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Mirror, mirror on the wall, which is the greenest of them all? A critical 
comparison of chemo- and biocatalytic oxyfunctionalisation reactions
Yinqi Wu, Caroline E. Paul, Frank Hollmann⁎

Biocatalysis section, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, the Netherlands 
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A B S T R A C T

This review article critically compares two widely used types of catalysis, chemo- and biocatalysis, and provides 
insights on their greenness according to specified parameters. A comparative analysis of the environmental 
impact of chemo- and biocatalytic oxyfunctionalisation reactions based on published experimental data reveals 
that both methods produce comparable amounts of waste, with the majority stemming from the solvent used. 
However, it is emphasised that the synthesis of the catalysts themselves, including biocatalysts, should also be 
considered when assessing their environmental impact. The review underscores the complexity of assessing the 
environmental impact of catalytic oxyfunctionalisation reactions. The article also discusses the relationship 
between solvent properties and the energy demands for chemical transformations and downstream processing, 
underlining that the choice of solvent can significantly influence the environmental impact of a catalytic process. 
Additionally, the review highlights the importance of considering the recyclability of reagents and the secondary 
CO2 emissions caused by the energy requirements of the reaction when evaluating the environmental impact of a 
catalytic process. Each chemo- and biocatalysis produce a certain environmental impact, the greenness of either 
method is dependent on several factors, including the type of waste generated, the recyclability of reagents, and 
secondary CO2 emissions. This review therefore recommends using consistent metrics and a comprehensive life 
cycle assessment approach to evaluate this environmental impact, and highlights the importance of considering 
the synthesis of the catalysts themselves.

1. Introduction

The addition of oxygen atoms into C-H or C-C bonds, as well as C]C 
bonds, known as catalytic oxyfunctionalisation reactions, is gaining 
importance in organic synthesis due to their potential for producing 
highly functionalised and complex molecules. However, these reactions 
present significant challenges that must be addressed to achieve high 
yields and selectivity.

One major challenge is controlling selectivity, as oxyfunctionalisa-
tion reactions can result in multiple products due to the presence of 
multiple reaction sites in the substrate. This challenge is compounded 
by another, generating and controlling highly reactive oxygen species, 
which can lead to issues with catalyst stability, selectivity, and un-
wanted byproduct formation. Additionally, traditional oxidants used in 
these reactions are often toxic or environmentally hazardous.

As a result, most catalysis disciplines are actively developing oxy-
functionalisation catalysts, reactions, and processes. Homogeneous 
catalysis such as organometallic catalysis and biocatalysis are 

particularly active in this area, and interdisciplinary interactions could 
be beneficial. However, these fields do not interact as much as they 
could, with each often depreciating the other approach. Arguments 
against biocatalysis often include the high specificity and poor stability 
of enzymes, their dependence on costly cofactors, and poor scalability. 
In contrast, biocatalysis publications often disfavour chemocatalysis 
due to toxic catalysts and solvents and harsh reaction conditions [1-3].

To provide a balanced, objective overview, a comparison of chemo- 
and biocatalysts for their efficiency and environmental impact is 
needed. This approach aims to promote a more quantitative discussion 
and comparison of both fields and potentially initiate productive con-
troversies from which we can all learn.

2. Catalysts available

In the majority of chemical oxyfunctionalisation reactions, catalysis 
is required to decrease the activation enthalpies and increase se-
lectivity. One common catalytic strategy is to activate molecular 
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oxygen or hydrogen peroxide as higher-valent metal oxo species or as 
(hydro)peroxo species (Fig. 1). Additionally, organic oxidants such as 
hydroperoxides and peracids are frequently utilised.

Among the catalysts used, various metals such as elements of the 
platinum group (Ru, Rh, Pd, Os, Ir, and Pt) are prevalent for the acti-
vation of molecular oxygen (Fig. 2). For already reduced oxygen species 
((hydro)peroxide), salts of V [4,5], Mn [6-8], Fe [9-11], Ni [12,13], 
Co [14,15], Cu [16], or Pt [17] are commonly used, while photo-
catalytic systems based on TiO2 [18-20] or SiO2 [21] are emerging. 
Organic catalysts such as BINAP [22], flavins [23-25] or peptides [26]
have also been reported, and many of these catalytic systems are ap-
plied for different oxyfunctionalisation reactions.

Compared to the wide range of catalysts used in chemical oxyfunc-
tionalisation, biocatalysis relies on a narrower selection of (bioavailable) 
metals such as Fe, Cu, V, and Mo, and organic catalysts such as flavins and 
pterins. The most widely known oxyfunctionalisation enzymes are Fe-de-
pendent oxygenases. The haem-dependent P450 monooxygenases [27-31]
and peroxygenases [32-36] catalyse a broad range of C–H functionalisa-
tion reactions and epoxidation reactions, while Baeyer-Villiger (BV) oxi-
dations are yet unknown. Non-haem Fe oxygenases exhibit an even 
broader repertoire including cis-dihydroxylations of arenes or halogena-
tion of non-activated C–H bonds, but also no BV oxidations [37-39]. 
Flavin-dependent monooxygenases catalyse BV oxidations, epoxidation 
reactions, and aromatic hydroxylations [40-42] and some flavin-depen-
dent monooxygenases even catalyse aromaticity-breaking hydroxylations 

of arenes [43,44] or hydroxylation of sp3 C–H bonds (which is generally 
reserved to metal-dependent enzymes) [45]. Flavin-dependent oxidases 
such as vanillyl alcohol oxidase also catalyse the benzylic oxyfunctiona-
lisation of p-alkyl substituted phenols via a desaturation/hydration se-
quence [46,47]. In contrast to most oxyfunctionalising enzymes, the 
oxygen inserted does not originate from molecular oxygen but rather from 
water. Other metals and cofactors such as W or Mo [48], V [49-52] or Cu 
play a lesser role in biocatalytic oxyfunctionalisation chemistry. A notable 
exception are the Cu-dependent lytic polysaccharide monooxygenases 
(LPMOs) [53-55] which are currently experiencing increased interest for 
the valorisation of recalcitrant polysaccharides.

3. Catalyst productivity, performance and loadings

The term chemical productivity is widely used and recognised as 
crucial, however, it is often ambiguously defined. For the purpose of 
this discussion, we adopt the definition of chemical productivity as the 
rate of volumetric product formation (as defined by Eq. 1).

=
n

Chemical productivity [mM h ]
volume time

mmol
L h

1 product

(1) 

Undoubtedly, this parameter is of paramount importance, particu-
larly in terms of the economic viability of any chemical process at an 
industrial scale. Moreover, from an environmental standpoint, chemical 
productivity plays a crucial role, as the duration of a reaction is directly 

Fig. 1. Selection of (in) organic activated oxygen species for oxyfunctionalisation chemistry. 
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proportional to energy consumption (including associated CO2 emis-
sions) resulting from activities such as stirring, pumping, or thermal 
control.

Fig. 3A illustrates the notable disparity in chemical productivity 
between biocatalytic and chemocatalytic oxyfunctionalisation reac-
tions. Specifically, over two-thirds of biocatalytic reactions have a 
productivity level below 10 mM h-1, whereas only one-third of chemo-
catalytic reactions fall into this category. Moreover, a considerable 
portion (20%) of chemocatalytic reactions achieve a chemical pro-
ductivity of 0.1 M h-1 or higher, which is an exceptional achievement in 
biocatalysis. Part of the reason for this discrepancy can be attributed to 
the traditionally lower molar catalyst loading used in enzymes as 
compared to chemocatalysts (as shown in Fig. 3B). Enzymes are usually 
employed at much lower concentrations, ranging from the lower mi-
cromolar to nanomolar range (approximately 90% of the time), while 
chemical catalysts are typically used at concentrations of 1 mM or 
higher (> 50%). When we consider the weight of the catalyst, the re-
sults may vary. Generally, chemocatalysts consist of a central (transi-
tion) metal element surrounded with several simple ligands, with the 
molecular weight in the range of a few hundred to several thousand 
Daltons (Da). For enzymes, hundreds of residues are used for the pro-
tein structure, forming the 20–120 kDa complex catalyst molecule. It is 
worth mentioning here that, based on a g L-1 basis catalyst concentra-
tions are very comparable in a typical range of 0.1–10 g L-1.

When catalytic productivity is compared in terms of turnover 
numbers (TON, Eq. 2), the performance of biocatalysts is superior to 
that of chemocatalysts (Fig. 3C), with over 20 oxyfunctionalisation 
biocatalysts reaching well above >  10,000 TON. However, when we 
make the comparison in terms of g g-1 (grams of product per gram of 
catalyst), there is no significant difference between chemocatalysis and 
biocatalysis.

=
n
n

TON mol
mol

product

catalyst (2) 

Another parameter relevant in this context is catalyst activity de-
scribed by turnover frequency (TOF), which refers to the TON per unit 
of time (Eq. 3). The equivalent term in biochemistry for biocatalyst 
characterisation is known as the catalytic efficiency described by kcat/ 
KM. Such comparisons are unfortunately scarcely reported in literature, 
yet would be valuable to establish catalytic performance. As shown in 
Fig. 3D, typical TOFs for chemocatalysts range below 100 h-1 whereas 
more than 70% of the enzyme catalysts exhibit TOFs higher than 
1000 h-1.

=
n

n
TOF [h ]

time
mol

mol h
1 product

catalyst (3) 

Overall in terms of chemical productivity, chemocatalytic processes 
currently outperform biocatalytic ones, yet the latter is catalytically 
more productive, displaying higher TON and TOF. This observation 
suggests that the productive potential of biocatalysts remains to be 
explored.

4. Reagent loadings and solvents

High product loadings are crucial for the economic feasibility of 
chemical processes as they increase the efficiency of infrastructure and 
operational resources used. Additionally, downstream processing is 
generally easier, less time-consuming, and requires fewer resources and 
less energy when the product concentration is high. As mentioned 
earlier, these economic factors also translate into environmental im-
pacts. In other words, the higher the product concentration, the lower 
the overall environmental footprint of a transformation. Thus, we 
compared the substrate loadings reported for both biocatalytic and 
chemocatalytic oxyfunctionalisation processes (Fig. 4).

A majority of oxyfunctionalisation biocatalysis occurs in dilute re-
action media, with over 80% of the reactions being performed in so-
lutions containing less than 100 mM of starting material. In contrast, 
over 80% of chemocatalytic processes are conducted with starting 
material concentrations of 100 mM or higher.

There is a clear cultural difference between researchers in the fields of 
chemocatalysis and biocatalysis when it comes to the choice of solvent for 
a reaction. Chemists tend to choose the most suitable solvent for the re-
action, while biocatalysis researchers predominantly use water. This is 
understandable as water is often referred to as the "solvent of life" and 
many enzymes are water-soluble. Moreover, water is perceived as a green 
solvent, being abundant and renewable in many regions of the world and 
non-toxic (at least prior to its use as solvent). However, due to its high 
polarity, water is a poor solvent for hydrophobic reagents such as hy-
drocarbons, which partially explains the low substrate concentrations used 
in biocatalysis (Fig. 4). In contrast, chemocatalysis often employs organic 
solvents such as alcohols (e.g. methanol, ethanol, isopropanol), alkanes, 
and aromatics (e.g. toluene, xylene), and even halogenated solvents such 
as CH2Cl2 or CHCl3, allowing for high substrate loadings. In the case of 
liquid starting materials, solvent-free reactions are not uncommon. Today, 
biocatalysis for oxyfunctionalisation predominantly relies on aqueous re-
action media, which presents challenges to scalability and greenness. 
However, it is worth noting that non-aqueous applications of hydro-
lases [56] and lyases [57] are quite common. Oxidoreductases, on the 
other hand, have been slower to adapt. Pioneering work by Klibanov and 
coworkers [58-60] has recently regained attention from the biocatalysis 
community [61]. To address the incompatibility of hydrophobic reagents 
and water-borne catalysts such as enzymes or whole cells, the two-liquid 
phase system (2LPS) approach has been developed (Scheme 1) [62-66]. 
This approach not only allows for high overall product concentrations but 
also enables control over the selectivity of the overall reaction. For ex-
ample, hydrophobic aldehyde intermediates can be extracted into the 
hydrophobic organic phase, avoiding their over-oxidation [67]. Ad-
ditionally, water-labile products such as epoxides can be stabilised using 
the 2LPS approach [68].

Fig. 2. Classification of chemocatalysts ( ) and biocatalysts ( ) for hydro-
xylation ( ), epoxidation ( ) and Baeyer-Villiger oxidation reactions ( ). FMO: 
flavin-containing monooxygenases, such as styrene monooxygenases; Haem: 
haem-dependent enzymes, such as cytochrome P450 monooxygenases; Non- 
haem: non-haem-dependent enzymes, such as ammonia monooxygenases. For 
more details please refer to Table S2.
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Micro aqueous reaction systems (MARS) can be considered as an 
extension of the 2LPS approach, but with an even more extreme re-
duction of water content. The exact residual water content un-
fortunately varies for different enzymes and no general rules can be 
given right now [61]. Lipases, for example, generally need far less 
water than oxidoreductases. Often, buffer-saturated organic solvents 
provide sufficient water for the biocatalyst to remain active. MARS 
have shown great potential especially in case of cofactor-independent 
reactions or in those cases where the cofactor not necessarily diffuses 
away from the enzyme active site. For reactions requiring a free, dif-
fusible cofactor (e.g., in the case of enzyme-coupled regeneration sys-
tems), the extremely low solubility of the ionic cofactors in the hy-
drophobic liquid media poses a significant challenge for biocatalysis in 
MARS. Highly polar reagents such as glucose are also not easily ap-
plicable in MARS. Therefore, the application of MARS is largely re-
stricted and may not be suitable for the commonly used P450 mono-
oxygenase systems (except for peroxide shunt pathway applications 
that are cofactor-independent). However, the recently emerging per-
oxygenase enzymes have shown promising results in both 2LPS and 
MARS systems, highlighting their potential as versatile catalysts for 
green and sustainable chemical transformations [69-71].

Fig. 3. Comparison of chemical productivities (A), catalyst loadings (B), catalyst turnover numbers TONs (C) and catalyst turnover frequencies TOFs (D) in oxy-
functionalisation reactions catalysed by chemocatalysts ( ) and biocatalysts ( ). For details please refer to Table S3.

Fig. 4. Comparison of substrate loadings in oxyfunctionalisation reactions catalysed 
by chemocatalysts ( ) and biocatalysts ( ). For details please refer to Table S3.
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5. Oxidants

Stoichiometric oxidants play a crucial role in oxyfunctionalisation re-
actions. In recent years, a wide range of oxidising agents, which also serve 
as an O-source, have replaced traditional oxidants such as chromate or 
permanganate (Table 1). More examples involving further oxidants are 
listed in Table S1. The oxidant scope of chemocatalytic methods is broader 
than their biocatalytic counterparts. Chemocatalytic oxyfunctionalisation 
reactions utilise a diverse range of oxidants, including oxygen (such as O2 

or O3), peroxides (such as H2O2 or (in)organic hydroperoxides), peracids 
(e.g., mCPBA or peracetic acid), or halogenated oxidants (elementary, 
hypohalites, or hypervalent iodine species) [72]. In contrast, the oxidant of 
choice for biocatalytic oxyfunctionalisation reactions is traditionally mo-
lecular oxygen. However, hydrogen peroxide and organic hydroperoxides, 
such as tert-butyl hydroperoxide, have recently gained popularity [73,74].

En route to the ‘ultimately green oxidant’ several aspects should be taken 
into account. Waste formation is certainly one of the most relevant features. 
Oxidants such as mCPBA or iodosyl benzene are very popular on the lab 
scale but also yield very significant amounts of byproducts reducing their 
environmental and economic attractiveness at preparative applications. In 
this respect, O2 or H2O2 appear most attractive as (eventually) only water is 
formed as by-product. But also here, safety considerations (explosion ha-
zards, corrosion issues) should be taken into account especially if volatile 
and flammable organic compounds (such as solvents) are involved. This 
issue is of lesser importance in case of aqueous reaction media, but the low 
solubility of O2 (approx. 0.25 mM, depending on temperature, pressure and 
buffer composition) presents challenges for biocatalysis. The amount of 
oxygen available may lie below the enzyme's KM value, leading to sub-op-
timal enzyme activities. Enzyme engineering can generate mutants with 
higher O2 affinity [94], but O2 diffusion rate into the aqueous reaction 
mixture remains a limiting factor. Process engineering can address this issue 
[95]. Enzyme stability under aeration reaction conditions is another con-
sideration. Exposure to the gas-liquid interface can cause denaturation of 
enzymes, and oxidation of labile amino acids such as methionine and cy-
steine can impair enzyme activity or stability [94].

One challenge faced by monooxygenase reactions is uncoupling [96]. 
Monooxygenases first activate molecular oxygen through a reductive 
process to produce an activated, enzyme-bound oxygen species that then 
performs oxygen insertion [37]. The reducing equivalents required for this 
reaction are typically obtained from reduced nicotinamide cofactors and 
delivered to the monooxygenase through complex electron transport 
chains. However, a significant portion of the reducing equivalents pro-
vided by the sacrificial electron donor can also be wasted in a futile un-
coupling reaction, which involves the direct aerobic oxidation of radical 
intermediates. This loss of reducing equivalents hinders the large-scale 
application of biocatalytic oxyfunctionalisation, as the cost contribution of 
the sacrificial electron donor exceeds the economically feasible range and 
results in additional consumption of feedstock [96]. In addition, the re-
active oxygen species formed in the uncoupling process can impair the 
stability of biocatalysts.

Peroxygenases, in contrast to monooxygenases, do not suffer from 
uncoupling issues, as they utilise already reduced oxygen in the form of 
H2O2 as a stoichiometric oxidant, resulting in highly simplified reaction 
schemes. This advantage makes peroxygenases an attractive option for 
industrial oxyfunctionalisation processes, as the cost contribution of a 
sacrificial electron donor, which is often necessary in monooxygenase- 
catalysed reactions, can be eliminated. However, like all haem-con-
taining enzymes, peroxygenases are susceptible to irreversible haem 
degradation in the presence of high concentrations of H2O2, but this can 
be easily controlled by adjusting the in situ H2O2 concentration 
[74]. Despite the somewhat limited substrate scope of peroxygenases, 
recent research efforts have successfully expanded the range of sub-
strates that these enzymes can act on [35,97-104], demonstrating their 
potential for future applications.

6. Selectivity

Selectivity represents a key performance indicator for (catalytic) 
reactions. The higher the conversion of a given starting material into 
the desired product and the lower the formation of undesired side- 
products, the more efficiently resources are utilised.

It should also be noted that downstream processing and product 
purification often very significantly contribute to the overall waste 
formation of a given chemical process. For example, Schrittwieser et al. 
compared various synthetic routes of Tembamide synthesis finding that 
up to 90% of all waste generated (depending on the synthetic route) is 
caused by product isolation and -purification [105]. These numbers 
underline the potential impact of product purity and consequently the 
selectivity of a catalyst.

Furthermore, the separation of undesired by-products from the desired 
one consume further resources (reagents, time and CAPEX) and generate 
additional wastes. Therefore, highly selective catalytic transformations are 
desirable from an economic and an environmental point-of-view. 
Generally, regio-, chemo- and enantioselectivity are differentiated. The 
selectivity of catalytic oxyfunctionalisation reactions depends on two 
factors: (1) the reactivity of the C–H bond to be converted (mainly af-
fecting the regioselectivity of a given reaction) and (2) the positioning of 
the starting material relative to the catalytically active species (affecting 
regio- and stereoselectivity). The selectivity of a catalyst is determined by 
the relative stabilisation of transition states leading to the competing 
products. According to the Arrhenius equation, the relative reaction rate 
(and therewith the product distribution) directly correlates with the acti-
vation energy of the different transition states. This can be achieved by 
introducing attracting and repulsive interactions of the starting material 
with the catalyst (i.e., the ligands in case of chemical catalysts and amino 
acid residues in the active site in case of enzymes).

However, as low-molecular weight compounds, chiral ligands have 
limited possibilities to interact with the catalyst-bound starting material 
and thereby to control substrate binding (Fig. 5) [106]. In contrast, an 
enzyme active site offers various attractive and repulsive interactions with 
the starting material, providing the enzyme with more opportunities to 
control substrate binding relative to the catalytically active group (Fig. 5).

The difference in control of binding interactions can be exemplified 
in the hydroxylation of non-functionalized alkanes. In chemical hy-
droxylation reactions, the reactivity of a given C-H bond and the steric 
hindrance around it determine the regioselectivity of the reaction. 
While these factors also play a role in enzymatic hydroxylations, they 
are complemented by the interaction of the starting material with the 
enzyme active site. This interaction favours the binding of the starting 
material to the hydroxylation catalyst in an orientation leading to a 
kinetically favourable product. An illustrative example is the oxyfunc-
tionalisation of octane catalysed by cobalt aminodiphosphine com-
plexes, yielding a statistical mixture of regio- and stereoisomeric 1- to 4- 
octanols (Fig. 6, upper reaction) [107-109]. However, the cytochrome 
P450 monooxygenase from Mycobacterium sp. HXN-1500 produces 1- 
octanol in greater than 95% selectivity [110]. Similarly, alkane 

Scheme 1. The two-liquid phase concept. The hydrophobic organic phase al-
lows for overall high reagent loadings and serves as substrate reservoir and 
product sink.
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hydroxylases (i.e. non-haem Fe monooxygenases) [111] generally ex-
hibit a preference for terminal hydroxylation, while hydroxylases from 
different organisms exhibit other selectivities [112-115] While the 
majority of wild type hydroxylases exhibit poor selectivity towards non- 
natural starting materials such as octane, modern enzyme design en-
ables the modification and fine-tuning of hydroxylase selectivity to-
wards these substrates. Recent studies have shown the success of en-
zyme design in modifying the selectivity of hydroxylases towards 
various substrates [27,35,99,116-125].

Enzymes are also superior to chemical catalysts in terms of stereo-
selectivity. As mentioned earlier, enzymes have more control over the or-
ientation of the substrate with respect to the catalytic site, and this is crucial 
for achieving high stereoselectivity. For instance, chiral transition metal 
catalysts typically give enantiomeric excess (ee) in the range of 40%–80% for 

the stereoselective benzylic hydroxylation of ethyl benzene [8,11,126], and 
low reaction temperatures are often required to achieve high stereo-
selectivity, resulting in significant energy input for the transformations. In 
contrast, a wide range of highly (R)- or (S)-selective oxygenases are available, 
including haem-dependent monooxygenases [127,128] and perox-
ygenases [129], which have been reported to achieve high selectivity. In 
addition, more "exotic enzymes" such as Mo-dependent dehydrogenases and 
flavin-dependent oxidases, which follow a desaturation-hydration me-
chanism, have also been reported to exhibit high stereoselectivity [130,131].

Both chemical and enzymatic catalysts face the challenge of over-
oxidation in hydroxylation reactions, where the hydroxylated product 
is more reactive than the starting material and can be further converted. 
One approach to mitigate overoxidation is in situ removal of the alcohol 
product from the reaction mixture, which prevents further conversion 

Table 1 
Selection of commonly used oxidants in catalytic oxyfunctionalisation. 

Oxidant By-product Waste[g molproduct
-1] Hydroxylation(O-activation) Epoxidation(O-activation) BV-oxidation(O-activation)

Chemo Bio Chemo Bio Chemo Bio

O2 H2O2 / H2O 34 / 18 Mna P450b Mnd FMOe SiO2
f BVMOg

VAOc P450b

H2O2 H2O 18 Co/Feh UPOj Til UPOj Com Lipase/acidl

Fei P450k Mnm P450k Pdn

Lipase/acidl

Ph-I=O Ph-I 200 Feo P450p Mnq - Fer -
mCPBA acid 156 Fes - Nit - Sc (14)u -

a MnII-Met@MMNPs [75]
b P450 monooxygenases [29]
c Vanillyl alcohol oxidase (VAO) and related enzymes activating p-hydroxy alkyl benzenes a quinone methides for H2O attack [46]
d Fe3O4-[Mn(TCPP-Ind)Cl] [76]
e FMO: Flavin-dependent monooxygenases [40]
f SiO2-mediated aerobic oxidation of benzaldehyde to perbenzoic acid [21]
g Baeyer-Villiger monooxygenases (BVMO, flavin-dependent) [41]
h [CoIII

4 FeIII
2 O(L10)8] 4DMF·H2O [77]

i [((R)-(−)-N4Py*)FeII(CH3CN)]2+ [10]
j UPO: unspecific peroxygenase [34]
k P450 monooxygenases using decoy molecules [78]
l titanium(salan) complexes [79]

m Mn porphyrin complexes [80] or MnO2 NP/g-C3N4 [81] [l] lipase-catalysed in situ generation of peracids [82-85] [m] Co-salen complex [15]
n (PhCN)2PdCl [86]
o porphyrin complexes [87]
p [88]
q [MnIII(TDCPP)Cl] [89]
r [FeII(CH3CN)(N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methyl-amine)(ClO4)]ClO4 [90]
s FeIII

2 (O)(L)(OBz)](ClO4) [91]
t [NiII(L)Cl], L=(2-[bis(pyridin-2-ylmethyl)amino]-N-(quinolin-8-yl)acetamide) [92]
u L-RaPr2-tBu/Sc(OTf)3 [93]. For the activation mode, please refer to Figure 1, for details of abbreviations please refer to Table S2.

Fig. 5. Comparison of binding interactions 
between catalysts and starting materials at the 
examples of the chemo (left) [106] and bioca-
talytic (right) hydroxylation of 3,4-dihy-
droquinolin-2(1 H)-one. While in the first case 
essentially only two H-bond with a con-
formationally flexible ligand influence sub-
strate binding, the enzyme active site offers 
various amino acid residues to position the 
starting material (the staring material was 
docked into the active site of P450 mono-
oxygenase BM3 mutant using YASARA.
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[132,133]. Another strategy is medium engineering, where the reaction 
conditions are adjusted to favour alcohol accumulation [134,135]. For 
enzyme catalysts, modulation of the hydrophobicity of the active site 
can also help to reduce the overoxidation rate [136].

Compared to hydroxylation, there are a broad range of highly en-
antioselective epoxidation catalysts available, including those reported by 
Jacobsen and Katsuki [137], Sharpless [138], Shi [139] and more (Fig. 7) 
[76,79]. In addition, a variety of suitable oxidoreductases are also avail-
able. For example, flavin-dependent styrene monooxygenases are proven 
epoxidation catalysts [40,140-146], but haem- and non-haem-dependent 
monooxygenases and peroxygenases can also catalyse a wide range of 
enantioselective epoxidation reactions. However, it should be noted that 
haem-dependent oxygenases may suffer from limited selectivity, as allylic 
hydroxylation frequently competes with epoxidation [147,148].

BV oxidation reactions also face selectivity challenges, especially with 
unsymmetrically substituted ketones that can yield two ester isomers, 
normal (NP) and abnormal (AP). In chemical BV-oxidations, stereoelec-
tronic effects dominate the migration tendency of carbonyl substituents 
within the Criegee intermediate, favouring the formation of NP and yielding 
a product mix that reflects the starting material's regioselectivity. However, 
when the substituents' carbocation stabilising tendencies are similar, such as 
in 3-methyl cyclohexanone, the product mixture can become more complex. 
In contrast, some enzymatic BV-oxidation catalysts, such as the BVMO from 
Aspergillus flavus, show excellent regioselectivity by favouring the migration 
of the less stabilising substituent and yielding the AP. Moreover, protein 
engineering can further modulate the selectivity of BVMOs for either NP or 
AP, enabling the efficient synthesis of a specific isomer [93,149-152].

Enantioselectivity has been extensively studied in both chemical and 
biocatalytic Baeyer-Villiger oxidations. In the case of chemical cata-
lysis, a number of investigations have focused on the development of 
enantioselective catalysts [25,26,93,153,154].

Similarly, significant efforts have been devoted to the development of 
biocatalytic BV-oxidation processes with high enantioselectivity [149,155- 
169]. These investigations have led to the development of highly en-
antioselective [26] in both chemical and biocatalytic BV-oxidations.

Overall, it can be concluded that selectivity is a clear strength of 
biocatalysis, with enzymes able to offer high selectivity for a wide range 
of reactions (Fig. 8). While some highly selective chemical catalysts 
have been developed in recent decades, biocatalysts remain un-
paralleled in terms of selectivity. Furthermore, enzyme selectivity can 
often be improved through protein engineering, making them even 
more attractive for use in industrial processes.

7. Environmental impact

The literature on biocatalysis often highlights the environmental 
benefits of using enzyme-catalysed reactions, such as the renewable 
nature of the catalysts, mild reaction conditions, high selectivity, and 
the use of water as a benign solvent [3]. However, these claims are 

often oversimplified, and more quantitative comparisons are necessary 
to accurately assess potential environmental advantages [172,173]. 
One useful tool for estimating the environmental impact of a reaction is 
Sheldon's E-factor (Eq. 4), which calculates the ratio of mass of wastes 
generated to mass of product produced [174].

=E
m

m
kg
kg

Waste

Product (4) 

We conducted a comparison between a chemo- [7,8] and a bioca-
talytic [175] hydroxylation of ethyl benzene, based on published ex-
perimental data (Table 2). We found that both methods produced 
comparable amounts of waste (28.1 and 36.5 kgwaste kgproduct

-1). Fur-
thermore, in both cases, the majority of waste generated was due to the 
use of solvent (approximately 95%), and the contribution of the cata-
lysts to waste generation was negligible (< 0.1%). Hence, the E-factor 
analysis suggests to focus on more efficient solvent use (e.g., by in-
creasing product concentrations and/or recycling of the solvent) to 
reduce the amount of waste. Also, this comparison may cast some doubt 
on the environmental superiority claims of biocatalysis.

Although an E-factor analysis is simple and can be conducted quickly 
and with readily available information (from the literature or one’s own 
labjournal), it by far does not represent the environmental impact of a 
given transformation. For example, the hazardousness of wastes are not 
taken into account by the classical E-factor, also secondary emissions 
caused by a reaction due to its energy requirements (e.g. electricity) are 
not included. Finally, also the ‘history’ of the reagents used is generally not 
taken into account for an E-factor calculation.

7.1. Hazardousness of reagents

It is self-evident that next to the sheer amount of waste, its ‘quality’ also 
determines environmental impact. For example, a highly volatile and toxic 
waste product will have a proportionally bigger environmental impact 
compared to e.g., H2O or N2 as by-product. To account for this, Sheldon 
proposed a refinement of his E-factor, the so-called EI-factor (environ-
mental impact, Eq. 5) [176].

=
m Q

m
EI x xWaste, Waste,

Product (5) 

Q is a measure for the ‘environmental unfriendliness’ of a given waste 
component and weights its overall contribution. While Sheldon remained 
vague about the definition of Q, Eissen and Metzger [177] proposed using 
semi-quantitative data such as Greenhouse effect, Ozone depletion / 
Ozone creation, Nutrification, Acidification, Ecotoxicology, Smog forma-
tion, Bioaccumulation, Degradability, Risk or Acute and Chronic toxicity. 
Bühler and coworkers performed an EI-factor comparison between a bio-
catalytic enantioselective epoxidation reaction and some chemocatalytic 
equivalents [178]. The absolute E-factor value of the biocatalytic process 
(ca. 20 kg kg-1) was significantly higher than the E-factors of the chemical 

Fig. 6. Comparison of the selectivity of chemo- and biocatalytic hydroxylation. For reasons of simplicity overoxidation products have been omitted. 
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counterparts (2–15 kg kg-1). Taking the environmental unfriendliness into 
account, the final result was somewhat more balanced.

Overall, the EI factor appears to provide a more realistic re-
presentation, closely resembling a life cycle assessment (LCA), of a 
chemical process. However, the question of transparency regarding 
individual weighting factors remains. Since these factors significantly 
influence the final result, readily accessible and transparently de-
termined Q-values for a large number of reagents are necessary. For 
instance, the Q-value for water as a solvent is often set to zero (thus 
eliminating water as waste). However, it should be noted that con-
taminated reaction water should indeed be considered as waste.

Toxicity issues have been investigated widely in the case of solvents 
[179,180]. The GSK Solvent Guide in which solvent alternatives have 
been ranked according to environmental impact, toxicological and 
safety issues has gained a certain level of recognition [181,182].

7.2. Energy requirements

Currently, the majority of energy used in the chemical industry still 
comes from fossil fuels, which is responsible for significant CO2 emis-
sions. Since the E-factor does not take this into account, we proposed 
the E+-factor to address this issue (Eq. 6) [183].

= +
×

+E m
m

(wastes)
(product)

kg
kg

kWh
kg

kg(CO )
kWh

2

(6) 

In essence, the E+-factor extends the E-factor by CO2 emissions 
caused indirectly due to the energy consumed for the transformation 
(stirring, heating, cooling, pumping, etc.). Practically, this is done by 
measuring the energy consumed (e.g. electricity) and multiplying this 
with the local carbon intensity (CI) of the energy source used.

It is important to emphasise the relationship between solvent 
properties and the resulting energy demands for the chemical trans-
formation as well as downstream processing. It should be noted that 
distillation is a commonly used method for solvent recycling and pur-
ification, but it is an energy-intensive process. Unless powered by off- 
heat from other exothermic processes, it necessitates the consumption 
of primary energy and causes greenhouse gas emissions. Table 3 pro-
vides examples of the theoretical energy consumption for the dis-
tillative purification of some commonly used solvents. It also gives an 
indication of the energy consumption required for temperature ad-
justment during a reaction. The higher the specific heat capacity (Cp) 
and boiling point (b.p.) of a solvent, the higher the energy required. 
Based on these numbers, water may not necessarily be among the 
'greenest solvents'. Also the viscosity of the reaction medium directly 
correlates with the energy demands for stirring and pumping.

In this regard, the biocatalytic reaction, performed at ambient 
temperature, appears to be more energy demanding than its chemo-
catalytic counterpart, which requires temperature control at –30 oC 

Fig. 7. Representative examples of (non)selective hydroxylation (A) [134,170], epoxidation (B) [76,171] and Baeyer-Villiger oxidation reactions, please note that 
racemic products were formed (C) [93,151] catalysed by chemocatalysts and biocatalysts. Details of abbreviations could be found in Table S2.

Fig. 8. Relative occurrences of the high stereo-, chemo- and regioselectivity 
(> 90%) in oxyfunctionalisation reactions catalysed by chemocatalysts (C, ) 
and biocatalysts (B, ). Details of abbreviations can be found in Table S3.
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(Table 4). Especially the significantly higher heat capacity of water 
compared to DFE results in a higher energy demand of temperature 
control in case of the biocatalytic process.

7.3. ‘History’ of reagents

A simple E-factor does not account for the synthetic history of the 
components used, i.e., the energy- and resource-consuming synthesis 
and waste generated during the production of the starting materials. 
For instance, an E-factor of 209,000 kgwaste kgAaeUPO

-1 has been esti-
mated for the biocatalyst [183]. Taking this prehistory into account 
increases the catalyst E-factor contribution of the biocatalyst in Table 2
from <  0.02 to 4180! A similar consideration for the chemocatalyst 
based on the synthesis information given in Ref.[8] suggest an E-factor 
of only ca. 34 kgwaste kgCat

-1 for the Mn-catalyst, suggesting a much 
lower overall contribution to the final product. However, it is important 
to note that, in contrast to the enzyme calculation, no CO2 emissions 
due to energy consumptions have been taken into account. Therefore, 
both numbers are not comparable.

Jessop proposed building synthesis trees for chemicals tracing back 
their synthesis to the original compounds (extracted from the ground, 
air, or sea) [179]. A comparison of the synthesis trees for the chemo- 
and the biocatalyst reveals the significantly more complex prehistory of 
the former, indicating a much higher E-factor prehistory (Fig. 9). 
Therefore, a more detailed and comprehensive analysis is required to 
assess the true environmental impact of a reaction.

The synthesis tree also reveals that the production of enzymes is not 
entirely renewable. Although enzymes are biocatalysts and have re-
newable sources such as microorganisms, the mineral components used 
for their growth media are often mined from finite resources. For ex-
ample, phosphate is a well-known example of a non-renewable re-
source. Additionally, other fermentation components such as NH3 or 
MeOH, which are synthesised using natural gas as feedstock, are still 
dependent on fossil resources. Thus, the sustainability of biocatalysis 
should also consider the renewable and non-renewable resources used 
in the synthesis of the fermentation components and the growth media.

In terms of productivity and economic viability, it is important to 
note that a high E-factor for the preparation of a given catalyst does not 
necessarily correspond to a large impact on the production of the final 

product. As the performance of the catalyst increases in terms of TTN, 
its contribution to the overall E-factor decreases. This means that the 
cost contribution of the catalyst to the final product also decreases 
(Fig. 10).

Overall, assessing the environmental impact of a catalyst is a com-
plex task that cannot be trivialised, and simple arguments in favour or 
against a particular type of catalyst may not be appropriate. It requires 
a comprehensive evaluation of various factors, including recyclability 

Table 2 
E-factor contribution comparison of a chemocatalytic and a biocatalytic oxyfunctionalisation of ethyl benzene. 

Chemocatalytic Biocatalytic

[g g-1] [%] [g g-1] [%]

Catalyst 0.021 <0.1 <0.02 <0.1
Additivesa 0.76 2.7 1 2.7
Solventsb 27.0 95.9 34.5 94.5
Unreacted substrate and byproducts 0.37 1.3 1 2.7
Sum 28.1 100 36.5 100

a Chemocatalytic: Boc-L-proline (Boc-L-Pro); Biocatalytic: KPi buffer;
b Chemocatalytic: difluoroethanol (DFE) including H2O from H2O2 addition; Biocatalytic: H2O/MeCN (1/1).

Table 3 
Exemplary calculation of the energy consumption (and coupled CO2 releases) 
for the distillative purification of some common solvents. 

Solvent Cp  

[J g-1 K-1]
b.p. 
[°C]

Energy 
consumption for 
distillation 
[kJ L-1][a]

CO2 emission 
produced  
[g (CO2) L-1][b]

Water 4.18 100 334 27.8
Toluene 1.51 110 117 9.8
Ethanol 2.4 78 110 9.2
Acetonitrile 2.25 82 110 9.2
Acetone 2.14 56 60 5

[a] assuming ambient pressure and starting from 20 °C;
[b] assuming a CO2 intensity of 300 g(CO2) kWh-1 (https://www.eea.eur-
opa.eu/ims/greenhouse-gas-emission-intensity-of-1)

Table 4 
Estimated energy demand for temperature control of the reactions shown in 
Table 2. 

Chemocatalytic Biocatalytic

Reaction volume [mL] 0.2 100
Product [mM] 126 188
Reaction temperature [°C] -30 25
Reaction time [h] 0.5 6
Cp of solvent [J g-1 K-1][a] 0.06 4.18
Q [kJ gproduct

-1] 0.22 0.91
CO2 [g gproduct

-1][b] 0.02 0.08

[a] assuming ambient pressure and starting from 20 °C;
[b] assuming a CO2 intensity of 300 g(CO2) kWh-1 (https://www.eea.eur-
opa.eu/ims/greenhouse-gas-emission-intensity-of-1)
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of reagents, harmfulness of wastes, energy requirements, and prehistory 
of the components used. In addition, it is essential to consider the re-
lationship between solvent properties and the resulting energy demands 
for chemical transformation, as well as downstream processing. 
Therefore, a detailed analysis and life cycle assessment is necessary to 
make informed decisions regarding the use of a particular catalyst.

7.4. Scale-up

The term Economy of Scale primarily refers to the cost advantages that 
a company or process can achieve as production or scale increases. It 

often leads to lower per-unit costs as production volumes increase. In 
addition to the factors discussed above, including the choice of reactants, 
the efficiency of the catalyst, energy consumption and waste generation, 
scaling up production may lead to increased efficiency. In many cases, 
larger-scale chemical processes are more energy-efficient than smaller- 
scale ones. This is because heat transfer and other energy-related pro-
cesses can be optimised at a larger scale, reducing overall energy con-
sumption. In larger production sites also process integration e.g., by 
utilising waste heat from one process to fuel other, heat-consuming 
processes can reduce the overall energy demands significantly. Scaling 
up can lead to changes in waste generation patterns. Larger-scale 

Fig. 9. Synthesis trees for the catalysts compared in Table 2 [7,132,184]. 
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processes may provide opportunities for more efficient waste manage-
ment and recycling. Effective waste management strategies can mitigate 
the environmental impact of increased waste production. On the other 
hand, larger processes may locally challenge the environment, e.g., ex-
cessive water usage. Hence, the impact of scaling up can be both positive 
and negative, depending on various factors and how the scale-up is 
managed.

8. Conclusions

The environmental impact of a catalytic reaction is a complex and 
multi-faceted issue that cannot be adequately captured by a single 
metric such as the E-factor. While the E-factor provides a useful starting 
point for assessing the environmental impact of a reaction, it has lim-
itations, such as not accounting for the recyclability of reagents, the 
toxicity of waste products, and the resource- and energy requirements 
of the reaction. Therefore, it is important to use a combination of me-
trics and approaches, including a life cycle assessment, to comprehen-
sively evaluate, and look into the mirror, which of the chemo- or bio-
catalyst is the greenest for oxyfunctionalisation reactions.

It is difficult to make a definitive conclusion on which type of catalysis 
is greener based on the arguments above. Both chemocatalysis and bio-
catalysis have advantages and disadvantages in terms of environmental 
impact. Biocatalysis offers more selectivity and operates at ambient tem-
peratures, yet still has the current aqueous media limitation. On the other 
hand, chemocatalysis is more versatile and operates under shorter reaction 
time, but may require harsher reaction conditions, leading to higher en-
ergy consumption and waste generation. Additionally, the environmental 
impact of the starting materials, catalyst synthesis, solvent properties, and 
downstream processing should also be taken into account (Fig. 11). 
Therefore, a case-by-case analysis is needed to determine which catalysis 
type is greener for a specific reaction.

Overall, assessing and minimising the environmental impact of 
catalysts is an important goal for achieving sustainable chemistry and 
mitigating the impact of chemical processes on the environment. By 
using a multi-faceted approach to evaluate catalysts and focusing on 
sustainable design principles, we can move towards a more sustainable 
future for the chemical industry. Moreover, it is indeed interesting to 
extend this line of thinking to other chemical reactions as well. This 
broader perspective allows for a comprehensive and holistic approach 
to reduce the environmental footprint of chemical processes.
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