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1. Introduction
Urban water networks (UWNs) comprise drinking water distribution and urban drainage systems (WDS and 
UDS). The former are responsible for supplying drinking water to cities and the latter for evacuating wastewater 
and stormwater runoff. These infrastructures are a fundamental part of the city and are directly linked to its devel-
opment (Brown et al., 2009). Each of these systems faces challenges to improve and maintain quality service in a 
dynamic urban environment under a widening range of climatic conditions; especially, in a climate-changing situ-
ation. Designing, optimizing, and intervening in these systems requires approximating their hydraulic behavior. 
Many models have been developed in the past years for simulating UWNs, for example, SOBEK (Deltares, n.d.), 
WaterCAD (Bentley®, n.d.), EPA-SWMM (Rossman, 2010), among others. Traditional modeling approaches 
are either based on accurate description of the physical processes (e.g., EPANET; Rossman et al., 2000) or rely 
on simplified conceptual models (e.g., SIMPOL; Dempsey et al., 1997); nonetheless, the former usually entail 
computationally expensive calculations while the latter lack fidelity, that is, level of detail. Applications such as 
optimization, real-time modeling, and uncertainty analysis need efficient models for evaluating the performance 
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of a system multiple times or as fast as possible. Consequently, they require short execution times while main-
taining a sufficient level of detail.

Water modelers have resorted to surrogate models (SMs) to replace computationally costly models. Following 
the classification given by Razavi et al. (2012b), SMs, also known as metamodels or reduced-order models, can 
be categorized as lower-fidelity physically-based surrogates (LFPB) or response surface (RS) surrogates. On the 
one hand, LFPB metamodels modify the original model to reduce its computational effort. These metamodels can 
simplify the original model by lowering the resolution (e.g., larger time-steps) of the inputs, outputs, or internal 
processes. The latter is achieved by simplifying the full model by replacing its computationally costly compo-
nents with faster alternatives (e.g., kriging, linear regression, neural networks; Fernandez et al., 2017). On the 
other hand, RS surrogates avoid using the original model and replace it altogether with a faster-to-run alternative. 
In what follows, we summarize the advantages and disadvantages of LFPB and RS metamodels according to 
Razavi et al. (2012b).

LFPB surrogates, also known as multifidelity based surrogates or “coarse” models, include techniques such as 
network simplification (Dempsey et al., 1997; Paluszczyszyn et al., 2013; Ulanicki et al., 1996), and skeletoni-
zation (Shamir et al., 2008). Compared against RS metamodels, LFPB surrogates are expected to better emulate 
the unexplored regions of the explanatory variable (input) space (i.e., regions far from the previously evaluated 
points with the high-fidelity model) and, as such, perform more reliably in extrapolation. As for their drawbacks, 
LFPB models rely on the assumption that high-fidelity and low-fidelity models share the basic features and are 
correlated in some way. If this assumption is not satisfied, the surrogate modeling framework would not work, 
or provide minimal gains. Moreover, mapping the outputs from low resolution to the original resolution is not a 
trivial task, and may add complexity or uncertainty to the estimations.

Response surface surrogates, also known as statistical and black-box models, include techniques such as polyno-
mials (Schultz et al., 2004), kriging (Baú & Mayer, 2006), and neural networks (Behzadian et al., 2009). In this 
branch of SMs, the original model is perceived as an input-output function and the metamodel is used to imitate 
the response surface as best as possible. Some of their advantages include the possibility of maintaining the fidel-
ity of the original model, being model-independent (i.e., not requiring access to the components, such as code 
or equations of the original model), and easier implementation with respect to LFPB surrogates. Nonetheless, 
they can be hard to train for high-dimensional problems, which may require substantial computational costs to 
create large enough databases to train the metamodels. Moreover, RS metamodels require meticulous validation 
to minimize the chance of over-fitting and maximize their ability to extrapolate.

ML is a subset of artificial intelligence (AI) which is a broad term for tools that imitate cognitive human capa-
bilities. The use of AI has rapidly increased in recent years. The number of peer-reviewed publications across all 
fields between 2000 and 2019 has grown around 12 times (D. Zhang et al., 2021) and with them, multiple algo-
rithms, architectures, and tools have been created. Fields in which ML methods have shown outstanding results 
include computer vision, speech recognition, and language processing. Most of these applications use super-
vised learning, which identifies a branch of ML that is similar to RS metamodeling. Supervised ML employs 
a set of input-output examples, also known as the labeled training dataset, to calibrate a model by minimizing 
the error between the model predictions and the values assumed as ground truth. The algorithms in this set 
usually increase their performance at a given task as the amount of labeled examples grows larger. Due to their 
successes, supervised ML methods, and in particular deep learning (DL) and artificial neural networks (ANNs), 
are widely employed for surrogate modeling across many fields of science and engineering (Liu et al., 2021; Peng 
et al., 2020; Wu et al., 2020). Although scientific studies on ML applications for water resources date back to 
over two decades ago (Maier & Dandy, 2000), Hadjimichael et al. (2016) noted that this trend is not necessarily 
witnessed in the urban water sector.

Surrogate models have been used in diverse areas including surface water, groundwater, hydrology, hydraulics, 
and water resources planning and management (Razavi et al., 2012b). Metamodels are a particularly valuable tool 
for UWNs. These systems present (a) high density of strongly interconnected components (e.g., pipes, pumps, 
tanks), (b) nontrivial governing equations, and (c) discrete design and operational variables (e.g., commercial 
diameters, pump and valve settings). As a consequence, these models face challenges like computationally 
demanding water quality simulations (Torres-Matallana et al., 2018) and nondeterministic polynomial time-hard 
(NP-hard) problems for design optimization (Yates et al., 1984). Previous reviews have studied the application 
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of metamodels in water resources. Razavi et al. (2012b) outline taxonomies, practical details, and advances of 
these SMs in water resources along with recommendations for future research. Among the multiple insights of 
this work, they highlight the nontrivial effort to choose the right metamodel approach to the problem at hand and 
advocate for further research on these methods, especially in their assessment and validation. Furthermore, in 
the same year, Razavi et al. (2012a) numerically assessed metamodeling strategies in computationally intensive 
optimization, showing that metamodeling is not always a reliable approach, especially for complex response 
surfaces. The authors also warned about the inappropriateness of neural network models when having a limited 
computational budget since their effective training conventionally requires a large set of training examples. Later, 
Broad et al. (2015) presented a formalized qualitative process to determine the most suitable scope for a meta-
model based on the evaluation of a fitness function to maximize accuracy. Hadjimichael et al. (2016) reviewed the 
application of AI methods to UWS management and their integration with decision support systems.

While valuable, these published reviews give low emphasis to SMs for UWNs, and do not account for the recent 
growth in machine learning-based surrogate models (MLSMs) driven by the rapid advancements in AI. This 
study aims to fill this gap by assessing the current state of MLSMs for UWNs in order to propose future direc-
tions based on identified outstanding issues and recent developments in ML. To achieve this purpose, we applied 
the review methodology described in Section 2 to review 31 published applications of metamodels for water 
networks. The results of the review are reported and discussed in Section 3, while major current gaps are detailed 
in Section 4. We propose future research directions in Section 5 and provide conclusions in Section 6.

2. Materials and Methods
We conducted a semi-systematic (Snyder, 2019) review of MLSM applications for UWNs to synthesize the state-
of-the-art of the field. The review integrates the multiple applications of ML metamodels across water network 
applications, and explores them in a transversal manner. First, we searched journal articles in which MLSMs were 
applied to UWNs. Second, we determined a set of criteria to assess the relevant characteristics when applying 
these metamodels to UWNs' problems.

2.1. Search Methodology

We reviewed journal articles published in the last two decades (2001–2021) that use MLSMs for WDSs and 
UDSs. We established two main search criteria: surrogate modeling and water networks. Since both topics have 
a multiplicity of names, each of them was represented by a set of keywords. For surrogate modeling, the search 
terms were: “Surrogate model*”, “Metamodel*”, “Response surface”, “model emulation”, and “hybrid model”. 
In the case of water networks, the search terms referred to both water distribution and drainage systems along with 
popular software for their analysis, “Water distribution”, “Water supply”, “Drinking water”, “Urban drainage”, 
“Wastewater”, “Sewer”, “Sewerage”, “EPANET”, “WaterCAD”, “SWMM”, “SOBEK”, and “Urban water”.

For the search, we employed the SCOPUS database. By intersecting the search terms, we identified an initial set 
of 64 articles that were further filtered to only include ML applications, yielding a total of 31 articles to review 
(17 in WDS, 14 in UDS). Next, we searched through the citations of the selected set of articles and other relevant 
articles in the field (i.e., Maier & Dandy, 2000; Maier et al., 2014; Razavi et al., 2012b) for further references. 
However, the original set already contained the cited articles. Therefore, the results are equivalent to the keyword 
search. This validates the thoroughness of the original search and makes the methodology more replicable by 
avoiding arbitrarily selected articles.

This list of articles may not be totally inclusive since some studies do not use the formal terminology of surrogate 
modeling, as indicated by Razavi et al. (2012b). Nevertheless, the purpose of this study is to compile the recent 
state-of-the-art, identify gaps in knowledge, and propose future research directions. We believe that the selected 
set of articles is sufficient to achieve this goal.

2.2. Analytical Methodology

In addition to the search criteria, it was necessary to establish an analytical framework that allowed to classify, 
compare, and evaluate the application of the metamodels across the collected literature. To achieve this, we 
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identified the most relevant aspects of each article in three broad categories: 
(a) purpose, (b) case study, and (c) metamodel.

Purpose includes general information about the application of the meta-
model. It includes the type of network (distribution or drainage) and the 
application category (e.g., optimization, real-time) as major grouping cate-
gories. In addition, it includes the specific application (e.g., optimization of 
operation, real-time for flood prediction) as a more detailed description for 
each article.

Case study contains information on the physical water network used for the 
testing and validation of a developed metamodel. This includes the name or 

location of the case study, whether it is a real case or a benchmark, and its size, indicated by the number of pipes 
or by the area. The size attribute is also reported as a categorical value ranging from small (S) to large (L), as 
shown in Table 1.

Metamodel reports details on the computational algorithm (e.g., ANNs, Support Vector Machines) used to replace 
the original simulator along with further details on its architecture (i.e., deviations from a hidden layer ANN). 
The type and number of input and output variables are also reported to infer the dimensionality of the SM and 
the complexity of the RS to approximate. As for the performance, we report the computational speed-up provided 
by the metamodel and the accuracy to the original simulation, usually approximated with a quantitative metric. 
These criteria have been identified as the most relevant ones by previous related studies (Broad et al., 2015; 
Razavi et al., 2012b). Nevertheless, it is possible to consider other factors, such as development time, robustness, 
and explainability. While assessing these criteria may enrich the analysis, they are not employed in most of the 
surveyed articles, and they are thus not included in this review.

3. Review—Current Status of Machine Learning Surrogate Models in Urban Water 
Networks
The analysis of the surveyed articles shows an increase in research activity between 2015 and 2020 with approx-
imately two-thirds of the manuscripts published during this period. In terms of application, most of these articles 
are related to optimization. For the case study, there is a noticeable difference between WDSs and UDSs since 
the latter networks lack the use of benchmark cases. Regarding the metamodel, the most popular algorithm is the 
fully connected ANN; because of this, we report the details of the used metamodel as deviations from a single 
hidden layer, fully connected ANN, also referred to as simple multi-layer perceptron (MLP). Table 2 summarizes 
the extracted information of the reviewed articles arranged in the previously mentioned categories: purpose, case 
study, and metamodel.

3.1. Metamodel Purpose

Figure 1 shows that the two main application categories for metamodels are optimization (48%) and real-time 
applications (32%), with several examples for both WDSs and UDSs. Metamodels have been also used, although 
to a lesser extent, for conducting uncertainty analyses, system state estimation (i.e., inferring variables at ungauged 
points), and to complement LFPB surrogates. The last one refers to the use of an RS method (e.g., linear approxi-
mations, polynomials, ANNs) to complement an LFPB metamodel by replacing a slow component or fine-tuning 
the outputs for better accuracy, for example, surrogating water exchange between sub-catchments with ANNs 
(Wolfs & Willems, 2017), or correcting the predictions of a hydrodynamic model of wastewater flows (Vojinovic 
et al., 2003). In all cases, metamodels are used to reduce the computational efforts required for the hydraulic 
simulation of these complex systems, which may severely compromise the feasibility of the applications.

Optimization usually employs population-based algorithms (e.g., genetic algorithms, particle swarm, ant colony 
optimization, among others) which require multiple runs. These algorithms create an initial population, and 
they improve the obtained solutions through continuous iteration. Usually, these algorithms employ mechanisms 
inspired on genetics, such as crossover and mutation for finding (near) optimal solutions. Evolutionary algorithms 
are the most well-established metaheuristic for solving water resources problems (Maier et al., 2014); nonethe-
less, they tend to be highly computationally intensive.

Size Number of pipes in the simulation model Area [𝐴𝐴 km
2 ]

Small (S) <100 <5

Medium (M) 101–250 5–10

Intermediate (I) 251–500 10–20

Large (L) >500 >20

Table 1 
Categories of Network Size Based on Number of Pipes or Area
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Optimization can be used to formulate and solve multiple UWN problems. 
This explains the high number of metamodeling publications dedicated to 
this topic. A popular use of MLSMs for optimization in UWNs is for the (re)
design of the networks. For example, applications that use MLSMs include 
changes in pipe diameters and chlorine dosing rates (Andrade et al., 2016; 
Bi & Dandy, 2014; Broad et al., 2005; Sayers et al., 2019) or operation of 
storage tanks and pumps (Broad et al., 2010; Martínez et al., 2007; Salomons 
et al., 2007). The goal for design is to select which new system components to 
install or identify existing ones to substitute. For operation, the aim is to find 
an optimal policy on how to operate the existing components. In particular, 
water quality parameters are considered as outputs for optimization problems 
in around half of the articles reviewed. In WDS, 6 out of the 10 optimization 
included chlorine related parameters. For UDS, the relevant parameters were 
biochemical oxygen demand and total suspended solids which were consid-
ered in two (Latifi et al., 2019; Raei et al., 2019) out of five articles. Note 
that modeling water quality parameters requires higher computational costs 
compared to hydraulic simulations alone (Broad et al., 2005). This further 
justifies the use of metamodeling techniques (e.g., Andrade et al., 2016; Bi 
& Dandy, 2014). Regardless of the task, the goal is to maximize the perfor-

mance of the system described by the objective function(s) and a number of constraints (e.g., physical, regu-
latory, economic, among others). In addition, other problems such as water quality model calibration (Dini & 
Tabesh, 2017), renovation planning (Dini & Tabesh, 2019), and sensor placement (Behzadian et al., 2009) have 
resorted to metamodels.

Although MLSMs accelerate optimization algorithms, they present a series of drawbacks. First of all, these 
models need training data (simulation examples) to calibrate their internal parameters (e.g., the weights and 
biases in a neural network) to replicate the RS. Generating a sufficiently large training dataset can be a time-con-
suming process, and data sufficiency depends on the complexity of the input-output mapping and it cannot be 
known a priori. Secondly, the training process is another optimization process in itself, with its own hyperpa-
rameters (e.g., learning rate, number of training epochs, parameter initialization, among others depending on the 
optimizer) and its convergence to a desired performance is not guaranteed. Furthermore, errors of approximation 
in the RS can mislead the optimization to suboptimal or unfeasible solutions as noted by Broad et al. (2005b), 
especially in regions near the boundaries or outside the training range.

When comparing water distribution with drainage systems, it is clear that the applications of optimization in 
UDSs are less diverse. The reviewed articles focus on the optimization of stormwater sewers' design with low 
impact development management (Latifi et al., 2019; Raei et al., 2019; Seyedashraf et al., 2021) or for flood 
mitigation (Huang et al., 2015; W. Zhang et al., 2019). Meanwhile, WDS optimization is more varied, with appli-
cations to operation, calibration, sensor placement, and long-term planning. This difference partially depends on 
the stochastic nature of the rainfall events driving the functioning of combined and stormwater sewers, which in 
turn favor real-time control over the optimization of the operations, typical of WDS. Also, the research conducted 
on MLSMs for optimization in UDSs is rather recent (2015 or later) compared to WDS (from 2005). Applications 
in UDSs that typically do not use metamodels can benefit from the experience of tackling similar problems in 
the context of WDSs. Examples include sensor placement (Sambito et al., 2020), calibration (Tscheikner-Gratl 
et al., 2016), and optimization of operation (Van Bijnen et al., 2017).

In contrast to off-line optimization, real-time applications require accurate outputs within a short period of time. 
Real-time operation uses the current state of the system to modify its behavior and improve its functioning in 
future time steps. In the case of UDSs, they are usually designed to retain stormwater for a certain period, to avoid 
combined sewer and stormwater outflows (Rosin et al., 2021; She & You, 2019) or to reduce flooding (Berkhahn 
et al., 2019; Chiang et al., 2010; Keum et al., 2020; Kim et al., 2019; Kim & Han, 2020). Whereas, in WDSs, the 
objective is to deliver high-quality drinking water while minimizing pumping costs (Pasha & Lansey, 2014; Rao 
& Alvarruiz, 2007; Rao & Salomons, 2007).

In the case of WDSs, the reviewed real-time applications involve solving optimization problems in a short period 
of time. Examples of this are the optimal operation of the WDS for the next few hours (Rao & Salomons, 2007) 

Figure 1. Types of applications that use machine learning metamodels for 
water distribution systems (WDS) and urban drainage systems (UDS).
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and warming up solutions for pump scheduling for the next day (Pasha & Lansey, 2014). In these cases, the 
use of the MLSMs is essential to reduce the computational time required to perform the optimization. Conse-
quently, these applications suffer from the already mentioned drawbacks for optimization with MLSMs. For 
UDS, real-time applications concern Real-Time Control (RTC), where operation and validation relies on real data 
(Beeneken et al., 2013; Langeveld et al., 2013; Lund et al., 2018). This is an issue since the usual targets are infre-
quent events, that is, outflows and flooding; therefore, the availability of records may be scarce or nonexistent.

The third application in order of frequency is uncertainty analysis of the UWNs' performance. These analyses 
are usually carried out via multiple simulations to test the response of the system to multiple possible scenar-
ios or uncertain input conditions, leveraging the computational efficiency of SMs. In WDSs, ANNs have been 
used to replace computationally expensive models for accelerating Monte Carlo analyses. For example, Yoon 
et al.  (2020) performed a seismic risk assessment of a water distribution network considering earthquakes of 
different magnitudes and epicentres. In UDSs, Beh et al. (2017) used metamodels to directly estimate reliability 
and vulnerability metrics. In this case, resorting to MLSMs was crucial for the feasibility of the study. Otherwise, 
the explicit robustness assessment would have been impossible in practice. Creating a metamodel for uncertainty 
analysis entails having a model with explicit robustness as output, or generating a training dataset with multiple 
runs per example. However, the former is rarely the case and the latter consumes a large quantity of computational 
budget.

Other works tested the ability of ANNs to estimate the system state at ungauged locations with measurements 
from a limited number of sensors. Lima et al. (2018) and Meirelles et al. (2017) simulated pressure measured at 
strategically located sensors and an ANN to estimate the pressure of all the remaining nodes in a WDS. SM for 
state estimation both decreases the degrees of freedom for the addressed calibration problem, and according to 
the authors, these metamodels could also be used to detect anomalies and predict the current state of the network 
in real-time. Nevertheless, in these studies, the pressure at all nodes is known since the MLSM is trained on 
simulations. For applications depending on sensor data, pressure at only few nodes would be known and hence it 
would not be possible to estimate the error for the ungauged nodes. One alternative to handle this issue is to use 
data from some sensors for training and other sensors for testing. This way, it is possible to estimate the error at 
unobserved nodes. However, this process reduces the available training data, and it is not clear how representative 
the testing sensors are with respect to the remaining ungauged nodes.

Metamodels for UDSs have also been used to complement LFPB surrogates, either to approximate some parts 
of the model (e.g., the most time-consuming) or to correct the predictions produced by a model. Wolfs and 
Willems (2017) created a modular approach in which they replaced the hydraulic simulation of drainage flow 
between subcatchments with an ANN, this was part of a larger framework in which the goal was to simulate 
outgoing discharges for a given rainfall event. Similarly, Bermúdez et al. (2018) employed an ensemble of ANNs 
to accelerate a component of an LFPB model, used to estimate the occurrence and magnitude of flooding. In 
a different manner, Vojinovic et al. (2003) used MOUSE (MOdel for Urban Sewers), a hydrodynamic process 
model, to estimate flows within wastewater pipes during wet weather periods and trained a neural network to 
compensate for the output errors (residuals), leading to an overall increase in accuracy. Even though this hybrid 
approach bridges both metamodeling practices, the LPFB metamodel inherits the RS problems, for example, 
database creation and training difficulties.

In summary, SMs in water networks have been primarily used for optimization and real-time applications due 
to their ability to quickly evaluate outputs while remaining sufficiently accurate. Nevertheless, the use of these 
metamodels is not bound to these two applications. SMs can replace computationally expensive hydrodynamic 
models for uncertainty analyses and state estimation, or help the original models by correcting outputs or approx-
imating time-consuming components.

3.2. Case Studies

Figure 2 shows the number of case studies analyzed in the reviewed literature. In WDSs, each article usually 
presents two or more networks. Since the articles introduce new problem formulations or methodologies, the 
authors apply them to different networks to prove its effectiveness across different WDSs. Studies in optimization 
usually follow a common pattern where preliminary trials are performed on small benchmark networks before 
proceeding with implementation in larger real case scenarios. This pattern is repeated in all the cases, whether it is 
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in the same article or in sequential articles, as in the case of the POWADIMA 
project by Martínez et al. (2007), Rao and Alvarruiz (2007); and Salomons 
et al. (2007). In the cases of real-time applications, the networks were usually 
modified benchmarks of medium size. For applications in uncertainty anal-
ysis and state estimation, the networks were real cases of large size. The 
reviewed articles for UDSs, in contrast to WDS, present only applications 
with real networks, some of them with modifications (e.g., Berkhahn 
et al., 2019; She & You, 2019).

Regarding UDSs, most of the articles do not report the size of the system in 
number of pipes. Consequently, the extent of the system was often assessed 
by the reported area. This suggests that when MLSMs are used, the water 
network is set aside and only the relation input-output is considered. The 
extent of the case study (number of pipes or area) is a proxy of the complex-
ity of the case studies which is the relevant dimension. Nevertheless, some 
applications can involve medium-sized networks but with high complexity 
(e.g., different control elements, multiple objectives, changing scenarios, 
among others). Besides the particular characteristics of each network and 
application, the metamodeling process was the same regardless of the size 

of the network. However, the required time for creating the database and training the model increases with the 
complexity of the case study. So far, the procedure does not vary as a function of the complexity of the case study; 
nonetheless, considering modifications to the training process or the metamodels based on the complexity of the 
case study could yield better approximations to the RSs.

Since each system has a different area and number of pipes, we proposed the categorization in Table 1. The ratio 
between the number of small networks and the rest is noticeably bigger in WDSs than in UDSs due to the use of 
benchmarks to test the methodologies. Even though the use of metamodels is justified in larger networks, its use 
decreases as the size increases.

3.3. Metamodeling Methods

Regardless of the water network type and metamodel applications, the preferred method for metamodeling is 
the ANN. ANNs are computational models based on the complex interaction of multiple individual components 
(i.e., units or neurons). Each unit performs the same procedure: receiving information, executing an operation 
(usually a linear transformation of the inputs), applying a nonlinear transformation to the result (e.g., hyperbolic 
tangent, sigmoid, rectified linear unit), and sending the information to the next connected units. Each of the units 
has trainable parameters that determine the relative weight of each of the inputs. Units are arranged in layers; 
each ANN has at least one input layer and one output layer, where the inputs are presented to the network and the 
computed outputs are collected, respectively. Between these layers, there are one or more hidden layers, where 
most of the information processing takes place. ANNs learn to approximate the input-output relationships in 
the data by tuning the trainable parameters (i.e., unit's weights and biases) during the backpropagation learning 
process, which is usually carried via the gradient descent and by computing the partial derivatives of the hidden 
layers using the chain rule of derivation. For a complete review of ANNs, the reader is redirected to Goodfellow 
et al. (2016) and Shen (2018) for a specific review related to water resources.

In all cases, training requires a database of examples. The paradigm of ML indicates that performance of the 
algorithms improves with the size of the database on which they are trained. For supervised ML, this database 
is generally divided to create a separate dataset for validation. According to the reviewed articles, typical sizes 
of training datasets vary between 1,000 and 100,000 examples. The size of the training database depends on 
multiple factors, for example, the complexity of the response surface or the available computational budget to 
create the examples and train the model. For instance, Andrade et al. (2016) used 10,000 examples for one case 
and 100,000 for a larger one in the same article. Other approaches implement dynamic training. For example, in 
some optimization applications, the training set is updated in an online fashion after each iteration (see Behzadian 
et al., 2009; Bi & Dandy, 2014).

Figure 2. Case study type distribution for water distribution systems (WDS) 
and urban drainage systems (UDS).
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The analysis of the literature shows that the MLP is the most widely used MLSM. The MLP is a specific ANN 
architecture that consists of a series of layers in which all the units of a layer are connected to all the neurons in the 
previous and next layer; hence it is also known as the fully connected ANN. Most of the reviewed studies in this 
article used this architecture with one hidden layer due to its simplicity, high speed, and accuracy. Still, the ANNs 
can be customized to increase the accuracy of certain applications. This practice of creating deep networks, that 
is, with more layers and units per layer, is part of modern deep learning (Goodfellow et al., 2016).

In WDSs, there are two cases of variations on the number of layers: Sayers et al. (2019) used two hidden layers 
for optimization of design while Yoon et al. (2020) used 15 layers in their ANN to estimate the network perfor-
mance after earthquake events. Deep networks may increase performance but they are more prone to overfitting, 
and require more training time and examples. Also, it is not possible to know the number of layers and units that 
yield the best performance. For example, Modesto De Souza et al. (2021) tested multiple architectures of an MLP 
for pressure estimation in a WDS. Their results suggest that the optimal number of layers is two but this can vary 
for other applications. On the other hand, UDSs present more variation on the implemented MLPs including 
varying the number of hidden layers (Berkhahn et al., 2019; Kim & Han, 2020; Raei et al., 2019), changing the 
activation function to a radial basis function (She & You, 2019; Vojinovic et al., 2003), or adding fuzzy logic 
(Keum et al., 2020).

As previously stated, MLPs are the most popular MLSMs. This is not surprising because of their ease of imple-
mentation and success in multiple applications, as well as publicity from the AI community. However, the MLP, 
and in general, the ML methods present several drawbacks. As Razavi et al. (2012a) indicated in their numerical 
assessment of metamodeling strategies in computationally intensive optimization, “the likelihood that a meta-
model-enabled optimizer outperforms an optimizer without metamodeling is higher when a very limited compu-
tational budget is available; however, this is not the case when the metamodel is a neural network. In other words, 
neural networks are severely handicapped in limited computational budgets, as their effective training typically 
requires a relatively large set of design sites, and thus are not recommended for use in these situations” (Razavi 
et al., 2012a). Therefore, the use of an ANN may even harm the development of an application. In that same work, 
the authors show that there are cases for which using the original model outperforms using a metamodel. Conse-
quently, they recommend further research on determining where it is worth pursuing a metamodeling approach. 
In recent years, the widespread availability of parallel computing (e.g., cloud computing and graphics processing 
unit) and user-friendly DL libraries, such as Pytorch (Paszke et al., 2019), have reduced this problem.

Apart from MLPs, researchers have applied other algorithms from the set of ML tools. For example, Pasha and 
Lansey (2014) used support vector machines (SVMs) for improving the real-time estimation of water tank levels 
and thus decreasing pump energy consumption in a WDS. In UDSs, Chiang et al. (2010) implemented an early 
form of recurrent neural network (RNN) for water level predictions at gauged and ungauged sites. Their decision 
of using this architecture was motivated by its increase in performance. However, the main disadvantages of this 
architecture lie in training difficulty (Pascanu et al., 2013) and computational costs (Strubell et al., 2020).

Similarly, Kim et al. (2019) and She and You (2019) leveraged the time structure in rainfall time series for real-
time flood prediction with a nonlinear autoregressive network with exogenous inputs (NARX) neural networks. 
This architecture is a feedforward ANN that calculates the next value of a time series as a function of both past 
input and output values. In each study, the authors tailored the model to the conditions of their problem. Kim 
et al. (2019) added a second verification step to account for values that incur serious inundation damage and She 
and You (2019) implemented a NARX neural network for the monotonic parts of a hydrograph (i.e., ascending 
and descending stages) and a radial basis function MLP for the non-monotonic interval (i.e., around the peak).

3.3.1. Metamodel Inputs and Outputs

The inputs to the metamodels in UWN applications are usually decision and explanatory variables while the 
outputs can vary based on the scope of the problem. Based on the inputs used in the reviewed articles, there is not 
a single consistent variable across the different applications in any of the water networks; they are problem-spe-
cific. For example, flood prediction in UDSs relies on rainfall time series, while the design of WDSs relies on 
inputs such as pipe diameters and chlorine rating doses. On the other hand, the output of the metamodels are 
usually state variables of the UWN or performance metrics. For example, a metamodel can be developed to esti-
mate a pressure-dependent metric, such as the resilience Network Resilience Index (NRI; Prasad & Park, 2004), 
or it can output the pressures in a WDS, used to compute the NRI. Other examples of surrogated components are 
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water level in storage units or pump energy consumption. Other examples of overall metrics are sampling accu-
racy (Behzadian et al., 2009), the economic cost of interventions, greenhouse gases, reliability, and vulnerability 
(Beh et al., 2017).

Determining the output and scope of the metamodel entails deciding if the metamodel should emulate the model 
or one of the objectives computed after the hydraulic simulation. The reader is referred to Broad et al. (2015) for 
a complete methodology about metamodel scope for risk-based optimization and its application to WDS design. 
In contrast, there are no applications for objective approximation using MLSMs in UDS.

A converging trend is visible when inspecting the dimensions (i.e., number) of the inputs and outputs: the number 
of inputs is higher than the number of outputs. This is no surprise since most of the studies estimate one or 
two target values that summarize the desired state of the network (e.g., overall performance, minimum chlorine 
concentration, total flooding volume) with multiple decision and state variables. Nevertheless, some authors 
have used fewer variables to produce more outputs. For example, in WDSs, Lima et al.  (2018) and Meirelles 
et al.  (2017) estimated 118 pressure nodes with only known pressure at three nodes, while Kim et al.  (2019) 
predicted urban floods in multiple nodes with a single rainfall time series.

More inputs or outputs allow accounting for more complexity in the applications; nonetheless, increasing any 
of the two presents downsides. For the input dimensions, Razavi et  al.  (2012b) argue against using a large 
number of explanatory variables (>20) since the minimum number of training examples can be excessively large. 
On the other side of the model, the number of output variables also is recommended to be low. In theory, the 
number  of  output variables is not restricted; moreover, it is one advantage of ANNs over other RS metamodels 
as they can act as multi-output emulators. However, an ANN with multiple outputs will seek to find a compro-
mise between the errors of all the outputs, which might be detrimental for the overall accuracy of the MLSM. 
For this reason, an alternative approach is to train an ANN for each output variable. Since each objective has a 
metamodel, the accuracy increases but also does the training time. As noted by Andrade et al. (2016), considering 
one multi-output ANN or multiple ANNs with single output depends on the problem at hand. The size of the 
water network is the most important factor since, for small systems, the results with one or multiple ANNs are 
equivalent in performance. In addition, the choice of one model or the other should consider desired accuracy, 
available metamodeling time, and required speed of execution.

3.3.2. Metamodel Performance

Regarding the performance of a metamodel, multiple criteria can be considered; nevertheless, the most important 
ones are the computational speed and prediction accuracy. The computational saving is reported as a reduction 
of the time that the application would have taken by running the original model. This quantity was reported by 
nearly half of the reviewed studies and it was on average higher than 90%, most of the time over 98%. This is a 
satisfactory indication since the purpose of these SMs is to reduce the computational burden of intensive applica-
tions. Furthermore, we added the computational times of the original model and the metamodel when they were 
reported in the reviewed articles. Although these depend on multiple variables (e.g., number and quality of the 
processors, amount of RAM, input/output resolution), reporting computational times in absolute terms facilitates 
the comparison for individual applications. In most cases, the new running times were orders of magnitude 
shorter than those of the original models, justifying the use of metamodels. Nonetheless, around half of the stud-
ies did not report this saving. Although quantifying the computational saving usually entails additional effort, it 
is recommended for future researchers who use a metamodel to consider such an estimate. Since the design and 
training time could be longer than the expected saved time, having an estimate of the potential saving aids in the 
decision of making a metamodel.

In terms of prediction accuracy, researchers use multiple indicators to assess the degree of exactness of the ML 
algorithm to approximate the original model. These common metrics include root mean squared error (RMSE), 
Nash-Sutcliffe efficiency coefficient (NSE), mean absolute error, and Pearson correlation coefficient. This multi-
tude of metrics hinders a straight comparison between models or applications, but overall it is possible to observe 
highly accurate fittings between the metamodel and the original model. It is worth noticing that the metamodel 
will reflect reality as much as the original model is capable of doing so. Metamodels are second-level abstractions 
and therefore may only be as good as the original model in terms of accuracy.

In addition to the previously mentioned criteria, Razavi et  al.  (2012b) include development time, and Asher 
et al. (2015) add surrogate-introduced uncertainty as assessment metrics. For these criteria, seven of the reviewed 
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articles calculated or referred to the time it took to train the models and only five performed an analysis on the 
metamodels' robustness. Given the versatility and multipurpose nature of the SMs, there are other performance 
indicators, for example, ease of development, explainability, generalization, or re-trainability. Along these lines, 
the reviewed articles disregard these indicators since the development of the metamodel is specific for each case 
study and the implementation goes unnoticed. These indicators are secondary in comparison to computational 
saving and accuracy. Both metrics constitute the most relevant metrics used in the literature, including this review.

4. Current Issues in Metamodeling
Based on the current status presented in the previous section the following issues were identified.

4.1. Basic Applications

MLSMs have been used to tackle various issues, namely, optimization, uncertainty analyses, real-time applica-
tions, state forecasting, and aiding LFPB metamodels. Although these generally addressed relevant problems, 
each of the reviewed articles had a simple framing, that is, the inputs are few design or input variables (e.g., 
diameters, chlorine dosage, accumulated rainfall) and the outputs are usually summary values (e.g., critical pres-
sure, chlorine residual, flood volume). This approach is comprehensible for several reasons. First, most of the 
time the simplifications made still retain sufficient problem information to find an adequate solution. Second, this 
approach avoids problems related to high dimensionality in the inputs and outputs. Lastly, it allows researchers to 
easily explain and communicate their approach.

Although this approach is effective, it could end up being simplistic for the complexity of water networks. 
Considering a small set of interventions may discard types and combinations of interventions (e.g., allowing not 
only for change in diameters but also adding pumps or doing both at the same time). Furthermore, other changes 
in the network or their components, or even interactions with other city systems could be explored. However, 
these are rarely considered since they represent a challenge for traditional RS metamodels; current MLSMs are 
very specific to the cases in which they are trained on. Because of this, new approaches are required, mainly in 
optimization and uncertainty analysis.

As can be seen in Section 3, the most popular application for MLSMs is optimization. In this application, multi-
ple authors (Beh et  al.,  2017; Doorn, 2021; Kapelan et  al.,  2005; Razavi et  al.,  2021) have remarked on the 
importance of considering new objective functions. For some of these, it is preferable to surrogate the objective 
function directly rather than surrogating the system variables used to compute the objective function value. For 
example, robustness for designing water systems, especially under deep uncertainty, requires considering multi-
ple scenarios for which is not possible to assign a probability or ranking. This analysis is desirable because water 
networks are systems with long lifespans of service. Nonetheless, objectives like robustness (Beh et al., 2017) and 
sensitivity (Razavi et al., 2021) tend to be more computationally intensive; therefore, their need for metamodels 
increases.

A relevant missing layer of complexity is uncertainty analysis, especially for UDSs. The current practice to design 
the system is to use a single benchmark storm and assume it is representative of the future rain events the system 
will face. However, two UDSs with similar performance during a design event could behave very differently for 
other rainfall patterns. According to Ng et al. (2020), the final design considering a single strong storm does not 
guarantee optimal performance during long mild storms and for a succession of frequent small events. Naturally, 
the authors recognize that performing a design considering multiple events would increase the computational 
effort but also suggest the implementation of SMs for dealing with this difficulty.

4.2. Case Studies: Lack of Benchmarking With Complex Networks

Benchmark water networks are effectively open access datasets that contain the information necessary to create a 
simulation model of a system (network topology, system components with related characteristics, water consump-
tion, rainfall, etc.) and other related information about the analyzed benchmark problem (e.g., information about 
cyber-attack events analyzed or surveillance data). Here, it is necessary to distinguish between synthetic and real 
data. Even though the synthetic data allow to implement and compare algorithms, they may not reflect all the 
processes that real data can account for. Benchmarks are used as reference points to compare the performance of 
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models and algorithms. Without benchmark networks it is more difficult to compare the performances of differ-
ent metamodeling approaches. Consequently, it is hard to establish what techniques work better than others and 
how to improve these.

There is a clear difference between types of infrastructure in the number of used networks since benchmark 
networks in UDSs are not as available as in WDSs. In water distribution, there is a set of water networks called 
Water Distribution System Research database. The ASCE Task Committee on Research Databases for WDS 
created this database which is hosted by the University of Kentucky (2013). There are benchmarks for multiple 
problems in categories such as network expansion, operation, and design. This allows modelers to easily obtain 
data for the development and comparison of algorithms in networks of different sizes. On the other hand, there 
is no consolidated set of benchmark networks for UDSs, let alone an entire structured database. This is attribut-
able to factors such as the difficulty of taking measurements in sewer environments and, according to Pedersen 
et al. (2021), the little interest of utility companies in making the datasets publicly available. Consequently, all 
the applications on UDSs were entirely developed for real cases, which is positive for the bridging between the 
theoretical approaches and the practice, but hampers the development of algorithms on the systems, due to the 
difficulty of comparison and the process of accounting for particularities of each system.

Regarding the size of the case studies, most of the systems in which the MLSMs were used were medium or 
small. Metamodels are most useful in problems with large computational times, that is, in applications with large 
water networks. In the case of WDSs, a common practice to test the effectiveness of a method is developing a 
metamodel for a small benchmark network and then using the same steps for creating a metamodel in a large real 
case. Even though this practice is reasonable, it assumes the response surface of both networks is comparable 
or similar. However, this is not necessarily the case as reported by Andrade et al. (2016) who noted contrasting 
accuracies between large and small case studies when training metamodels. Exploring solution spaces is already 
an issue when using metamodels, independent of the network, as reported by Broad et al. (2005), but analyzing 
large networks represents additional challenges that increase in complexity in a nonlinear manner.

4.3. Machine Learning and MLP Limitations

Although the MLP is not the only ML technique, it is the most popular one among MLSMs. Given that its 
structure allows it to address multiple types of problems, it has become a one-size-fits-all model. Nevertheless, it 
presents multiple issues, namely, the curse of dimensionality, black-box nature, and rigid structure. These three 
shortcomings respectively (a) hinder their use for high dimensionality problems, (b) limit confidence in their 
approximations, and (c) prevent the transferability of trained models across different case studies.

4.3.1. Curse of Dimensionality—Metamodeling Time

The curse of dimensionality indicates that for a certain level of accuracy, there is an exponential increase in the 
required amount of data as the dimensions of a problem increase (Keogh & Mueen, 2017). Naturally, this problem 
can be addressed by reducing the number of input dimensions (i.e., fewer explanatory variables) using prioriti-
zation based on experience, knowledge of the task, or some automatic procedure such as principal component 
analysis (PCA). However, reducing the number of input variables may not be a satisfactory solution for real-world 
problems as it could exclude regions of the search space (Maier et al., 2014). Given this situation, improved meta-
modeling could help approximate complex response surfaces while retaining all the regions of the solution space.

The SMs have worked adequately so far but future metamodels are likely to increase in complexity. This is either 
due to an increase in the complexity of UWNs or an increase in the number of input (more design choices/explan-
atory variables) or output (more objectives) dimensions. Both drivers increase the size of the metamodels and 
consequently the number of training examples. Since the original models are already expensive to run, creating a 
large training dataset might be unfeasible in the first place. The metamodeling time would become the obstacle. 
This time is usually disregarded since some authors consider it not relevant compared to the posterior compu-
tational gain in the application. Nevertheless, this time is important in high dimensional search spaces, as noted 
by Razavi et al. (2012b), since the number of design samples required to train the metamodel could be already 
prohibitively large.
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4.3.2. Black Box Nature—Deterministic and Obscure Outputs

Two of the most recurrent criticisms of ML models are their lack of uncertainty estimation and the lack of their 
transparency, that is, little or no ability to explain the results they obtain. Both are overlooked aspects of meta-
modeling in the context of UWNs. The MLSMs return a unique answer without uncertainty bands or possibilities 
to explain the combination of inputs that drove to the final outputs. For SMs, these issues are not major concerns; 
nevertheless, their inclusion aids the applications in which the SMs are used.

Regarding uncertainty estimation, a few articles (Raei et al., 2019; Rosin et al., 2021; She & You, 2019; W. Zhang 
et al., 2019) estimated the effect of including a metamodel in their respective application. Not accounting for this 
uncertainty can lead to bad approximations of the actual response surface and suboptimal or unfeasible solutions. 
Authors have dealt with this difficulty by performing sensitivity analysis (e.g., Raei et al., 2019) or training multi-
ple models in parallel with slightly different datasets and averaging the outputs of the models. For example, Rosin 
et al. (2021) developed a committee of ANNs with this approach. However, this analysis requires extra consider-
ations which may increase the metamodeling time. Some guidelines have been given for the pretreatment (Broad 
et al., 2015) and posttreatment (Broad et al., 2005) of these SMs but there is still a lack of focus on improving 
the management of uncertainty during treatment, that is, developing a model that directly considers uncertainty. 
Algorithms in the branch of robust ML may contribute to aid in the direct incorporation of metamodel uncertainty 
quantification whether it comes from the data (Wong & Kolter, 2019) or the model (Loquercio et al., 2020).

Although robust learning allows estimating the uncertainty of a result, it cannot explain why. This is the area of 
explainable ML. For water networks' SMs, being able to explain the results would help to understand the relation-
ship between the decision variables and the objective function for the particular network that is being surrogated. 
For example, understanding which pipes (or a combination of them) play a key role in the resilience or flooding 
in a water network. There is a growing interest in the AI community toward explainable models to gain insights 
(Bhatt et al., 2020), ensure scientific value (Roscher et al., 2020), and develop trust in the outcomes of ML models 
(Dosilovic et al., 2018).

4.3.3. Rigid Architecture—Specific Case Use

One disadvantage of MLSMs is the high degree of specialization in the trained metamodel. As seen before, these 
metamodels achieve high accuracies in the data for which they were trained. However, once they are trained, they 
become specific and rigid. Their structure limits its use for other tasks in the same system or similar applications 
in other water networks. The metamodel can be run several times on the same water network but doing the same 
operation in a different system requires a new metamodel, which should be trained from scratch. This is not desir-
able since the training process could consume most of the computational budget, especially in large case studies.

One solution is to leverage the training process of other models with transfer learning to decrease the number 
of examples to train a new model. Situations for which transfer learning is desirable are changes in the water 
network composition, similar system metamodeling, and change in the behavior of the surrogated system. Chang-
ing components of the system accounts for scenarios when components (e.g., pipes, pumps, or tanks) are added 
to or removed from the system. Even though the system changes, it is still related enough to leverage a pretrained 
model on that water network. In a similar way, two networks can share enough resemblance (e.g., a subsystem of 
another network, two skeletonized networks, or two networks with similar topology or geography) that it makes 
sense to use an SM from one as a pretrained SM for the other. Likewise, the UWN can change so that the current 
metamodel no longer applies; this challenge is also known as concept drift.

4.4. Gaps in Knowledge

Based on the above critical analyses of metamodels and the issues identified, the key gaps in knowledge are 
summarized here:

1.  Lack of depth on optimization of complex objectives and uncertainty analysis for water networks using 
MLSMs. There are still additional and more complex objectives that can be optimized with the aid of MLSMs, 
for instance, robustness and interventions under deep uncertainty.

2.  Lack of benchmark water networks, especially for UDSs and complex cases. First, this hinders the develop-
ment and comparison of algorithms across studies, and second, these metamodels still lack research on the 
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changes of the response surface with the increase in the complexity of the water system, especially for large 
systems.

3.  Current MLSMs' limitations prevent advanced metamodeling applications. MLSMs can easily grow in size 
when the complexity of the response surface increases, most of the applications do not consider the uncer-
tainty added by the metamodel, and its structure makes it rigid and not (re)useable for other cases.

5. Research Directions
Based on the identified gaps, three main lines for future research are suggested. They consider the current and 
future needs in applications on UWNs as well as the potential of MLSMs to meet them.

5.1. Advanced Applications

The current needs for adaptable water infrastructure are based on drivers such as growing demographics, urbani-
zation, and climate change. As indicated in the UN-Water report “Water and Climate Change”, taking adaptation 
and mitigation measures benefits water resources management and improves the provision of water supply and 
sanitation services. In addition, it contributes to combat both causes and impacts of climate change while contrib-
uting to meeting several of the Sustainable Development Goals (UNESCO, 2020). In UWNs, multi-objective 
optimization and uncertainty analysis play a key role in the search for adaptation measures and decision making, 
and MLSMs can help improve and accelerate their implementation.

Optimization applications will increase in the number and complexity of the inputs and outputs. Increasing 
the number of inputs, that is, decision variables and design interventions (e.g., nature-based solutions), allows 
to explore more alternatives, consider uncertainty, or assess multiple scenarios. On the other hand, the output 
of the optimization is leaning toward complex objectives such as multi-objective robustness (e.g., Kasprzyk 
et  al.,  2013), multiple technical performance metrics (e.g., Fu et  al.,  2013), pro-active maintenance (Kumar 
et al., 2018), complex water quality indicators (Jia et al., 2021), and human values (Doorn, 2021). Multi-objective 
optimization allows identifying solutions balancing trade-offs among objectives, for instance, cost and resilience 
(Wang et al., 2015). Naturally, when considering more objectives, the computational load increases, especially 
when those objectives are computationally expensive (e.g., robustness). In previous phases of research on opti-
mization, metamodels were seen as an aid, but as optimization gradually evolves to consider additional and more 
complex objectives, metamodels become indispensable (e.g., Beh et al., 2017).

Regarding uncertainty analysis, it is necessary to have fast, reliable, and flexible metamodels that can adapt to 
the multiple conditions in which the systems are evaluated and under multiple criteria. Traditionally, simplified 
models have been preferred for this task; however, RS metamodels become appealing alternatives when dealing 
with more complex objective functions and original models. Metamodels should play a key role in the devel-
opment of frameworks for robustness-driven design. This application has major implications for UDSs, since 
no MLSM study focused on uncertainty analysis, even when the evidence suggests the criteria for the design 
of these systems is not necessarily robust (Ng et al., 2020). Although uncertainty analysis entails an intrinsic 
increase in the computational effort, the benefits they bring outweigh the challenges it represents. According to 
the IPCC (2021b), UDSs are expected to receive more intense rainfall events based on climatic projections but 
considerable uncertainty remains.

The community should further research combined RS-LPFB applications, to further integrate MLSMs with phys-
ically-based models for accelerating the underlying hydrodynamic engines. Likewise, physically-based models 
could be hybridized by incorporating an ML model that corrects the outputs of the original model for higher 
accuracy accounting for the real behavior of the system. Looking ahead, ML algorithms could detach from the 
physically-based model and replace its functioning with a cheaper version to run based on increasingly available 
real-world data (e.g., digital twins for UWNs (IWA, 2021)).

5.2. Benchmarking and Large Network Behavior

Maier et al. (2014) had already identified the lack of benchmark models and determined the characteristics and 
recommendations of valuable benchmarks, including nontrivial real-world problems with a representative range 
of decision problems characteristic of the water systems. The review shows that UDSs lack such benchmarks. To 
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overcome this issue, we recommend to implement a similar approach to that of the Kentucky database, with appli-
cations such as real-time control, outflow, and flood prediction. For WDSs, it is appropriate to enlarge the current 
databases to account for new objectives, interventions, performance metrics, and real case examples. Regarding 
metamodels, the benchmarks should also include a reference model to compare computational saving and accu-
racy, with suggested performance metrics, such as NSE, RMSE, or the number of model executions. Ideally, the 
benchmark could include an already running metamodel in practice, together with relevant information provided 
by their developers and users.

As Goodfellow et al. (2016) indicate, having benchmark databases with real cases is one of the reasons why DL 
has recently become a crucial technology in several disciplines. In AI, datasets went from hundreds or thousands 
of examples in the early 1980s up to datasets with millions of examples after 2010. Due to the current increase 
in connectivity and digitalization of our society, a large amount of ML algorithms can be fed with the informa-
tion they require to achieve high accuracy. Since the ML and DL models are dependent on their training sets, 
their success goes hand in hand with the size and quality of available datasets, preferable with real information. 
The UWNs' research community is moving the first steps in this direction. One example concerns the UDS of 
the Bellinge dataset (Pedersen et al., 2021), a suburb to the city of Odense, Denmark that is now available for 
“independent testing and replication of results from future scientific developments and innovation within urban 
hydrology and urban drainage system research”. This dataset includes 10 years of asset data (information from 
manholes and links), sensor data (level, flow, and power meters), rain data, hydrodynamic models (MIKE urban 
and EPA SWMM), and other information. Similar examples are needed to enable the exploration of metamodels' 
responses in networks of different characteristics (e.g., size, connectivity, slope).

As for the size of the networks, further research is required to assess the response surface of large networks. 
Specifically, new benchmark datasets should also include complex network cases for their study. These can be 
large networks or medium-size cases with high complexity. Considering that the larger the network the higher 
the required time to generate and use the training data, significant efforts are required on this matter. Metamodels 
could aid in reducing the computational times that obstruct studying the response surface of large and complex 
systems. Nonetheless, new metamodels are required to account for the complexity of these cases and use as few 
training scenarios as possible.

5.3. Unexplored Advanced Metamodeling Technologies

ML is one of the fastest growing fields. However, the field of MLSMs for UWNs has not yet considered the new 
tools and algorithms recently developed by researchers in fundamental AI or other applied disciplines. These 
advancements include DL architectures that express assumptions of the data in the ANNs for robust, interpret-
able, and transferrable models. This new wave of AI formalizes the attempts to add knowledge about modeled 
processes as well as extract knowledge from the results.

5.3.1. Inductive Bias—Deep Learning

The curse of dimensionality can be addressed by including inductive biases. Following the work of Battaglia 
et al.  (2018), we define the inductive bias as the “expression of assumptions about either the data-generating 
process or the space of solutions”. Inductive bias can be seen as well in the architecture of the model by lever-
aging the inner structure of the data, which could be spatial, temporal, or relational. Exploiting the structural 
information of the data can reduce the number of parameters, and consequently the required training examples by 
parameter sharing and sparsity of connections. In this way, it is possible to counteract the tendency of ML models 
to grow in size and data requirements. The data structure gives information about the similarity of the data points 
in a relevant dimension (e.g., distance, time, connection). In that sense, similar data can be treated analogously 
(parameter sharing) and dissimilar data can remain unrelated (sparse connectivity).

Inductive bias nudges a learning algorithm to prioritize some solutions over others. Ideally, involving inductive 
bias improves the search for solutions without compromising the performance, as long as the right inductive bias 
is chosen; otherwise, it can lead to suboptimal performance (Battaglia et al., 2018). For example, when surro-
gating the pressure at the nodes of a WDS with a neural network (e.g., Broad et al., 2005; Meirelles et al., 2017) 
there are multiple metamodel solutions, that is, architectures with specific parameter values that can approximate 
the response surface described by the training data. Nevertheless, when adding inductive bias, the set of possible 
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solutions shrinks to a subset of solutions that comply with predefined characteristics, for example, having graph 
structure, following physical laws, or agreeing with measurements.

Deep learning is a subset of ML algorithms, mainly neural networks, that leverage inductive biases. The most 
common inductive bias in these algorithms is hierarchical processing (Battaglia et al., 2018). That is, the compo-
sition of elementary components (i.e., layers) to discover more complex interactions in the input data. The typical 
elementary components in DL are fully connected, convolutional, recurrent, and, more recently, graph layers. The 
fully connected layers have a weak inductive bias, while each of the remaining exploits some relation or invari-
ance in the data. The convolutional layers typical of convolutional neural networks (CNNs) leverage the regular 
structures in grids, such as images, and connect information according to Euclidean closeness. RNNs consist 
of recurrent layers which consecutively process data sequences, such as time series, and connect information 
according to sequential similarity. Graph neural networks (GNNs) extend DL methods to non-Euclidean data, 
such as graphs, where entities are connected by relations or, in graph terminology, nodes connected by edges.

It is possible to use combinations of layers in problems that contain more than one structure such as in the case 
of UWNs, which have temporal, spatial, and topological variability. An example of the application of these in a 
civil infrastructure was developed by Sun et al. (2020) who included the topological and temporal relations in a 
road network for traffic forecasting. This infrastructure has multiple parallels with UWNs, including its graph 
connectivity, spatial-temporal variability, and human interaction.

Given their relational inductive bias, the newly developed GNN appears as a suitable DL architecture for appli-
cations in UWNs, since the natural structure of these systems can be represented using a graph. Researchers 
have already exploited graph theoretical concepts of UWNs (Deuerlein,  2008; Herrera et  al.,  2016; Meijer 
et  al.,  2018,  2020). Furthermore, some applications of GNNs in UWNs already exist. In WDSs, Tsiami and 
Makropoulos (2021) employed this architecture for cyber-physical attack detection using a graph created from 
sensors in the water system. Xing and Sela (2022) used the GNN to create a model for state estimation based on 
the layout of the WDS. Although showcased for simulated case studies, the ML models in these articles have been 
developed for usage in real scenarios. Therefore, these applications are not considered as surrogate models. In 
UDSs, Belghaddar et al. (2021) applied GNNs to complete missing values in databases of wastewater networks. 
Given its novelty and potential, further research on the GNN architecture is recommended to establish the bene-
fits and limitations of this approach for surrogating UWN models, together with comparisons against already 
established MLSMs, for example, fully connected neural networks.

5.3.2. Third Wave of AI

The US Defense Advanced Research Projects Agency (DARPA, 2016) separates the different phases of AI into 
three waves. The first wave refers to the past approaches and the birth of AI, the second wave is the current and 
popular phase of high-performing black boxes, and lastly, the third wave is proposed for the future of AI with 
models leaning toward robustness and explainability.

Robustness refers to the ability to include uncertainty in the calculation of the outputs of a model, in this way 
the user receives both a deterministic answer and a range of possible values, usually represented by an expected 
value (e.g., mean) and a measure of uncertainty (e.g., variance). According to Gawlikowski et al. (2021), meth-
ods for estimating uncertainty in ANNs can be split into four types: single deterministic methods, Bayesian 
methods, ensemble methods, and test-time augmentation methods. Each of these lines offers an estimation of the 
degree to which the neural network is certain of the output. This aspect is relevant when quantifying how likely 
it is for the metamodel to detach from the response surface which may cause, depending on the application, to 
omit optimal solutions, miss outflows, or underestimate floods. Recommended methods for implementation on 
MLSMs include Bayesian neural networks (e.g., Zhu & Zabaras, 2018) or single deterministic methods, the latter 
is recommended based on the low additional computational burden they include.

Research in explainability has also gained popularity in recent years. In the case of MLSMs, an explainable 
model would improve understanding of the response surface of the original model or the solution space. An 
improved comprehension of the response surface would facilitate obtaining a better insight on the behavior of 
different algorithms (e.g., evolutionary methods); ultimately, contributing to what type of heuristic is best suit-
able in each application in water network which is a topic in which we have still very little understanding of 
(Maier et  al., 2014). On the other hand, solution space explanation would allow gaining insight about which 
components in the real system affect its performance, but most importantly, how they affect it. This could drive 
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the interventions in the physical water network to improve its performance. For example, Tsiami and Makropou-
los (2021) were able to perform a removal analysis to quantify the contribution of each considered component 
(e.g., valves, tanks, and pumps) of the physical water network to the model's performance using GNNs. Since 
the GNN structure resembles the underlying system, it is possible to relate events on the metamodel to the actual 
system.

Although GNNs' outputs remain hardly explainable, there are efforts to generate explanations of them, for exam-
ple, GNNExplainer (Ying et al., 2019). As noted by Battaglia et al. (2018), “the entities and relations that GNNs 
operate over often correspond to things that humans understand (such as physical objects), thus supporting 
more interpretable analysis and visualization”. In this way, GNNs are not entirely explainable but they are more 
explainable than other DL architectures.

5.3.3. Transferrable AI Models

The reviewed studies in this article presented a methodology for training a metamodel to surrogate a computa-
tionally expensive model. Although the methodology is transferrable, meaning the steps can be followed and 
repeated to obtain a similar metamodel in another case study, the metamodel itself cannot be transferred to a new 
case study. This implies that all the metamodeling time spent on training is specific for every case. Transferrable 
models would allow training the metamodel with data not only from the case study at hand but also from other, 
real and synthetic cases. For example, from the previously discussed benchmark datasets. This increase in availa-
ble information to train on is expected to improve the performance of the metamodel or even allow it to exist for 
cases in which data is scarce, for example, very computationally expensive UWNs in which training examples are 
costly. Through transferrable models, the authors may develop not only methodologies but also pretrained SMs, 
which can be adapted to other cases lowering the amount of training needed for a new network.

Once again, inductive bias plays a role, since the assumptions added to the algorithm delimit a smaller solution 
space, the ML models can be used as pretrained solutions for other tasks. In the AI domain, this practice is 
referred to as transfer learning. Transfer learning is mainly implemented for specialized DL methods, that is, 
architectures with strong inductive bias. It has been successfully implemented for applications such as diagnosis 
of medical images using CNNs (Vogado et al., 2018), prediction of air pollutants using RNNs (Hang et al., 2020), 
and bioinformatics as well as social-network classification tasks with GNNs (Verma & Zhang, 2019), among 
others (Weiss et al., 2016).

For transferrable SMs in UWNs, GNNs seem to be a natural option based on the agreement between the structure 
of the real system and the inductive bias corresponding to the GNNs. In an analogous way that CNNs learn filters 
that are independent of the input (i.e., images), GNNs could learn filters that can be used across cases (e.g., water 
networks). Adding the structure and physics to the metamodel allows including more domain knowledge in the 
ANN which improves generalization capabilities. A relevant example of a model like this is the mass conserving 
RNN for rainfall-runoff modeling developed by Hoedt et al. (2021) in which the parameters used in the model 
resemble the mass conservation principle, which increased the accuracy and improved the model's interpretabil-
ity. At the same time, transferability opens the door to new applications, such as online optimization of interven-
tions, by learning the effect of changes in the topology and components of the network.

Using physical information, such as the knowledge embedded in the hydrodynamic models, also allows generat-
ing hybrid and general models. These models allow bridging the best of two domains: physical-based and data-
driven. On this: Vojinovic et al. (2003) indicated that “the major advantage of integrating both a deterministic 
(numerical) model and a stochastic (data-driven) model over using the stochastic data-driven model alone is 
that the already available deterministic model quality is exploited and improved, instead of starting from scratch 
and throwing away all knowledge.” Furthermore, combining the domain knowledge with transferable models 
opens the possibility of creating general models. This type of model detaches from the training set in which it 
was trained so that its predictions can be applied in unseen scenarios. Following this trend, Kratzert et al. (2019) 
developed a recurrent ANN trained on basins from a continental dataset using meteorological time series data 
and static catchment attributes, and they were able to outperform hydrological benchmark models calibrated on 
individual catchments. The analogous application in UWNs would be an ML-based hydrodynamic model trained 
on a set of distribution or drainage systems which can generalize to independent unknown water networks.
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5.4. Summary of Research Lines

Based on the above research directions, the recommendations for future research lines are summarized here:

1.  We recommend additional efforts in two areas in which metamodels will be increasingly required for adapta-
tion and mitigation measures on UWNs: multi-objective optimization and uncertainty analysis

2.  We recommend consolidating valuable benchmarks that include large, nontrivial, and real-world problems 
with a representative range of decision problems characteristic of the UWNs along with reference models and 
performance metrics to compare computational saving and accuracy

3.  Given the growth and resource availability in AI, we recommend to explore latest ML learning algorithms that 
are capable of expressing assumptions, that is, inductive bias, of the systems and data, as well as methods that 
increase robustness, interpretability, and transferability

6. Conclusions
This work reviews the current state of the application of MLSMs in urban water networks and proposes promising 
forward directions based on recent and successful developments in ML.

In terms of purpose, the main uses of MLSM in UWNs are optimization and real-time problems. Even though 
MLSM accelerate optimization algorithms by increasing the speed of individual iterations, these algorithms have 
multiple disadvantages. The training process can be time-consuming and the required size of that dataset cannot 
be known a priori as it depends on the complexity of the input-output mapping. For case study type, the UWNs in 
which MLSMs are applied vary in size and type. For analyzing the complexity of the case studies, we preferred 
to consider WDSs and UDSs separately. On the one hand, WDSs articles follow a clear pattern: development and 
implementation. The former use medium or small benchmark networks, and the latter a large real network. On the 
other hand, UDSs do not count with applications on benchmark networks due to their lack of availability. In terms 
of the metamodel, except for some applications of SVMs or RNNs, the vast majority of applications used MLP 
as SM. This method has been successfully implemented due to its high accuracy and flexibility regarding the 
inputs and outputs that it can map. Nevertheless, the MLSMs present multiple drawbacks that may even harm the 
development of an application. It is advisable to consider if an MLSM is worthwhile before deciding using one.

Based on the reviewed literature, the following issues and gaps in knowledge were identified in terms of limita-
tions of existing MLSMs. These problems include limitations on the MLSMs, lack of depth in current applica-
tions, and insufficient benchmarking datasets.

1.  Regarding metamodels' limitations, current MLSMs have the following issues: they can easily grow in size 
when the complexity of the response surface increases, most of the applications do not consider the uncer-
tainty added by the metamodel, and its structure makes it rigid and not (re)useable for other cases.

2.  In terms of applications, optimization is where most of the SMs are currently used; nevertheless, there are still 
additional and more complex objectives that can be optimized with the aid of MLSMs, for instance, robust-
ness and interventions under deep uncertainty.

3.  On case studies, the reviewed articles denote two main issues: first, there is a lack of UDSs benchmarks, which 
hinders the development and comparison of algorithms across studies, and second, these metamodels still 
lack research on the changes of the response surface with the increase in the complexity of the water system, 
especially for large systems.

The following research directions are suggested to address the above key gaps in knowledge:

1.  Regarding metamodeling methods, further research is required on advanced metamodeling techniques that 
include: inductive bias, robustness, and transferability. The notion of inductive bias allows leveraging prior 
information to reduce the required training samples. Examples of this bias include adding physical laws, 
coherence with sensor data, or considering the underlying structure of the data—space, time, or topology—
In this regard, the recently developed GNNs resemble the already existing architecture of the urban water 
networks and offer an useful inductive bias to consider in the metamodels. Furthermore, the new approach for 
AI models is to focus on the robustness and explainability of the models which offer insight into the applica-
tions and opportunities for improvement in the actual systems. Moreover, implementing the new architectures 
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of ML as an SM would allow transfer learning, which represents the ability to use pretrained models and save 
computational budget

2.  On applications, additional efforts are encouraged in two areas in which metamodels will increasingly be more 
required: uncertainty analysis and multi-objective optimization, especially when robustness metrics are used 
as optimization objectives. Further research is required on other less developed applications, namely, real-time 
predictions, state estimation, and to a lesser extent, LFPB complements. These applications have been mini-
mally explored and most of them have only been used for a specific type of water network

3.  Regarding case study type, it is crucial to develop benchmark UWNs, especially of UDSs, and complex 
networks. This data will facilitate training, testing, and comparing new metamodels. These new benchmarks 
could incorporate information on leakages, demand patterns, cyber-attacks, rainfall, or surveillance data as 
well as performance metrics as reference points to compare performance

Exploring the potential of MLSMs for approximating UWNs' components and correcting predictions with real 
data can lead to independent ML models of the water networks that leverage the physical domain knowledge and 
the measurements. New MLSMs are encouraged to leverage the inductive bias offered by the increasing data to 
help UDS and WDS operators. The new advancements in ML have great potential to advance surrogate modeling 
for UWNs and strengthen its application in practice. Water network modelers can speed up calculations for larger 
and more complex cases, being able to design more robust and overall better urban water systems.
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No experimental data or code were produced for this manuscript.
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