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AI-Enabled Materials Design of Non-Periodic 3D
Architectures With Predictable Direction-Dependent Elastic
Properties

Weiting Deng, Siddhant Kumar, Alberto Vallone, Dennis M. Kochmann,
and Julia R. Greer*

Natural porous materials have exceptional properties—for example, light
weight, mechanical resilience, and multi-functionality. Efforts to imitate their
properties in engineered structures have limited success. This, in part, is
caused by the complexity of multi-phase materials composites and by the lack
of quantified understanding of each component’s role in overall hierarchy.
This challenge is twofold: 1) computational. because non-periodicity and
defects render constructing design guidelines between geometries and
mechanical properties complex and expensive and 2) experimental. because
the fabrication and characterization of complex, often hierarchical and
non-periodic 3D architectures is non-trivial.

1. Introduction

Porous materials are omnipresent in natural and artificial ob-
jects. Natural porous media exhibit a broad range of length scales
and geometries, from nano- to micro- to macro-scale. For exam-
ple, Figure 1 shows the images (top row) and corresponding mi-
crostructures (bottom row) of a diatom, a peacock feather, a tra-
becular bone, and a sea sponge, which have columnar, lamel-
lar, cubic, and isotropic topologies, respectively (insets, Figure 1,
bottom row). Porous materials are critical to multiple engineer-
ing fields, such as conversion and storage of energy,[1–3] biomed-
ical pursuits (scaffolds for tissue formation and organoids,[4]
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drug delivery carriers,[1] etc.), materials
engineering,[5] environmental engineer-
ing (water purification,[6] gas sensing,[7]

etc.), chemical engineering[2] (catalysis and
photocatalysis, etc.), civil engineering[8]

(concrete, metal foam, etc.), and op-
tical applications (porous silicon[9]).

Multiple attempts to develop strategies
for mimicking natural porous geometries
have been made to engineer materials with
superior properties and performance. Em-
ulating the constructs of natural materials
is not trivial, especially for the non-periodic
and disordered topologies, which typi-
cally support a combination of mechanical,
chemical, and biological functions. Some

reported strategies to generate stochastic aperiodic porous
structures include random tessellation techniques such as
the Voronoi tessellation model,[10] which generates structures
through frames that are defined by random discrete points in
3D space; Laguerre tessellations,[11] which define the skeleton
of open-cell foams via random sphere packing;[12] and other
non-periodic designs such as the hexahedral mesh refinement
approach[13] and the adaptive rhombic grid method[14] that can
control pore size distribution and comply with manufactur-
ing requirement. A particular 3D pattern, called spinodal de-
composition (Figure 2), has attracted attention in the architec-
tural design field due to its tunability[15,16] and exceptional me-
chanical properties.[17,18] The early kinetic evolution of spin-
odal decomposition is described by the Cahn–Hilliard-type phase
field equations,[19–21] which are computationally expensive to
solve. To add tunability to mechanical anisotropy, Vidyasagar
et al. first employed anisotropic surface energies to adjust the
anisotropic elastic moduli of resulting microstructures.[15] So-
yarslan et al. applied a Gaussian random field as a close ap-
proximation to achieve a stochastically porous microstructure
with tunability in anisotropy and porosity.[22] The existing porous
structural models were, however, incapable of predicting opti-
mal microstructural architectures of self-connected porous ge-
ometries with controlled and valid anisotropy, pore shape, and
porosity.

Fabricating biomimetic materials has always been challeng-
ing due to their intricate 3D structural architectures, which far
exceed the capabilities of conventional fabrication techniques.
Additive manufacturing (AM) has opened up new possibilities
for manipulating and imitating the naturally multiscale and
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Figure 1. Overview of natural porous materials, placed alongside the length scale from nano- to macro-scale according to their critical dimensions.
The SEM or OM images of the original porous structures are shown from left to right: diatom, peacock feather, human bone, sea sponge, and rock.
Insets in the microstructure images are spinodoids with similar topology: columnar, lamellar, cubic, and isotropic spinodoids. Images reproduced with
permission: diatom image[36] is licensed under CC BY 3.0; peacock feather images[37,38] are licensed under CC BY-SA 4.0 and CC BY-SA 3.0; human
bone[39] copyright 2003 John Wiley & Sons; sea sponge[40] is licensed under CC BY-SA 3.0; all other images are original or free licensed; scale bar:
500 nm, 1 μm, 500 um, 1.5 mm, and 3 cm.

multifunctional structures.[23] For example, S. Frolich et al. uti-
lized a vat polymerization 3D printer to investigate a brick-and-
mortar-like architecture design inspired by mollusk nacre;[24] M.
Wehner et al. fabricated an octopus-inspired autonomous robot
using an embedded 3D printing technique[25] and Senhora, et

al manufactured some complex spinodal systems.[26] Despite the
rapid development of this field, the absence of nondestructive
testing methods for printing flaws and structural integrity,[27]

which have a substantial impact on the mechanical proper-
ties of porous metamaterials, continues to be a great obstacle.

Figure 2. Demonstration of spinodoid structures. A) Illustration of anisotropic spinodoid generation process. B–D) Representative spinodoids with
lamellar, columnar, and cubic topologies.
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Manufacturing imperfections further complicate the procedure
of obtaining architectures with requisite anisotropy.

In this work, we leverage the combination of machine learning
algorithms and two-photon lithography additive manufacturing
to design and fabricate 3D spinodoids with structural similarity
and mechanical analogy to trabecular bone, which is challeng-
ing to imitate due to its structural complexity and mechanical
anisotropy. We first apply a Gaussian random field model[22] to
construct a spinodoid topology, similar to spinodal decomposi-
tion, and then apply a forward machine learning algorithm to pre-
dict the stiffness tensor, whose accuracy is verified by nanome-
chanical experiments. We then employ an inverse neural net-
work algorithm to produce spinodoid structures with targeted
anisotropic elastic moduli. These 3D scaffolds with spinodoid ar-
chitectures of micro-level dimensions (70 × 70 × 70 μm3) were
fabricated by a two-photon lithography technique out of an IP-
Dip photoresist. Our experiments reveal that the morphologies of
the two-photon lithography-fabricated scaffolds closely matched
that of trabecular bone which was used as a query for the inverse
model. The stiffnesses anisotropy of the 3D structures closely
matched the predictions of the machine learning framework
based on the artificial neural networks. This work demonstrates
the capability and efficiency of utilizing AI models to generate
complex, non-periodic 3D shapes that also have the AI-predicted
desired mechanical property landscape, in additive manufactur-
ing of advanced hierarchical materials, that is, ones whose fun-
damental building blocks are on the order of microstructurally
relevant length scales, nanometers, and microns.

2. Computational Design Via Deep Learning

2.1. Spinodoid Design Space

Spinodoid[22,27] metamaterials are based on a close approxi-
mation of the phase-field observed in the early stage of spin-
odal decomposition, commonly described by the Cahn–Hilliard
model.[19–21] They consist of smooth, non-intersecting, and bi-
continuous surfaces that minimize stress concentrations and
exhibit mechanical resilience superior to truss- and plate-
based metamaterials.[17,28] These surfaces are also doubly-curved,
which serves to preferentially stretch the material instead of
bending it, rendering the scaling of stiffness and strength with
respect to density linearly[17,28] and better fatigue resistance.[29]

We define the spinodoid topology using a mathematical function
shown in Equation (1) in x ∈ Ω domain via an anisotropic Gaus-
sian random field 𝜙 : Ω → ℝ. The Gaussian random field is de-
scribed by a summation of N ≫ 1 random standing waves with a
fixed wavenumber, 𝛽 > 0 as:

𝜙 (x) =
√

2
N

∑N

i = 1
cos

(
𝛽ni ⋅ x + 𝛾i

)
(1)

where ni ∈ S(2) represents the random wave-vector directions
sampled from the unit sphere S(2) and 𝛾i ≈  (0, 2𝜋) describes
uniformly sampled phase angles. The microstructural length
scale is given by the wavelength 2𝜋/𝛽 and can be chosen to be
arbitrarily small (practically, the smallest number is limited by
the machine accuracy of computers). The probability distribu-
tion of the wave directions ni in S(2) determines the anisotropy

of the Gaussian random field. Vidyasagar et al.[15] and Kumar
et al.[27] showed that anisotropy in this distribution can be a
product of the anisotropy in the surface energy or mobility, re-
spectively, of the underlying spinodal decomposition process.
The latter showed that such distribution can be obtained us-
ing only three parameters: {𝜃1,𝜃2, 𝜃3} ∈ [0, 𝜋/2]3, which approxi-
mates the probability distribution of the standing wave-vectors as
three mutually orthogonal pairs of cones diverging from the ori-
gin (Figure 2A). The wave-vectors are uniformly and randomly
sampled from within these cones in S(2). Applying a level set
given by 𝜙0 =

√
2 erf−1(2𝜌 − 1), where ϕ ≤ ϕ0 corresponds to

smooth solid regions and to voids otherwise, offers a straight-
forward control of the relative density, 𝜌 ∈ [0, 1] within the sam-
ple, independent of its inherent anisotropy. This combination of
four design parameters, {𝜌, 𝜃1,𝜃2,𝜃3}, covers a large and diverse
property space, including a wide range of anisotropic stiffness
responses (Figure 2B–D). The absence of long- and short-range
order in spinodoids offers seamless function grading and avoids
symmetry-breaking defects, both of which are active challenges
in lattices and other periodic truss- or plate-based structure de-
signs.

2.2. Inverse Design Via Deep Learning for Tailored Anisotropy

Most state-of-the-art biomimetic metamaterials with special
properties are currently designed using an interactive trial-and-
error-based exploration of the structure–property maps.[30] We
leverage a machine-learning framework (details in Section S1,
Supporting Information) to invert the structure–property re-
lations of spinodoid metamaterials and design scaffolds with
tailored anisotropic stiffness using minimal computational
resources.[31] Figure 3 depicts the algorithm of this process in
the context of inverse-designed bone scaffolds that locally match
the anisotropic stiffness of a trabecular bone. This can eventu-
ally help develop better bone scaffolds, which for example, can
suppress stress shielding in future orthopedic implants.

The deep learning framework is based on a combination of
two neural networks (NN) – a forward model that maps spin-
odoid design, described by {𝜌, 𝜃1, 𝜃2,𝜃3}, onto the respective
anisotropic stiffness, described by a fourth-order tensor, and an
inverse model that takes the target anisotropic stiffness as input
and efficiently predicts a possible spinodoid design with the tar-
get stiffness (see Section S1, Supporting Information for details).
The inverse model operates on the entire 3D anisotropic stiffness
tensor, not just on the three principal Young’s moduli. In contrast
to optimization-based design strategies (e.g., using Bayesian op-
timization), which are sensitive to the choice of initial guess and
need to be re-run for every design task, the inverse model (only
after it has been trained) may be perceived as a zero-shot and in-
stant optimizer for all possible design tasks by virtue of analyzing
the entire property space through a dataset. The machine learn-
ing model is trained purely on the data pertaining to spinodoid
metamaterials and is able to accurately extrapolate it to bone data
and, in principle, to any shape with arbitrary orthotropic stiffness.
This is important because training data is scarcely available for
biological structures such as bone.[30] We demonstrate the effi-
cacy of this machine learning framework to design spinodoid-
based synthetic bone by obtaining precise matching of predicted
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Figure 3. Schematics of the inverse design of spinodoid structure via deep learning. A) The inverse model NN takes a target 3D anisotropic stiffness as
input and predicts a spinodoid design. The output is a reconstructed spinodoid stiffness generated by the forward model NN. Both NNs are trained on
a representative dataset consisting of spinodoid design parameters and corresponding anisotropic stiffness computed via the finite element method.
B) Schematic of designing a spinodoid scaffold with stiffness matching with a trabecular bone. A 3D micro-CT image of a trabecular bone sample is
converted into a finite element model to compute a target 3D anisotropic stiffness. The inverse model NN then predicts a spinodoid design that matches
the target stiffness, which is then additively manufactured.

anisotropy with the analyzed results for 127 trabecular bone sam-
ples extracted from the femoral head of 32 human patients,[32] of
which a representative example is shown in Figure 3 (see Section
S2, Supporting Information for details and quantitative analysis).
We highlight that this framework can predict functionally graded
spinodoid metamaterials that locally match those of non-periodic
heterogeneous structures, for example, heterogeneous trabecu-
lar bone (see Figure S7, Supporting Information). While the pre-
sented frameworks use deterministic neural networks that only
predict one design for a target property, future extension to gen-
erative and stochastic machine learning models (albeit at the ex-
pense of complexity) opens the possibility to obtain multiple de-
signs for the same target property and enable secondary design
considerations such as ease of manufacturing and cost.

3. Additive Manufacturing and Nanomechanical
Experiments

3.1. Forward Model Prediction Accuracy

To experimentally explore the prediction accuracy of the forward
model, we fabricated several representative computed architec-
tures using two-photon lithography direct laser writing out of IP-
Dip photoresist (Nanoscribe GmbH). Details of this fabrication

process are provided in the Experimental Section. The samples
had the design parameter set as {0.4°, 15°, 45°, and 30°}, which
produced topologies with cubic form factors, the overall dimen-
sions of 70 × 70 × 70 μm3, the wavenumber 𝛽 = 30𝜋

70
μm−1,

and pore size of ∼2 um defined by wavenumber. Figure 4A con-
tains a SEM image of a representative fabricated anisotropic spin-
odoid sample. The mechanical anisotropy of this structure is
highlighted by the computed elastic surface, shown in Figure 4B,
which conveys the orientation-dependent sample stiffness. We
obtained the full elastic tensor ℂ of the geometry via the forward
model, and then, extracted the compliance tensorℂ−1, which pro-
vided Young’s modulus E(d) along each direction given by unit
vector d ∈ S(2) as E−1 (d) =

∑3
i=1

∑3
j=1

∑3
k=1

∑3
l=1 ℂ

−1
ijkldidjdkdl. We

then normalized the obtained moduli by the maximum direc-
tional Young’s modulus ( E(d)

Emax
). We found that for this architec-

ture, the largest orientation stiffness occurred along the ê1 direc-
tion, with the color-intensity contour plot shown in Figure 4B.
This plot reveals a high anisotropy range of 0.36 to 1.00, with the
predicted normalized Young’s moduli of 0.360 in ê2 and of 0.621
in ê3 directions.[33]

We conducted in situ nanomechanical experiments on
the fabricated samples in a custom nanomechanical instru-
ment, SEMentor[34] (Quanta 200 FEG, Thermo Fisher), with a
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Figure 4. Experimental verification of the forward model accuracy. A) SEM image of a representative spinodoid sample. Scale bar: 40 μm. B) Surface
plot of normalized effective elastic modulus of the sample; magenta circles represent experimental results collected via ex situ quasi-static compression
tests. C) In situ quasi-static compressive stress versus strain data on one representative configuration in three orthogonal orientations. The data set of
each color corresponds to the compression orientation. Scale bar: 20 μm.

170 μm-diameter flat diamond tip at a strain rate of 10−3 s−1 along
the three mutually orthogonal ê1, ê2, and ê3 directions. To ac-
count for the stochastic design of spinodoids, we computation-
ally generated three or more configurations with the same de-
sign parameters but different random seeds. In addition to the in
situ experiments, we also compressed a minimum of five identi-
cal samples in each direction in a nanoindenter (G200 XP; KLA)
with a 120 μm-diameter flat punch, resulting in at least fifteen
samples being tested for each configuration (details of ex situ
uniaxial compression experiments are provided in the Experi-

mental Section). Figure 4C contains a representative experimen-
tal stress–strain response computed by normalizing the load ver-
sus displacement measurements by the initial sample geometry.
It demonstrates that the spinodoid samples compressed along
the ê2 and ê3 orientations exhibited linear loading up to a strain
of ≈5%; the sample in ê1 direction deformed linearly prior to
≈4% strain. The effective elastic moduli were computed from the
stress–strain slopes of the linear loading regime and normalized
by the measured stiffness in the ê1 direction of the corresponding
sample. For the representative example in Figure 4, the effective
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Figure 5. Application of the inverse model to resemble a human femur bone. A) Extracting 3D trabecular bone structure from μ-CT data. B) 3D structure
of an extracted bone sample. C) SEM image of additively manufactured bone sample. D) Surface plot of the effective elastic modulus of the bone sample.
E) The inverse model NN: using the stiffness of the bone sample as input. F) Surface plot of the effective elastic modulus of the spinodoid sample, and
the magenta circles present the experimental results. G) SEM image of the additively manufactured spinodoid. H) 3D structure of the corresponding
spinodoid generated by the inverse model. Scale bar: 40 μm.

normalized elastic moduli in ê1, ê2, and ê3 directions were
measured to be 1.00 ± 0.10, 0.35 ± 0.04, and 0.6 ± 0.10. The
plot in Figure 4B also contains the experimental results overlaid
onto the computed 3D contours, plotted as magenta circles, and
indicate reasonable agreement with deep learning-based predic-
tion of 1.00, 0.36, and 0.62. The SEM images of Figure 4C contain
detailed deformation characteristics of this representative sample
during quasi-static compressions. We chose to image the sample
at four distinct strains: 0%, which marks the intact sample; 5%,
which represents a transition from linear regime to non-linearity;
13%, which marks the end of the loading; and ≈10–12%, which is
the final post-compression strain. These images convey that the
samples maintained structural integrity throughout the deforma-
tion, including the linear-to-non-linear transition point, and con-
tained local fractures at the end point of the loading. An addi-
tional set of experimental results is presented in Section S3.1,
Supporting Information.

3.2. Inverse Design for Anisotropy Matching With Femoral Bone

To demonstrate the accuracy and efficiency of the inverse design
framework, we applied this model to generate a spinodoid ge-
ometry that is similar to trabecular bone, whose stiffness tensor
matches that of a cubic trabecular bone sample extracted from a
human proximal femur (these geometries were obtained from
micro-computed tomography [micro-CT] data using an open-
source software 3D Slicer (Figure 5A)). The stiffnesses of the
bone samples was computed using ABAQUS simulations (see
Section S2, Supporting Information for more details). The com-
puted stiffness tensor was used as a query for the inverse-design
neural network to predict the spinodoid design parameters with
the targeted anisotropic stiffness. Figure 5B shows the recon-

structed bone geometry, and Figure 5H contains the model-
predicted spinodoid shape, with a wavenumber 𝛽 = 15𝜋

70
μm−1

(chosen to mimic the pore size of trabecular bone), that was
used to print the IP-Dip samples. Figure 5C,G contains SEM im-
ages of these two types of samples, and Figure 5D contains the
computed elastic surface of the bone architecture, calculated as
E−1 (d) =

∑3
i=1

∑3
j=1

∑3
k=1

∑3
l=1 ℂ

−1
ijkldidjdkdl. The compliance ten-

sor ℂ−1
bone was computed from the numerically calculated stiff-

ness tensor ℂbone. The bone samples may not necessarily align
with the coordinate system. For the representative bone sample
in Figure 5, we found the direction of the maximum modulus
(Emax) to be d = [ − 0.384, 0, 0.923]T. For consistency, we nor-
malized the moduli of the bone sample by the modulus in ê3
direction, the largest among the three orthogonal orientations as
numerically calculated by ABAQUS, which yielded the moduli ra-
tio of Ebone,ê1

: Ebone, ‚e2
: Ebone, ‚e3

= 0.82 : 0.85 : 1.00. Quasi-static
compression experiments revealed the elastic moduli in ê1, and
ê2 directions, normalized by that in ê3, to be 0.84 ± 0.02 and
0.91 ± 0.02, shown as circle data markers in Figure 5D. The solid
and the dashed outlines of the magenta circles in the figure in-
dicate the intersection of data with the computed elastic surface
and the accuracy of the stiffness tensor prior to its application
to the inverse-design model. The stiffness tensor ℂbone was used
as a query for the inverse-design neural network, which predicted
the spinodoid design with the targeted anisotropic stiffness ℂspin.
More details on the analysis and prediction method can be found
in Section S2.1, Supporting Information. Figure 5F contains the
directional stiffness of the generated spinodoid sample normal-
ized by its maximum value ( E(d)

Emax
), at d = [− 0.417, 0.015, 0.908]T.

The inverse model (via the forward model) predicted the axial
moduli normalized by Espin,ê3

along ê1, ê2, and ê3, respectively, to
be 0.82, 0.85, and 1.0, virtually equivalent to the experimental
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Figure 6. Demonstration of spinodoid printability using different 3D-patterning techniques. A) Schematic of the two-photon lithography (TPL) process
and a SEM image of a representative spinodoid sample printed with IP-Visio resist. Scale bar: 100 μm. B) Schematic of digital light printing (DLP) process
and an optical image of the spinodoid sample printed with PR48 resist. Scale bar: 5 mm.

results: 0.81 ± 0.14, 0, 84 ± 0.15, and 1.00 ± 0.16. The re-
semblance between the elastic surface plots of the bone and the
spinodoid samples demonstrates that the inverse neural network
model was capable of predicting a particular structure with req-
uisite anisotropic stiffness features and that these architectures
could be additively manufactured.

3.3. Generality and Customizability

We demonstrate the applicability of this framework to a broad
range of additive manufacturing techniques, length scales, and
materials by fabricating samples with architectures generated
by models at the nano-, micro-, and macro-scale. We used two-
photon lithography with a biocompatible non-cytotoxic photore-
sist, IP-Visio, to manufacture samples with an overall dimen-
sion of 300 μm × 300 μm × 300 μm and critical features of
20 μm, shown in Figure 6A. The sample maintained structural
integrity through the fabrication process, with a marginal volu-
metric shrinkage during the drying step (see Experimental Sec-
tion). We chose this sample size to be on the order of some liv-
ing cells, for example, fibroblasts and osteoblasts, to highlight
the potential application of this AI-informed AM in cell-related
research, that is, 3D cell niches.[35] We also used a digital light
processing 3D printer (Autodesk Ember) to fabricate cm-scale
samples out of a standard commercial resin, PR48, as shown in
Figure 6B.

4. Discussion and Outlook

We present a framework for designing and fabricating com-
plex, non-periodic porous structures with precise controllability
and large tunability of direction-specific effective elastic moduli,
porosity, and architecture. The structure design is a close ap-
proximation of the spinodal decomposition process, defined by
Equation (1), and we coin it as spinodoid topology. As a proof of
concept, samples in this work are topologically and mechanically
comparable to the porous geometry of cancellous bones, whose
stiffness tensor is fully quantified.

We utilize an AI-based forward model to predict the
directional-dependent stiffness of a designed spinodoid sam-
ple, which is validated by uniaxial compression experiments of
samples with identical design parameters fabricated using the
two-photon lithography. This accuracy is reached by using the
wavenumber 𝛽 = 30𝜋

70
μm−1, a factor of 1.5 greater than the train-

ing data used in the machine learning training process. This
implies that the neural network method developed in this work
can enable the precise mimicry of complex 3D architectures with
built-in anisotropy. A more detailed discussion on the effects of
wavenumber and relative density on the prediction accuracy of
the deep learning-based forward model is provided in Section
S3.2, Supporting Information.

The similarity between the inverse model predicted spinodoid
structure and the bone architecture reconstructed from tomogra-
phy slices (Figure 5) indicates three key outcomes. First, the deep

Adv. Mater. 2024, 2308149 © 2024 Wiley-VCH GmbH2308149 (7 of 9)
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learning framework is capable of successfully designing a spin-
odoid whose non-periodic, complex topology resembles the tar-
get trabecular network and orientation. Second, the anisotropic
stiffness of the computed spinodoid matches that of the bone,
with the expected minor differences that arise from the non-zero
normal-shear coupling in the bone sample,[27] discretization er-
rors in surfaces extraction from micro-CT data of the bone sam-
ples, and inevitable imperfections introduced during the addi-
tive manufacturing process. Third, the inverse model achieves
topological and mechanical analogy with the bone sample built
on a fully bone-agnostic data set in the training step, which sig-
nifies that the presented machine learning-enabled prediction
framework can predict a wide range of porous architectures with
targeted elastic properties in all directions. This methodology
is applicable to spatially-graded designs with locally matching
anisotropic stiffness, as shown in Figure S6, Supporting Informa-
tion. Beyond stiffness, our experiments on spinodoids illustrate
that the mechanical anisotropy spans to the post-elastic regime;
more detailed descriptions and discussion are shown in Section
S3.3, Supporting Information.

The choice of the model sample design and the fabrication
framework in this work are inspired by the complexities and
challenges of the natural aperiodic porous topologies. These
designing framework and additive manufacturing methods are
not limited to a single architecture, that is, a bone scaffold,
and can be easily adapted to a variety of applications, such as
biomedicine engineering,[1] environmental engineering,[7] and
energy engineering.[2,3] The broad versatility of multi-scale, hier-
archical architectures that can be predicted by the presented AI-
based model and fabricated using a 3D printing setup, with fea-
ture resolution from nano- to micro- and macro-level scale, pro-
vides a pathway to produce samples with stochastic porous mor-
phologies that can be fully quantified and topologically designed
to resemble their natural counterpart. It broadens and populates
the new design space of meta-materials, with more controllability
in predictable anisotropy, which is conventionally complicated.

5. Experimental Section
Microscale Sample Fabrication: The computed geometries were fabri-

cated at the microscale using a two-photon lithography process in a com-
mercially available system (Photonic Professional GT, Nanoscribe GmbH)
using a Zeiss Plan Apochromat 63X/1.4 Oil DIC objective. Rastering of the
laser was obtained by a set of galvo-mirrors and piezoelectric actuators.
The writing parameters were a slicing distance of 0.2 μm and a hatch-
ing distance of 0.2 μm. Laser power was 15 mW and scan speed was
10 mm s−1 on an IP-Dip photoresist. The structures were written on a
cleaned silicon chip substrate via two-photo lithography of size 70 μm ×
70 μm × 70 μm. To guarantee thorough development, the printed samples
were developed in PGMEA (propylene glycol methyl ether acetate, Sigma–
Aldrich) for more than 12 h and rinsed with ultra-purified isopropyl alcohol
(Sigma–Aldrich). To prevent excessive warping during the developing pro-
cess, the samples were dried using a critical point drying process in an
Autosamdri-931 system (Tousimis) using ultra-purified isopropyl alcohol.

Scanning Electron Microscope (SEM) Imaging and In Situ Nanomechan-
ical Experiments: The fabricated samples were compressed using a 170-
μm diamond flat punch tip affixed to a nanoindenter (InSEM II from
Nanomechanics Inc.) installed in an SEM chamber (FEI Quanta 200F) that
allowed for in situ imaging of the sample during the compression test.
Samples were imaged in SEM at 2 kV to mitigate polymer surface charg-
ing phenomena. The compressions were done at room temperature at a

pressure of ≈10−5 mbar at a global strain rate of �̇� = 10−3 s−1, controlled
by a feedback algorithm for these fabricated samples.

Ex Situ Quasi-Static Compression: Ex Situ nanoindentation experi-
ments were carried out for additional data collection. Nanomechanical ex-
periments were performed on the spinodoid architectures to determine
their effective stiffness along the ê1, ê2, and ê3 directions. Ex situ uniaxial
compression experiments were performed on a minimum of five samples
per direction and three configurations of the same generation parameter
set Θ = {𝜌, 𝜃1,𝜃2, 𝜃3} using a G200 XP Nanoindenter (KLA). The sam-
ples were compressed to strains of �̇� = 10−3 s−1 to a depth of 7 μm us-
ing a 120-μm diamond flat punch tip. For all experiments, the effective
Young’s modulus was approximated by the loading slope of each linear
stress–strain regime.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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