-QUBO


46 J. Nüßlein et al.

6 Conclusion and Future Work

In this paper, we presented two new approaches to translate 3-sat instances to
qubo. Despite the smaller size of the qubo, the first approach Nüßlein2n+m

showed worse results than Choi3m in the experiments, which indicates that
the size of a qubo is not an optimal predictor for performance. For the other
approach Nüßleinn+m, we showed that it requires fewer couplings and fewer
physical qubits than the current state-of-the-art Chancellorn+m. We empiri-
cally verified that Nüßleinn+m performs best compared to three other 3-sat
to qubo translations. The structure of the Nüßleinn+m approach also shows
a new paradigm in constructing qubo translations: We did not derive a formu-
lation from the original problem by adapting the mathematical framework; the
qubo matrix of Nüßleinn+m was instead constructed from the ground up with
the sole goal of mirroring 3-sat’s global optimum. We hope that Nüßleinn+m

can thus also inspire more new qubo translations in the future.
Regarding 3-sat, it needs to be further investigated whether in general or

for special cases even more favorable qubo formulations for 3-sat exist. This
investigation could also be formulated as an optimization problem (more pre-
cisely as Integer Linear Program), where all solutions of the 3-sat together with
the energetically most favorable choice of auxiliary qubits must have the energy
H∗ and all non-solutions together with the energetically most favourable choice
of auxiliary qubits must have an energy H+ > H∗. However, the choice of the
“most energetically favorable auxiliary qubits can be formulated by a series of
linear inequalities (all other choices of auxiliary qubits with the same variable
assignment must have a greater or equal energy). Following this approach, we
may even be able to automatically generate new and efficient qubo translations
for practically relevant problems.
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