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Geothermal sweetspots identified 
in a volcanic lake integrating 
bathymetry and fluid chemistry
Maren Brehme  1,2*, Ronny Giese1, Lily Suherlina1 & Yustin Kamah3

We investigate fluid pathways beneath volcanic lakes using bathymetry and geochemical 
measurements to locate best-possible drilling sites. Highly permeable structures, such as faults, 
provide fluid channels that are the most suitable access points to the geothermal resource. Accurate 
mapping of these structures therefore guides the successful targeting of wells. Lakes, rivers or ocean, 
can hide surface footprints of these permeable structures, such as in our case beneath Lake Linau. 
High-resolution bathymetry identifies linear and conical discontinuities, which are linked to offshore 
tectonic structures as confirmed by surrounding outcrops and hot springs. Geochemical measurements 
document inflow of hot saline acidic water into the lake verifying bathymetry-located highly permeable 
structures. Integrating onshore well data, our bathymetry and chemical results locates an ideal drilling 
site into the geothermal reservoir beneath the western shore line of Lake Linau.

Where to drill? This is the principle question arising when searching for an efficient access to subsurface 
geo-energy resources. Fluids in geological media flow along highly permeable fluid pathways, which are the 
key target for geothermal energy. These flow pathways can be faults, fractures or pore-throats. From wellbore, 
micro-earthquake and core data we know that the flow pathways are spatially correlated permeability structures1. 
This is true across five orders of magnitude in scale length from cm to km1. Available techniques to locate these 
structures have to be improved because only ~40% among these geothermal production wells perform above the 
expected well capacity2.

In geothermal fields, subsurface structural setting is identified by fault traces, hot springs or gas emanations at 
surface. Fluid discharge is an indicator for highly permeable zones at depth. These zones can be classified based on 
seismic interpretation of fault related, intrusion related or pipe related systems3. Fluids migrate in these systems 
bypassing the pore-network and sealing layers. Hot springs occur in specific structural settings along the faults4: 
at fault terminations, fault overlaps, fault intersections and topographically visible fault traces. The increased per-
meability is located in the damage zones of these settings5 due to enhanced deformation and instable geometry6. 
In the Taupo Volcanic Zone, e.g., fluid flow is mainly associated with fault step-overs and their linking faults7. 
Nevertheless, permeability can even vary within a single fault zone. This is because fault zones consist of two 
parts: the fault core with lower (matrix) permeability and the damage zone with higher (fracture) permeability8.

Mapping tectonic structures and fluid discharge onshore has been done mainly by structural geological map-
ping9–12, remote sensing13,14 and/or geophysical measurements15,16. However, using these approaches for offshore 
structures is not practical due to limited access to sea floor. Here, bathymetry is the most practical approach 
worldwide. Mapping seafloor morphology and therefore identifying tectonic structures has been done using 
bathymetry for more than 50 years now17. In the oil and gas industry, bathymetry is a well-proven tool to also 
detect hydrocarbon seepage at the seafloor18,19. At open sea, large faults have been characterized using this 
approach, e.g. off Portugal20 and in the Marmara Sea21. Bathymetry allows mapping the underwater morphol-
ogy22,23, specific faults24,25, caldera structures and mud volcanoes26,27 under water. Furthermore, this approach 
allows identifying tectonic structures with enhanced fluid discharge under lakes28,29. However, bathymetry has 
not been yet used for mapping of sea bottom fluid discharge from a geothermal reservoir.

Seepage structures are described as pockmarks in lakes or subsea. Pockmarks are near-circular craters or 
depressions of various size and depth30,31. Their size range between 1–700 m with a depth range of 1–45 m, being 
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much wider than deep. Pockmarks are known to be associated with fluid discharge, like gas emanations and warm 
water outflow30,31. Their relation to biological, mineralogical or physicochemical characteristics has been studied 
at different locations on the earth32, e.g. in Lake Constance they represent collapse structures formed by blown 
out material33. Pockmarks also show increased temperatures due to discharge of warm fluids34. They can also be 
controlled by tectonic structures or sea bottom current35.

The study site we chose to test the idea of mapping sea bottom geothermal fluid discharge is at Lahendong, 
which hosts a producing geothermal field on the Indonesian island of Sulawesi. Previous studies and personal 
communications with local inhabitants show, that an acidic volcanic lake in the middle of the geothermal field 
masks faults and fumaroles36,37. Furthermore, the most productive wells in the field penetrate into a reservoir 
compartment beneath this lake. However, onshore outcrops or hot springs are not sufficient to efficiently char-
acterize the reservoir beneath the lake, which makes it difficult to determine future drilling targets. To tackle this 
issue, we used bathymetry and geochemical measurements to identify and characterize permeability structures 
of the geothermal reservoir hidden beneath the lake.

We carried out a ten-day survey on the 600 × 800 m large Lake Linau in the Lahendong geothermal field. The 
bathymetry survey was carried out using a Lowrance Elite TI 7 from Navico with CHIRP sensor installed on a raft 
driven in circles towards the middle of the lake. Geochemical measurements were done at 52 locations in the lake 
using a CastAway-CTD logger from SonTek. Four selected profiles are presented in this paper.

Results from our study show deep holes at the lake bottom. They are linked to known faults from previous 
studies and newly discovered faults in this study. Lineaments link fault outcrops onshore, hot springs on fault 
intersections and the deep holes offshore. The deep holes are located at typical ‘fault intersections’4. Geochemical 
data along and across these faults identify inflow of hot saline acidic water into the deep holes. This leads us to 
the conclusion that fault compartments have an increased permeability at the deep hole locations. Combining 
bathymetric and geochemical data, we were able to distinguish between permeable and impermeable fault com-
partments and relate them to productivity of geothermal wells. Such information is indispensable for a deep 
understanding of the behavior of the geothermal system and therefore its sustainable usage.

Available Knowledge About The Reservoir Before The 2018 Survey
The Lahendong geothermal field (LHD) has been producing steam and brine since 2001. The average permeabil-
ity of the volcanic reservoir rocks is low with values from 10−14 to 10−15 m2. From 40 wells, 12 hit highly permea-
ble zones and are sufficiently productive. The highest well productivities are from two wells targeting a reservoir 
beneath the caldera lake Linau. These wells (LHD 23 and LHD 28) produce 240 °C hot brine with a pH of 3 at a 
flow rate equivalent to 20 MWe. Despite the close proximity, other wells are considerably less productive (Table 1, 
Fig. 1). This inhomogeneity in production performance is due to a local control on the fluid flow by fractures and 
faults36,37. Previous geophysical studies, i.e. MT, microearthquakes and gravity, do not resolve fracture or fault 
locations beneath Lake Linau but rather show e.g. less resistive structures overlain by conductors, interpreted as 
clay cap above a regional fluid up-flow structure38,39. Therefore, this area lacks a full understanding of fault and 
permeability distribution especially beneath the lake.

A priori knowledge on faults before the 2018 survey. Location of faults in the Lahendong geothermal 
field have been investigated in a number of previous studies36,37,40–42. Most obvious indicators for faults are their 
appearance in outcrops, topographical steps in the field and well data on geochemistry, productivity and tem-
perature. Hot springs often occur at intersections of faults, validating them as additional indicators for faults37.

The tropical environment of Lahendong with dense vegetation and high alteration rates allows only rare access 
to outcrops with fresh hard rock. However, data from 40 wells show indications for faults through strong differ-
ences in geochemical fluid properties, productivities and temperatures in close distance. Mainly two geochemical 
types of fluids are produced from wells, i.e. one highly saline (5–10 mS/cm) and one less saline (1 mS/cm). Wells 
producing highly saline fluids from below Lake Linau (LHD23, LHD28) are located only 300 m from a well 
producing low saline fluid (LHD5) (Fig. 1). An impermeable fault (N2) prevents mixing between those fluids at 
depth. Also, high productive wells and less or non-productive wells are in close distance but separated by faults: 

Well No
Productivity 
[MWe]

Well 
No

Productivity 
[MWe] Well No

Productivity 
[MWe]

1 0 15 5 29 0

2 0 16 0 37 3

4 7 17 7 38 7

5 5 18 7 39 0

8 5 19 0 45 0

9 0 20 0 47 7

10 5 21 0 48 7

11 5 23 20 49 0

12 5 24 0 50 to be tested

13 0 25 0 51 to be tested

14 0 28 20

Table 1. Approximate well productivities in the Lahendong geothermal field.
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While LHD 23 produces 20 MWe, LHD 19 is non-productive similar to the non-productive LHD 24 close to LHD 
28 producing 20 MWe (Table 1, Fig. 1). Additionally, temperature data from wells show strong drops from 310 °C 
to 160 °C across the fault N2 from LHD 23 to LHD 5, indicating a cold intrusion through vertical permeability in 
the fault. Thus, faults in the Lahendong area can be horizontally impermeable but permeable in vertical direction 
independent of fault type.

A comparison of fault locations with hot springs in the Lahendong area show that hot springs occur at typical 
structural settings4 (Fig. 1), i.e. fault tips (M11), fault intersections (M4, M10, M16) and along fault traces (M2, 
M3). Hot springs, which do not show a clear link to faults are assumed to be sitting on hidden faults.

The combination of previous knowledge on fault location and type suggests two faulting phases in the 
Lahendong area (Fig. 1). The relatively older one (Phase I) is situated in a stress field with horizontal σ1~355°. In 
this system, strike-slip faults strike 40° and have a left lateral movement also according to outcrop observations, 
e.g. slickensides. Step-over zones are observed, creating thrust faults at a right step-over and normal faults at a left 
step-over. This stress field is generated by two subduction zones pushing below North-Sulawesi from north and 
south. A second faulting phase (Phase II) is caused by upwelling of the regional crust due to heating and nearby 
volcanism. This stress-field with a vertical σ1 creates N-S or E-W oriented normal faults. Normal faults in both 
systems dip 70–90°, while thrust faults dip with ~40° and strike-slip faults are nearly vertical.

In spite of this comprehensive knowledge, the geothermal exploitation area especially beneath Lake Linau is 
lacking a detailed understanding of fault orientations and their permeability behavior. The reservoir beneath Lake 
Linau is still a blank area but of special interest because of its high productivity and exceptional fluid composition 
(highly saline and highly acidic), which brings challenges for a sustainable production.

The results of the study we report here clarify most of the open questions related to the poorly understood var-
iability in the productivity of geothermal wells and brings a detailed picture of the reservoir beneath Lake Linau 
including new target zones for wells.

Methods
Bathymetry. Bathymetry has been done using a Lowrance Elite TI 7 from Navico. The tool consists of a 
CHIRP (Compressed High Intensity Radar Pulse) sonar, GPS navigation and a multibeam echosounder with 
side-scan and down-scan imaging. The down-scan detects the depth at a single point and the side-scan captures 
information and views at each side of the boat.

Circles driven on the lake have a distance of 40 m and add up to a total length of 16.5 km, which is equal to 
15,000 measurement points (Fig. 2).

Instruments have been installed on a raft going in spirals on the lake with decreasing diameter to the lake 
center and a distance of approximately 40 m between the consecutive rounds. Certain areas were crossed with an 
additional finer mesh to get a more detailed data set.

Thereafter, data have been processed and transformed to x-y-z coordinates by Kriging analysis using 
ReefMaster by ReefMaster Software Ltd. Processed depth data achieve an accuracy of 0.5 m. 3D views of bathym-
etry data and fault locations have been achieved by self-written codes in Matlab.

Figure 1. Fault set-up in the Lahendong geothermal field, outcrop and well locations before 2018.
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Geochemical depth profiles. Chemical profiles have been logged using the CastAway-CTD logger from 
SonTek. The logger includes sensors for conductivity, density, temperature, pressure and GPS. It allows sampling 
at a 5 Hz sampling rate up to 100 m depth, translated to 15 cm sampling distance.

52 spots were sampled across the lake at 100 m distance from a raft on the lake. Three to four logs were run 
consecutively at the same spot. Logging is done while lowering the probe to the lake bottom and lifting it again 
with approximately 1 m/s. Sampling spots presented in this paper are two deep holes in the west, one spot in the 
center of the lake and one spot at the eastern shore of the lake (Fig. 2). The selected spots represent two geochem-
ically extreme pattern (G01, E3, E5) and one average pattern (E3) for this lake. Logs presented for one single spot 
show the most representative average pattern for that location. The whole dataset of 52 spots is topic of a subse-
quent manuscript in progress.

Data were extracted from the instrument using Castaway-CTD Software by SonTek. Plots of geochemical 
depth profiles were constructed from self-written codes in Matlab.

Results
Bathymetry. This is the first reported bathymetry survey for Lake Linau. Before, the depth of the lake was 
estimated to 10–12 m43. Its total depth ranges from 0.5 to 35 m. In general, the northern and eastern parts of the 
lake are shallower, with <10 m. Here, the lake bottom dips with ~2° towards the southwest. The southern and 
western parts dip with ~10° and have a maximum depth of 14 m (Fig. 3).

The main discovery of the survey were two 22 m and 35 m deep holes at the lake bottom near the western 
shore. The holes have a diameter of 20–40 m at the top and 4 m at the bottom, which indicates a slope of the 
conical walls of 34°. Side-scan images show that the holes are not filled by lake sediments and the walls are built 
up of the surrounding bedrock. In between the two deepest holes the lake bottom has several 14 m deep elliptical 
structures sitting on an alignment striking N-S. Further round-shaped depressions are 12 m deep in the southern 
part of the lake (Figs 3 and 4). We traversed the deeper structures several times with a denser net of raft trails to 
map them in more detail.

Side-scan images show the hole structures and lineaments at the lake bottom (Fig. 5). The deepest hole (loca-
tions 1 & 4) is imaged from east and west. The image shows the strongly dipping conical walls. At C11 the image is 
less clear but still shows the hole structure. The lake bottom here is covered by soft sediment (light ground color) 
transported in from hot spring discharge and surrounding alterations at M16. At location 2 a linear element is 
visible to the NE, which is assumed to be a fault structure. Also, at location 3 and 4 structures on the lake ground 
are visible related to fault lineaments shown in Fig. 6.

Especially the 3D presentation of the bathymetry data show lineaments at the lake bottom, assumed to be 
fault traces (Fig. 6). The two deepest holes and depressions in between sit on the most obvious lineament striking 
NNE-SSW (F1). In the deep hole C11, F1 meets with the strike-slip fault SS1 and the normal fault N1. In the 

Figure 2. Measurement set-up for bathymetry driven by the raft and geochemical depth profiles at sampling 
locations G01, C11, E3, E5 and hot spring locations.

https://doi.org/10.1038/s41598-019-52638-z


5Scientific RepoRtS |         (2019) 9:16153  | https://doi.org/10.1038/s41598-019-52638-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

eastern part, the lake bottom shows topographic break-offs and deeper round-shaped structures in alignment 
with hot spring M15 striking NE-SW (F3). G01 is the intersection point of two lineaments (F1, F2) striking 
NE-SW and NW-SE. F2 crosses depressions in the southern lake area and continues as F4 towards hot spring 
M10 onshore where it meets with N3. N3 is the connection line between the previously known fault N1 and M10 
onshore. N3 and N1 meet at the break-off point in the eastern lake part.

Geochemical depth profiles. We also took geochemical measurements along a systematic grid of points 
with 100 m spacing across the lake. They include profiles of temperature, electrical conductivity, density and pH 
with depth. Here, we report measurements from the deep holes in the west (G01-35 m, C11-15 m), a profile in the 
middle of the lake (E3-10 m) and a location in the eastern shallow area (E5-3 m) (Fig. 7).

All temperature profiles show a strong decrease down to 5 m followed by a moderate decrease down to 15 m 
(Fig. 7). Below 15 m, the temperature increases. Moreover, below 15 m the temperature pattern is unstable and 
shows several peaks. Temperature peaks are an indication for inflow of warmer water.

Electrical conductivity generally decreases to a minimum within the top 5 m (Fig. 7). Between 5 and 15 m it 
slightly increases. The relatively strong decrease in C11 between 10 and 15 m can be explained by the anomalous 
high electrical conductivity in the top 10 m which is caused by inflow of highly saline water from hot springs. In 
general, the conductivity pattern is less constant than the temperature. Below 15 m, it shows parallel peaks to the 
temperature. This pattern cannot be explained by temperature increase only, which relates a 1 °C warming to 2% 

Figure 3. Bathymetry depth map of Lake Linau.

Figure 4. 3D bathymetry of Lake Linau, (A): view from SW, (B): view from SE, vertical exaggeration ~10.
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electrical conductivity increase44. That suggests that the warm inflowing water is also highly saline. Assuming an 
electrical conductivity increase caused only by temperature would lead to 60% smaller peaks.

Density constantly increases with depth at all locations. It shows a change in gradient from a weaker to a 
stronger increase below 5 m. The density pattern gets less constant and shows slight peaks at depth below 15 m 
(Fig. 7).

pH has been measured each five or ten meters over depth (Fig. 7). The most neutral pH (5.6) has been meas-
ured in the east at the lake surface and is related to river inflow near E5. The pH then decreases to the average lake 
pH. In the middle of the lake at E3 and at C11 pH increases with depth. This behavior is related to inflow from 
onshore acidic hot springs into the shallow layers of the lake at this location. The decrease in pH in the deep hole 
G01 over depth indicates acidic water inflow from the hole into the lake. Five different inflow zones can be located 
in the temperature and electrical conductivity pattern over depth (19 m, 21 m, 27 m, 30 m, 34 m) and are possibly 
due to fractured areas in the bedrock.

Discussion
Our results show that combining bathymetry and geochemical measurements, in our case, is a successful 
approach to characterize hidden structures beneath lakes. Bathymetry uncovered deep hole structures and 
geochemical measurements show warm, saline, acidic fluid inflow through these holes. Our study site lies in 
a tectono-volcanic active environment where the deep hole structures could be volcanic vents, permeable pipe 
structures, pockmarks or fault intersection points.

Figure 5. Side scan images from the lake bottom showing hole structures (1,3,4) and fault patterns (2).

Figure 6. 3D bathymetry with newly discovered faults and their names, vertical exaggeration ~20.
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The lake bottom topography combined with outcrop data and hot spring locations shows fault traces and their 
intersection points. We were able to generate a detailed fault map for the Lake Linau area, where four known faults 
have been confirmed (SS1, N1, N2, N4) and five new faults have been discovered (SS2, N3, F1, F2, F3, F4) (Fig. 8). 
The 3D view shows that fault lineaments intersect where the bathymetry shows deep depressions in the lake or 
where hot springs occur onshore.

Figure 7. Geochemical depth profiles at selected locations in Lake Linau.

Figure 8. Newly discovered faults beneath Lake Linau using bathymetry in this study.
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The most obvious lineament in the bathymetry data is connecting the deep holes in the western part of 
Lake Linau (F1). In the south-west a strike-slip fault (SS1) connects two hot springs onshore (M16, M17). This 
strike-slip fault continues towards north-east (SS2) and intersects with a NW-SE trending normal fault (N1) at the 
northern deep hole (C11). The strike-slip fault (SS2) builds a connection between M16, M13 and the deep hole 
C11 and meets with the northern border of the extension basin (N2). An extension of the normal fault N1 (i.e. 
N3) merges with a newly discovered fault in the south (F4) and the normal fault N2. At the deepest hole of Lake 
Linau (G01) a newly discovered fault F2 intersects with the normal fault N4 striking N-S. Another previously 
unknown fault (F3) strikes SW-NE from a deeper point in the south of Lake Linau towards a hot spring east of 
Lake Linau (M15), where it meets the normal fault N2 defining the northern border of an extension basin (Fig. 8).

Combining this fault dataset with geochemical profiles in the lake, hot spring locations onshore and produc-
tion data from wells we were able to distinguish permeable and impermeable sections of faults. Highly productive 
wells and hot springs near faults as well as inflow at deep holes into the lake and fault intersections in general are 
indicators for high permeability. In Fig. 9 red faults define highly permeable areas, while grey shows impermeable 
fault compartments.

Well LHD 23 and LHD 28 are located in a highly permeable reservoir compartment near F3 and show high 
productivities of 20 MWe. LHD 28 even hits the permeable fault zone F3 at 1850 m depth. Another highly pro-
ductive area for wells, not targeted yet, is expected near to the deep hole G01. SS1 and SS2 are assumed to be 
permeable because of hot spring discharge along the faults onshore and fluid inflow into the lake from the deep 
hole C11. Especially at the intersection on SS1 and N4 excessive hot spring discharge is observed. F1 and F2 are 
assumed to be permeable because they connect several locations with fluid discharge at the lake bottom (between 
G01 and C11).

However, some fault intersections do not show fluid inflow into the lake. This can be due to missing meas-
urements or due to certain permeability dynamics, where fluid pathways clog, e.g. by tectonic activity or rock 
alteration and scaling45. N1, N2, N5 and SS3 are labeled impermeable based on results from previous studies, 
where they act as geochemical and hydraulic boundary between reservoir compartments36,46. Their appearance is 
associated with non-productive wells (LHD 19, LHD 21, LHD 24, LHD 29).

Our results show that bathymetric data linked with geochemical measurements allows the development of 
conceptual geological 3D model of the subsurface. The model includes fault locations and permeability distri-
bution beneath the lake. For the first time it is possible to locate permeable sections of faults and link them to 
geothermal reservoir characteristics using bathymetry and geochemistry. This technique is not limited to geo-
thermal reservoir characterization but has a wide applicability for subsurface utilization, e.g. structural geological 
mapping or subsurface storage.

Data availability
Data and computer codes used to analyze the data in this study are available from the corresponding author on 
request.

Received: 28 February 2019; Accepted: 9 October 2019;
Published: xx xx xxxx

Figure 9. Fault permeability pattern in the Lake Linau area.
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