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Abstract
We take a global view at substitution invariant Sturmian sequences. We show that
homogeneous substitution invariant Sturmian sequences sα,α can be indexed by two
binary trees, associated directly with Johannes Kepler’s tree of harmonic fractions
from 1619. We obtain similar results for the inhomogeneous sequences sα,1−α and
sα,0.

1. Introduction

A Sturmian word w is an infinite word w = w0w1w2 . . . , in which occur only n+ 1
subwords of length n for n = 1, 2 . . . . It is well known (see, e.g., [17]) that the
Sturmian words w can be directly derived from rotations on the circle as

wn = sα,ρ(n) = [(n+ 1)α+ ρ]− [nα+ ρ], n = 0, 1, 2, . . . . (1)

or as
wn = s′α,ρ(n) = ⌈(n+ 1)α+ ρ⌉ − ⌈nα+ ρ⌉, n = 0, 1, 2, . . . . (2)

Here 0 < α < 1 and ρ are real numbers, [·] is the floor function, and ⌈·⌉ is the ceiling
function.

Sturmian words have been named after Jacques Charles François Sturm, who
never studied them. A whole chapter is dedicated to them in Lothaire’s book
‘Algebraic combinatorics on words’ ([17]). There is a huge literature, in particular
on the homogeneous Sturmian words

cα := sα,α,

which have been studied since Johann III Bernoulli. The homogeneous Sturmian
words are also known as characteristic words, see Chapter 9 in [2].
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Interestingly, for certain α and ρ the Sturmian word w is a fixed point σ(w) = w
of a morphism1 σ of the monoid of words over the alphabet {0, 1}. For example, for
α = ρ = (3 −

√
5)/2 one obtains the Fibonacci word cα = 0100101 . . . , fixed point

of the Fibonacci morphism ϕ given by ϕ(0) = 01, ϕ(1) = 0. Another example is the
Pell word cα = 0010010001 . . . obtained for α = ρ = (2 −

√
2)/2, with morphism

given by 0 → 001, 1 → 0.

It is well known for which α one obtains a substitution invariant word cα. This
was first obtained in [9], and an extensive treatment can be found in [17, Section
2.3.6]. See also [22]. The result is that α ∈ (0, 12 ) gives a fixed point if and only if
there exists a natural number k such that α has continued fraction expansion

α = [0; 1 + a0, a1 . . . ak], ak ≥ a0 ≥ 1, (3)

and α ∈ (12 , 1) gives a fixed point if and only if there exists a natural number k such
that α has continued fraction expansion

α = [0; 1, a0, a1 . . . ak], ak ≥ a0. (4)

The Fibonacci word is obtained for k = 1, a0 = a1 = 1, and the Pell word for
k = 1, a0 = 2, a1 = 3.

Any α that gives a substitution invariant cα is called a Sturm number. In terms
of their continued fraction expansions these are characterized in equations (3) and
(4). There is however a simple algebraic way to describe them, given in [1]:

an irrational number α ∈ (0, 1) is a Sturm number if and only if it is a quadratic
irrational number whose algebraic conjugate α, defined by the equation (x−α)(x−
α) = 0, satisfies

α /∈ [0, 1].

Let E be the ‘exchange’ morphism

E :
{ 0 → 1
1 → 0

.

Then Esα,ρ = s′1−α,1−ρ, as shown in [17, Lemma 2.2.17]. Note that this implies
that if the word sα,ρ is a fixed point of the morphism σ, then the word s′1−α,1−ρ is
fixed point of the morphism EσE. Because of this duality we will confine ourselves
often to α with 0 < α < 1

2 in the sequel.

The first question we will consider is: what are the morphisms that leave a
homogeneous Sturmian word cα invariant? The answer in [9] is: they are composi-
tions of the infinitely many morphisms Gk : 0 → 1k0, 1 → 1 and Hk = GkE.
The answer in [2] is: they are compositions of the infinitely many morphisms
hk : 0 → 0k1, 1 → 0 → 0k10 (actually only for α’s with a purely periodic continued
fraction expansion). See [16] for yet another infinite family of morphisms.

1We interchangeably use the terms morphisms and substitutions.
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In the paper [11] the authors call the inhomogeneous word sα,0 a characteristic
sequence, and do actually derive a result close to our Theorem 3, using completely
different techniques with continued fractions and extensive matrix multiplications.

More satisfactory is the answer in the book [17] or the paper [4], where only
two generating morphisms are used, namely the exchange morphism E and the
morphism G given by G(0) = 0, G(1) = 01. What we propose are also only two
generators, which we denote by ϕ0 and ϕ1:

ϕ0 :
{ 0 → 0
1 → 01

ϕ1 :
{ 0 → 01
1 → 0

.

Note that ϕ0 = G, and that ϕ1 = GE, the Fibonacci morphism. Obviously, this
proposal is very close to the one in [17], but what we gain is a natural way to index
all the morphisms that leave homogeneous Sturmian words invariant by a binary
tree—actually two binary trees, one for α ∈ (0, 1

2 ), and a dual version for α ∈ (12 , 1).
The dual tree is labelled by the compositions of the two morphisms

Eϕ0E :
{ 0 → 10
1 → 1

Eϕ1E :
{ 0 → 1
1 → 10

.

In Section 2.1 we treat some preliminaries to give in Section 2.2 our main result.

We remark that a similar tree associated with the rational numbers appears in
the work of de Luca [18, 19]. The labeling there is not with morphisms, but with
words.

The second question we will consider is: what are the substitution invariant
Sturmian words that can only be obtained via the ceiling function, i.e., the Sturmian
words that can only be obtained as in equation (2)? In this respect the homogeneous
Sturmian words are regular, in that for all α

cα = sα,α = s′α,α.

So these ‘strictly ceiling’ Sturmian words have to be sought among the inhomoge-
neous Sturmian words, what we do in Section 3.

The short Section 4 is more or less independent of the remainder of the paper,
but its contents have been very useful in our research.

2. Homogeneous Sturmian Words

2.1. The Binary Tree of Harmonic Fractions

The binary tree is a graph with 2n nodes i1 . . . in at level n for n = 1, 2, . . . , where
the ik are 0 or 1. At level 0 there is the root node Λ.
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As early as 1619 Johannes Ke-
pler defined in [12] a binary tree
with fractions p

q at the nodes.

In the root there is 1
2 , and if

p
q is at a node, then the two
children nodes receive the frac-
tions

p

p+ q
,

q

p+ q
.

Rather surprisingly, every rational number p/q with (p, q) = 1 in the interval
(0,1) occurs exactly once in the tree. This is not hard to prove, see, e.g., the paper
[23]. We remark that the paper [14] consider this problem for larger classes of trees,
but regretfully the rules for what the authors call the Kepler tree are different from
Kepler’s, but rather like those for the Calkin-Wilf tree (see [7]).

We introduce the two 2× 2 matrices

K0 :=

(
1 0
1 1

)
, K1 :=

(
0 1
1 1

)
,

which we call the Kepler matrices.

(
1 0
0 1

)

(
1 0
1 1

)

(
1 0
2 1

)

(
1 0
3 1

) (
2 1
3 1

)

(
1 1
2 1

)

(
1 1
3 2

) (
2 1
3 2

)

(
0 1
1 1

)

(
0 1
1 2

)

(
0 1
1 3

) (
1 2
1 3

)

(
1 1
1 2

)

(
1 1
2 3

) (
1 2
2 3

)

It is clear that the frac-
tion at the node i =
i1 . . . in in Kepler’s tree of
fractions is equal to p/q,
where

(
p
q

)
= Kin · · ·Ki1

(
1
2

)
.

We claim that all the matrices Kin · · ·Ki1 are different when n ranges over the
natural numbers, and i1 . . . in is a string of 0’s and 1’s. Formulated slightly differ-
ently we have the following.

Lemma 1. The monoid of matrices generated by K0 and K1 is free.

Proof. If Ki = Kj , then Ki ( 12 ) = Kj ( 12 ), contradicting uniqueness on the Kepler
tree.

We remark that in general it is hard to determine freeness of matrix monoids. It
is for instance an undecidable problem for 3× 3 nonnegative integer matrices ([15],
see also [8]). We mention also that K0 and K1 are unimodular matrices, but that
they do not satisfy the criteria in [20].
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2.2. A Tree of Morphisms

Let ϕ0 and ϕ1 be the two morphisms given by

ϕ0 :
{ 0 → 0
1 → 01

ϕ1 :
{ 0 → 01
1 → 0

.

We form a tree of morphisms Tϕ by putting Id : 0 → 0, 1 → 1 at Λ, and ϕin · · ·ϕi1

at node i = i1 . . . in for all n and all ik ∈ {0, 1}, k = 1, . . . , n.

Id

{ 0 → 0
1 → 01

{ 0 → 0
1 → 001

{ 0 → 0
1 → 0001

{ 0 → 01
1 → 01010

{ 0 → 01
1 → 010

{ 0 → 001
1 → 0010

{ 0 → 010
1 → 01001

{ 0 → 01
1 → 0

{ 0 → 001
1 → 0

{ 0 → 0001
1 → 0

{ 0 → 01010
1 → 01

{ 0 → 010
1 → 01

{ 0 → 0010
1 → 001

{ 0 → 01001
1 → 010

The figure shows the first 3 levels of this tree, labeled with the morphisms. Note
that the left edge of Tϕ with nodes i = 0n contains the morphisms ϕn

0 , which do
not generate infinite words.

Theorem 1. The tree Tϕ contains all morphisms that have homogeneous Sturmian
words cα as fixed point, for any α with 0 < α < 1

2 . Each such morphism occurs
exactly once.

Proof: In [17] it is proved that for α ∈ (0, 1), any morphism f fixing a homogeneous
Sturmian word is a composition of the two morphisms E and G, excluding f = En,
f = Gn and f = EGnE for n ≥ 1. Moreover, if 0 < α < 1

2 , then the first element
in the composition of f is G. But since E2 = Id, f can then be written as a
composition of G = ϕ0 and GE = ϕ1. This finishes the existence part of the proof.

For the uniqueness part, we remark first that it is shown in [17, Corollary 2.3.15],
that in the monoid generated by the two morphisms E and GE the only relation
is E2 = Id . This implies, of course, that the monoid generated by G = ϕ0 and
GE = ϕ1, is free, but here we prefer to give a short self-contained proof, proving
something stronger, which yields the emergence of the binary tree.

Consider the incidence matrices of the morphisms ϕ0 and ϕ1 :

M0 :=

(
1 1
0 1

)
, M1 :=

(
1 1
1 0

)
.
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(
1 0
0 1

)

(
1 1
0 1

)

(
1 2
0 1

)

(
1 3
0 1

)(
1 3
1 2

)

(
1 2
1 1

)

(
2 3
1 1

)(
2 3
1 2

)

(
1 1
1 0

)

(
2 1
1 0

)

(
3 1
1 0

)(
3 1
2 1

)

(
2 1
1 1

)

(
3 2
1 1

)(
3 2
2 1

)

Obviously morphisms with dif-
ferent incidence matrices are differ-
ent. Let TM be the tree with the
matrix productMin · · ·Mi1 at node
i1 . . . in.

The matrices M0 and M1 are
conjugate to the matrices K0 and
K1 by the same conjugation matrix(
0 1
1 0

)
. It follows that for any node i one has the equation

Mi =

(
0 1
1 0

)
Ki

(
0 1
1 0

)
.

But then Lemma 1 implies that all theMi on TM are different, and so each morphism
occurs exactly once on Tϕ.

2.3. A Tree of Sturm Numbers

The tree of morphisms Tϕ has a left edge with morphisms that do not generate
infinite words. Below we display the first three levels of the tree of Sturm numbers
α with α < 1

2 associated with the morphisms of Tϕ. Each such α will occur infinitely
many times, since the powers of a morphism generate the same Sturmian word. In
particular we will see on the right edge the number (3−

√
5)/2 associated with the

powers of the Fibonacci morphism ϕn
1 .

∅

∅

∅

∅
√
13 − 1

6

√
2− 1

√
13 − 3

2

√
3− 1

2

3−
√
5

2

1−
√
2

2

5−
√
13

6
1−

√
3

3

3−
√
5

2

2−
√
3

3−
√
5

2

3. Inhomogeneous Sturmian Words

In this section we consider all substitution invariant Sturmian words. There is again
a simple algebraic characterization given by Yasutomi in ([24]):

Let 0 < α < 1 and 0 ≤ ρ ≤ 1. Then sα,ρ is substitution invariant if and only if
the following two conditions are satisfied:

(i) α is an irrational quadratic number and ρ ∈ Q(α);

(ii) α > 1, 1− α ≤ ρ ≤ α or α < 0, α ≤ ρ ≤ 1− α.
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3.1. The Eight Elementary Morphisms

As in [21] we define the eight morphisms ψi by

ψ1 : 0 → 01, 1 → 0, ψ2 : 0 → 10, 1 → 0, ψ3 : 0 → 0, 1 → 01, ψ4 : 0 → 0, 1 → 10.

ψ5 : 0 → 1, 1 → 10, ψ6 : 0 → 1, 1 → 01, ψ7 : 0 → 10, 1 → 1, ψ8 : 0 → 01, 1 → 1.

In the previous section the two morphisms ψ1 = ϕ1, and ψ3 = ϕ0 were used.
The first four morphisms are linked to Sturmian words with slope α < 1/2, the
last four to Sturmian words with slope α > 1/2. In the columns there is duality:
ψi+4 = EψiE for i = 1, 2, 3, 4. We also have ψ2i = ψ̃2i−1 for i = 1, 2, 3, 4, where σ̃
is the time reversal of a morphism σ.
The notation used in [17] is:
ψ1 = ϕ, ψ2 = ϕ̃, ψ3 = ϕE, ψ4 = ϕ̃E, ψ5 = EϕE, ψ6 = Eϕ̃E, ψ7 = Eϕ, ψ8 = Eϕ̃.

Let Mi,j = ⟨ψi,ψj⟩ denote the monoid generated by the morphisms ψi and ψj . We
will also need Mi = ⟨ψi⟩, the set of powers of ψi.

3.2. The Floor-Ceiling Structure of Sturmian Words

For most α’s and ρ’s the floor and the ceiling representation of a Sturmian word
in equations (1) and (2) are equal. Rather surprisingly, if they are not equal, then
they only differ in at most two consecutive indices ([17]). If there exists a natural
number m⋄ such that

sα,ρ(m⋄ − 1) ̸= s′α,ρ(m⋄ − 1) and sα,ρ(m⋄) ̸= s′α,ρ(m⋄),

then we call (sα,ρ, s′α,ρ) a lozenge pair with index m⋄. In case m⋄ = 0, there is
actually only the index 0 where they differ. As indicated in [17] right after Figure
2.3, (sα,ρ, s′α,ρ) is a lozenge pair with index m⋄ if and only if

αm⋄ + ρ ∈ N. (5)

Example. Let α = (3−
√
5)/2 and ρ = (

√
5− 1)/2. Then α+ ρ = 1, so (sα,ρ, s′α,ρ)

is a lozenge pair with index 1. Here sα,ρ = 1001001010010010 . . . and s′α,ρ =
0101001010010010, . . . . Both words are substitution invariant for the substitution
0 → 010, 1 → 10, as evidenced in [5].

The following result is related to Corollary 1.4. in [6].

Proposition 1. For substitution invariant lozenge pairs m⋄ = 0 or m⋄ = 1.

Proof. This follows directly from equation (5) and Yasutomi’s characterization.
Suppose m⋄ ≥ 2 and αm⋄ + ρ = k for an integer k. Since 0 < αm⋄ < m⋄ and
0 ≤ ρ ≤ 1 we must have

αm⋄ + ρ = k,where k ∈ {1, 2, . . . ,m⋄}.
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One easily checks that ρ = k − αm⋄. Now if α > 1, then it should hold that

1− α ≤ ρ = k − αm⋄ ⇒ (m⋄ − 1)α ≤ k − 1 ⇒ α ≤ 1,

yielding a contradiction. Similarly the case α < 0 yields a contradiction.

We undertake the task of determining all substitution invariant Sturmian words
that are lozenge pairs. We start with the case m⋄ = 1, which is simpler than
m⋄ = 0.

3.3. Substitution Invariant Sturmian Words With m⋄ = 1

Note that m⋄ = 1 implies
α+ ρ = 1.

We first give a very simple way to obtain the lozenge pair.

Proposition 2. For α ∈ (0, 1) let (sα,1−α, s′α,1−α) be the lozenge pair with m⋄ = 1.
Then

sα,1−α = 10 cα and s′α,1−α = 01 cα.

Proof. Since α < 1, we have sα,1−α(0) = [α+ρ]− [ρ] = 1 and sα,1−α(1) = [2α+ρ]−
[α+ρ] = 0. Also, s′α,1−α(0) = ⌈α+ρ⌉−⌈ρ⌉ = 0 and s′α,1−α(1) = ⌈2α+ρ⌉−⌈α+ρ⌉ =
1. Let S be the shift: S(w0w1w2 . . . ) = w1w2 . . . . Adding α to ρ shifts a Sturmian
word by one: sα,ρ+α = S(sα,ρ). So S2(sα,1−α) = sα,1+α = sα,α = cα.

We still have to investigate whether sα,1−α and s′α,1−α are substitution invariant.
This can be directly derived from the results in [5], but we give here a short and
more global proof. We start with a combinatorial lemma.

Lemma 2. For any γ ∈ M1,3 the words 01γ2(0) and 10γ2(1) are palindromes.

Proof. This relies on the notions and results of [17, Section 2.2.1]. The standard
morphisms are the elements of ⟨ϕ, E⟩ = ⟨ψ1, E⟩. Since ψ3 = ϕE, all γ from M1,3

are standard. By Proposition 2.2.2 and Proposition 2.3.11 of [17], the words γ(0)
and γ(1) are two standard words, which differ in their last two letters. But then
γ2(0) and γ2(1) are standard words so that γ2(0) ends in 0, and γ2(1) ends in 1.
Moreover, according to [17, Theorem 2.2.4], a word w is standard if and only if it
has length 1 or there exists a palindrome word p such that w = p 01 or w = p 10.
So the words

01γ2(0) = 01p 10 and 10γ2(1) = 10p′01

are palindromes. The length 1 case may occur, but then 010 is a palindrome.

Theorem 2. Let sα,ρ and s′α,ρ be substitution invariant Sturmian words with m⋄ =
1 and α < 1/2. Then these two words are fixed points of ψ2, where ψ ∈ M2,4!M4.
Here ψ = γ̃, where γ(cα) = cα.
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Proof. The condition m⋄ = 1 means that ρ = 1 − α. What we will show is that
sα,1−α and s′α,1−α are fixed points of γ̃2, where γ fixes cα. Recall that in general ψ̃

is the time reversal of a morphism ψ, and that ψ̃1 = ψ2, and ψ̃3 = ψ4. In general
one has σ̃τ = σ̃τ̃ for two morphisms σ and τ . It thus follows from Lemma 2 that
for γ ∈ M1,3 and all n ≥ 1

01 γ2n(0) = γ̃2n(0) 10 and 10 γ2n(1) = γ̃2n(1) 01.

For such γ, not from M3, when n → ∞, the left sides converge to 01cα, respectively
10cα, and thus by Proposition 2, the right sides converge to sα,1−α respectively
s′α,1−α.

It is easily seen via duality that Theorem 2 also applies in case α > 1/2, where
M2,4 !M4 has to be replaced by M6,8 !M8.

3.4. Substitution Invariant Sturmian Words With m⋄ = 0

Note that m⋄ = 0 implies ρ = 0. As in the case of m⋄ = 1 there is a simple way to
obtain the lozenge pair:

sα,0 = 0 cα and s′α,0 = 1 cα.

It is well known that 0 cα is substitution invariant, see, e.g., Corollary 1.4. in [6].
However, it is now less simple to determine the substitution fixing 0 cα for a given
α.

Example. Let α = (
√
13−1)/6. Then γ(cα) = cα for γ given by γ(0) = 01, γ(1) =

01010.
(The same morphism is considered in [5] on page 262.)
Here ψ(sα,0) = sα,0 for ψ given by

ψ(0) = 0010101, ψ(1) = 0010101001010101.

A recipe is given in [5]. The recipe depends strongly on the last letter of γ(0),
so it is useful to characterize the morphisms γ with γ(0) ending in 0.

Lemma 3. Let γ = ψi1 . . .ψim be a morphism from M1,3. Then γ(0) ends in 0 if
and only if the number of 1 in i1 . . . im is even.

Proof. For any morphism σ : {0, 1}∗ → {0, 1}∗, let λ[σ] : {0, 1} → {0, 1} be the
map that maps j to the last letter of σ(j), j = 0, 1. Then λ[στ ] = λ[σ]λ[τ ] for two
morphisms σ and τ . Since λ[ψ1] = E, and λ[ψ3] = Id, this implies the lemma.

We denote the set of γ from M1,3 such that γ(0) ends in 0 by M0
1,3.

Proposition 3. Let γ ∈ M0
1,3 such that γ(cα) = cα. Let Ψγ be conjugate to γ,

with conjugating word equal to u = γ(0)0−1. Then

Ψγ(0cα) = 0cα.
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For a proof of this proposition, see [5, Theorem 3.1].

Proposition 4. Let γ, δ ∈ M0
1,3. Then Ψγδ = ΨγΨδ.

Proof. We assume that |γ(0)| < |γ(1)|; the proof of the other case is quite similar.
It is well known that there exist words u, v, x, and y such that

γ :

{
0 → u 0

1 → u 0 v
Ψγ :

{
0 → 0 u

1 → 0 v u
δ :

{
0 → x 0,

1 → x 0 y
Ψδ :

{
0 → 0 x

1 → 0 y x.

The product γδ also generates a characteristic word, and we have

γδ :

{
0 → γ(x) γ(0) = γ(x)u 0

1 → γ(x) γ(0) γ(y) = γ(x)u 0 γ(y)
Ψγδ :

{
0 → 0 γ(x)u

1 → 0 γ(y )γ(x)u.

This is a slightly extended version of [17, Lemma 2.3.17 (iii)], which leads to Ψγδ =
ΨγΨδ, since

ΨγΨδ :

{
0 → Ψγ(0)Ψγ(x) = 0 uΨγ(x) = 0 γ(x)u

1 → Ψγ(0)Ψγ(y)Ψγ(x) = 0 uΨγ(y)Ψγ(x) = 0 γ(y )γ(x)u,

where we use the conjugation relation uΨγ(w) = γ(w)u for w = x, yx.

For a further description, we need next to ψ3 yet another elementary morphism
ψ8 = E ϕ̃:

ψ3 : 0 → 0, 1 → 01, ψ8 : 0 → 01, 1 → 1.

Lemma 4. Let γ = ψ1ψn
3ψ1 for some n ≥ 0. Then Ψγ = ψ3ψ

n+1
8 .

Proof. One easily finds that for all n ≥ 0

ψ1ψ
n
3ψ1(0) = (01)n+10, ψ1ψ

n
3ψ1(1) = 01; ψ3ψ

n+1
8 (0) = 0(01)n+1, ψ3ψ

n+1
8 (1) = 01.

This implies the statement of the lemma.

We need more details on the structure of the map γ /→ Ψγ .

Proposition 5. Let γ be a morphism from M0
1,3. Then

ΨEγE = E Ψ̃γ E.

Moreover, ΨEγE = Ψ∗
γ, where ·∗ is the homomorphism defined by ψ∗

3 = ψ8, ψ∗
8 = ψ3.
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Proof. We assume that |γ(0)| < |γ(1)|, the proof of the other case is quite similar.
We use the same facts on γ from [17] as in the proof of Lemma 2. Since (γ(0), γ(1))
is a standard pair, and all γ(0) from M1,3 start with 0, there exist2 palindromes p
and q such that

γ :

{
0 → 0 p 0 1 0

1 → 0 p 0 1 0 q 0 1,
Ψγ :

{
0 → 0 0 p 0 1

1 → 0 q 0 1 0 p 0 1.

So we have

Ψ̃γ :

{
0 → 1 0 p 0 0

1 → 1 0 p 0 1 0 q 0,
EΨ̃γE :

{
0 → 0 1 p1 0 1q 1

1 → 0 1 p1 1.

On the other hand,

EγE :

{
0 → 1 p 1 0 1q 1 0

1 → 1 p 1 0 1,
ΨEγE :

{
0 → 0 1 p1 0 1q 1

1 → . . . .

Note that we showed ΨEγE(0) = EΨ̃γE(0), but for 1 this is trickier. A way to look
at conjugation is by simultaneous repeated rotation. Here by rotation we mean the
map ρ on words defined by

ρ(w1w2 . . . wm) = w2 . . . wmw1.

Moreover, words may only be rotated simultaneously if their first letters are equal.
From this viewpoint,

ΨEγE(0) = ρ|EγE(0)|−1EγE(0) = ρ|p|+|q|+5EγE(0).

Since the length of EγE(1) equals |p| + 4, and EγE(1) is a prefix of EγE(0), we
may first rotate |p|+ 4 times, obtaining

ρ|p|+4ΨEγE(0) = q 1 0 1 p1 0 1, ρ|p|+4ΨEγE(1) = 1 p 1 0 1.

To continue rotating |q|+ 1 times, , we must see that q 1 is a prefix of 1 p 1 0 1, and
we want to see that the outcome is

ρ|q|+1(1 p 1 0 1) = 0 1 p1 1, or equivalently, ρ|q|+1(0 p 0 1 0) = 1 0 p 0 0.

This requires for the time being that |q| ≤ |p|+ 4.
According to [17, Theorem 2.2.4] the word 0 p 0 1 0 q is a palindrome, and so

0 p 0 1 0 q = q 0 1 0 p 0,

hence ρ|q|+1(0 p 0 1 0) has prefix 1 0 p 0. We also see from this equation that the first
letter of q is a 0, so the letter following 1 0 p 0 is a 0, as claimed. Note that this
palindrome equation also implies that q 1 is a prefix of 1 p 1 0 1.

2Here we admit p = 0−1, with length |p| = −1.
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In the case that |q| > |p|+4, suppose that |q| = a(|p|+4)+ b, where b < |p|+4.
Then one rotates with ρ|p|+4 a+ 1 times, followed by a rotation ρb+1. That this is
possible, one can deduce from [17, Proposition 2.2.2], which states that only the last
two letters of the words γ(0)γ(1) and γ(1)γ(0) are different. A zig-zag argument
then gives that γ(1) = γ(0)a+101.

For the second part of the proposition, note that ψ∗
3 = Eψ̃3E = ψ8, and ψ∗

8 =

Eψ̃8E = ψ3. Let Ψγ = ψi1 . . .ψim . Then we have, using the first part of the
proposition,

ΨEγE = E Ψ̃γ E = Eψ̃i1 . . . ψ̃imE = Eψ̃i1EEψ̃i2E . . . Eψ̃imE

= ψ∗
i1ψ

∗
i2 . . .ψ

∗
im = Ψ∗

γ .

Theorem 3. Let α be a Sturmian number, with 0 < α < 1. Then sα,0 is a fixed
point of some ψ ∈ M3,8. Conversely, any ψ ∈ M3,8 ! {M3 ∪M8} fixes an sα,0.
The same statements hold for s′α,0, but then with M3,8 replaced by M4,7.

Proof. We have sα,0 = 0 cα. Suppose γ ∈ M1,3 satisfies γ(cα) = cα. Then γ2(cα) =
cα and γ2 ∈ M0

1,3, so by Proposition 3, sα,0 is fixed point of Ψγ2 .
We claim that any Ψγ , where γ is from M0

1,3, is an element of M3,8. We prove
this claim by induction on m where γ = ψi1 . . .ψim . For m = 2, γ = ψ2

1 , and the
claim is true by Lemma 4. Suppose the claim is true for all γ from M0

1,3 with length
m or less. An arbitrary γ = ψi1 . . .ψim+1 from M0

1,3, can be written as γ = γ′γ′′,
where γ′ and γ′′ are non-trivial elements of M0

1,3, unless γ has the form

γ = ψ1ψ
m−1
3 ψ1,

but then Ψγ ∈ M3,8 according to Lemma 4. The first part of the theorem is proved.
For the second part, we divide the morphisms in M3,8 into two types: the ones

starting with ψ3 and the ones starting with ψ8. A density argument shows that
first type corresponds to ψ with α < 1/2, and the second type to ψ with α > 1/2.
Moreover, by Proposition 5 these are in 1-to-1 correspondence with each other by
replacing all ψ3 by ψ8 and conversely. It suffices therefore, to show that any ψ
from M3,8 ! M3 starting with ψ3 fixes an sα,0 = 0cα. This can be done with
an argument similar to the one above. Let ψ = ψ3ψi2 . . .ψim . When m = 2,
ψ = ψ3ψ8, and we know that ψ(0cα) = cα, where cα is the fixed point of ψ2

1 .
Proceed by induction, using Proposition 4. Now ψ can be written as ψ′ψ′′ with
ψ′ = ψ3 . . . and ψ′′ = ψ3 . . . unless ψ has the form ψ3ψm

8 , but then we can use
Lemma 4.

To handle s′α,0 = 1cα, we use the property that in general s′α,ρ = E s1−α,1−ρ (see
[17, Lemma 2.2.17]). This yields

s′α,0 = E s1−α,1 = E s1−α,0.

Since in general E(w) is a fixed point of EσE when w is a fixed point of σ, we
obtain that the s′α,0 are generated by the morphisms from the monoid M4,7, since
Eψ3E = ψ7 and Eψ8E = ψ4.
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Remark 1. There is an interesting coding from the morphisms starting with
ψ3 in M3,8 to M0

1,3. Let + be binary addition with 3 and 8: 3+3=3, 8+8=3,
3+8=8, 8+3=8. Add i2i3 . . . im3 to 3 i2 . . . im, and replace 8 by 1. For example:
38...88 + 88...83 = 83...38 /→ 13...31.

We display the first three levels of the binary tree T3,8, where the nodes are
labeled with the morphisms given by Theorem 3.

Id

{ 0 → 0
1 → 01

{ 0 → 0
1 → 001

{ 0 → 0
1 → 0001

{ 0 → 01
1 → 01011

{ 0 → 01
1 → 011

{ 0 → 001
1 → 00101

{ 0 → 011
1 → 0111

{ 0 → 01
1 → 1

{ 0 → 001
1 → 01

{ 0 → 0001
1 → 001

{ 0 → 01011
1 → 011

{ 0 → 011
1 → 1

{ 0 → 00101
1 → 01

{ 0 → 0111
1 → 1

Remark 2. Just as in Theorem 1, each morphism generating an sα,0 occurs exactly
once on the tree T3,8. This can be deduced from the fact that we have a coding
between M3,8 and M0

1,3, but also because the monoid generated by the incidence
matrices of ψ3 and ψ8 is free. Arnoux remarks that this can be derived in an
elementary way ([3, Lemma 6.5.14]).

4. Generating Substitution Invariant Sturmian Words

There is a direct, more analytic way to find substitution invariant Sturmian words.
We use an idea already considered by self-similarity expert Douglas Hofstadter
in 1963 ([10]). To solve the fixed point equation ψ(sα,ρ) = sα,ρ for ψ, we can
equivalently solve the fixed point equation

Tψ(x, y) = (x, y) for 0 < x, y < 1,

where Tψ = Ti1 . . . Tin if ψ = ψi1 . . .ψin with the ik from some subset of {1, . . . , 8}.
Here the Ti are two-dimensional fractional linear functions, such that

ψi(sα,ρ) = sTi(α,ρ).

Some Ti are given by [17, Lemma 2.2.18], and the others can be computed in a
similar way. We have, for example,

T1(x, y) =

(
1− x

2− x
,
1− y

2− x

)
, T3(x, y) =

(
x

1 + x
,

y

1 + x

)
, and

T8(x, y) =

(
1

2− x
,

y

2− x

)
.
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Note that both T3 and T8 leave the line y = 0 invariant; this suggests the use of
products of ψ3 and ψ8 to solve the equation ψ(sα,0) = sα,0, as we did in Theorem 3.
We mention that the triple T1, T3, T8 occurs in [11], where they are used to connect
two-dimensional continued fraction expansions to substitution invariant Sturmian
words.

Solving the equation Tψ(x, y) = (x, y) is straightforward: there is a one-dimen-
sional fractional linear function fixed point equation for x, which is quadratic, and
then there is a linear equation for y, since one can show by induction on the number
of ψi in ψ that only ±y will occur in the second component of Tψ(x, y).

We mention that in some cases the equation is actually ψ(sα,ρ) = s′Tψ(α,ρ), but
this can be dealt with by passing to the square of ψ, or by using Proposition 1.
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