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SUMMARY

Hydrogen is not only the most common element in the universe, but also a versatile
molecule which is an option to decarbonize sectors that are not easily electrified or are
energy intensive, such as long-distance transport, chemical industry, and metallurgy
among others. Hydrogen gas is typically obtained from fossil fuels, and only a small frac-
tion is produced nowadays from electrolysis, or the process of using water and electricity
to produce gaseous hydrogen.

If the electricity for powering the electrolysis process comes from renewable sources,
the produced gas will have no associated greenhouse emissions. This is the so-called
green hydrogen, which is the base for decarbonization of carbon intensive industries.

This work investigates the potential of stand-alone green hydrogen production from
solar energy, covering the whole design process, from an allocation and feasibility anal-
ysis, to system control. To do so, this thesis is separated in two parts. The first part
focuses on the preliminary assessment phase of photovoltaic (PV) systems and the solar
resource, while the second covers the integration of PV and electrolysis systems finaliz-
ing with a control strategy for these systems.

Chapter 2 presents a methodology for analyzing potential sites for PV deployment,
including information on the degradation of the site. This provides the designer with
additional information beyond the purely technical and economical layers that are typ-
ically considered in this type of study. The more degraded a site is, the more suitable it
is for deploying new PV projects, avoiding pristine natural areas. This, combined with
mitigation measures can minimize the environmental impact of new PV projects.

An analysis of the efficiency loss of PV systems is discussed in Chapter 3. In partic-
ular, the efficiency loss caused exclusively by quick variations in irradiance, as a con-
sequence of passing clouds. These abrupt and quick changes affect not only the so-
lar modules, but components downstream, such as the maximum power point tracker.
The implemented algorithm might be sensitive to these changes and move the operating
point of the PV module away from its maximum power point, leading to energy loss.

Predicting quick changes of irradiance is a topic covered in Chapter 4. Using sky im-
ages and artificial intelligence, it is possible to predict ultra-short-term irradiance. The
proposed method is an ensemble of models, each trained on a particular sky condi-
tion. Because each model is highly specialized, once the sky condition is determined,
the model that performs best on each sky type is employed, leading to lower prediction
errors, more precise predictions and lower training data needed. Yet, an accurate pre-
diction is a topic for further research.

The integration of PV with hydrogen systems is introduced in Chapter 5, which pre-
sents a literature review on integration methods for PV and electrolyzers as well as the
main challenges for operating these systems in a variable manner.

Moving to the design phase, Chapter 6 proposes a sizing procedure, based on Par-
ticle Swarm Optimization to minimize the energy that cannot be used by the hydrogen

xi
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equipment (electrolyzer and compressor), aiming at the maximum energy utilization in
the system. Horizontally-placed PV modules provide a good compromise between effi-
ciency, hydrogen production and cost.

Once the system has been designed, Chapter 7 puts together all the topics covered
in this dissertation proposing a control strategy for an optimally-sized stand-alone PV
electrolyzer systems, without electrical storage. The control is based on prediction of
irradaince changes using sky-images. From Chapter 4 it was clear that the prediction
using sky images is far from perfect, yet this is needed for control. To solve this prob-
lem, the strategy proposed in Chapter 7 relies on information on the uncertainty of the
prediction and uses fuzzy logic to account for imperfect predictions. This strategy can
effectively smooth power changes without the need of additional storage components.



SAMENVATTING

Waterstof is niet alleen het meest voorkomende element in het universum, maar ook
een veelzijdige molecuul dat een optie is om sectoren koolstofvrij te maken dat niet ge-
makkelijk geëlektrificeerd zijn of energie-intensief zijn, zoals langeafstandvervoer, che-
mische industrie, metallurgie, enzovoort. Waterstofgas wordt meestal geproduceerd uit
fossiele brandstoffen en slechts een klein deel wordt tegenwoordig geproduceerd door
elektrolyse, oftewel het proces waarbij water en elektriciteit worden gebruikt om gasvor-
mige waterstof te produceren.

Als de elektriciteit voor het elektrolyseproces afkomstig is van hernieuwbare bron-
nen, zal het geproduceerde gas geen uitstoot van broeikasgassen hebben. Deze groene
waterstof vormt dan de basis voor het koolstofvrij maken van koolstofintensieve indu-
strieën.

Dit proefschrift onderzoekt het potentieel van autonome groene waterstofproductie
uit zonne-energie, waarbij het hele ontwerpproces aan bod komt, van een toewijzings-
en haalbaarheidsanalyse tot de systeemcontrole. Om dit te kunnen doen, is dit proef-
schrift opgedeeld in twee delen. Het eerste deel richt zich op de voorbereidende be-
oordelingsfase van fotovoltaïsche (PV) systemen en de zonne-energiebron, terwijl het
tweede deel de integratie van PV- en elektrolysesystemen behandelt en eindigt met een
controlestrategie voor deze systemen.

Hoofdstuk 2 presenteert een methodologie voor het analyseren van potentiële loca-
ties voor het plaatsen van PV, inclusief informatie over de degradatie van de locatie. Dit
geeft de ontwerper extra informatie die verder gaat dan de puur technische en economi-
sche lagen die meestal worden meegenomen in dit soort studies. Hoe meer een locatie is
gedegradeerd, hoe geschikter deze is voor het plaatsen van nieuwe PV-projecten, waar-
bij intacte natuurgebieden worden gespaard. In combinatie met mitigatiemaatregelen
kan dit de milieu-impact van nieuwe PV-projecten minimaliseren.

Een analyse van het rendementsverlies van PV-systemen wordt besproken in Hoofd-
stuk 3. Vooral het rendementsverlies dat uitsluitend wordt veroorzaakt door snelle ver-
anderingen in de instraling als gevolg van passerende wolken. Deze abrupte en snelle
veranderingen beïnvloeden niet de zonnepanelen, maar componenten verderop in het
systeem, namelijk de maximum power point tracker. Het geïmplementeerde algoritme
kan gevoelig zijn voor deze veranderingen en het operationele punt van de PV-module
van zijn maximale vermogenspunt verwijderen, wat tot energieverlies leidt.

Het voorspellen van de snelle veranderingen in instraling is een onderwerp dat be-
handeld wordt in Hoofdstuk 4. Met behulp van hemelbeelden en kunstmatige intelligen-
tie is het mogelijk om de instraling op ultrakorte termijn te voorspellen. De voorgestelde
methode is een ensemble van modellen, elk getraind op een specifieke hemelconditie.
Omdat elk model zeer gespecialiseerd is, wordt na het bepalen van de hemelconditie het
model gebruikt dat het beste werkt voor elk type hemel, wat leidt tot lagere voorspel-
lingsfouten, preciezere voorspellingen en minder trainingsgegevens nodig. Toch is een
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nauwkeurige voorspelling een onderwerp voor verder onderzoek.
De integratie van fotovoltaïsche systemen met waterstofsystemen wordt geïntrodu-

ceerd in Hoofdstuk 5, waarin een literatuuroverzicht wordt gegeven van integratieme-
thoden voor fotovoltaïsche systemen en elektrolyse-installaties, evenals de belangrijkste
uitdagingen om deze systemen op een variabele manier te laten werken.

In de ontwerpfase wordt in Hoofdstuk 6 een dimensioneringsprocedure voorgesteld
op basis van Particle Swarm Optimization om de energie die niet kan worden gebruikt
door de waterstofapparatuur (elektrolyse en compressor) te minimaliseren, met als doel
een maximaal energiegebruik in het systeem. Horizontaal geplaatste zonnepanelen bie-
den een goed evenwicht tussen rendement, waterstofproductie en kosten.

Nadat het systeem is ontworpen, worden in Hoofdstuk 7 alle onderwerpen uit dit
proefschrift samengevoegd en wordt een regelstrategie voorgesteld voor een optimaal
gedimensioneerd zelfstandig PV elektrolysesysteem, zonder elektrische opslag. De con-
trole is gebaseerd op voorspelling van instralingsveranderingen met behulp van hemel-
beelden. In Hoofdstuk 4 werd duidelijk dat de voorspelling met behulp van hemelbeel-
den verre van perfect is, terwijl dit wel nodig is voor de controle. Om dit probleem op
te lossen vertrouwt de in Hoofdstuk 7 voorgestelde strategie op informatie over de on-
zekerheid van de voorspelling en maakt gebruik van fuzzy logic om rekening te houden
met imperfecte voorspellingen. Deze strategie kan vermogensveranderingen effectief
egaliseren zonder dat er extra opslagcomponenten nodig zijn.



1
INTRODUCTION

E ARTH is the home of at least 74,962 species of vertebrates, 1,480,351 species of in-
vertebrates, 425,035 species of plants, and 172,946 species of protists and fungi [1]1

as well as more than 8,000 million people [2]. All these living creatures need water,
food, and shelter, needs that are fulfilled by the ecosystems they live in. It is undeni-
able that ecosystems provide food, purify the air, prevent flooding, supply compounds
for medicine, represent an important part of communities cultural identity, inspire art,
improve mental health, among other Nature Contributions to People (NCP) [3]. If Nature
provide such valuable services to people, why have humans degraded 70% of the world’s
land [4] and caused a 10-year global temperature increase of 1.1 °C [5]? As a consequence
28% of identified species is threatened with extinction2 [1] and 46% of the world’s popu-
lation is affected by the loss of the services that ecosystems provide [5]. As an example,
clearing of mangroves along the coasts, results in a loss on the ability of that ecosystem
to protect a coastal town against a severe storm. In other words the Nature Contribution
to People Natural hazard impact reduction is lost [3].

A possible answer might be on the energy that people uses for their daily activities. As
of 2019, the world consumed 418 EJ of it, mainly from coal, oil, natural gas and electricity
[6]. Figure 1.1 shows the world energy consumption in 2021. [7].

The majority was used in transport and industry [6, 7]. Oil represents the highest
source of final energy consumed worldwide, mainly used for transport. Electricity sup-
plied almost 20% of the final consumption of world energy [6]. The energy consumption
resulted in 33 Gigatons of carbon dioxide emitted to the atmosphere [8]. These emis-
sions are partly responsible for bringing the increment of the world’s temperature closer
to 1.5 °C with respect to pre-industrial levels3.

1These numbers represent only the identified species, the real number might be considerably higher.
2The IUCN has only analyzed 7% of the total number of described species. 28% of this 7% is threatened.
3An increment in global temperature of 1.5 °C increases considerable the risk of extreme weather events, im-

pacts negatively human health with the spread of heat-related ailments and diseases and, leads to ecosystem
degradation and biodiversity loss, among other. These risks are interconnected and trigger cascaded effects
[5].

1
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Figure 1.1: World energy flows in 2021 from primary sources (left) to final consumption (right). With informa-
tion from [7]. The category Heat refers to the deliberate generation of heat for its use in the final consump-
tion sectors and not the heat production as a result of inefficiency. The categories Coal and Crude oil cluster
other products not included here for clarity. The category Renewables includes hydro, geothermal, solar, wind,
ocean, biofuels, municipal and industrial waste. The category Other includes agriculture, fishing and other
uses. A full description of the categories can be found in [7]

Economic growth4 caused the major increase of CO2 emissions from 2018 to 2019 [8].
Which might explain why recently the terms sustainable growth and green growth have
been used to define an economy which makes sure that the environment can provide
the resources needed to maintain the life style and quality of life of people [9]. How-
ever, these terms imply an economy can grow infinitely in a world with finite natural re-
sources, which is not possible [10]. In contrast, the term sustainable development (usu-
ally used as synonym of sustainable growth) entails an economy which does not grow,
but, the quality of life of people improves [10].

In an attempt to bring together the environment, society and economics towards a
sustainable development which would eradicate poverty and ensure a healthy planet by
2030, the United Nations proposed a set of 17 Sustainable Development Goals (SDG)
under the lemma leave no-one behind [11]. These goals are not independent but are in-
terconnected. For example, access to electricity (SDG 7: "Affordable and clean energy")
in schools improves learning conditions (through lighting, and educational equipment),
leading to better education (SDG 4: "Quality education"). The same applies to health
facilities. This, combined with access to clean cooking solutions, lead to an improve-
ment in people’s health (SDG 3: "Good health and well-being") [12]. Development of

4Economic growth affected the increase in emissions in two ways. First, during 2018 the economy slowed down
preventing the implementation of cleaner power generating technologies, leading to increased emissions.
Secondly, During 2019, the economy started to grow again, demanding more energy, with more associated
emissions [8].
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renewable energy technology, which is also an important part of SDG 7, helps reduce
greenhouse emissions, contributing to limiting the world temperature increase (SDG 13:
"Climate Action"). Universal access to electricity also contributes to SDG 5 ("Gender
equality") and SDG 8 ("Decent work and economic growth") [12].

Unfortunately, only 15% of the SDGs are on track and a non-negligible number have
experienced regression (37%) [13]. Additionally, adverse effects of climate change such
as water scarcity and security, severe weather and, extreme heat events, lead to hunger,
diseases and increased mortality imposing an even greater risk and challenge for achiev-
ing the SDGs[5]. Part of this problem might be a worldview where humans are superior
to other creatures and, because of this, have claimed ownership of the land and its re-
sources [14]. This anthropocentric and egoistic worldview, along with the advancement
of technology, modifies the relationship between humans and nature. Instead of co-
existing, people are allowed to exploit the land without questioning whether by doing
that they could damage other species, or even other people [14, 15]. The connection
with Nature diminishes as urbanization increases. This limits people’s knowledge on
Nature along with the benefits and services that it provides to them [3]. This is relevant
because there is urgent need to change the relationship between people and Nature to
prevent further ecosystem deterioration, land degradation and biodiversity loss, which
ultimately, also affect people [13]. Failure to do so and to reduce emissions will result in a
temperature overshoot beyond the 1.5 °C [5, 16]. Bringing the temperature down would
need an economic investment greater than what was spent on oil consumption during
2022, and it would rely on carbon capture technology, which so far has been inefficient
and is not fully developed [16].

Fortunately, "just" changing people’s behavior can be benefit for the planet. The In-
ternational Energy Agency’s Scenario for Net Zero Emissions in 20505, considers that
12% of the reduction in CO2 emissions of the energy sector by 2050 are emissions that
can be avoided through behavioral change[17]. On top of that, renewable energy (wind
and solar) helps mitigate 25% of the emissions [16]. These technologies are mainly im-
plemented in the electricity sector, still heating and transportation do not yet benefit
from renewable energy sources [13]. For these, and other hard-to-decarbonize sectors,
such as long distance transport, chemical, iron and steel industries, hydrogen produced
from clean sources can be a solution to reduce their emissions [17, 18]. This gas can be
produced from renewable electricity (green hydrogen) and used directly in fuel cells to
produce electricity or combined with (captured) carbon dioxide to form synthetic hy-
drocarbons to be used as fuels, or with nitrogen to produce ammonia (to be used as fer-
tilizer or fuel) [19]. Its very high specific energy opens the door for international hydro-
gen trade [19] with benefit for developing countries, rich in renewable-energy [18, 19].
This hydrogen trade goes beyond simple export-import from developing to industrial-
ized countries. Hydrogen can boost the energy transition for the local hydrogen produc-
ers, facilitate knowledge exchange and bring potential political stability [18]. Further-
more, hydrogen plays an important role in the net-zero emission scenarios of the Inter-
national Energy Agency (IEA) and the International Renewable Energy Agency (IRENA).
The latter indicates that 10% of the carbon emissions in 2050 will be abated by imple-

5Net Zero does not mean that there will be no CO2 emissions by 2050; rather, these emissions will be offset
with carbon sinks (natural or artificial).
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menting hydrogen technologies [20], while the former is more conservative indicating
that only 4% of the emissions by 2050 will be tackled with hydrogen [16].

1.1. MAIN CHALLENGES AND OUTLINE OF THIS WORK
The limited capacity of the electric grid can hinder the installation of new grid-connected
projects, including those that generate green hydrogen from electricity. In the Nether-
lands, for example, more than half of the country has grid congestion problems [21]. In
this respect, off-grid systems could help to relief stress on the electric grid [22], benefit
local communities and facilitate the success of policies and climate goals [22]. Off-grid
systems also play an important role in facilitating universal access to electricity [12]. The
systems analyzed in this work are water electrolyzers powered by off-grid photovoltaic
(PV) solar energy. Their goal is to produce green hydrogen.

One of the challenges of photovoltaic-electrolyzer systems is the intermittency and
variability of the solar irradiance. The first one, caused by the day and night cycles, can-
not be avoided without electric storage, combination with other technologies or grid
support. The second is mainly caused by passing clouds, and, in contrast to the inter-
mittency of solar resource, mitigation of variability does not necessarily require electric
storage.

Understanding PV systems and the solar resource (Part I) is essential to the design
and control of PV-hydrogen systems (Part II).

As with many human-made projects, even with good intentions, a PV power plant
will affect the land on which it is installed. Therefore during the prospection analysis,
when it is still easy and cheap to make decisions, the best location for developing a PV
project should consider already a minimum impact to the land along a reasonable solar
irradiance and other technical requirements (Chapter 2).

Clouds moving in front of and away from the sun impact the available irradiance and
affect the efficiency of PV systems (Chapter 3). The clouds movement and prediction of
these events (Chapter 4) is a very challenging task, even in the very short term (from
seconds to maximum 30 minutes) using artificial intelligence and images from the sky.
However, this very-short term forecasting is the backbone of many control systems.

Powering an electrolyzer with solar energy requires to know the available water elec-
trolyzer technologies and the alternatives to couple them with PV, as well as the ef-
fects of irradiance variability and intermittency on the solar-powered electrolysis sys-
tems (Chapter 5). This allows a proper sizing of the PV system aiming at maximizing the
conversion of solar energy to hydrogen (Chapter 6).

Finally, the control of a properly-sized, stand-alone and battery-less PV-hydrogen
system involves the forecasting of irradiance changes and acknowledging that the pre-
diction has a certain degree of uncertainty. Chapter 7 answers the question about how
to deal with these uncertainty and the lack of storage.

1.2. MAIN CONTRIBUTION TO THE FIELD
This work contributes to SDG 7, "Affordable and clean energy". Its purpose is to de-
termine the technical feasibility of stand-alone battery-less PV-electrolyzer systems for
hydrogen production. It aims at a low environmental impact of these systems and high
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conversion efficiency from sunlight to molecules. The main scientific contributions ex-
pressed in this thesis are:

• A methodology to help the identification of potential sites for land-based PV sys-
tems prioritizing a minimum environmental impact.

• Quantification of the losses that irradiance variability causes, due to an incorrect
operation of the Perturb & Observe maximum power point tracking algorithm.

• A method to forecast irradiance in the very short term using sky images and artifi-
cial intelligence.

• A sizing methodology for stand-alone PV-electrolyzer systems that reduces the
amount of unused energy.

• A control strategy to minimize the effects of changing irradiance without relying
on electric storage.





I
SOLAR RESOURCE & PV SYSTEMS

A good understanding of the solar resource is essential to the design of PV-electrolyzer sys-
tems. The spatial distribution of the available irradiance on a country determines in great
measure where a project can be deployed, while the intra-hour fluctuations have an im-
pact on the design of the control of the whole installation. In terms of spatial planning,
the information of the solar irradiance is combined with information on urbanization,
segmentation, distance to infrastructure among others to facilitate the decision on the lo-
cation of a future PV system. Chapter 2 presents a map of the Netherlands with the results
of such analysis putting emphasis on reducing the environmental footprint of the future
project. Chapters 3 and 4 highlight the changing nature of solar irradiance in the very
short term. A consequence of these fluctuations is a reduction of the efficiency of the sys-
tem. In particular, Chapter 3 quantifies the losses of the Perturb & Observe maximum
power point tracking algorithm. Passing clouds cause the intra-hour fluctuations of irra-
diance. For this reason it could be convenient to include information on the clouds into an
irradiance forecasting system. In Chapter 4, an image of the sky is used to classify the sky
condition and predict the irradiance on a very-short temporal scale (20 minutes ahead).
This part focuses fully on PV systems, but establishes the basis for the integration with
hydrogen in Part II.

Artwork of the opposite page by L. E. Lopez Castro
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MINIMIZING ENVIRONMENTAL

IMPACT OF PV AT AN EARLY

PROJECT STATE

From the very beginning of the world,
the other species were a lifeboat for the people.

Now we must be theirs.

Robin Wall Kimmerer

N ATURE provides for people not only food, water, medicine, and fuels but also pro-
tection against weather and biological events, climate regulation, and pollination,

among others. It even stimulates psychological well-being and artistic inspiration [23].
Yet, human activities have modified around 70% of the original land cover in the world
[24], reducing the long-term ability of Nature to provide these beneficial resources. Such
reduction is called land degradation [4, 24]. It is estimated that, as of 2019, at least one
fifth of Earth’s land has lost this ability, affecting nearly two in five people on the planet
[24].
At the same time, in 2022, the global photovoltaic (PV) generation broke a record of 1300
TWh, implying an increase of 26% in one year [25]. National targets in renewable energy
generation fuel this growth. In 2021, 109 countries have mentioned renewable power
targets in their National Determined Contributions (NDC) to the Paris Agreement [26],
and PV generation is expected to reach 8300 TWh in 2030 to meet the Net Zero Emis-
sions scenario of the International Energy Agency [25]. As a result of the Russia-Ukraine

This chapter has been submitted for publication as V.A. Martinez Lopez, P. Manonukul, O. Isabella, M. Zeman
and H. Ziar, Mapping the suitability of photovoltaic potential in the Netherlands considering environmental
impact, Scientific Reports, under review, (2024).
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conflict, the European renewable energy generation target became stricter, shifting from
40% to 45% by 2030 and almost doubling the installed PV capacity in just three years [27].
In the Netherlands, the National Climate Agreement establishes an onshore renewable
generation (combined wind and solar) of 35 TWh by 2030 [28], and doubling this amount
by 2050 [29].

Installing ground-based PV systems to meet the energy goals can raise a Green on
Green conflict meaning installing green energy projects on green (natural) areas [30], es-
pecially because the installation contributes to land degradation. During construction,
when most of the impact occurs, the soil is compacted and graded, and the native veg-
etation is removed, resulting in soil erosion. The project also fragments the landscape,
preventing the movement of species and their genes, leading ultimately to biodiversity
loss, and its operation requires water and potentially toxic substances [31]. The reduc-
tion in the albedo of the site, caused by the presence of the solar panels, influences the
microclimate in the PV park location [32, 33] . Additionally, solar panels cause shading
on the ground beneath, potentially affecting plant growth and biological processes in
the soil, such as the decomposition of biological matter [34]. All these interventions can
further facilitate the presence of invasive species. For example, the methods used to con-
trol native vegetation in solar installations in the United States influence the presence of
invasive grasses [35].

Is there enough space to deploy the needed PV capacity without further contributing
to land degradation? The energy density of PV systems ranges between 0.032 TWh/km2

for rooftop systems to 0.087 TWh/km2 for utility-scale systems [36]. Taking the Nether-
lands as an example, the land area of the country is 39450.53 km2 [37]. This means that
only 1% of the country’s land is needed to meet the energy goals for 2030. The scenar-
ios for 2050 (around 70 TWh, and even 200 TWh inland electricity generation) can be
met, covering 80% of the rooftops with solar modules [29]. However, policies for rooftop
systems [29], the load-bearing capacity of roofs [38], owner perceptions [39], fire safety
concerns [40], and restrictions on monumental buildings [41] can discourage the deploy-
ment of these systems, resulting in additional land demand. Moreover, some studies [42,
43] claim that the needed land to cover 100% of a country’s energy demand (consider-
ing not only electricity but also transport, heating and energy used in other countries to
supply their needs) requires considerably more land, reaching in some cases more than
the country’s extension [43].

One way to deal with the potential clashing criteria (including the green on green
conflict) for locating or siting a PV project, is to consider different perspectives as the
framework proposed by Stremke [44]. This framework classifies the criteria for a project
into four categories: sustainable-technical, environmental, socio-cultural, and econom-
ical.
The existing literature on solar project siting includes, in the sustainable-technical cate-
gory, the solar resource [45–51], terrain slope [45, 47–52], site visibility [49], site elevation
[49, 52] and landslide risk [51]. The environmental category is defined in terms of ex-
clusion areas and includes water bodies [47–50], land use [45, 46, 49, 52], nesting sites
and agriculture lands [47], protected natural areas, forests, areas with high vegetation
cover [45, 48–51]. Within the socio-cultural category are recreation areas [45, 47, 51], site
visibility [49], heritage areas and historic monuments [45–47, 49]. These criteria are typ-
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ically considered as exclusion areas. Finally, the proximity to roads and transportation
networks [45–52], the proximity to grid infrastructure [45, 47–49, 51, 52], houses and ur-
ban areas [45, 48, 50], and energy use centers [49] belong to the economic category.

One of the main problems with existing siting methodologies is that the environ-
mental category is restricted to exclusion areas with high environment [47–50] or her-
itage value [49]. However, the environmental evaluation outside these regions is not
considered. While solar plant developers have strategies to mitigate the environmen-
tal damage, these are mainly based on relocation of species in the construction site and
are applied once the site has been chosen. One of the main problems with this approach
is that the strategies target only selected species and have potentially low success rates
[32]. One way to reduce the environmental footprint of solar parks is to install them in
degraded lands [31, 32].

The purpose of our study is to tackle the problem of existing siting methodologies
regarding the environmental impact outside exclusion areas. We relied on the Analytic
Hierarchy Process [53] and the Compatibility Index [54, 55] to develop a suitability map
for locating solar PV projects. We applied our methodology to the Netherlands, consid-
ering technical, economic, and environmental categories.

2.1. RESULTS

2.1.1. COMPATIBILITY MAP OF THE NETHERLANDS

The environmental assessment layer is based on the Compatibility Index [54, 55], as de-
scribed in the Methods section 2.3.1. The Compatibility Index does not return a metric of
the environmental impact but indicates the land degradation. Highly degraded sites are
more compatible with the development of new projects as the damage to the land is less
[54, 55]. Figure 2.1 shows the output of our method. Figure 2.1a shows the Compatibility
Index of the Netherlands, while Figure 2.1b shows the full suitability map (discussed in
Section 2.1.2). As expected, the most compatible sites are clustered around highly devel-
oped areas, such as cities or major roads, where the degradation is highest.

To validate the map, we evaluated the Compatibility Index of areas that are usually
considered as exclusion areas due to their high environmental value. These areas are
defined in the Natura2000 network [56, 57], the National Ecological Network [58], the
National Parks of the Netherlands [59], the National Landscapes of the Netherlands [60]
and areas of geological interest in the Netherlands [61].

Figure 2.2 illustrates the validation of the Compatibility Index. Figure 2.2a shows the
distribution and the cumulative function of the Compatibility Index of these exclusion
areas. The cumulative function shows that approximately 80% of the points within the
exclusion areas fall into the incompatible and low compatibility regions. Why are there
still significant points in exclusion areas with Medium Compatibility Indices, as the his-
togram shows? An analysis of the bands in the medium compatibility region shows these
are mainly rural areas. The value of the Green module (see Section 2.3.1) pushes the
Compatibility Index up. However, the most relevant feature of these bands is that they
correspond to the National Landscapes exclusion area. This indicates that the criteria
behind it are not fully based on environmental reasons. Note that the Compatibility In-
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(a) (b)

Figure 2.1: (a) Compatibility map of the Netherlands, and (b) Suitability map of the country. The suitability
map uses the Compatibility Index as one of its inputs. To show the available land for new ground-based PV
projects, the exlusion areas and buildings were removed from the Suitability map. In both cases, the pixel size
is 90 × 90 m.

dex itself does not define exclusion areas and, because of its non-binary nature (i.e. it
defines a gradient of values, rather than a go-no go criterion) [55] even pristine areas
have a Compatibility Index value. However, these areas are expected to be less compati-
ble (low Compatibility Index values).

Conversely, highly urbanized areas are expected to be more compatible with PV in-
stallations as the degradation is high. Figure 2.2b compares the distributions of the Com-
patibility Index in the five urbanization categories. The areas with very strong urban-
ization levels have, on average, the highest Compatibility Indices, which validates the
fact that urban areas, which are highly degraded, are more compatible with new solar
projects. The fact that an area is regarded as highly urbanized does not imply that every
pixel in that area is compatible. The distribution of the "Very strong" urbanization level
of Figure 2.2b confirms this, as the whiskers extend towards low Compatibility Indices in
urban areas. These correspond to urban parks or green areas. At the same time, Figure
2.2b also confirms that rural regions, characterized by the lack of urbanization, are, in
general, less compatible with new projects.

2.1.2. SUITABILITY MAP OF THE NETHERLANDS

The Compatibility Index map by itself is not enough to do a full evaluation of the poten-
tial sites for installing new PV systems [54, 55]. Still, it helps in including the environ-
mental category during the prospection phase of PV plants.
To develop the suitability map, we first analyzed 936 existing and planned PV plants in
the Netherlands, excluding residential rooftops. The company ROM3D kindly provided
these data [62]. We set, in Table 2.4, seven criteria clustered in three main categories,
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(a)

(b)

Figure 2.2: (a) Distribution of Compatibility Indices inside exclusion areas. The color bands show the Compat-
ibility Index categories used in the map of Figure 2.1a. (b) Compatibility Index distribution per urbanization
level. Highly urbanized regions have the highest Compatibility Indices, as expected. The outliers are not shown
for clarity. Some of the outliers even reach values close to zero in the "Very strong" and "Medium" categories.

technical, environmental, and economic, to determine the priority for siting of the exist-
ing PV plants. At each PV plant location, we extracted the criteria value and plotted the
distributions in Figure 2.3.

From the distribution and statistics of the criteria, it is possible to set weights that
can be applied to the AHP methodology. In this way, the weights are well-posed and
not subjective. However, such a method will yield a suitability map that reflects the cur-
rent status, which does not necessarily encompass the importance of the environmen-
tal category (see Section 2.3.2). We proposed a different weighting scheme giving more
importance to the Compatibility Index and ran a suitability study of potential sites for
the location of PV projects. For this study, we considered only open areas (i.e., cities
and other regions with high building densities were excluded) located outside the ex-
cluded areas defined before (Natura2000 network, Nature Network, National Parks, Na-
tional landscapes, and Geological interests). After the exclusion, the available land is
only 13 311.31 km2, which corresponds to 38.4% of the land area of the country. Figure
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Figure 2.3: Score of siting criteria of the existing PV plants in the Netherlands (see Table 2.4). The colors of
each violin plot correspond to a category (also distinguished from the dashed lines). "Tech." and "Environ."
stand for "technical" and "environmental", respectively. Note that the minimum value for the score is zero.
The plotting software applies smoothing to the violin plot, which would extend below zero. For this reason, for
some criteria, the graph appears trimmed at zero.

2.1b shows the Suitability map of the Netherlands. Of the 936 existing and planned new
installations, only 475 fall into this region.

The suitability map, combined with the specific PV yield (in kWh/kWp, obtained
from SolarGis [63]), along with Figure 2.5 facilitates answering the question is there e-
nough space to meet the energy requirements? The final piece of the puzzle is the spe-
cific PV power. To obtain this number, we intersected the information from the ROM3D
dataset with the solar parks identified in the Basisregistratie Topografie (BRT) (see the
Methods section 2.3 for a broader description of this dataset) resulting in 417 intersected
projects, analyzed in Figure 2.4. Figure 2.4a shows the specific power (in kW/m2) of these
417 installed and planned PV projects in the Netherlands. To consider the uncertainty in
the specific PV power, we considered three values, the mean capacity (0.1 kW/m2), the
upper limit (0.3 kW/m2), located at three standard deviations from the mean, and the
lower limit (2.5 W/m2) corresponding to the minimum value of the dataset. The reason
for the minimum value, instead of three standard deviations below the mean, is that the
resulting value would be located below zero.

We binned the suitability index into 64 bins. Then we multiplied the mean specific PV
yield (1045.54 kWh/kWp, obtained from the average value of the solar resource layer [63]
of the ideal areas) with the specific PV capacity and the area covered by each suitability
bin to obtain cumulative functions of the energy of the non-excluded areas (Figure 2.1b)
per suitability bin (Figure 2.5a). This figure shows the minimum suitability index value
needed to meet the 35 TWh energy requirement. Every pixel with a suitability index
above the minimum should be covered with PV to meet the energy requirements. Fig-
ure 2.5b translates this in terms of a percentage of the area of the non-excluded regions
(Figure 2.1b).

The suitable areas are mainly composed of grass and croplands. These areas are also
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(a)

(b)

Figure 2.4: Analysis of existing and planned PV systems in the Netherlands. (a) Specific power (kW/m2) of
the planned and installed PV projects in the Netherlands (n = 417, obtained from intersectin ROM3D data
with BRT’s solar park land type. ). The red line represents the mean value. The upper limit is at 3 standard
deviations, and the lower is at the minimum value of all the points. (b) Type of land where the systems are
installed (n = 781, obtained from intersection between ROM3D dataset and the land type (all fields) layer of
BRT). The group "general" describes sites that do not have a particular purpose or definition, while the group
"various" clusters eight subcategories which do not contribute significantly to the total.
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(a)

(b)

(c)

Figure 2.5: (a) Suitability threshold on the ideal areas to meet the energy target of 35 TWh. Note that the
Suitability is displayed in decreasing order to facilitate the interpretation of this graph. The colors of the bands
correspond to each suitability level as in Figure 2.1b. (b) The required area of ideal regions to meet the energy
target of 35 TWh. (c) Land type composition of the suitable areas. The orange bars show the composition of all
the pixels in the suitable region, and the blue, the composition of the pixels within the suitable areas needed
to meet the 35 TWh generation target.
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the preferred type of land where PV systems in the Netherlands are currently installed
(Figure 2.4b). The blue bars of Figure 2.5c indicate the composition of those pixels, inside
the suitable region, needed to meet the energy generation target of 35 TWh.
The group "various" clusters eight subcategories (deciduous forest, orchard, tree nursery,
basalt block/quarrying, fruit farm, fallow, dune, railway). These items were grouped for
readability and minimal contribution to the total (only 15 of the 781 analyzed projects
belong to this group). The "general" type of land describes land without a particular
purpose.

2.2. DISCUSSION
Siting of PV projects typically includes an environmental constraint as exclusion areas.
The consequence is that potentially susceptible areas, which are not considered within
the exclusion, are mapped as "available" for deployment. For example, in California,
USA, some solar projects are installed close to, albeit not inside, protected areas. Yet,
they still affect the protected environment because the "natural" boundaries of the pro-
tection area might extend well beyond its administrative borders [64]. For instance, the
borders of protected areas do not account for the migration of species, the interrelation
among them, or the threats to biodiversity linked to factors outside their limits [65]. In
Europe, in the Netherlands, a study for a potential deterioration ban policy focused on
areas outside the protected region defined by the Natura 2000 network (a network of pro-
tected sites with high biodiversity [56]) found unprotected sensitive zones, especially on
sandy soils, which are highly valuable for conservation efforts [66]. For these reasons, the
exclusion area approach might be insufficient to account for the environmental impact
of utility-scale solar projects. Our approach aims to solve this problem because it does
not result in a binary output but a gradient of suitable places, including the environmen-
tal category of areas outside the exclusion areas. Note that the suitability index does not
indicate whether or not a site should be installed in a certain area. Rather, it gives extra
information to the decision-maker about the condition of it.

Almost one-half of the projects planned and installed in the Netherlands are included
in the ideal zones. The rest is distributed in the proximity of urban areas (273 projects)
and inside areas considered here as "exclusion areas" (190 projects). Most projects in-
stalled in exclusion areas are on either the Geological Values (103 projects) or Landscape
Values (105 projects) exclusion areas. Note that some regions belong to both categories.
The protection goals of these areas do not specifically target nature conservation, al-
though it is included. This might justify the presence of so many projects inside their
boundaries. The three remaining exclusion areas still have projects installed therein
(Natura 2000 (3 projects), Netherlands Nature Network (7 projects), and National Parks
(1 project)). An important consideration is that the restricted zones might include de-
veloped areas (including building clusters), which might justify the presence of solar
projects within their boundaries. This suggests that the definition of protected areas
is vague, possibly affecting their effectiveness in preserving nature and increasing the
possibility for that region to lose its status as a protection area [67].

Installing PV systems on degraded lands minimizes the impact on the land. For in-
stance, the solar association SolarPower Europe proposed guidelines to deploy new solar
PV projects, prioritizing degraded lands [68]. In the same direction, the Dutch govern-
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ment, released in 2019 the so-called "Solar ladder" (zonneladder, in Dutch) to manage
the space for developing solar projects [69]. This policy is a non-normative order of pref-
erence for installing new solar projects. It prioritizes the combined use of the spaces to
avoid land conflict. Unlike the solar ladder, the guidelines of SolarPower Europe are not
an order of preference but a recommendation for site selection based on the type of land
where the project will be deployed on. It focuses on artificial or intervened places and
avoids nature-valuable areas such as forests, wetlands, and water bodies unless artifi-
cially created or manipulated [68].
Our results show that the mean Compatibility Index of PV plants in the Netherlands is
at the border between medium and low compatibility, indicating that the land where
they are installed has a considerable degree of environmental importance (is not fully
degraded). More importantly, 45% of the land has higher Compatibility Indices, offering
better opportunities to deploy PV systems, minimizing the impact on land. A potential
explanation for the choice of these places might be the strong focus that the existing PV
projects put on the economic category (Figure 2.3), even above the solar resource and
environmental ones. This does not mean that developers disregard the environmental
impact but highlights one drawback of relying solely on exclusion areas, which was the
main reason for developing the Compatibility Index [54, 55]. Because of the logic used
to build the Compatibility Index, these guidelines and policies can be easily followed
without (or in combination with) explicit exclusion areas.

Solar PV energy worldwide is mostly installed on agricultural, followed by arid, land
[64, 70]. In the Netherlands, the projects follow the same trend, prioritizing grass and
croplands (Figure 2.4b). This type of land covers most of the territory of places outside
the exclusion areas and cities (Figure 2.5c). The required space to meet the energy gen-
eration goals for the country is only 2% of the non-excluded region, which is equivalent
to fully covering an area larger than the municipality of Amsterdam, the capital of the
Netherlands with PV. If land use is completely dedicated to PV, the space needed to de-
ploy this capacity, is not a problem. However, from Figure 2.5c, we see that, to meet the
energy goals, the PV systems must also be installed on croplands and even forests if all
the PV capacity were to be installed in non-excluded areas. Agrivoltaics offer a potential
solution to this problem, either spreading the PV system over a wider area (crop-centered
approach), changing the crops below for shade-tolerant species (energy-centered ap-
proach), or using dead spaces between the crops. PV systems can also be installed in
parcels where animals graze, providing shade to the animals in exchange for effortless
vegetation management [71]. Ecovoltaics focus on providing suitable conditions for im-
proving the ecological services of a place [72]. For instance, the uneven distribution of
light and rainfall that the PV panels create on the land can potentially increase the bio-
diversity of the site [72, 73]. These activities can work better when the land is already
degraded, contributing to land restoration. In this respect, our approach can help to
identify the potentially suitable areas, as a first step, and locally, apply the eco- or agri-
voltaic principles.

Our work derived a suitability map of the Netherlands considering the technical, eco-
nomic, and environmental categories. Avoiding further land degradation is the main fo-
cus of the environmental category. This was quantified with a modified version of the
Compatibility Index. Our modified version avoids the use of historical data, which sim-
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plifies the analysis. Combining the Compatibility Index, with economic, solar potential
and the location of the PV plants in the Netherlands, we found that the existing projects
strongly focused on the economic aspect, even above the solar potential and the land
degradation given by the Compatibility Index. Is there enough land space to meet the
energy goals for 2030 with only PV?, yes, if every pixel with a suitability index above 40
has PV installed on it. This is translated as occupying nearly 2% of all the non-excluded
areas, which include not only grass and croplands but also forests. This highlights that
even though we aimed to provide information on the minimum impact on the land,
a smart combination of land use and additional mitigation measures should be taken
during the design of a PV project. Our methodology, unlike traditional siting methods,
does not rely on exclusion areas for dealing with the environmental category. It can pro-
vide information on the environmental impact even outside these regions, which can
be combined with the already defined no-go zones to have a clearer evaluation of the
suitability of future PV projects.

2.2.1. LIMITATIONS

Our present work does not consider PV on water. Following the premise that natural ar-
eas should have a low Compatibility Index, we assigned a Compatibility Index of zero to
inland waters. This is a point for improvement as artificial waters could be considered
"degraded" and available for floating projects [68].
Note that the exclusion areas we defined in our analysis include the geological and ge-
ological values. These areas are not necessarily considered as nature protection zones.
They focus on regions that have geological or cultural interests, but indirectly they also
consider nature areas. For this reason, they were included in the analysis. Although, by
doing so, we created a more restrictive scenario. This map was developed for its use in
the Netherlands. Its use worldwide would require minor adaptation depending on the
local information. While the topographic information is typically available in other lo-
cations, the dataset needed for the "Green" module might not be readily available. The
"Green" module was obtained from the Gray & Green map of the Netherlands. The pro-
cedure for obtaining the map can be found in Ref [74]. In our suitability map, the terrain
slope was not considered because the country is mostly flat. If the model is applied else-
where, this technical limitation should be addressed.

The maps shown in this work are intended for prospection analysis to identify high-
potential zones. The final selection of a site depends on more factors, including social or
business strategy considerations that are not included in this map.

2.3. METHODS

2.3.1. THE COMPATIBILITY INDEX

To quantify the environmental impact of solar projects we followed the Compatibility
Index approach proposed by Stoms, et al. [54, 55].
The Compatibility Index is a measure of degradation of a site. It is based on the premise
that the environmental value of a place reduces as it becomes degraded. Hence, highly
degraded sites, with little to no ecological value, are more compatible with new projects,
as opposed to pristine sites which are incompatible with new developments [54, 55]. The
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original model measures the degradation in terms of native cover removal and fragmen-
tation of the habitat and it was designed and tested in the California desert [55].

We used ArcGIS Pro software, version 3.0.3 to perform the calculations. Each pixel in
the map has a resolution of 90×90 m.

Note that the authors of the original study [54, 55] recognize that the Compatibility
Index is not a full environmental assessment, but rather an initial guide for siting solar
projects and minimizing their environmental damage.

FRAGMENTATION MODULE

The fragmentation module determines to what extent human-created line-wise inter-
ventions divide a habitat [55]. Each pixel on the map receives a score ranging from zero
to 100 depending on their line density. The line density is the total length of lines inside
a circle (search area) around a map pixel, divided by the area of such circle [75]. The
fragmentation module considers the line density of four features: roads, railways, water-
ways and, transmission lines. The data sources are the Basisregistratie Topography (BRT)
TOPNL10, with topographic information of the country, Open Street Map (OSM), map-
ping the waterways and the infrastructure of the electric grid operator, Tennet. Since
each line represents a different feature (e.g. a street, a highway, a railway, etc.), a weight
was applied to consider these differences following the original calculation of [55]. The
line density was calculated for each of these features in every pixel. The pixel score is the
maximum fragmentation score of the four features [55]. Table 2.1 shows the origin of the
data used and the applied weights to calculate the fragmentation score.

NATIVE COVER REMOVAL MODULE

The native cover removal module models the damage to the environment in terms of
loss of vegetation. This loss can be quantified from the present land use since cities,
buildings, mines, landfills, etc. are quantified as highly degraded areas [55].
For our calculation of the native cover removal, we relied on two databases, the BRT
and the Basisregistratie Gewasparcelen (BRP), with information on crop areas. The first
database includes information on land use, and the second allows a fine selection of
agricultural areas.
For each type of land use we applied the weights proposed in [55] and scaled them de-
pending on the level of urbanization (Table 2.2). The level of urbanization is defined as
the number of houses within a circle with a radius of 1 km and then categorized into five
classes where each class has the same number of inhabitants [76] and obtained from the
neighborhood information database of the Dutch Central Office of Statistics [77].

The sum of all the weights in a pixel is the native cover score, ranging from zero to
100.

GREEN MODULE

The green module considers the amount of vegetation in a pixel. The basic layer is the
"Green and Gray" map of the Klimaateffectatlas [74], which contains information on the
amount of "green" (percentage of trees and grass) and "gray" (stones, asphalt, etc) per
neighborhood [74]. While this map gives information on the percentage of green in each
pixel that can be directly used as a score (or weight), some regions of the country are
not mapped. For this reason, we complemented the information with the large-scale
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Database Data provider Data Data features Weight

BRT 2022 (TOPNL10)

PDOK

Roads

General 1
Highways 9
Main road 6
Landstripe 6
Conveyor 6

Regional road 4
Local road 3

Street 1
Ferry connection 0

Railroads All 5

BRP Waterways

Artificial

5

Basin
Blocked

Boom
Canal

Construction
Ditch

Depth_line
Delerict_canal

Ditch
Drain

Lock_gate
Security_lock

Weir

Tennet Tennet Transmission lines
Overhead

1
Underground

Table 2.1: Data sources and weights applied for the calculation of the Fragmentation module.
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topography (BGT, in Dutch) map of the Netherlands. Table 2.3 shows the databases
and features from the BGT used to calculate the Green score. The BGT database does
not include a percentage value. The score was calculated by normalizing the area using
Equation 2.1. The final score is the combination of the Green and Gray map with the
databases of the BGT. Water bodies, obtained from the BRT database, were assigned a
Compatibility Index value of zero.

2.3.2. ANALYTICAL HIERARCHY PROCESS (AHP)
The Analytical Hierarchy Process (AHP) is a method to assist in the decision-making of
problems involving multiple decision criteria. It is based on a pairwise comparison of
the criteria, which assigns a relative weight between the two (e.g., "Criterion A is three
times more important than Criterion B"). This pairwise comparison is expressed as a
table. The value of each column element, divided by the column total and averaged over
all the rows, gives the relative weight of each criterion to each other [53].

Based on the analysis of the literature [45–52], we proposed seven criteria grouped
into three categories. The technical criterion is the solar potential in the Netherlands
obtained from SolarGIS [63]. The economic category includes the distance to roads, train
stations, and transmission lines obtained from the BRT and Tennet databases. The house
price (from the CBS neighborhood information) was used as an indicator of the land
price.

The weights given to each category are based on two scenarios. The first scenario
considers the value of each criterion at the location of existing and planned PV plants in
the Netherlands (Table 2.4). ROM3D (Zon Op Kaart, peildatum 27-march-2023) kindly
provided the data of the plants’ location [62]. The mean of each criterion, normalized by
the sum of the means of all criteria, is the weight of a particular criterion.

The second scenario strongly focuses on environmental category. A pairwise com-
parison matrix (Table 2.5) was done for the economic category. The other two categories
have one (Technical category) or two (Environmental category) members, so no pair-
wise matrix is needed. Table 2.6 shows the applied weights for the environment scenario.
The column labeled "Relative weight" is the weight of each criterion against each other
within the same category. The "Final weight" column is the absolute weight of each cri-
terion and the one applied for calculating the Suitability score. This final weight results
from multiplying the relative weight with the importance of each category.

We applied a weighted sum using the final weights of each scenario to calculate the
suitability index. The value of the criteria is normalized (Xn) with Equation 2.2 if the val-
ues of the criterion x are represented as (max(x) →→less suitable and 0→more suitable).
This happens, for example, in the green module. The non-normalized quantities repre-
sent a fraction of green within a pixel. However, a 100% pixel (fully green) is not suitable;
hence, the normalization needs to be reversed. For the normalization quantities that do
not need to be reversed, Equation 2.1 was applied.

Xn = max(x)−x

max(n)−min(n)
(2.1)

Xn = x −min(x)

max(n)−min(n)
(2.2)
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Table 2.2: Weights used to calculate the native cover removal

Feature Very
strong
urban-
ization

Strong
urban-
ization

Medium
urban-
ization

Low
urban-
ization

No
urban-
ization

No data 0 0 0 0 0
Mixed forest 0 0 0 0 0
Coniferous forest 0 0 0 0 0
Deciduous forest 0 0 0 0 0
Willow 0 0 0 0 0
Cotton wood 0 0 0 0 0
Shrubland area 0 0 0 0 0
Railroad 0 0 0 0 0
Sand 0 0 0 0 0
Dune 0 0 0 0 0
Basalt blocks 8 8 8 1 1
Jetty 70 70 57 8 8
Fruit farm 70 70 57 8 1
Orchard 70 70 57 8 1
Nursery 100 70 57 8 1
Cropland 70 70 57 8 1
Graveyard with forest 57 57 8 1 1
Graveyard 70 70 57 8 1
Fallow N/A N/A 70 57 8
Built-up area 100 100 70 57 8
Other 100 100 70 57 8
Grassland 0 0 0 0 0
Farmland 70 70 57 8 1
Fallow land N/D 70 57 8 1
Grassland 70 70 57 8 1
Nature terrain 0 0 0 0 0
Other N/D 0 0 0 0
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Table 2.3: Data source and features used to calculate the Green module

Database Feature

BGT_begroeid

Dune
Dune: Closed dune vegetation
Dune: Open dune vegetation

Mixed forest
Grassland other

Green areas
Green area: ground covers

Green area: forest plantation
Green area: grasses and herbaceous plants

Green area: shrubs
Green area: plants

Green area: shrub roses Heather
Wooded bank

Salt marsh
Deciduous forest

Deciduous forest: willow and coppice
Swamp

Coniferous forest
Reed land

Bushes

BGT_onbegroeid
Sand

Sand: beach and shoreline
Sand: sand drift

Table 2.4: Weights obtained from the existing PV locations

Category Importance Criterion Weight

Technical 8.77% Solar resource 0.0877

Environmental 7.39%
Compatibility Index 0.0648
Distance to water 0.0091

Economic 83.84%

Distance to roads 0.2242
Distance to train stations 0.1974
Distance to transmission lines 0.2183
House price 0.1985
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Table 2.5: Pairwise comparison matrix for the economic category of the environmental scenario

Roads Stations House price Transmission lines

Roads 1 3 1/3 1/2
Stations 1/3 1 1/7 1/5
House price 3 7 1 3
Transmission lines 2 5 1/3 1

Table 2.6: Weights applied to the environmental scenario

Category Importance Criterion Relative
weight

Final
Weight

Technical 20% Solar resource 1 0.2

Environmental 60%
Compatibility
Index

0.9 0.54

Distance to wa-
ter

0.1 0.06

Economic 20%

Distance to
roads

0.159 0.0318

Distance to
train stations

0.059 0.0118

Distance to
transmission
lines

0.256 0.0512

House price 0.526 0.1052





3
EFFECT OF IRRADIANCE

VARIABILITY ON PV SYSTEMS

Nature’s music is never over.
Her silences are pauses, not conclusions.

Mary Webb

I N 2021, the world generated 821 TWh of electricity from solar PV. This considerable
growth of PV generation of 23% is still not enough to meet the growing goals of 24%

yearly in order to reach the 6970 TWh of solar generation in 2030. Because of this, addi-
tional efforts are needed to increase PV production worldwide [78].

A wafer-to-system analysis [79] shows that most of the energy losses occur at a cell
level. The commercial crystalline silicon solar cells have efficiencies reaching 25% [80]
while commercial modules have an average efficiency of 20.4% at Standard Test Condi-
tions (STC) [80]. The rest of the losses in the PV system efficiency chain are related to the
weather conditions of the site such as the irradiance, temperature and light spectrum
effects [79]. Finally, the Balance-of-System components, which support the PV modules,
also contribute to losses. Of these, the power converter accounts for the majority of the
losses [79].

Based on this analysis, there are several options for increasing the PV system effi-
ciency. Multi junctions can boost the efficiency of PV cells. For example, using per-
ovskites with silicon can boost the cell’s efficiency up to 31.25% [81]. At a module level,
improving the module’s performance under partial shading conditions also leads to an
increase in efficiency. A novel way to achieve this is by reconnecting blocks of cells of
the PV module in series or parallel depending on the shading pattern of the module [82].
Moving to the system domain, switching from simple converter topologies such as the

This chapter has been published in V.A. Martinez Lopez, U. Žindžiūtė, H. Ziar, M. Zeman and O. Isabella,
Study on the Effect of Irradiance Variability on the Efficiency of the Perturb-and-Observe Maximum Power Point
Tracking Algorithm, Energies, 15, 20 (2022).
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buck or boost converters, with efficiencies ranging around 97%, to more advanced de-
signs that employ soft switching techniques, also leads to better efficiency. In addition,
the way that different converters are connected in the system opens a window of op-
portunity for efficiency improvement [83]. The power extracted from PV modules can
be maximized by employing maximum power point trackers (MPPT). Their algorithms
act upon the power converter to ensure that the PV module delivers the highest possible
power, increasing the system’s efficiency [83].

Multiple techniques can be found to deal with this topic that span over different de-
grees of complexity, efficiency, and objectives. For an overview of the MPPT methods,
the reader is referred to the work of Karami et al. [84], with a classification of 40 MPPT
methods into five categories based on their operating principle. Many other literature
reviews list MPPT methods (e.g., [85, 86]). In addition, in many of these, the Perturb-
and-Observe is one of the first to appear.

This algorithm is one of the most widely used techniques for a PV module’s maxi-
mum power point (MPP) tracking [86]. The reason behind its popularity is the simplicity
of its logic [87]. It is so simple that it can be implemented in a very accessible embedded
board such as the Arduino Nano [86] or even without a microcontroller by means of an
analog circuit [84, 86, 88]. The algorithm applies a small voltage Perturbation to modify
the module’s operating point. Then, it Observes the resultant power. Depending on the
sign of the power change, the next voltage perturbation will either increase the voltage or
reduce it. In this way, the operating point will climb along the power-voltage (P-V) curve
towards the maximum power point. Under constant irradiance and steady-state opera-
tion, the operating power will constantly swing around the theoretical maximum power
point. With variable irradiance, the P–V curve of the module is continuously changing.
Hence, the operating point occurs on different curves at each perturbation. This causes
a potential problem for the algorithm that can become confused, setting an operating
point different than the MPP and thereby leading to energy loss [85, 87, 89].

Figure 3.1 shows an example. Suppose that the algorithm starts at the maximum
power point of the bottom P-V curve (marked with a diamond). The perturbation is
positive and the observed power (with no irradiance change) is supposed to be lower,
which, in turn, should result in the algorithm decreasing the voltage. Nonetheless, be-
cause the irradiance starts to increase, the observed power is now on another P-V curve
with a higher value than before. In this scenario, if the irradiance keeps on increasing,
the algorithm keeps on increasing the voltage as well. This confusion results in the track-
ing drifting away from the MPP of every curve and continues until the observed power
is lower than the previous. At that moment, the algorithm operates correctly and starts
climbing back to the MPP (even with the still increasing irradiance).

The P&O algorithm has two parameters that define its operation and can be tuned
for optimization. The first is the sampling time, Ta . It determines how often a perturba-
tion will be made. The second is the amplitude of the perturbation given by the voltage
step ∆V . This parameter specifies the magnitude of the change in power that the mod-
ule experiences (∆P ) [89]. The magnitude of the resultant power as a consequence of a
voltage perturbation, its direction (increasing vs. decreasing voltage steps) as well as the
power change caused by irradiance (∆PG ) determine whether the algorithm will track
in the correct direction or not [89, 90]. When the algorithm is decreasing the voltage to
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Figure 3.1: Example of the P&O confusion when the irradiance increases. The circles indicate the tracking
points. The ’x’ denotes the maximum power point at each P–V curve, and the diamond marks the starting
point.

reach the MPPT, it will not be confused if Equation (3.1) is fulfilled [89, 90]:

|∆P | < |∆PG |. (3.1)

When the algorithm increases the voltage to reach the MPPT, the inequality of Equa-
tion (3.1) is reversed [90].

The method presented here corresponds to the most basic version of the P&O algo-
rithm, where the sampling time and perturbation step are fixed. There are many mod-
ifications to this algorithm that aim to improve its performance but maintain the basic
operating principle. Many of these improvements to the basic P&O algorithm are based
on dynamically changing the algorithm’s parameters [90]. For example, the perturbation
step is larger during the hill-climbing process but then reduced in size when the algo-
rithm reaches the MPP leading to increased tracking speed and small steady-state oscil-
lations [84]. We analyzed the P&O algorithm because of its simplicity and widespread
use. Without losing generalization, we will only focus on the most basic form of the P&O
algorithm.

3.1. IRRADIANCE VARIABILITY
“Variability” describes how often a quantity changes in time. High variability indicates
frequent and significant changes, while low variability is linked to gradual changes.

When describing the Global Horizontal Irradiance (GHI), irradiance with high vari-
ability in a given period will exhibit high dispersion. Because of this, the standard devia-
tion, as a measure of dispersion, is used to quantify irradiance variability.

Variability is more evident when considering the differences between two consecu-
tive irradiance measurements. These differences are close to zero for gradual changes,
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hence low dispersion. The first variability metric, V , is then a measure of the dispersion
of the changes in irradiance within a certain period. Mathematically, V =σ(∆G), where
G represents the measured irradiance (GHI).

To remove the effect of day–night cycles and allow the study of variation caused by
clouds, the clearness index kt (3.2) can be used [91]. It relates the measured irradiance G
against the modeled irradiance at the top of the atmosphere (extraterrestrial irradiance,
Gext ) [92]:

kt = G

Gext
(3.2)

If extraterrestrial irradiance in (3.2) is replaced with the clear-sky irradiance, the clear-
sky index kc is obtained. The clear-sky irradiance models the irradiance measured on a
horizontal surface on Earth on a cloudless clear day. To obtain such irradiance, in this
work we employed the ESRA model [93]. This index has the same advantages of remov-
ing daily cycles and allowing for studying the changes caused by clouds [94].

Following the same logic as for σ(∆G), variability of irradiance can be described by
means of the differences of kt or kc by using V =σ(∆kt ) or V =σ(∆kc ).

Changes in irradiance can also be quantified in terms of ramps. In other words, how
deep the rate of change of irradiance in a period ∆t is. Thus, the ramps are defined as
(3.3)

r = ∆G

∆t
(3.3)

Since ramps are changes, the standard deviation method is also used for quantify-
ing irradiance variability: V = σ(r ). As discussed above, irradiance with high variability
exhibits large changes in a short time and hence higher ramps. The maximum value of
the ramps is then used to describe the irradiance variability (V = max(r )). In addition,
following the same logic, the mean ramp, instead of the maximum, is studied as an irra-
diance variability metric (i.e., V =µ(r )).

Finally, the Variability Index (VI) describes the variability of irradiance as a ratio of
the length of the ramps of the measured irradiance with the clear-sky irradiance as seen
in (3.4) [95]

V I =
∑p

∆G2 +∆t 2∑√
∆G2

clear +∆t 2
(3.4)

3.2. PREVIOUS ANALYSES OF P&O UNDER VARIABLE IRRADI-
ANCE

In the study of the P&O performance in changing irradiance, it is worth mentioning the
European standard EN50530 for testing the overall efficiency (tracking and converter)
of PV inverters [96]. It defines a triangular-like test signal with increasing slopes (from
0.5 to 50 W/m2/s) and then repeated at a higher base irradiance and with slopes varying
from 10 to 100 W/m2/s. The sequence is used to simulate changes in irradiance.
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In [97], the EN50530 was used to compare the performance of the P&O and the in-
cremental conductance algorithms. The efficiency of P&O is lower at low irradiation
and slow irradiance changes but lowest with abrupt changes and low irradiance. The re-
ported average efficiency is 98.3%. The EN50530 standard was also used in [98] to com-
pare different P&O methods. The fixed-step (where the magnitude of the voltage pertur-
bations is constant) version of the P&O was used as a reference and multiple versions
of the algorithm with variable steps (where the voltage perturbations are not constant
while tracking) were tested. Variable-step versions of the P&O provide an improvement
in the performance of the algorithm (e.g., [99]).

The performance of the P&O can also be studied using real conditions as done in [88].
The authors ran the algorithm under different sky conditions. The lowest efficiency for
the P&O was 96.5% under partly cloudy skies.

Other studies focused on optimizing the parameters of the P&O algorithm—in par-
ticular, the magnitude of the perturbation and the time between perturbations. This
leads to conditions for avoiding the algorithm from being confused [89], or expressions
that relate the efficiency with the perturbation size [100].

The efficiency of the MPPT system consists of two parts: the hardware efficiency and
the tracking efficiency of the algorithm [84]. While most of the previous works focus on
the total system efficiency, we focused only on the tracking efficiency of the algorithm
and studied the algorithm’s efficiency when operating at real irradiance. Our assump-
tions of an ideal converter and uniform irradiance provide the best-operating conditions
for the algorithm. Hence, by quantifying the variability of solar irradiance, we can deter-
mine the inevitable loss of efficiency of the algorithm’s logic.

To achieve this objective, we present the methodology used for our study in Section
3.3. The results of Section 3.4 present our observations regarding the relationship be-
tween the algorithm efficiency and irradiance variability, the effect of the tuning param-
eters of the algorithm, and the influence of the PV module’s tilt. We provide an extensive
discussion of the results in Section 3.5 before giving our conclusions in Section 3.6.

3.3. METHODOLOGY
The P&O algorithm performs voltage perturbations with a sampling time (Ta) less than
1 s. Hence, the use of data in the minute range results in rates of irradiance changes
that are too slow to yield any conclusion. The larger the data time step, the smoother the
rates of change in irradiance. This occurs partly due to the averaging typically performed
by the data acquisition systems. For this reason, we used 3-second sampled irradiance
data of Oahu, Hawaii from NREL [101]. This dataset is one of the few with such high
temporal resolution containing the three components of irradiance: Global Horizon-
tal Irradiance (GHI), Direct Normal Irradiance (DNI), and Diffuse Horizontal Irradiance
(DHI). We used these quantities to calculate the irradiance impinging on the same plane
as the PV module using Equation (3.5):

G =Gdi r +Gdi f f +Gr e f (3.5)

The direct component (Gdi r ) is calculated from the measured DNI and the angle
between the Sun and the vector normal to the module. We used the isotropic sky model
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approach to translate the measured DHI to the plane of the module and calculate the
diffuse component (Gdi f f ). For the reflected component (Gr e f ), we assumed a constant
value for the albedo of 0.2. We will refer to the plane-of-module irradiance simply as
“irradiance”.

Since the irradiance does not change instantaneously but in a ramping way, we used
linear interpolation to connect two consecutive data points with a ramp. Each new
point is separated by the sampling time (Ta). At every point, we used the approach pro-
posed by [102], based on the well-known single diode model to obtain power–voltage
(P–V) curves. The module is treated as ideal, thus neglecting series and parallel resis-
tances [102]. We used the datasheet of the front side of a 400 W Trina Solar DUOMAX
Twin module for fitting the model. Except for Section 3.4.3, the simulation considered
a single, horizontally placed module, uniform irradiance (i.e., no partial shading), and
free horizon (i.e., no obstacles in the surroundings). The ambient temperature was kept
constant at 25 °C. With this, we ensure that all effects are due to irradiance changes only.
For all the interpolated datasets, the P&O algorithm was run to find the maximum power
point at each step. To improve our analysis, we only considered irradiance values above
20 W/m2 that occurred when the elevation of the Sun was greater than 5°.

The baseline sampling time (Ta) of the P&O was set at 50 ms and a voltage step (∆V )
of 0.3 V.

In reality, the power converter performs the MPPT algorithm. However, we decided
to consider this component ideal. Then, the sampling time and voltage step are used to
simulate the algorithm directly on the P–V curve of the module. We ensure that the algo-
rithm operates under the most favorable conditions by neglecting the power converter
and assuming uniform irradiance on the (ideal) module. This allows us to compute the
efficiency losses of the logic of the algorithm caused exclusively by irradiance variability.

Since the P&O algorithm swings around the MPP, the efficiency cannot be calculated
with a unique power point. Instead, we considered the efficiency as a ratio of energies
for a given time period (3.6) as done by [97]:

ηMPP =
∫ TM

0 Pop∫ TM
0 PMPP

(3.6)

where Pop is the power output of the module operating under the P&O algorithm at a
particular moment. PMPP is the theoretical maximum power point of the module at the
same P–V curve. The integrating interval TM was set at 3-s and 1 min.

The variability of solar irradiance is related to the variance of the measured irradi-
ance, and its quantifiers are mainly based on the standard deviation of differences be-
tween measured points. An extended description of the used quantifiers was presented
in Section 3.1. The period used for irradiance variability calculations was set at 1 min,
using the 3-s sampled data.

3.4. RESULTS
Here, we present a statistical analysis of the efficiency loss of the logic of the P&O al-
gorithm when it operates under changing irradiance. First, the results explore the rela-
tionship between variability and efficiency of the algorithm. Based on the observations,
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a model that quantifies such a relation is presented. We then move to determine the
effects of the tuning parameters before presenting an analysis of the influence of the
module tilt. Unless explicitly mentioned in the next sections, the term efficiency pertains
to the efficiency of the algorithm.

3.4.1. IMPACT OF IRRADIANCE VARIABILITY ON THE EFFICIENCY OF THE

ALGORITHM
The efficiency of the P&O algorithm is not constant. It experiences sudden drops when
the irradiance changes. The depth and frequency of the efficiency drops lead to disper-
sion in the obtained efficiency values. In other words, scattered efficiency values indicate
a deeper efficiency decrease. The dispersion can be easily quantified using the standard
deviation of the efficiency, σ(ηMPP ). We related this to the standard deviation of the
changes in irradiance, σ(∆G), as a measure of variability. Figure 3.2 shows that higher
irradiance variability corresponds to higher efficiency dispersion indicating a relation
between the two.

Figure 3.2: Daily dispersion of differences in irradiance, σ(∆G), causes increased daily dispersion of the calcu-
lated efficiency, σ(ηMPP ), for 100 randomly selected days. Two outliers were removed for clarity.

Although Figure 3.2 shows some impact of irradiance variability on efficiency, a Pear-
son correlation analysis shows a minimal linear correlation between the 1 minute irradi-
ance variability and the 1 minute efficiency with all variability metrics (r̄ =−0.45). Note
that this correlation is against the 1 minute efficiency values and not with the standard
deviation of efficiency. A single variability value is not linked to a single efficiency value
but many. Because of this, no clear trend can be derived.

To reduce the scattering of the data and obtain a better insight into the effect of irra-
diance variability on the algorithm’s efficiency, the data were grouped into 50 irradiance
variability bins. At every bin, efficiency was averaged as well as the irradiance variabil-
ity (given by σ(∆G)) corresponding to each bin. With this binning approach, we found
that the average efficiency η̄MPP is related to the mean of irradiance variability, σ(∆G),
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through the quadratic expression (3.7):

η̄MPP = p1V̄ 2 +p2V̄ +p3 (3.7)

where V̄ = σ(∆G). The values for the coefficients p1, p2, and p3 can be found in Ap-
pendix A.

The proposed model is illustrated in Figure 3.3. When binning is applied, the model
accurately describes the relationship between efficiency and irradiance variability.

Although σ(∆G) was used as a metric for irradiance variability, other metrics exist to
describe irradiance variability, namely,

• Standard deviation of changes of the clearness index;

• Standard deviation of changes of the clear-sky index;

• Standard deviation of ramps;

• Maximum ramp;

• Variability Index.

These were extensively detailed in Section 3.1. To explore the validity of our model
for other metrics, we repeated the analysis for the metrics mentioned above, finding that
the model can be applied to all of them. This is not unexpected as the studied variability
metrics are strongly linearly correlated with each other, with Pearson correlation coeffi-
cients exceeding 0.8.

Figure 3.3: Drop of the binned average efficiency, η̄MPP , of the P&O algorithm as a function of the mean
irradiance variability in each bin, σ(∆G). The coefficient of determination (R2) is included in the graph to
indicate the goodness of fit. Other variability metrics can also be fitted with the model. The fitting parameters
are given in Appendix A.
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3.4.2. SENSITIVITY OF THE P&O PARAMETERS

We selected 1 h of data at the same timestamp (12:00 p.m. to 1:00 p.m. local time, Oahu,
Hawaii) with different irradiance variability. For each hour chosen, we modified the sam-
pling time, Ta , logarithmically between 0.1 and 1000 ms and ∆V linearly from 0.1 to 3%
of the open circuit voltage of the module at Standard Test Conditions (Voc(STC )). Figure
3.4a shows the results of this analysis on an hour with low irradiance variability in con-
trast to an hour with high irradiance variability as in Figure 3.4b. Under stable irradiance,
Ta does not have a significant impact on the P&O performance, and the efficiency loss is
mainly determined by ∆V (Figure 3.4a). With variable irradiance, Ta plays an important
role. As both parameters influence the efficiency loss under varying conditions, a poorly
tuned algorithm with slower sampling time in combination with significant voltage per-
turbation can experience losses of up to 2% (Figure 3.4b).

(a) (b)

Figure 3.4: Sensitivity of the P&O algorithm efficiency, ηMPP , to its parameters under (a) clear skies, and (b)
variable irradiance.

3.4.3. IMPACT OF THE MODULE TILT

So far, our analysis was focused on a horizontally placed module. For a tilted module,
the efficiency loss is more significant near the tilt angle of the module that maximizes the
annual irradiance (“optimal angle”). More direct irradiance reaches an optimally tilted
module than a horizontal one. This implies that a cloud blocking the Sun will cause a
more profound reduction of the available irradiance to the module, increasing the ef-
fect of variability. To support this argument, we simulated a module placed horizontally
and then gradually increased its tilt in steps of 5° until vertically placed. One randomly-
selected highly variable day served as the input for all the angles. The simulation fol-
lowed the procedure explained in Section 3.3. Figure 3.5 shows the dispersion of the
P&O algorithm efficiency as the tilt angle increases. The dispersion of efficiency, linked
to a more considerable efficiency loss, is higher near the optimal angle for this day. As the
module is tilted away from the optimal angle, the direct irradiance exhibits lower peaks.
This is linked to lower efficiency losses.
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Figure 3.5: Impact of the module tilt on the daily efficiency for one randomly selected day. For the studied
location, the optimal tilt angle is 13.23°, marked with the vertical line.

3.5. DISCUSSION

We hypothesized that moments with significant changes in irradiance experience
the lowest algorithm efficiency. Then, it should be possible to draw a relation between
irradiance variability and efficiency. This, curiously, is not a linear relation and also not
a simple task to relate the two quantities. Figure 3.2 only indicates that efficiency data
become more spread as the variability of irradiance increases. However, from Figure 3.2,
it is not possible to quantify the efficiency loss. In other words, Figure 3.2 gives only an
indication of the existence of a relation between irradiance variability and efficiency. It
is only after the binned efficiency analysis (Figure 3.3) that we can establish a compre-
hensive connection between irradiance variability and algorithm efficiency.

When the algorithm gets confused, the operating point will drift away from the MPP.
The amount of divergent points depends on the steepness of the irradiance ramp. For
shallow ramps of solar irradiance, this drift occurs in one or two points before the algo-
rithm swings back again towards the correct operation. Thus, the impact on efficiency
can be neglected. This is not true for steep ramps. Under such conditions, the algorithm
diverges during more points, causing substantial drops in the instantaneous efficiency
(We observed instantaneous efficiency values dropping as low as 80%). Furthermore, af-
ter the algorithm has diverged, it needs additional steps to climb back towards the MPP.

The P&O algorithm’s efficiency also depends on its tuning parameters. We observed
that, on clear days (Figure 3.4a), the efficiency drops with large voltage steps. This is in
line with the remarks of other authors who observed that increasing the perturbation
step leads to better dynamic performance, as the MPP is reached faster, but with the
disadvantage of a poor steady state tracking due to the swinging around the MPP [103].
Interestingly, when optimizing the perturbation step, some authors have found voltage
perturbations that exceed 2% of their module’s Voc [100, 104]. In contrast, we observed
that the highest dynamic efficiency for clear and highly variable days is obtained with
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lower voltage steps. For practical MPPTs, the voltage perturbation is below 1% [90].

Regarding the sampling time (Ta), values found in the literature range from 0.05 s
to 0.1 s (1–20 Hz) [90, 100, 105]. Even when these parameters were optimized consider-
ing the response of the PV module and the power converter [104], the losses caused by
variability only become significant. This is clear from Figure 3.4b. The range of Ta ap-
proached the right half of the figure where efficiency is lower, especially combined with
small perturbation steps.

The efficiency values for the P&O algorithm given in the literature span over a broad
range. Some of the efficiency values are as low as 62.63% for a test under EN50530 with
low irradiance and small perturbation step [106]. Under real conditions, the reported
mean efficiency of the algorithm was 98.3% [97]. In [88], and the authors determined that
the efficiency under partly cloudy days was 96.5%, while, for a clear day, it was 98.7%.

One possible reason for the large discrepancy in the efficiency values is the integra-
tion period that different authors consider for their calculations. All these studies (in-
cluding the present work) use Equation (3.6) for the calculation of efficiency. However,
the integrating period ranges from a full day to a few seconds.

An additional contribution of this work is the analysis of the impact of the PV mod-
ule tilt on efficiency. From Figure 3.5, we see that the scattering of the efficiency reduces
as the module is placed more vertically. This is because the variability of irradiance de-
creases as the module’s tilt angle becomes larger. The maximum variability coincides
with the optimal angle of the module. Therefore, we can expect a greater efficiency loss
at an optimal angle than a horizontally placed module and even greater in comparison
with a vertical one. For example, from the data used to obtain Figure 3.5, we can cal-
culate the irradiance variability σ(∆G). Using Figure 3.3, at an optimal angle, the MPPT
efficiency is close to 99.90%. We gain 0.02% in tracking efficiency just by placing the
module horizontal, and 0.09% for the vertical case.

Another issue worth mentioning is that, in all previous studies, there is a power con-
verter involved, either in simulation or experimental. This can also be a potential reason
for the lower values obtained in the literature with respect to our results. The hardware
imposes limitations in the study of the logic of the algorithm as the dynamics of the con-
verter, combined with the PV module, determine the optimal parameters of the P&O
algorithm [89, 104, 105]. Additionally, the hardware imposes limitations regarding how
fast the PV module can react to a duty cycle change [103, 107], which is related to the
maximum sampling frequency that can be used for the perturbations [108]. The reso-
lution of the analog-to-digital converters of the control system and the sensitivity of the
sensors imposes constraints on the minimum step size that can be employed [104].

In [97], the authors attributed extremely low values of efficiency observed (<95%)
during real conditions to poor performance on the converter. In our simulations, we
also observed such behavior (efficiency dropping as low as 80%), which suggests that
the hardware is not the only one responsible for large drops in irradiance but the logic of
the algorithm itself.

Although Figures 3.4a,b show an idealized situation, in practice, these values could
not be reached due to hardware limitations. The importance of our study relies on the
fact that the logic of a well-tuned algorithm, under the most favorable conditions for
the algorithm (not considering any power electronics and no partial shading), causes a
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systematic efficiency loss that, on a monthly basis, can reach up to 0.1% due to variable
irradiance. This represents a production reduction of approximately 1 h per month at
the selected site.

3.6. CONCLUSIONS
We studied the relation of irradiance variability to the efficiency of the P&O MPP track-
ing algorithm. We found a connection between the binned efficiency and irradiance
variability that a second-order polynomial can describe. The confusion of the P&O al-
gorithm depends on the ramps caused by irradiance variability. The divergence of the
algorithm results in a systematic decrease in efficiency that can account for up to 0.1%
on a monthly average. A wrong choice of the algorithm’s parameters and the module tilt
significantly impacts the efficiency on highly variable days. Our study opens the possi-
bility for an efficiency analysis in different locations around the globe with the sole input
of global horizontal irradiance as well as to compare newer and more advanced algo-
rithms. A considerable amount of resources is spent on increasing the efficiency of solar
cells. As single-junction solar cells are reaching the theoretical limit, even small improve-
ments in efficiency are regarded as a success. The loss caused by irradiance variability
in one of the most used MPPT algorithms is on the same order of magnitude as the cell’s
efficiency improvement, highlighting the importance of properly tuning the algorithm
to its operation under rapidly changing weather conditions.

Including this loss into the PV systems analysis can help to reduce uncertainty in
energy yield caused by irradiance variability and facilitate the growth of PV for meeting
the generations’ goals of the Net Zero Scenarios set in 2030.
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ULTRA-SHORT-TERM IRRADIANCE

FORECASTING

A cloud is made of billows upon billows that look like clouds...

Benoit Mandelbrot

Clouds influence the irradiance from the Sun as it travels through the atmosphere
with their shape, size, and constitution [109]. One of the most obvious effects is that
they block the sunlight, reducing the available Sun power reaching the ground. They
can also cause the opposite: increasing (or enhancing) the irradiance above the theoret-
ical irradiance at the top of the atmosphere [109, 110], caused by scattering inside the
cloud [111] which leads to an increase in the diffuse irradiance [110]. Cloud enhance-
ment, for example, can cause blowing of fuses (leading to production loss), overloading
of the inverters (leading to efficiency loss) [112] or underestimation of maximum Pho-
tovoltaic (PV) production [113]. Therefore, the movement of clouds in front of the Sun
produces fluctuations in the solar irradiance available for PV production. These fluctu-
ations occur even in the sub-minute range, negatively affecting the PV systems in the
form of significant PV power ramps which impose a challenge to grid operators [114],
and the variability of solar irradiance affect the maximum power point trackers’ opera-
tion resulting in efficiency loss [115].

Irradiance forecasting is a method to alleviate some of the challenges of variations
caused by moving clouds. It is applied in the operation of PV systems with benefits
such as increasing battery lifetimes of PV systems that incorporate them [116], and it
has proven to be a crucial requirement of grid operations with high renewable energy
penetration [117].

This chapter has been published in V.A. Martinez Lopez, G. van Urk, P.J.F. Doodkorte, M. Zeman, O. Isabella,
H. Ziar, Using sky-classification to improve the short-term prediction of irradiance with sky images and convo-
lutional neural networks, Solar Energy, 269, (2024)
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In the very short term, defined by a time horizon from seconds to maximum 30 min-
utes [118], images from the sky provide valuable information such as cloud identifica-
tion (e.g., [119]), cloud classification (e.g., [120]), and cloud tracking (e.g., [121]). Such
sky images are obtained with an All-Sky Imager (ASI) (a camera equipped with a fish-eye
lens facing the sky) which takes a picture of the sky in a particular location. This has the
advantage of retrieving higher resolution information on the site than satellite images
(which cover a broader area), ceilometers, and radars (which have lower local resolu-
tion) [122].
The core idea behind predicting irradiance using sky images is to 1) identify clouds, 2)
determine how they are moving, and 3) assess whether they will obstruct the Sun [121,
123–127]. Additional information (or features) can be given to the model to improve the
prediction. For example, in [124], the authors included not only the cloud pixels and
their movement but also identified the cloud edges and corners related to the cloud type
and the pixel intensity of the clear and cloudy pixels.
Convolutional Neural Networks (CNNs) can automatically detect these features [128]
and can be used to perform irradiance forecasting, such as SUNSET [129, 130], Solar-
Net [131] and ECLIPSE [132]. SUNSET is a CNN that receives a sequence of sky images
and historical PV power production to forecast a 15-minute horizon [129, 130]. In highly
variable moments, the model predicts the average output PV power in the prediction
horizon [130]. SolarNet follows a different approach, as it was designed to predict over a
wide range of time horizons using 6 CNNs trained for different forecasting horizons and
a single sky image as input. It can predict up to 60 minutes with a 10-minute resolution
[131].
The prediction of irradiance ramps can be done by predicting the future position of the
cloud pixels and determining whether or not these pixels will block the Sun [132, 133].
ECLIPSE uses this approach to predict up to 10 minutes with a resolution of 2 minutes,
and it tackles specifically the prediction of important irradiance ramps. It achieves this
by combining temporal information (using a sequence of images) along with spacial in-
formation (location of the clouds and the Sun) [132].

CNNs are not the only architecture for implementing sky image forecasting. Espe-
cially when including sequences of images, other Artificial Intelligence (AI) architectures
such as Long Short-Term Memory (LSTM) or Recurrent Neural Network (RNN) can also
compete and even outperform CNNs [134–138]. Nevertheless, a CNN has a relatively
simpler architecture than LSTM or RNN [139] and the improvement in the error reduc-
tion that the former offer is marginal (around 2%) on forecasting horizons greater than
10 minutes [135, 138]. In some cases, the CNN can even perform better than the net-
works incorporating temporal information [138].

In general, sky-image-based forecasting methods outperform persistence models in
many sky conditions, although their performance for ramp detection is still one of the
main challenges and an ongoing research topic [136]. This holds even for models based
on artificial intelligence, as they tend to output a smooth prediction of irradiance that ef-
fectively misses steep ramps [134, 135, 137] or they predict an average of the output [130,
135]. Additionally, the output from AI models tends to lag from the actual measurements
[135]. Even more, deep learning models models are sensitive to weather conditions [137,
139].
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To tackle these problems, hybrid models have been proposed. Some combine image
processing techniques to extract the evaluating features and then feed them to an LSTM
which performs the forecast. This model can solve the problem with time alignment and
detect some ramps [127].
AI-based hybrid models can also be created by training different models to cover various
scenarios. One of these is based on implementing a classifier for four cloud types. Then
four different models are trained using Support Vector Regression and Multiple Linear
Regressor. The final prediction is made by determining the prevailing cloud type on a sky
image and then applying the corresponding model to that cloud type [126]. The authors
claim an improvement in the error not only with respect to the persistence model but
also to models based on Artificial Neural Network (ANN)’s [126].
The classification can also be done in terms of time. This is achieved by training the
same model aiming at different forecasting horizons and then combining their output
using a linear combination [140]. This strategy is also useful to deal with models which
have many inputs, such as images and irradiance measurements. In this case, the time
resolution of the data can have different sampling times. The use of different models and
combining their output (ensemble learning) can help to deal with these situations [141]
or facilitate training with fewer data by using transfer learning [142].

The purpose of this work is therefore to develop a mixed model based on sky images
(Sections 4.1.1), a sky classifier (Section 4.1.3), and a CNN (Section 4.1.4).
As opposed to ensemble learning techniques, which are also based on classification, our
model does not combine the output of different models but uses the output of a special-
ized model on a particular sky class which leads to a reduction in the prediction error
(Sections 4.2 and 4.3).

4.1. MODEL STRUCTURE
Our model consists of three main modules: image processing, sky classifier, and artificial
intelligence. Figure 4.1a illustrate the structure of the model. The model receives a sky
image and a clear-sky index (defined in Section 4.1.3) and the coordinates of the Sun
in the image. The image is manipulated to obtain the cloud cover (Figure 4.1b). Using
this and the clear-sky index it is classified in one of five categories. The image is then
fed, along with the clear-sky index to one of the five CNNs trained for the particular
class the image belongs to. The output is a minute resolution of the Global Horizontal
Irradiance (GHI) over the next 20 minutes.

4.1.1. IMAGE PROCESSING MODULE
The image processing module processes the images that will serve as input to the clas-
sifier. After the processing, the Cloud Cover, the clear-sky index and the position of the
Sun within the image are obtained.

CLOUD IDENTIFICATION

A digital color image (such as that captured by an ASI) is a discrete representation of
the intensity of the light impinging upon the sensor of the camera [143]. The color of
the digital image is obtained by superimposing a checkered pattern where three filters
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(a)

(b)

Figure 4.1: (a) Overview of the prediction model. (b) Detail of the sky classifier module.

(red, green and blue) are embedded (Bayer pattern) [144] to the sensor or having three
separate red, green and blue sensors [143, 144]. The reason for these three colors is that
the model used to represent each pixel in the image defines them as primary colors and
is called the Red-Green-Blue (RGB) model [143]. Using the RGB model results in a 3D
representation of an image where each matrix dimension represents one primary color
[143, 144].
The color channels of a sky image can be used to identify clouds (cloud segmentation).
On a clear day when looking at the sky, it appears blue. If, at this instant, a sky image
is taken, the value of the blue pixels will be higher than the Red pixels, assuming that
our image is mapped in the RGB color space. On the contrary, a cloud-covered sky im-
age will have a greater count of red pixels, making the clouds appear white or gray [120].
Using this fact, the clouds can be detected by using a ratio (e.g., [145]) or a difference
(e.g., [120]) between the image’s red and blue channels and then establishing a threshold
above which the pixels will be classified as clouds while the rest as sky. A combination
between the difference and ratio of the red and blue channels can also be used to estab-
lish such threshold. This is the case of the Normalized Blue-Red Ratio (nBRR) which is
defined in Equation 4.1.

nBRR = Blue−Red

Blue+Red
(4.1)

The problem with the thresholding method is that it fails to detect very thin clouds,
has a large misclassification rate due to the overlap of the pixel distribution between
clear and cloudy conditions, and performs poorly on pixels located around the sun [119,
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146].
The fact that partially cloudy, overcast, and clear days exhibit different nBRR pixel distri-
butions can improve classification accuracy.
The nBRR pixels of partly cloudy images exhibit a bimodal distribution, while this fea-
ture disappears on overcast and clear-sky images. The bimodality can be identified from
the standard deviation of the histograms [146]. Depending on the sky condition, the
thresholding technique can be adapted for partially cloudy (bimodal distribution), par-
tially or clear-sky images (unimodal distrution) [146]. This is the core idea behind the
Hybrid Thresholding Algoithm (HYTA), which achieves an overall accuracy of 88.53%.
However, HYTA excludes sun pixels, because very few sun pixels, can shift the whole
histogram due to their large intensity. For this reason, the improved algorithm version,
HYTA+ [119], was developed. This method adds another classification step by first deter-
mining whether a cloud covers the sun. Following the logic of the HYTA, the algorithm of
[147] is based on sun coverage identification and sky condition classification. We build
upon this model because of its simplicity and accuracy. Our implementation of the al-
gorithm [147] is explained below.

1. Sun identification: Determines whether the sun is blocked or not.

(a) Identification of the sun. Equation 4.2 returns the coordinates (in pixels) of
the sun in the image based on the position of the sun in the sky described
by its azimuth (A) and altitude (a) (in degrees). It is based on the projection
of the sky dome on a plane [148]. Once the sun is identified, the image is
cropped, considering a radius of 200 pixels around the sun’s coordinates

Xsun = Xcenter +Rimage × sin(A)cos(a)

Ysun = Ycenter +Rimage ×cos(A)cos(a)
(4.2)

(b) Obtaining the sun coverage ratio. The cropped image is converted to gray-
scale. The sun is detected by identifying very bright and white pixels with a
value exceeding 210. The value of 210 is the minimum average pixel intensity
of the region around the sun of 150 clear-sky images [147] (Note: the maxi-
mum pixel value of a grayscale image is 255). Then, the ratio of white pixels
in the whole image is calculated. The sun is clear if at least 95% of the pixels
of the cropped image are white [147].

2. If the sun is blocked:

(a) Apply a fixed threshold of 0.6 on the Red/Blue ratio to identify the clouds.

3. If the sun is not blocked:

(a) Determine if there are cloudy pixels in the image. The original work [147]
set a fixed threshold of 0.6 on the pixel intensity of the image, excluding 200
pixels around the Sun. We decided to apply the average of the normalized
Blue-Red Ratio (Equation 4.1). Our threshold value was set at 0.45, which
corresponds to the 75th percentile of the pixel values of 100 partially cloudy
days. This means that values above 0.45 will be classified as clear. Figure
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(a) (b)

Figure 4.2: Statistics of 100 clear-sky images and 100 partly cloudy images.(a) Mean pixel value using the nBRR
and (b) Pixel intensity using the Blue-Red ratio as in [147]. Note that with the pixel intensity, there is a greater
overlap between clear day and partially cloudy images.

4.2 shows the statistics of both figures. Using the average of the nBRR (with
the sun blocked as in [147]) results in lower overlapping than using the origi-
nal pixel intensity of the Blue-Red ratio. Our chosen value ensures that most
of the clear-sky images are correctly classified, albeit sacrificing accuracy for
the partly cloudy days which statistically is 25% of the evaluated images. De-
spite this considerable large value, a visual inspection of the images suggest
that the misclassified images show small clouds, not covering the sun, and
a deep blue sky, which is acceptable for the clear-sky classification. Lower-
ing the threshold to the minimum of the observed clear-sky images, results
in worst classification as completely overcast where the sun is visible (foggy
conditions, for example), can be misclassified as clear-skies.

(b) For images classified as partly cloudy, apply superpixel segmentation me-
thod following the approach of [149]. The superpixel segmentation method
is, as the name implies, a segmentation strategy that will aggregate pixels
with similar characteristics of brightness, texture, and contour smoothness
into blocks called superpixels[150]. The superpixels offer a segmentation that
is closer to how a human would segment the same image manually [150]. The
superpixel segmentation method proposed in [149] essentially obtains a glo-
bal threshold to separate clouds from sky for the whole image using the Otsu
algorithm, which is an automated method for finding the optimal threshold.
It is based on the fact that the pixels of high-contrast grayscale images have a
bimodal distribution. Thanks to this fact, two classes can be created based on
the humps of the bimodal distribution. The Otsu thresholding iterates over
the image histogram and in each pass separates these two classes by evaluat-
ing the probability of each class and its variance, which are dependent on the
threshold. The optimal threshold will maximize the variance between both
classes [151].
After the global threshold is obtained, the cloud detection algorithm applies
superpixel segmentation to the image. For each superpixel, a local thresh-
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old is obtained and then compared against the global threshold. This allows
establishing a decision on the threshold that should be applied to each super-
pixel. By doing this, the identification of clouds is performed per superpixel
instead of globally. Hence a more accurate identification is achieved [149].

The cloud cover is the count of cloudy pixels to the total image pixels. It is important
to mention that we masked the pixels of the image corresponding to the horizon to avoid
counting these objects as clouds. We also considered only images with a sun elevation
higher than 10° over the horizon. Some examples of cloud identification can be found in
B.1.

4.1.2. OPTICAL FLOW
The cloud motion is incorporated by calculating a dense optical flow. This tool allows
the tracking of pixels between two consecutive images by calculating the displacement
of pixels (or group of pixels) between two consecutive images [152]. In particular, we
applied the Farneback method [153]. This method approximates the pixel intensity of a
greyscale image as a quadratic polynomial. Then, it assumes that the consecutive im-
age is described by the same polynomial function but displaced by a displacement vector
field. The Farneback algorithm aims to retrieve this displacement vector for every pixel
[153].
This algorithm is implemented in the Python package OpenCV as the function
calcOpticalFlowFarneback and returns the displacement vector for every pixel in
terms of magnitude and angle [154].
The optical flow has been applied to irradiance forecasting by first determining the full
displacement vector field and then finding an equivalent vector which describes the mo-
tion of the main cloud block near the Sun. This can be later related with the direct normal
irradiance to predict occlusions of the Sun [155].

4.1.3. SKY CLASSIFIER
The sky-classifier is built upon the cloud cover retrieved from an instantaneous sky im-
age and the clear sky index obtained simultaneously. To recall, the clear-sky index is an
adimensional number relating the measured GHI (GHIm) against the GHI obtained from
a clear-sky model GHI0 at any instant. Mathematically, it is expressed as in Equation 4.3.
The clear-sky index removes the seasonal variation of irradiance, allowing for an analysis
for the changes in irradiance caused by clouds ([156]).

kc = GHIm

GHI0
(4.3)

For this reason, we hypothesized that there should be an almost linear relation be-
tween the cloud cover and the clear-sky index (i.e. the larger the cloud cover, the lower
the clear-sky index). Figure 4.3a shows the scatter plot of the clear-sky index and the
cloud cover for our dataset. From this image the hypothesized relation cannot be veri-
fied.

Pfister, et al. [109] described the relation between the cloud cover, the irradiance,
and the clear-sky index. In their results, two bands, or clusters can be observed: The first
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(a) (b)

Figure 4.3: (a) Scatter data from instantaneous clear-sky index and cloud cover. (b) Classified dataset. Observe
that there are some data points with very high clear-sky index values. Although it is not unexpected to have
values of the clear-sky index exceeding unity (due to cloud enhancement), extreme values (close to two) cor-
respond to a mismatch between the clear-sky index model and the measurements. This occurs mainly in the
early morning or late evening.

occurs at very high clear-sky indices spreading over a wide range of cloud cover, and the
second one at very low clear-sky indices scattered from cloud cover values between 40
and 100% [109]. These bands are not identifiable in our dataset (Figure 4.3a). The po-
tential reasons for these differences are how they processed the irradiance data. In both
works, 1-minute data was used; however, in the work of Pfister, et al.[109], the average
of 1-second measurements over the minute is taken, while in our work, we took a sin-
gle irradiance measurement that coincides with the instant that the sky-image is taken.
Our approach results in measurements with higher variability (hence, the scattering ob-
served in Figure 4.3a). Nevertheless, with this strategy, we do not include events that are
not captured by the camera at that instant. For example, at a particular moment, a sky
image might show a clear sun. However, in the course of the minute between images,
the sun might have been obscured. By averaging the 60 s of the minute, this information
is incorrectly assigned to the unobscured image.

Since we do not observe clusters of data, we applied K-means (50 clusters) and then
manually grouped these clusters together to obtain a final classification consisting of five
classes. The logic for the cluster strategy is as follows:

• Class 1: clear-sky images (high clear-sky index, very low cloud cover)

• Class 2: partly cloudy images following an almost linear relation of the clear-sky
index and cloud cover.

• Class 3: overcast days with high irradiance (high cloud cover, high clear-sky index).
This group includes the overirradiance phenomenon.

• Class 4: overcast images (Very low clear sky-index, very high cloud cover)

• Class 5: Partly clear skies with sun obscured images (low cloud cover, low clear-sky
index)
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Figure 4.3b shows the resulting clusters after the classification logic.

4.1.4. ARTIFICIAL INTELLIGENCE MODULE
The last module of the model is the one that makes the prediction. It implements a CNN,
which processes a low-resolution, color sky image merged with the optical flow informa-
tion at every pixel, resulting in a 64×64 pixels image with five channels. The first three
channels of the image correspond to the red, green, and blue channels, respectively. The
last two channels map the magnitude of the pixels’ velocity (channel 4) and their direc-
tion (channel 5) obtained from the optical flow. The architecture of this network is a con-
volutional neural network with only one convolutional step, which processes the image.
Then, the output is flattened to a one-dimensional vector and concatenated with the
auxiliary input data: the X and Y coordinates of the Sun’s position on the image and the
clear-sky index. The auxiliary data combined with the flattened image is fed to a three-
layer neural network. The output is a vector containing the 20-minute ahead clear-sky
predictions.

This architecture is trained 6 times: one considering the whole dataset (reference)
and one time per sky class. In short, the full pipeline of the model is

1. Get sky-image

2. Using the image processing module, obtain: cloud cover, clear-sky index and po-
sition of the Sun in the image.

3. Obtain the class of the image.

4. Use the CNN model trained on the sky-image class to get the final prediction

4.2. RESULTS AND DISCUSSION
The data set used in this study contains sky images taken using a CMS Shreder ASI-16/50
All Sky Imager located at the monitoring station of the Photovoltaic Materials and De-
vices. The irradiance was measured with a silicon-based pyranometer provided by the
manufacturer of the sky camera. The full dataset contains data from 29-03-2021 until
24-02-2022. For training purposes, we used a reduced sample of this dataset containing
80 000 randomly sampled sky images with their associated irradiance values and with
a sun elevation higher than 10° above the horizon. The distribution of the dataset can
be found in B.2, Figure B.6. The clear-sky index was calculated using the python pvlib
function clearsky with the solis model [157]. A reference model, hereafter called "full
model", was trained to study the potential improvement of the classifier. This model has
the same architecture of each CNNs used in the classifier but is trained with a random
sample of 64 000 data points containing data from all classes. The rest of the data points
are used for testing the model’s performance hyperparameter tuning was performed for
any of the models, as the study’s main goal is to obtain a comparison of the advantages
of the classifier. Each model was trained for 20 epochs using the mean squared error as
the loss function. It is worth mentioning that the architectures of all models remain the
same.
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The models for each class were trained using a sample that contains the same amount of
data points regardless of the class (9536 datapoints). Similarly, as the reference model,
each model was trained for 20 epochs with no hyperparameter tuning.
Figure 4.4 shows the forecast skill defined in Equation 4.4 [135], where RMSEeval is the
Root Mean Squared Error (RMSE) of the model under evaluation and RMSEbaseline is
the RMSE of the baseline model (either the model trained with the whole dataset (Full
model) or the persistence model). Figure 4.4a compares both, the full model (model
trained with the whole dataset) and the classified models against the smart persistence
model, which assumes that the clear-sky index will remain constant throughout the fore-
cast horizon. Note that in Class 4 (overcast) the persistence model performs better than
the full and classified models, and in Class 5 (mainly overcast with patches of blue), the
smart persistence model performs better than the classified model. The classified model
is the best option for predicting Class 1 (clear skies), while the full model is the best op-
tion for predicting classes 2, 3, and 5 as seen in Figure 4.4b.

F S = RMSEbaseline −RMSEeval

RMSEbaseline
×100 (4.4)

(a) (b)

Figure 4.4: Forecast skill per class using the RMSE. (a) Performance per class of the classified and the full
models (model trained with the full dataset) against the smart persistence model. The forecast skill of the
smart persistence is zero, and is marked with a solid line. (b) Performance of the classifier against the full
model (model trained with the full dataset). The forecast skill of the full model is zero because it is the reference
in this particular case. It is marked with a dashed line.

With the results of Figure 4.4, it is evident that the full model outperforms the classi-
fied model in almost every class. The performance of the classified and the Full model
are very similar, with a slight improvement in classes 2 and 3. The full model exhibits
a larger scattering between the expected and the predicted values (Figure 4.5), while in
the classified model, the points are more clustered. Because of this, the full model has
more points close to the perfect prediction line resulting in lower error, especially in large
clear-sky indices. We can conclude that the full model is more accurate, but the classified
model is more precise in classes 1, 2, and 3 (Figures 4.5a, 4.5b, and 4.5c).

The classified model fails on classes 4 and 5 (Figure 4.4a, 4.5d, and 4.5e), and the
smart persistence model is, by far, the best option for predicting overcast days (Class 4)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Comparison of the predicted and expected value between each class’s full and classified models.
(a) Class 1, (b) Class 2, (c) Class3, (d) Class 4, (e) Class 5, and (f) an application of the classifier on the whole
dataset, where Class 1 was predicted with a class 1 CNN, classes 2,3 and 5 with the full model and Class 4 with
the smart persistence model. The prediction on the same dataset with the full model is also shown. The red
line on all graphs indicates a perfect prediction. Points above the red line indicate that the model overestimates
the labeled value and points below the red label indicate that the model underestimates the labeled value.

(Figure 4.4a).
Figure 4.6 shows the evolution of the RMSE as the forecast horizon increases. The
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(a) (b)

Figure 4.6: RMSE as a function of the prediction horizon for (a) the reference model performing in each class,
and (b) the classified model.

error increases as the forecast horizon increases, as expected. For the full model (Figure
4.6a), the increase of the error is minimal, while for the classified model, it is more evi-
dent (Figure 4.6b). The models tend to ignore the changes in irradiance, and minimize
the error along the whole prediction horizon. For this same reason, the classified model
fails in classes 4 and 5, as the model predicts always the same value (Figure 4.5d and
4.5e).

Figure 4.7 shows the application of the model to predict the Global Horizontal Irra-
diance (GHI). Multiplying the model’s output with the modeled clear-sky gives the value
of the GHI. During the clear part of the day, the classified model outputs a smoother pre-
diction closer to the measured GHI. In the variable part of the day, both models predict a
trend rather than the actual value of irradiance, and neither of them captures the peaks
and valleys of the measured irradiance. The Figure also shows the moments where the
classified model failed (Class 5, in both cases).

The use of the optical flow to incorporate temporal information of the cloud move-
ment did not show any improvement. There was no difference in the training error of
the reference model with and without the optical flow. This suggests that the optical
flow does not provide useful information to the model and can be ruled out as a predic-
tor.
One potential explanation for this, is that the optical flow used in this work (the Farn-
neback method [153]) tracks the movement of pixels. But this does not necessarily im-
plies that it tracks the clouds. The Farnneback method may provide too much informa-
tion that the models interpret as noise. Another potential reason for the poor perfor-
mance of the optical flow is that clouds do not move as a block, but they also change,
which is not captured by the optical flow method. This makes the correlation between
past images and future measurements a difficult task [133]. Nevertheless, although in-
cluding the temporal information of clouds in forecasting models leads to improved pre-
diction accuracy as proved by [135] and [136], this improvement is marginal and might
not justify the extra effort needed for such an improvement.

Despite an overall higher performance of the full model, our approach has the advan-
tage of improving the prediction by combining different models. The results presented
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Figure 4.7: Example of 1 day with prediction using the classification model and the reference model. The
measurements for such a day are also included as a guide. Note that both models have difficulties during the
variable part of the day.

here assumed that the prediction module is the same for the five classes, but the classifier
approach can also be combined with different models. For example, use the classified
model for Class 1, the reference model for Classes 2, 3, and 5, and the smart persistence
for Class 4.
Figure 4.5f shows an example of such an ensemble. When the predicted instant corre-
sponds to Class 1, the predictor is the specialized CNN of Class 1. When it corresponds
to classes 2, 3, and 5 the predictor is the full model. The predictor is the smart persis-
tence model for instants that correspond to Class 4. This strategy reduces the error by
2.05% with respect to the full model. Although the improvement is not large, it proves
that using specialized systems for different sky classes reduces the prediction error. This
opens the possibility of implementing other prediction algorithms even better than our
full model for a particular class, while using the classifier concept.

Note that, except for classes 4 and 5, the performance of the full and classified models
is considerably close. Even if the full model outperforms the classified model, this could
be acceptable, considering that the amount of data to train the classified networks is only
a fraction of the data needed for the full model (around 14% per class, 42% for classes 1,2,
and 3, 70% for the five classes). Naturally, increasing the number of training examples
also helps the prediction accuracy of the classified model.

Our model (both the reference and classifier) still suffers from limitations regarding
the prediction of ramps. This phenomenon is not particular to our model, but is present
in many prediction models using sky images [130, 135–137].

Improving the accuracy of predictions directly impacts applying these methods to
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control PV systems. Grid operators impose restrictions on the ramp rate (i.e., they im-
pose a limit on the rate of change in the plant’s output power) [116, 140, 158, 159] that
are typically handled with energy storage systems [116, 158]. Incorporating prediction
can help in reducing the size of electric storage [159], increasing its lifetime with proper
control [116] or even eliminating [140, 158, 159] it, which has a direct effect on the cost
of the system [116]. However, these benefits are only achieved if the prediction accuracy
is high. Otherwise, it might be detrimental as the curtailed power is higher because of an
incorrect prediction or a larger energy storage system is needed to compensate for the
inaccuracy.

4.3. CONCLUSION
We presented a model for minutely predicting the clear-sky index in a 20-minute hori-
zon. Our model is based on sky images, a sky classifier, and a convolutional neural net-
work. The reference model has a superior performance than the classified model. The
classified model outperforms the reference model in Class 1 with a forecast skill of 5%,
while the difference between the classified and reference is small for most of the classes.
The classified model fails in overcast and mostly overcast days and partially clouded
moments still represent a challenge for both models when the smart persistence model
outperforms the most complex artificial intelligence models. The extra effort needed to
classify the sky conditions and train more models is justified because using specialized
models per sky class can yield better accuracy than a universal one for all classes.
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II
PV-HYDROGEN SYSTEMS: DESIGN

& CONTROL

The second part of this work focuses on the coupling of PV systems with water electrolyzers
for the production of green hydrogen. Part I discussed the variable nature of solar irradi-
ance. In this respect, Chapter 5 centers the attention on whether water electrolyzers are
suitable for operation with such fluctuating power and which configurations are avail-
able to realize PV-hydrogen systems. Chapter 6 moves up into the design phase of PV-
electrolyzer systems with a sizing methodology of the PV plant powering an electrolyzer. It
uses three indicators that serve as objective functions for an optimization problem solved
with the Particle Swarm Optimization algorithm aiming at ensure a maximum transfer
of energy from sunlight to hydrogen, or reducing the hydrogen cost. Finally, Chapter 7 pro-
poses a control strategy that smooths the power of a PV system powering an electrolyzer.
This strategy is based on active curtailment using forecasting and fuzzy logic. The control
system was deployed in a hardware-in-the-loop emulator of the whole system, effectively
putting together all the pieces presented in this dissertation.

Artwork of the opposite page by L. E. Lopez Castro
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5
DYNAMICS OF WATER

ELECTROLYZERS

.

The sun, with all those planets revolving around it...
can still ripen a bunch of grapes as if it had nothing else in the universe to do.

Galileo Galilei

Hydrogen production with electricity is now in the spotlight as the world moves towards
2050 with net-zero emissions. This gas is so important in this energy transition that
the International Energy Agency (IEA) has included it in its Net Zero Emission roadmap
as playing a critical role [16]. To mention a few figures, it is expected that by 2030 the
world will see 15 million hydrogen cars, and by 2050 the shipping industry will depend
on hydrogen as its dominant fuel [16].

Nowadays, most of the hydrogen in the world is produced by Steam Methane Re-
forming (SMR), which consists of processing natural gas or coal with water vapor at el-
evated temperatures and pressure over nickel-alumina catalysts. The result is hydrogen
gas and CO [160]. This process is CO2 intensive (grey hydrogen). Thus, if this method
is to be used, a great effort must be focused on reducing the carbon footprint of grey
hydrogen by using carbon sequestration (blue hydrogen) [160].

A better alternative is water electrolysis. The process will be explained in detail in
the following sections. If the electricity source for electrolysis comes from renewable
energy, the produced hydrogen will have no associated CO2 emissions (green hydrogen).
Currently, electrolysis accounts only for 2% of the hydrogen production in the world,

This chapter was published in: V.A. Martinez Lopez, H. Ziar, J.W. Haverkort, M. Zeman, O. Isabella, Dynamic
operation of water electrolyzers: A review for application in photovoltaic systems integration, Renewable and
Sustainable Energy Reviews, 182, 113407, (2023)
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while most of it is a by-product of the chlor-alkali process [161]. Of all the processes
primarily aiming at producing hydrogen, only 0.1% of all the hydrogen comes from water
electrolysis as this technology still faces higher costs; further, the amount of electricity
needed to turn from grey to green hydrogen is enormous, reaching the Terawatt-hour
range [161] easily.

Many large-scale green hydrogen projects are being announced, such as a 150 mil-
lion EUR investment project in Spain started in 2021 to power a 20 MW electrolyzer with
solar energy. The produced hydrogen will be used as feedstock for ammonia production
[162]. This highlights the importance of renewable hydrogen production in the near fu-
ture. This is even enhanced by the fact that key oil-producing countries are also investing
in hydrogen. A 5 billion USD project has been recently announced in Saudi Arabia, one
of the leading oil producers in the world, to produce hydrogen entirely from renewable
sources. It is expected that by 2030, the cost of hydrogen produced by this project will be
lower than that of fossil-based production methods [163], which account for 830 million
tons of CO2 emitted per year [161].

The International Energy Agency (IEA) has compiled a database with large-scale elec-
trolysis projects [164]. Fig. 5.1a shows the worldwide distribution of operational and un-
der construction projects that will produce hydrogen powered exclusively from renew-
able sources (i.e. they do not depend on the grid nor are supporting the grid to absorb an
excess of renewable production). The main renewable sources to produce the electricity
for hydrogen production is onshore wind and solar PV as seen in Fig. 5.1c.

These projects and roadmaps highlight the importance that hydrogen is experienc-
ing during this energy transition. Successful integration of electrolyzers with the grid
and highly variable renewable energy depends on the knowledge of the response of the
electrolyzer plant to quick changes. This work provides extensive insight into the dy-
namic operation of low-temperature water electrolyzers, focusing on their integration
with PV systems. Section 5.1 provides the general background on water electrolysis and
low-temperature electrolyzer technologies. Section 5.2 presents the dynamics of water
electrolyzers, diving into the fast electrical response and the slower changes caused by
temperature and pressure. The integration with solar energy is discussed in Section 5.3.
This section contains all issues related to a dynamic operation, including lifetime con-
cerns, and the conclusion is given in Section 5.4.

We want to highlight that our work focuses on the production of hydrogen as raw ma-
terial and not on hydrogen for grid balancing or micro-grid applications as it is beyond
our research goal. Although we included a brief discussion of the costs, an in-depth dis-
cussion is also outside of the scope as this topic might even deserve a literature review
on its own.

5.1. WATER ELECTROLYSIS
Water electrolysis is an electrochemical process in which electricity (electro-) is used to
split (-lysis) water molecules into dissolved oxygen and hydrogen. Concretely, this elec-
trochemical process involves reduction-oxidation (redox) chemical reactions. Electrons
will be produced (oxidation) at one anode and consumed (reduction) at the cathode.

The reactions occurring at each electrode will depend on whether the electrolyte is
acidic or alkaline. They are summarized in Table 5.1.
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(a) (b)

(c)

Figure 5.1: (a) Worldwide distribution of electrolysis projects for hydrogen production. All these projects are
either operational or under construction and are powered from dedicated renewable sources. (b) Zoom over
Europe. (c) Renewable sources that power the electrolysis projects. With data from Ref. [164].

Regardless of the electrolyte type, the overall reaction of water electrolysis can be
written as

2H2O(l) → 2H2(g)+O2(g) (5.1)

so for each two moles or molecules of water, the same amount of hydrogen and half
this amount of oxygen is produced [166]. The addition “(g)” or “(l)” indicates that the
products or reactants are in the gas or liquid phase, respectively.

Water electrolysis does not occur spontaneously for temperatures below 2250 °C [167].
It needs to be supplied with additional energy in the form of electricity and heat. The en-
thalpy of reaction is the change in enthalpy between reactants and products. When the
products hydrogen and oxygen are produced in the gas-phase, this reads per mole of
water ∆H in [k J/mol] [167]:

∆H =∆G +T∆S (5.2)

The enthalpy of reaction ∆H is associated with the entropy change of the environ-
ment and T∆S with that of the system, the reactants and products in this case. The



5

60 5. DYNAMICS OF WATER ELECTROLYZERS

Alkaline
Cathode 2H2O(l)+2e− → H2(g)+2OH−
Anode 4OH− → 2H2O(l)+O2(g)+4e−

Acidic
Cathode 2H++2e− → H2(g)
Anode 2H2O(l) → 4H++O2(g)+4e−

Table 5.1: Reactions at electrodes depending on the electrolyte type. (With information from [165])

entropy of the reaction products, the gases oxygen and hydrogen, is higher than those of
the liquid reactants, so ∆S > 0.

The difference −∆G is therefore associated with the overall entropy change. A spon-
taneous process is associated with an increase in entropy so that ∆G < 0. Electrolysis is
a non-spontaneous process, which requires work to be performed so that ∆G > 0. The
Gibbs free energy of reaction, ∆G , represents the maximum amount of work that can be
performed by the energy released in the reaction in case∆G < 0 [167]. At standard condi-
tions the change in Gibbs free energy is∆G0 =−237.2kJ/mol. This work may be supplied
by applying a potential E 0 = ∆G0/2F ≈ 1.229V, called the standard electrode potential
which is temperature dependent, as seen in Equation 5.3 [168].

Thermodynamically, at least 1.229 V must be applied for reaction of Equation 5.1 to
proceed [167].

With ∆G and ∆S both positive, the enthalpy of reaction is also positive, indicating
an endothermic reaction. When additional heat surpassing T∆S is supplied, cooling
as avoided and the overall process becomes exothermic. Therefore, at potential equal
to the thermoneutral voltage Etn = ∆H/2F ≈ 1.48 V, there is no net heat production or
consumption. Owing to energy losses due to resistance and irreversibility in the reaction,
in practice usually a higher voltage is applied and the process will release heat [165],
[166], [167]. These ‘overpotentials’ have different origins and are considered in more
detail in Section 5.2.1.

E 0 = 1.5184−1.5421×10−3T +9.523×10−5T lnT +9.85×10−8T 2 (5.3)

5.1.1. WATER ELECTROLYZER TECHNOLOGIES
Hydrogen can be produced at an industrial scale by applying the fundamentals of water
electrolysis to large-scale electrolyzers. To do this, two technologies for low-temperature
water electrolysis are commercially available and developed at industrial scales: alkaline
and PEM. The AEM is the third low-temperature electrolysis technology and is still under
development with only a few commercial products available.

ALKALINE ELECTROLYZER

Alkaline electrolyzers are the most mature electrolysis technology. The reactions are tak-
ing place in an alkaline electrolyte, so the equations of Table 5.1 (Alkaline row) are oc-
curring.

The basic construction is shown in Figure 5.2a.
The electrodes, typically made of nickel or coated with Raney nickel as a catalyst at

the cathode, are immersed in an alkaline solution (potassium or sodium hydroxide) with
a typical concentration of 30 wt% and separated by a porous separator [167, 169]. A mesh
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(a) (b)

(c)

Figure 5.2: (a) Construction and operation of an alkaline water electrolyzer. The electrodes and separator
are immersed in an alkaline solution. The separator prevents the recombination of hydrogen and oxygen,
which could lead to an explosion. At the same time, it allows the transport of OH− ions needed to complete
the reaction. Traditionally, a small gap (a few millimeters) existed between the electrodes and the separator,
now usually removed in the zero-gap configuration where the electrodes are placed touching the separator.
Electricity is supplied using the bipolar plates. (b) Construction and operation of a PEM water electrolyzer.
The water is fed through the flow channels, which also help remove oxygen. Hydrogen H+ ions and water
molecules are transported through the Membrane-Electrode Assembly. This single-unit component consists
of the porous electrodes, a catalyst layer, and the membrane. The electricity is supplied through the bipolar
plates. (c) Construction and operation of an AEM water electrolyzer. Note that the construction is the same as
the PEM electrolyzer. The main difference lays in the membrane. While PEM allows the movement of hydrogen
H+ ions, AEM allows the movement of hydroxyl ions, in the same way as the alkaline technology.

construction of the electrodes facilitates the removal of bubbles. The separator, which
in the past was made of toxic asbestos but now is replaced by other materials such as a
mixture of zirconium dioxide and polysulfone under the commercial name of Zirfon™,
helps to keep the hydrogen and oxygen gases apart, preventing the formation of a dan-
gerous combination of them [167]. This separator, however, must allow the transport of
OH- ions for the reaction to take place [167, 169]. Adding this separator increases the
cell’s ionic resistance and facilitates the attachment of bubbles to it, leading to an in-
creased electrical resistance caused by them [170]. If a gap exists between the electrodes
and the separator, in this space bubbles will accumulate. The gap will influence how
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bubbles are aggregated, creating void spaces where no reaction occurs, thus, affecting
the ohmic losses [170–173].

The freely moving bubbles impact the conductivity of the electrolyte by forcing the
ions to take longer paths to reach the electrodes [173]. To overcome this problem, the
electrodes can also be placed in the zero-gap configuration. Here, the electrodes are
placed in direct contact with the separator. Although this helps to reduce the resistance
caused by bubbles, it introduces other challenges for the separator, which needs to be
well engineered to avoid gas crossover [167, 174].

The alkaline technology consumes between 47 kWh and 66 kWh of electricity to pro-
duce 1 kg of hydrogen. In terms of percentage, this is equivalent to 50-68% (with respect
to the lower, heating value of hydrogen, LHV=33.33 kWh/kg) [175].

PROTON EXCHANGE MEMBRANE (PEM) ELECTROLYZER

An improvement to the alkaline technology was made in the era of the Gemini space
program when a solid membrane replaced the liquid electrolyte of the fuel cells [176].
This new technology consists of a solid electrolyte that facilitates the use of the zero-gap
configuration. The solid electrolyte is a thin polymer membrane that allows the conduc-
tion of ions [167, 177]. Hence the name Polymer Electrolyte Membrane (PEM). Other
names for this technology are Proton Exchange Membrane or Solid Polymer Electrolyte
[177]. The material Nafion™, developed by DuPont, is one of the most well-known ma-
terials for the membrane [167, 178]. The presence of H+ ions in the membrane causes
it to be a very acidic medium that can corrode the elements in contact with it, namely,
electrodes and catalyst layers [167]. The solution to prevent corrosion is using robust but
often scarce materials in the electrodes and catalysts such as platinum and ruthenium,
which result in elevated costs [167]. The reactions taking place in a PEM electrolyzer are
described in Table 5.1 (Acidic row).

Another property of the membrane is its thickness. With 50 to 300 µm thickness,
some design choices must be made. On the one hand, the membrane's thickness is re-
lated to this component's resistance. The thinner the membrane is, the lower the resis-
tance. On the other hand, if a high-pressure operation is desired, the membrane must
be thicker to prevent gas crossover and improve safety and Faraday efficiency [179].
An intermediate (catalyst) layer is introduced to facilitate the reaction. A gas diffusion
layer is the last layer of this stack, which is pressed together to form a single unit called
Membrane-Electrode Assembly or MEA [167] (see Figure 5.2b). The gas diffusion layer
not only allows water into the cathode and facilitates the extraction of gases but also
provides strength, allows compression, transports heat, and protects the catalysts from
fluid flows.

In contact with the MEA are the bipolar plates where current is applied. They also
contain flow channels to feed the water and facilitate the extraction of gases [167] (see
Figure 5.2b). The bipolar plates also allow the connection of cells in series, forming a
bipolar configuration. One plate receives the two terminals (hence the name), the posi-
tive of one cell and the negative of the next.

For industrial size units (around 1 MW), this technology and the alkaline have similar
efficiencies (50-68% with respect to the LHV) [175]. The advantage of the PEM technol-
ogy lays in a broader operating spectrum. While the minimum operating limit for the
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alkaline technology is set at 20% of its nominal capacity, PEM can go as low as 5%. On
the other extreme, PEM, can operate beyond the nominal capacity, which is not possi-
ble for alkaline electrolyzers [175]. Another advantage of PEM is the ability to operate at
higher current densities up to 2 A/m2 (alkaline technology operates at a maximum of 0.8
A/m2) [175]. This is translated in improved hydrogen production.

ANION EXCHANGE MEMBRANE (AEM) ELECTROLYZER

Anion-Exchange Membrane (AEM) electrolysis is an emerging technology that exploits
the advantages of PEM electrolysis but operates in alkaline conditions. Hence, the reac-
tions driving the process are also the alkaline row of Table 5.1.

Because of the alkaline environment, AEM does not need scarce materials such as
iridium or platinum [174]. The AEM electrolyzer construction is similar to the PEM: a
membrane sandwiched between two electrodes (see Figure 5.2c). The membrane allows
the transport of hydroxyl-ions (OH-) while keeping the product gases (hydrogen and oxy-
gen) separated [180]. The difference with the alkaline technology is the separator. In the
AEL, this is a porous material, while in AEM, the membrane is not. The membrane allows
only the conduction of the OH- ions and in the porous separator, these travel through the
pores of the material [174]. The AEM electrolyzer can be fed pure, demineralized water
as with PEM. However, the system’s performance is poor due to the low availability of
hydroxyl ions in the membrane [180], and it can lead to electrode degradation if fed ex-
clusively to the anode [180, 181]. A solution is to add an electrolyte, such as KOH, as done
in AEL. The concentration of the electrolyte (typically 30% wt in AEL) can be reduced to
3 to 10% wt [181].

AEM is still a developing technology with chemical, mechanical and thermal stability
challenges that ultimately lead to durability problems [174]. Research is also being con-
ducted on membrane design, membrane-electrode assembly (MEA) construction, and
electrocatalysts materials [174, 181].

Despite still being in the developing phase, there are already commercial products
based on AEM, such as the electrolyzers produced by HydroLite [182] or Enapter [183].

AEM still has lower efficiency than that of alkaline or PEM (67%, based on LHV for a
unit size of a few kW) and combines characteristics of both. It can operate with the same
maximum current density as a PEM (2 A/m2) but cannot exceed the nominal capacity
(same as alkaline technology) [175].

5.2. DYNAMICS OF WATER ELECTROLYSIS
The dynamic behavior impacts the development of control strategies for gas production.
The stack’s response depends on several factors, including water intake, temperature,
and bubbles. Further, as these parameters are time-changing, the modeling can become
very complex, making it unsuitable for control applications or very simplistic ignoring
the time-varying parameters [184].

5.2.1. THE VOLTAGE-CURRENT (I-V ) CHARACTERISTIC
The starting point for understanding the operation of an electrolyzer is to recognize its
polarization characteristics (I–V curve). In other words, how the voltage of the elec-
trolyzer changes with the applied current under steady-state conditions. The voltage
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of an electrolysis cell (Ecell) is the sum of the reversible voltage and so-called overpoten-
tials:

Ecell = Erev +ηact,an +|ηact,cat|+ηohm (5.4)

The reversible potential, Erev = 1.23 V at standard conditions, depends on pressure,
temperature, and local reactant and product concentrations through the Nernst equa-
tion [166].

The extra voltage (overpotential) imposed by ηact and ηohm constitute losses and de-
pend on the applied current. The activation overpotentials (ηact) on the cathode (cat)
and anode (an) appear as a result of additional potential needed to overcome the bar-
rier imposed by a peak of potential energy before the reactants can be transformed into
products at the desired rate [177, 185]. Both electrodes have different activation barri-
ers and a logarithmic dependence on the applied current density j [177]. The equation
describing the overpotential as a function of the applied current is the concentration-
dependent Butler-Volmer equation which is fundamental in electrochemistry [185, 186].

j = j0

(
cred

cred,0
exp

(
αF

RT
ηact

)
− cox

cox,0
exp

(−(1−α)F

RT
ηact

))
(5.5)

The term j0 is the exchange current density and is the magnitude of the equal anodic
and cathodic currents at an electrode when there is no net current. Even in this situ-
ation, reduction and oxidation reactions occur, and the exchange current density gives
their current density [177, 185]. The local concentrations cred and cox of reductant and
oxidant at the electrode surface can often be assumed to be equal to their equilibrium
or bulk concentrations and , respectively. For example, for the cathodic hydrogen evo-
lution reaction (HER), the oxidant water and reductant hydroxide both appear in such
large quantities that their variation can be neglected. Note that at the cathode the cur-
rent density and activation overpotential ηact,cat are taken to be negative,the absolute
value is taken in Equation 5.4.

The coefficient α (charge transfer coefficient, or symmetry factor) is related to the
shape of the activation energy barrier. For a single electron-transfer step it has a value
between 0 and 1, although practical effective values may exceed unity [187].

At the anode, Equation 5.5 can be simplified into Equation 5.6 (when α = 0.5 and
cred

cred,0
= cox

cox,0
= 1 [188, 189].

ηact = b asinh

(
j

2 j0

)
(5.6)

Where the Tafel slope is defined as b = RT
αF . Or into the Tafel equation 5.7 if the applied

current density is large [166].

ηact = b ln

(
j

j0

)
+b ln

(
cred,0

cred

)
(5.7)

The second term here is the concentration-overpotential due to a reduced concen-
tration of reductants. At the anode, depending on the rate-determining step in the reac-
tion, and in agreement with the reactions in 5.1, the reductant concentration cred can be
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Figure 5.3: Example of an I–V curve of a 4.6 kW alkaline electrolyzer. The effects of the overpotentials are
shown. I–V curve obtained with data from Ref. [194].

that of hydroxide ions. Usually, the mass transfer is sufficiently fast so this concentration
deviates little from the bulk concentration cred,0. At relatively low electrolyte concentra-
tions well below 1 M [190] or in the absence of mixing of anolyte and catholyte [190–192]
can this reactant depletion be observed.

Besides the activation overpotential, when current flows through the cell, it will also
encounter resistive effects that increase the cell’s voltage; thus, an ohmic overpotential
(ηohm) will appear. For a layer of electrolyte of thickness l with effective conductivity
κeff Ohm’s law and Pouillet’s law combine to give ηohm = j l /κeff. An alkaline water elec-
trolyzer diaphragm can be characterized by a porosity ϵ, denoting the volume fraction
of electrolyte, and tortuosity τ, denoting the average ionic path length over the shortest
path length. The conductivity of the electrolyte, which strongly increases with increasing
temperature, is decreased because of these effects to give κeff = κ0ϵ/τ. For the popular
Zirfon-Perl diaphragm ϵ≈ 0.5 and τ≈ 1.5−3, or even higher if you take into account the
additional path-length introduced by zero-gap electrodes and the presence of bubbles
[190]. For a PEM electrolyzer, the resistivity of the membrane depends strongly on its
water content and temperature [193].

The typical current-voltage (I–V) curve or static characteristic of the electrolyzer is
shown in Fig. 5.3.

The I–V curve can also be reproduced by an empirical model relating the current
density (defined as the current, I per unit area, A), of which the model proposed by
Ulleberg [195] for an alkaline electrolyzer (Equation 5.8) is one of the most widely used
because it allows an easy fit to any technology (with the parameters rx , tx and s) and
include the effect of temperature (T ) on the I–V curve.

Ecell = Erev + r1 + r2T

A
I + s log

(
t1 + t2

T + t3
T 2

A
I +1

)
(5.8)

The thermal model is based on a lumped thermal capacitance Ct as seen in Equa-
tions 5.9, 5.10, 5.11 [195] with Nc the number of cells of the electrolyzer and Rt the ther-
mal resistance of the cell [195].



5

66 5. DYNAMICS OF WATER ELECTROLYZERS

Figure 5.4: The path on the I–V plane after a step response. The instantaneous characteristic marks all the
possible points where the immediate response can occur from the current starting point. Adapted from Ref.
[197].

Ct
dT

d t
= Q̇gen −Q̇loss (5.9)

Q̇gen = Nc (Ecell −Etn)I (5.10)

Q̇loss =
1

Rt
(T −Tamb) (5.11)

5.2.2. ELECTRICAL DYNAMIC RESPONSE
The voltage evolution occurs in two phases when a current step is applied to a PEM cell.
First, an immediate response will set the response along the instantaneous characteristic
curve (called “iso-η-line”) [196], which is different from the I–V polarization curve. This
first response will often lie outside the polarization curve. After this initial response, a
dynamic response will move this initial point towards the I–V curve [196, 197]. The full
path is illustrated in Fig. 5.4.

The dynamic response is highly non-linear [197, 198]. In fact, it can take an 8th order
transfer function to accurately reproduce the actual voltage response of a device [198].
With a simplification, three time-constants can be identified. Two of which are extremely
fast and resolve in approximately 13 ms and one main time-constant of approximately 1
s [197, 198].

The dynamic phase will also depend on [197].

• The direction of the step

• They type of step (voltage, current, or power)

• The magnitude of the step

The initial response of a large downward voltage step can be a negative current. Dur-
ing this negative overshoot, the current is reversed, and its magnitude depends on the
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(a) (b)

Figure 5.5: (a) Randles circuit. Rc represents the resistance of the electrolyte. The electrical double layer is rep-
resented by Cl , while Rr and Cr form an equivalent impedance modeling the speed of the reaction. Adapted
from Ref. [200]. (b) Equivalent circuit with two RC networks, one for each electrode. Rint represents the ohmic
losses and Vrev the reversible voltage. Adapted from Ref. [202]. These circuits can be applied to PEM, AEM or
AEL.

ohmic losses. The lower the losses, typically associated with thinner membranes, the
higher the current reversal [197]. Similar behavior occurs in AEM cells, but the current
reversal and overshoot can reach a considerable magnitude (almost 2 A/cm2 in both di-
rections) with high voltage steps (2.1 V–0 V) [199].

The electrolyzer dynamics can be represented using an equivalent circuit model that
characterizes the behavior of fast-occurring reactions at an electrode. It models the elec-
trical double layer as a capacitor. In parallel, a resistance in series with a second capac-
itor characterizes the speed of the reaction. The parallel branch is connected in series
with a resistor simulating the resistance of the electrolyte. This circuit, called Randles
equivalent circuit [200], is illustrated in Fig. 5.5a. A modified version of the Randles
circuit, which is often found in literature, is shown in Fig. 5.5b. Each of the two R–C
branches represent one electrode [194, 201, 202].

The capacitors can be replaced with non-ideal capacitors modeled as Warburg im-
pedances [203, 204], to model the losses caused by reactants consumed or products not
being quickly removed, or Constant Phase Elements to model the uneven distribution of
current in the electrodes [201, 203]. The circuit can also be simplified by ignoring the ca-
pacitors and introducing controlled voltage sources [194, 205–207] or diodes [208–210]
to approximate the response of the I–V curve.

The electrical response of an electrolyzer can be explained using Fig. 5.4, Fig. 5.5.
Suppose that the electrolyzer is operating at the point marked as “starting point” in Fig.
5.4 at steady state, so there is no current flowing through the capacitors of Fig. 5.5b.
Upon applying a current step, the current will flow immediately through the resistors of
Fig. 5.5b causing an instantaneous increase in the electrolyzer’s voltage leading to the
point marked as “instantaneous response” of Fig. 5.4. The capacitors will begin charging
causing the drift of the operating point towards the point marked as “Final response” in
Fig. 5.4 [196].

As the initial response of the cell is exceptionally rapid, its voltage response can be
approximated as a first-order system [190, 205]. The voltage response of a 12.25 cm2
PEM cell (H-TEC Energy Systems) to a current step followed the exponential approxima-
tion typical of first-order systems [205]. The steady-state was reached in approximately
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4 s. For an alkaline cell, the behavior exhibits a similar trend. The voltage response E(t )
of an electrolyzer cell is an exponential function of the form 5.12 [202]:

E(t ) = (E0 −E∞ exp

(
− t

τ

)
+E∞ (5.12)

The terms E0 and E∞ represent the starting and steady-state voltage, respectively.
For alkaline cells, the first-order behavior can be attributed to bubbles. While de-

scribing the effect of bubbles under a zero-gap configuration, Haverkort and Rajaei [190]
found a response time of approximately τ ≈ 10 s, whose behavior is also characterized
by an exponential (Equation 5.12. This is associated with the build-up of an additional
resistance tentatively attributed to the formation of bubbles. After introducing a small
gap between the electrode and the separator, the additional resistance and associated
voltage appearing over the mentioned response time, disappeared.

Faster dynamics remains, related to the capacitance of electric double layer (EDL).
The supporting information of [190] shows for a single small alkaline cell an associated
time-scale of around 1 min at a very low current density of 1 mA/cm2; decreasing to a
fraction of a second for higher current densities [191].

A longer time scale can be associated with diffusion processes. In a porous dia-
phragm, without any flow through it, half of the current can be transported by diffusion
in steady-state. But for steady-state concentration profiles to develop it takes a time of
the order of l 2/4Da , with l the diaphragm thickness and Da the effective medium am-
bipolar salt diffusion coefficient [191].

Even longer time-scales are associated with changes in the electrolyte concentra-
tion. Operation at a significant fraction of the limiting current density gives rise to con-
centration differences between anolyte and catholyte. When these are not re-combined
effectively, depletion of hydroxide at the anode may over time cause an increase in con-
centration and ohmic overpotential [190–192]. In the absence of flows, the time-scale
associated with this is lV /4ADa , with V the combined anolyte and catholyte volume
and A the electrode area. For the small single cell studied in Ref. [191] this time-scale
was of the order of an hour, but it can be substantially more, including the volume of
the piping, manifolds and gas-liquid separators. On a time frame ranging from hours to
months, the voltage of an electrolysis cell starts to rise considerably. This voltage rise be-
gins approximately 30 min after the start-up and might continue for months. The cause
is attributed to the hydrogen absorption in the electrodes and their oxidation [211].

Moving to a larger scale, the dynamic response of 40 kW PEM and alkaline electrolyz-
ers was studied experimentally in Ref. [212] by applying power steps from 25% to 50%,
75% and 100% (ramp-up) and from 100% to 75%, 50% and 25% (ramp-down) and mea-
suring the electrolyzer’s current. The objective was to determine the suitability of both
technologies to operate under these conditions. Part of the experiment consisted of
quantifying the initial response time when the electrolyzer needs to start responding
and reach 1% of the maximum current after a change in the set-point. For the measured
electrolyzers, it was determined to be 13 ms and 19 ms for PEMEL (Proton OnSite, 40 kW,
three stacks) and AEL (Teledyne Technologies, 40 kW, 75 cells, one stack), respectively.
This value is influenced by other components such as power electronics of the power
supply that also need time to react [212]. Both electrolyzers required less than 0.2 s to
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reach more than 90% of the final current value (settling time). The settling time is influ-
enced by the step size and the direction of the ramp. A more significant step will result
in a slower response [212]. The authors report that the measurements were taken only
for 0.2 s due to equipment limitations.

The ramp rate was also calculated as the ratio of the percentage of the maximum
current per second. PEMEL have slightly higher ramp rates than alkaline electrolyzers,
meaning that they can reach the maximum current in less time [212].

5.2.3. INFLUENCE OF TEMPERATURE AND PRESSURE

Temperature has an impact on the electrolyzer’s voltage. As temperature increases, the
activation overvoltages tend to be higher as the Tafel slope is also higher (see Equation
5.7). However, for low overvoltages, temperature also causes a rise in the exchange cur-
rent density j0 which, in turn, reduces the activation losses [185]. Higher temperature
also results in lower resistive losses [179, 213, 214] as well as lower reversible voltage [168]
(see Sections 5.1 and 5.2.1). The benefits of lower ohmic losses overcome the negative
influence of temperature [185]. For this reason, temperature is considered to impact the
electrolyzer’s voltage positively [179]. This influence on the electrolyzer’s voltage affects
the electrolyzer’s efficiency. At lower temperatures, the demanded power to produce
hydrogen is higher [215] (lower efficiency).

Temperature also influences the operating voltage and the gas purity (HTO, Hydro-
gen -To-Oxygen) [213] as the diffusivity and solubility of the produced gases depend on
temperature. Sanchez, et al. [213] found that the HTO content increased around 4% with
only a 5% temperature increment.

On the other hand, pressure has a minor effect on the polarization curve of alkaline
electrolyzers than that of temperature. Even a deviation of 10% from the pressure ref-
erence results in a negligible effect on the voltage [213]. This is not the case for the gas
cross-over. A pressure difference between the cathode and the anode further enhances
the convective transport of gas through the separator. Since the permeability of Zirfon™
(commonly used for separators in alkaline electrolyzers) is higher than Nafion™ (the
most used membrane material for PEM), AELs are more susceptible to pressure gradi-
ents between cathode and anode. Even when operating at equal pressures in AELs, the
control valves can create a slight pressure gradient contributing to gas cross-over [216].
In fact, the HTO can rise by 2% with a pressure increment of 10% [213].

The performance of AEM with pressure is worse than PEM but better than AEL [59].
It lowers the Faraday efficiency and has a minor effect on the ion conductivity of the
membrane. This causes a slight increase in its resistance, with a consequent increase in
the cell’s voltage which is limited to 11 mV when the applied current is 1 A/cm2 [217].
The pressurized operation, like PEM and AEL, impacts the gas crossover. The hydrogen
permeation flux from cathode to anode increases linearly with pressure, and the HTO
reached dangerous levels at low currents (0.1 A/cm2) and high pressure (8.5 bar) [217].

Temperature and pressure influence the operating conditions of electrolyzers. Ac-
cording to Ogumerem and Pistikopoulos [218], the dynamic behavior of the electrolyzer
is dominated by the temperature. While developing a control strategy for a simulated
PEMEL, the voltage immediately follows the step after a current change but then decays
slowly as the temperature increases. Colbertado, et al. [219] reached a similar conclusion
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for a 12-cell, 160 cm2, simulated PEMEL, although their observations did not include the
voltage evolution in time, only the temperature. In terms of power consumption, step-
ping down from a higher power and temperature setting to a lower power is more ben-
eficial than the opposite [215]. This does not mean that the electrolyzer cannot shift to
the new power point, but the efficiency (which is temperature dependent and higher at
higher temperatures) will be reduced as the temperature rises to the new set point [215].

Pressurized operation improves the ramp rate of alkaline electrolyzers. The ramp
rate is limited to keep the gas volume inside the cells always within controllable limits by
ensuring that the gases are adequately vented. High pressure facilitates the expulsion of
gases leading to higher ramp rates than atmospheric-pressure operation [220]. However,
this benefit can only be achieved once the pressure set-point has been reached. During a
cold-start, the leading cause of delay is pressure build-up. Additionally, if the electrolyzer
goes into standby mode, the pressure needs to be maintained [220].

The gas cross-over increment with temperature and pressure can have severe conse-
quences as the lower explosive limits (3.8% mol H2 at 80 °C and 1 atm for a 15 kW alkaline
electrolyzer) can be exceeded [213].

5.3. OPERATING UNDER VARYING CONDITIONS
There are two ways of starting the operation of an electrolyzer. Suppose the electrolyzer
is off, cold, and depressurized (for example, at the beginning of a day or after a long
period when it is not being used). In that case, the system needs to be warmed up before
it can start producing hydrogen. This is called a cold-start. Another situation is a short
interruption where pressure and temperature and pressure can be maintained, and the
production can continue without delays. This is a warm-start [212].

The steps that are needed during the cold-start are illustrated in Table 5.2:

Step Process PEM [221] Alkaline [220] AEM [222]
1 Booting the control unit 0.5 min N/D N/D
2 Purging pipes 2-10 min 25 min N/D
3 Ramping up to full power 3 min 10 min 25 min

Table 5.2: Cold-start sequence. The times for the PEM electrolyzer are based on a Proton OnSite C10, 60 kW
nominal power [221]. The alkaline electrolyzer times are reported for a 24 kW pressurized (12 bar) unit [220].
Step 2, involves removing the air in the piping system [221] or, in the case of the alkaline unit, injecting nitrogen
to remove residual hydrogen in them [220]. The AEL electrolyzer data is published by ENAPTER [222]. The
ramping up time for all technologies includes the necessary time to build up the hydrogen pressure.

The first consequence of variable power is that this process is interrupted if the sys-
tem cannot reach the minimum operating pressure within a specific time range after
start-up. This is illustrated with a Proton OnSite HOGEN RE40, PEM electrolyzer. This
unit will interrupt the process if the operating pressure of 14 bar is not reached within
30 s [223]. In order to prevent this, a minimum operating load is set (34% of nominal
power for the previous example [223]. This minimum load is well above the minimum
load required when operating under normal conditions (7.6% of nominal power for PEM
[223], 18% for alkaline [220], and up to 60% for AEM technology [222]. As a result, due to
the minimum load requirement along with the relatively long time that is needed for a
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cold-start, the maximum number of times the system can be stopped and restarted in a
day is limited [220, 222].

The ramping rate indicates how fast can the electrolyzer react upon a change in
power. The PEM technology has power ramps in the range of 10%/s [224] (change in
power of 10% of the current operating set point) to +50%/s and -40%/s [221, 225]. Alka-
line technology has ramp rates of 0.3%/s [226], 2.5 kW/s or 308 kW/s [220]. For AEM the
ramping up rate is +0.47%/s (ramping up) and a faster ramping down rate up to -10%/s
[222]. In general, electrolyzers can react faster to down-ramps than up-ramps. Based on
the discussion of Section 5.2.3, and the observations of [220], the slowest variables (pres-
sure, gas venting, temperature) along with the control system impose the limits on the
ramp rate, rather than the electrical capability of the stack to manage the power changes.
Limiting the ramping of the electrolyzer has little effect on the levelized energy cost, as
long as these are constrained to a minimum of 15% of the rated power. If the ramps are
restricted to shallower levels, the impact on the cost becomes significant [227].

For a PV system, the ramping rate is between +0.098%/s and -0.078%/s [226] which
is slower than the rate at which electrolyzers can respond. Note that the ramping val-
ues were originally reported per minute and converted to per second for consistency.
However, measured ramps in the per second scale can reach considerable higher val-
ues, which are not reflected in a per minute analysis. In this respect, PEM has proven
to be able also extreme ramping events managing to respond upon +80% and -100%
change in power within 1 second [221]. The fast reaction times of large-scale electrolyz-
ers make them very attractive for grid frequency support and can play a role in future
energy systems, marked by the absence of rotational inertia [225, 228]. In fact, the two
main low-temperature technologies, AEL and PEM have received approval for their use
as ultra-fast ancilliary services [175].

5.3.1. COUPLING WITH SOLAR ENERGY
PV energy is becoming an attractive option for powering electrolyzers. This can be seen
in Figure 5.6a. While at first, onshore wind was the preferred technology, in the last years
PV is becoming the preferred technology. It does not need to substitute wind power, but
can also coexist (Figure 6(a), group “Others/Various”). Figure 5.6b shows the efficiency of
solar modules used in literature during the past 10 years, as well as the record efficiency
for modules with different cell technology [229].

To evaluate a solar-powered hydrogen project, the Solar-To-Hydrogen efficiency is
introduced. It is defined as the ratio of the generated hydrogen to the needed irradiance
to produce such amount (Equation 5.13) [248].

STH = ḣ2 ×∆G

S × A
(5.13)

The numerator term converts the flow of hydrogen (ḣ2 in mol/s) into energy. The de-
nominator indicates the amount of irradiance (S, in W/m2) that the module area (A, in
m2) receives. The STH is a non-dimensional number relating hydrogen energy and solar
energy.

Fig. 5.7 shows the evolution of the STH reported in the reviewed literature over the
last ten years.
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(a) (b)

Figure 5.6: Renewable technologies used to drive large-scale electrolysis projects for hydrogen production
worldwide. With data from Ref. [164]. (b) Efficiency of the PV module reported in literature classified per
technology [[223, 230–247]. The dashed and dash-dot lines indicates the record efficiency for a poly-si and
mono-si module, respectively [229].

The coupling factor (or coupling efficiency) defines the ratio of the PV module used
relating the operating power (Ppv = Ipv ×Vpv ) against the maximum power (Pmpp ) of
the module at a particular instant (Equation 5.14) [257].

CF = IPV ×VPV

Pmpp
(5.14)

The coupling factor is also an non-dimensional number with values ranging between
zero (no coupling) to one (operating power is at the maximum power point of the mod-
ule) [257].

DIRECT-COUPLING SYSTEMS

The simplest way to integrate a PV system with an electrolyzer is to connect the PV ar-
ray directly to the electrolyzer. This is possible as both devices work with direct current.
Fig. 5.8a shows a schematic of this configuration. In the directly coupled systems, the
operating point is right at the intersection of the I–V curves of the PV array and the elec-
trolyzer, as seen in Fig. 5.8b. In practice, the system operates away from the MPP of the
PV because the polarization curve of the two devices is not well matched. These systems
need to be optimized in such a way that the I–V curves of both components are close to
the MPP of the PV module. This optimization can be based on setting the MPP of the PV
close to the region of operation of the electrolyzer with higher probability of occurrence
[258]. Then, the number of series-connected electrolyzer cells, as well as the configura-
tion series-parallel of the solar cells, both curves can get closer to the MPP [252, 258].

Direct-coupling systems have minimum control capabilities, limited to a simple ON-
OFF control in case of the electrolyzer operating below the safety threshold or exceeding
its nominal capacity [232, 259]. However, the directly coupled system can be optimized
by dynamically changing the connection of the electrolyzer cells. Using an external con-
tactor or switch, the number of electrolyzer cells can be incremented or reduced. This
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Figure 5.7: Solar-To-Hydrogen efficiency per year as reported in literature [223, 230–238, 240–247, 249–254].
The dashed line marks the limit above which the STH becomes economically feasible [255]. The dashed-dot
line with the legend “Photoelectrochemical” indicates the target of the Department of Energy of the USA for a
photoelectrochemical devices [256]. Although it is a different technology than the one addressed in this work,
it provides a point of comparison as there is no specific target for the STH of a PV-hydrogen system.

(a) (b)

Figure 5.8: Direct coupling of PV and electrolyzer (a). The operating point is the intersection of the I–V curves
of the two components (b).

adds another level of control, facilitating the matching of the electrolyzer to the MPP of
the PV module. This operating strategy is essentially a “discrete MPPT” which increases
the coupling factor 5.14 [234, 260].

In general, directly-coupled systems have lower efficiency that their DC-DC-coupled
counterparts [232, 260, 261]. The directly-coupled system can boost its coupling effi-
ciency up to 99% if the discrete MPPT strategy described above is used [260].

COUPLING WITH ELECTRONIC CONVERTER

The PV and electrolyzer can be decoupled so each component operates at different re-
gions of their I–V curve. In this way, the PV modules can operate at maximum power
point with the consequence that the electrolyzer will also operate at this maximum power,
limited only by the efficiency of the converter [251]. Note that the efficiency of the
converter is different from the coupling efficiency. In these systems, the coupling effi-
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(a) (b)

Figure 5.9: (a) Comparison of the STH obtained with different coupling types as reported in literature [223,
230–238, 240–247, 249–254]. Note that battery-assisted systems always use an electronic converter. (b) Five
random examples taken from the library of the System Advisor Model [262] showing the efficiency at different
operating loads of commercially available inverters for PV applications.

(a) (b)

Figure 5.10: Coupling PV with electrolyzer using power converters. (a) Coupling using DC-DC conversion.
Depending on the system, more than one DC-DC converted might be present [260], and (b), coupling using
DC-AC-DC conversion. This configuration needs a transformer to accommodate for different voltage levels
[259, 260].

ciency is virtually 100% as the converters implement a maximum power point tracker
that forces the PV to deliver the maximum power. The electronic converter also has an
efficiency of its own (Fig. 5.9b), and it degrades considerably if operated at a lower load
than its nominal rating [232]. This efficiency affects the Solar-To-Hydrogen efficiency
[261] which can be seen in Fig. 5.9a.

Direct coupling systems are best suited in systems where the PV and the electrolysis
systems share the same physical location. Indirect coupling (using an electronic con-
verter) allows to cover both scenarios: same physical location or the case where there’s a
considerable distance between both systems.

In the latter, To transport the electricity from PV to the electrolyzer, either a high-
voltage DC transmission system (with the consequence that a series of DC-DC convert-
ers are needed (Fig. 5.10a)) or a traditional AC system (with the need of at least one
DC-AC conversion stage, a transformer and finally an AC-DC rectifying stage at the elec-
trolyzer side (Fig. 5.10b)) [260].

When DC/DC is used, many converter topologies can be used, which are extensively
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reviewed in the work of Guilbert, et al. [263]. In particular, because the voltage of the
electrolyzer is smaller than the PV, the traditional buck converter (step-down) converter
is an attractive option. Although it suffers from limited conversion range. If the voltage
to be stepped-down is considerable, this converter might not work well. Then, an adap-
tation is needed, which can be achieved by a so-called Quadratic Buck Converter, whose
voltage output varies with the square of the duty cycle (instead of linearly as the tradi-
tional buck). An additional point is reliability in case of a switch failure. Multi switch
configurations, such as the interleaved converters allow for a more reliable operation,
Although still have the same operating range limitation as the traditional buck [263].

BATTERY-ASSISTED ELECTROLYSIS

Because of the variable and intermittent nature of solar-powered electrolysis, the elec-
trolyzer cannot operate at full capacity for 24 h a day without any backup electric stor-
age or support from the electricity grid. Batteries have the potential to smooth the fluc-
tuations in hydrogen production and enhancing the operating time of an off-grid PV-
powered electrolyzer.

There are three main operating methods for the PV-battery-electrolyzer system:

1. The battery supports the electrolyzer in periods where PV is not enough to start
the electrolysis process by supplying enough power to operate the electrolyzer at
its technical minimum [245, 247, 264].

2. The electrolyzer is operated at a fixed power, which is lower than its nameplate
capacity. The battery provides or stores energy as needed to keep the constant
operating point of the electrolyzer [247].

3. The electrolyzer operates at a constant set point, which changes daily or seasonally
[247, 264, 265].

Whether adding batteries to the electrolysis system is economically feasible or not
it is still a matter of discussion. Hybrid systems combining PV and wind or simply cur-
tailing a fraction of the PV production lead to cheaper hydrogen prices and acceptable
payback times of 15 years with a hydrogen cost of 4 €/kg, or only 5 years if the cost in-
creases to 7 €/kg [266]. Grid-connected systems without battery support also have lower
hydrogen costs (4.22 €/kg) than their off-grid counterparts (around 6 €/kg) [247].

On the other hand, batteries can significantly reduce the size of the components.
Koyama [267] argues that with the battery-assisted system, the electrolyzer unit is small,
resulting in a reduced amount of investment costs. The savings from the electrolyzer
investments are compensated by the installation costs of the battery which can account
up to 33.6% of the hydrogen cost [247]. The battery has the potential to increase the
amount of hydrogen produced during intermittent periods (such as the day-night cycle)
[265]. The hydrogen production can be boosted more than 100% (utilization factor) by
adding batteries and has the potential to outperform a PV-wind hybrid system without
them by 2.4% [234, 265, 266].

The environmental impact of battery-assisted electrolysis is mainly driven by the
production of PV modules and batteries and considerably lower, in terms of greenhouse
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emissions than the fossil-fuel based processes. But the need for non-renewable, non-
living resources (Abiotic Resource Depletion) results in higher impact that fossil fuel
methods. This only points out that other challenges need to be solved besides com-
ponent sizing and cost reduction [268].

5.3.2. CONSEQUENCES OF VARIABLE OPERATION

Changes in solar irradiance or wind speed do not occur instantaneously as in a step
but continuously over time (ramp). As these renewable sources are used to power elec-
trolyzers, Lee, et al. [269] determined the effect of current ramp direction and depth
on the electrolyzer’s efficiency. The efficiency loss is due to the accumulation of gas in
the Porous Transport Layers (PTL) that prevents the reactants from reaching the elec-
trodes. The buildup of gas is linked to the current ramps applied to the electrolyzer and
depends on the direction of the ramp and its slope. During the ramping process, the gas
saturation in the PTL changes linearly, and when the current is kept constant, it changes
in a logarithmic way. The gas saturation occurs faster with steep up-ramps, and shallow
down-ramps enhance gas removal. Hence, the combination of these two scenarios leads
to an improved operation related to the gas response. Further, gas accumulation occurs
faster than gas removal. This causes that when the same current is applied twice after a
variable operation, the cell voltage will be higher at the second point leading to a lower
efficiency [269].

The operating constraints imposed on the electrolysis system will depend on the
electrolyzer technology (AEL, PEM or AEM.) Alkaline electrolyzers typically have a par-
tial load operating limit of around 20% of their nominal capacity, while PEMELs offer
greater flexibility working at partial loads of 5% of nominal capacity [212, 270]. This
allows PEMELs to utilize more energy coming from renewable sources. PEM technol-
ogy is sometimes argued to benefit from faster ramp speeds. In Ref. [270], the authors
considered 10% of nominal power per second for a PEM electrolyzer model, in contrast
to 1.67% nominal power per second for their model of an alkaline electrolyzer. These
differences do not amount to a significant advantage over the alkaline one in hydrogen
production. During periods with low irradiance, the PEM will operate at a low partial
load while the alkaline remains off. This additional operating time is not significant in
terms of produced hydrogen [270].

At partial load (operation below nominal conditions), the content of hydrogen in oxy-
gen can reach dangerous levels. This is because the hydrogen dissolved in the water or
electrolyte is transported to the anode chamber, where oxygen is being evolved. The
transport mechanisms are [216].

• Diffusion, as a result of a concentration gradient.

• Convection due to pressure gradients, dissolved gas transport with the ions through
the membrane or separator (electro-osmotic drag), and operational strategies (elec-
trolyte mixing, in AEL).

• Supersaturation before the produced gases in dissolved form develop into bub-
bles.
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Gas cross-over increases with pressure and current density; nevertheless, the gas im-
purity is reduced at higher current densities as the gas production is greater than the
permeated gas, so the fraction of the latter in the former is also lower [216].

Mitigation techniques for dealing with the minimum operating power of alkaline
electrolyzers include backup electrical storage or using separate units operating in a
modular way. Turning off some modules could result in the remaining ones working
a higher current densities [271]. Operation strategies can also help reduce gas cross-over
and impurities, especially in alkaline technology. Most of the gas cross-over in alkaline
electrolysis occurs because the electrolyte from the cathode and the anode is combined
in the separator tanks and then recirculated. This electrolyte can be contaminated with
gas remains. Hence, using different separator tanks for catholyte and anolyte reduces the
gas cross-over, as well as minimizing the recirculation rate. For large electrolysis plants,
a constant recirculation rate provides the best strategy [216].

Knowing the time constant of the system can be beneficial in developing operation
strategies aiming at improving energy efficiency. The ripple on top of the DC signal
causes losses in efficiency [272, 273]. But, if the current is interrupted only for short
periods, the effect can be the opposite. Interrupting the current for the duration of the
time constant (around 2 ms) reduces the polarization overpotential and helps to keep a
constant concentration throughout the electrolyte. Removing the current for short pe-
riods also facilitates the expulsion of bubbles, potentially decreasing the resistive losses
caused by coverage of the electrodes with bubbles [274].

The electrical response reaches a new set-point in a matter of seconds, but it expe-
riences a slow change caused by temperature affecting the ohmic and activation losses.
Energy consumption is higher during the temperature transient leading to an efficiency
loss of around 5% [275]. Allidières et al. [275] show that the power density reaches the
new set point so fast that the temperature of the stack lags. Energy is lost when the
temperature rises again to the corresponding operating point. This results from a sub-
optimal operating point, as discussed in Section 5.2.3. Their system consists of a 20-cell
PEM stack (the size or the power are not specified) with uncontrolled temperature.

The successful deployment of electrolysis plants depends not only on the stack but
also on the auxiliary components (Balance-of-Plant) as highlighted by Furfari and Clerici
[276]. Even the International Renewable Energy Agency (IRENA) reports that a hydrogen
plant designed for variable operation imposes more constraints on the Balance-of-Plant
elements than the stack. The configuration of the latter can help in such operation by
using smaller units connected in a modular way [277].

The control of the whole plant also relies on the understanding of dynamic response.
Although, this work does not aim to discuss the available operation strategies, it was
found in at least two works [278, 279] that the misunderstanding of dynamic behavior
(at quick and slower scales) can lead to a control system that cannot follow accurately
the imposed set-points making the plants unable to follow quick variations imposed by
quick changes in renewable power. Other authors have mentioned that ignoring the
dynamics of the electrolyzer can lead to considerable efficiency loss [280].

Bifacial modules are an attractive option for boosting hydrogen production of di-
rectly coupled PEM electrolyzer systems. Recent experiments show that using a bifacial
system, the STH efficiency rises 13% with respect to the monofacial system. This number
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can be even improved by using materials that boost the reflectivity of the ground [246].

5.3.3. POTENTIAL IMPACTS OF INTERMITTENCY ON LIFETIME

The estimated lifetime of electrolyzers is a critical issue, especially when operating under
variable conditions. For alkaline technology, the lifetime of the stack, based on accept-
able efficiency drops, lies between 60 000 and 90 000 h, while for PEM this is lower: 20
000 to 60 000 h [281].

The degradation mechanisms that lead to cell failure are listed in the reviews of [282]
(for PEM fuel cells) and [283] (for PEM electrolyzer cells).

A higher voltage or a higher current can be detrimental to the electrolyzer. While
high voltages accelerate corrosion, the performance loss is minimal compared to using
a high current density [284].

The intermittent operation can result in lifetime benefits. For example, 90 000 h can
be translated into 20 years of operation if this is intermittent [281] (considering that 90
000 h are roughly 10 years).

On the other hand, intermittency can also represent a challenge as it can accelerate
some degrading mechanisms. For instance, Weißet al. [285] determined the effect of idle
operation where the voltage of the electrolyzer is equal to the open-circuit voltage. They
observed an initial improvement of the cell performance after resting periods, where the
cell was left at open circuit (10 cycles) followed by performance decrease observed as
a higher cell voltage. Mainly, the degradation was related to increased high-frequency
resistance due to oxide formed during the open-circuit period. After 700 cycles the high-
frequency resistance increased 1.6 times. To overcome this, a voltage of 1.3 V was ap-
plied.

When the PEM electrolyzer is switched off, it operates for a short period in reverse
mode (i.e., as a fuel cell), consuming the hydrogen and oxygen in the stack immediately
after electrolysis is interrupted [286]. During this process, platinum in the cathode elec-
trocatalytic layer is lost as it is transported to the membrane, thus reducing its conductiv-
ity [286]. Further, the cathode voltage increases when the electrolyzer is shut down. This
voltage increase damages the catalyst causing a reduction of the available area suitable
for the reaction [287].

The reverse mode is not a specific characteristic of PEM electrolyzers. As explained
by Uchino et al. [288] also alkaline electrolyzers present this behavior when the current
is cut. Under this scenario, the dissolved hydrogen and oxygen produced during electro-
lysis react with the nickel oxide formed at the anode. The reverse current can flow for as
long as 100 min.

In AEM, small portions of the catalyst detach from the anode with steep voltage steps.
These steps, as with PEM, cause a transitory current reversal, whose magnitude can be
considerable (between -100 and -200 mA/cm2. To put this in context, the cell operated
at a maximum current density of 672 mA/cm2). When the cell is left idle, under open-
circuit condition, the membrane becomes dehydrated, leading to increased resistance;
hence, even in stand-by conditions, a water flow should be maintained to avoid this sit-
uation [199, 289].

Rakousky et al. [284] also investigated the degradation caused by the intermittent
operation. To determine that effect, they created a reference test operated at constant



5.4. CONCLUSION AND DISCUSSION

5

79

current at both high and low current densities. For the dynamic operation, they applied
steps between three current density levels: 0 A/cm2 to 2 A/cm2 (high current density)
and 1 A/cm2 (low current density) to 2 A/cm2. Different intervals of on-off were also
used. The cell is stable, with no degradation when operated at 1 A/cm2 continuously. At
higher current densities, the lowest degradation rates (16µV/h) were obtained by operat-
ing continuously for 6 h followed by a resting period with no current flowing, for another
6 h. However, more frequent shut-downs lead to a worst degradation rate (50 µV/h).
These degradation rate are lower than operating continuously at high current density,
which leads to the highest degradation rate of 194 µV/h. High current densities lead to
electrode damage, especially passivating the anode [284, 287]. Also, mechanical damage
due to bubbles, possible transport of contaminants as more water is consumed [284] and
potential damage to the membrane either by forming hotspots [284] or thinning [287].
This last statement is significant as the loss of membrane material has been found to af-
fect industrial-scale electrolyzers with more than 20 000 h of operation. The thinning was
attributed to material loss due to a chemical interaction rather than a mechanical pro-
cess associated with bubbles [290]. Nevertheless, the thinning of the membrane can also
be attributed to high temperatures, which can drastically increase the thinning process
[291]. Furthermore, the membrane can suffer from puncturing, associated with hotspots
appearing. This can destroy the stack because of a dangerous mixture of hydrogen and
oxygen in the chambers [292].

Nonetheless, the degradation attributed to intermittency is not entirely clear from an
electrochemical point of view. Some studies have found that continuous operation ex-
hibits the same degradation that dynamic operation, so the aging mechanisms cannot
be attributed to a highly dynamic process [293]. Degradation might be linked to me-
chanical stress caused by temperature and pressure variations, and the operation with
renewable energy does not necessarily accelerate the aging process [169].

5.4. CONCLUSION AND DISCUSSION
This review presented the integration of electrolyzers with PV systems aiming at green
hydrogen production focusing on the three main low-temperature water electrolysis tech-
nologies implemented nowadays: alkaline, Proton Exchange Membrane and Anion Ex-
change Membrane. Water electrolyzers are well suited for integration with variable re-
newable power as proven by this review and supported by other studies and interna-
tional certifications. The electrical dynamic response has a minor influence on the elec-
trolysis system and is related to the implementation of control systems. Slower dynam-
ics introduced by temperature and pressure play a more important role in their integra-
tion with solar energy. The limitations for the electrolyzers when operating in variable
mode, are mainly due to the operating limits of the electrolyzers, especially regarding
the minimum operating limit required for safety operation. There is no clear evidence of
degradation with a variable operation. Rather, the degradation effects can be caused by
improper operation: higher current densities, frequency shut-off and keeping the stack
at open-circuit voltage. In this respect, intermittency rather than variability of the power
source play a more relevant role in limiting the integration of electrolyzers with renew-
able energy.

When powered from PV systems, the solar-to-hydrogen efficiency needs to exceed



5

80 5. DYNAMICS OF WATER ELECTROLYZERS

10% for a system to be economically feasible. In the last 10 years there have been im-
provements towards this objective, yet there are still recent studies that fail to meet this
goal. One of the potential causes for this is the definition of efficiency itself. Different au-
thors use different definitions from it, ranging from: solar-to-hydrogen efficiency, MPPT
efficiency, Faraday’s efficiency and energy efficiency. The latter is also often calculated
with either the low or the High Heating value of hydrogen leading to different results.
This indicates a lack of standardization and direction on the research lines. This is even
marked by the absence of a tangible goal for STH efficiency for PV-hydrogen systems.
The goal reported in this work of 25% represent the target of a photoelectrochemical
device, but not for PV powered systems. Even if it were the case, the development of PV-
hydrogen systems is still very far from this target. Stand-alone systems without storage
represent the area where there are more efficiency improvements needed. The coupling
efficiency can reach impressive high values close to 99%. In this respect, the improve-
ments in efficiency are linked to the efficiency of the electrolyzer, which is improved by
using PEM technology, and the PV system itself. In spite of the advances in the efficiency
of PV modules, this still has not fully reached the enough maturity, or cost reduction
to be practically implemented. Further, we found only one work discussing bifacial PV
systems which could improve the overall PV system efficiency, hence the STH. Research
opportunities include focusing on more innovative PV applications besides the typical
rack-mounted panels: bifacial PV, agrivoltaics, floating PV, etc. provide new opportuni-
ties to explore their integration with hydrogen systems.

Another challenge associated with the variable operation of PV-hydrogen systems is
the availability of high-resolution data. Hourly data cannot properly capture the vari-
ability of the irradiance, and is only suitable for steady-state analysis. However, for vari-
able operation of electrolyzers, their operation can change in seconds while tempera-
ture changes in minutes. Sub-hourly datasets or measurement equipment are better
suited for variable operation studies. And with the partial load operation of electrolyz-
ers and converters, the assumption of a constant efficiency of either of them can lead
to an overestimation of the produced hydrogen. Simple models that calculate the ef-
ficiency as a function of the input power, which are also computationally cheap might
help in the simulations of PV-hydrogen systems. Since many works are concerned with
optimization, where a complex dynamic model might considerable increase the com-
putation time, the assumption of a constant electrolyzer, or Faraday efficiency becomes
attractive.

Battery-assisted electrolysis provides a solution to solar energy intermittency. The
drawbacks for this technology is the cost, which is the topic of current research and
the environmental issues associated with batteries. For projects in the MW range grid-
connected systems are typically considered, which facilitates the continuous operation
of the plant and reliable production of hydrogen. For smaller projects, such as refuelling
stations, DC-DC systems or even directly coupled systems are well-suited.

With this review the challenges of integration of electrolyzers with solar energy can
be identified and tackled, helping to achieve the goals set by international organisations
and reaching a net zero emission future.
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When you have seen one ant, one bird one tree,
you have not seen them all.

E. O. Wilson

M ORE efforts needed is the status of the International Energy Agency tracking report
in hydrogen [294]. This means that the deployment of hydrogen with low emis-

sions is still below the expected targets toward the 2050 Net Zero Emissions scenario
[294]. Traditional hydrogen generation exceeded 900 MtCO2 emissions, and only a mi-
nority of the total hydrogen produced came from clean sources. While the use of hydro-
gen diversifies in other sectors beyond refining and chemistry, these two sectors de-
mand more than 90% of the global hydrogen production [294]. Because of the emission-
intensive generation methods and the importance of hydrogen in hard-to-decarbonize
sectors, such as transport and industry, hydrogen production from electricity and water
(electrolysis) is expected to cover around 75% of the clean hydrogen demand worldwide
by 2030.
Solar photovoltaic (PV) energy is becoming a preferred option for powering water elec-
trolyzers for hydrogen production with three methods for interconnecting such systems
[260]:

Directly-coupled systems. These systems rely on finding an operating point such that
the I-V curves of the PV system and that of the electrolyzer intersect at a point
that is close to the maximum power point (MPP) of the PV [260]. Direct-coupling

This chapter has been published in V.A. Martinez Lopez, H.Ziar, M. Zeman and O. Isabella, Maximization of PV
energy use and performance analysis of a stand-alone PV-hydrogen system, International Journal of Hydrogen
Energy, 48, 99 (2023).
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systems can be made more efficient by applying load-management techniques,
which consist of dynamically changing the number of electrolyzer stacks connec-
ted in parallel using a switch. In this way, a discrete MPP tracker can be imple-
mented reaching coupling efficiencies close to 99% [260]. These systems are also
suited for low-power applications (below 1 kW) for their simplicity, safety, and cost
[295].

DC-DC coupling. The electrolyzer can also be interfaced with the PV system using a DC-
DC converter which decouples the operating point of the PV system from that of
the electrolyzer. The PV system can operate at its maximum power point at every
instant and does not depend on the component design as with the directly cou-
pled systems [232]. Even when there is one conversion stage that causes power
loss, the total efficiency of the system is higher than the static directly coupled sys-
tem (without load management) mainly because of the deviation from the MPP of
the latter at low irradiance [232].
The advantage of using a DC-DC converter is that the performance of the system
improves under changing irradiance. A maximum power point tracking algorithm
forces the PV modules to deliver, as the name implies, maximum power. How-
ever, the algorithm can also drive the electrolyzer into dangerous conditions ei-
ther above or below the design limits. For this reason, a modified MPP tracking
algorithm was proposed in [296], which allows tracking of the MPP under most
conditions, but adjusts the set point if the electrolyzer approaches an unsafe op-
erating point.

AC coupling. This configuration is typically used to connect electrolyzers to grid- con-
nected PV systems. The connection is made using an inverter at the output of the
PV system and a rectifier at the input of the electrolyzer. Similar to the DC-DC
coupling, the AC coupling systems can perform MPPT [260]. For grid-connected
systems, transformers are also needed besides the DC-AC-DC conversion, result-
ing in 4 power processing stages with associated losses [260]. AC conversion can
also be used in off-grid PV-electrolysis systems as in [297]. This system needs only
two conversion stages (one inverter on the PV side and one rectifier on the elec-
trolyzer side).

Direct coupling systems are well suited for small-scale projects, DC coupling for
PV systems located in proximity to the electrolyzer, and AC coupling strategy is
adequate for large-scale systems (in the MW range) where the PV production plant
is far from the electrolyzer [260].

In all interconnection modalities, optimization must be performed to ensure maxi-
mum hydrogen production, minimum cost, and maximum efficiency.

6.0.1. OPTIMIZATION OF PV-ELECTROLYZER SYSTEMS
The sizing of the PV-electrolyzer plant depends on the coupling strategy and is an opti-
mization problem of finding the configuration (in terms of size of PV and EL) that maxi-
mizes or minimizes efficiency, hydrogen production, cost, etc.
Directly-coupled systems are typically optimized by choosing an appropriate number of
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PV modules, electrolyzer cells, or both and the connection between them (series or par-
allel). To achieve this, a statistical approach can be employed. The basis of this method
is to identify the region in the I-V plane where the MPP of a given PV module occurs fre-
quently and obtain the fraction of the maximum power point current at which the energy
density is the highest. Then, the number of series connected electrolyzer cells is tuned
such that the system operates in the highest energy density region. This method allows
the use of readily available manufacturer data and applies to alkaline and PEM tech-
nologies [295]. Additionally, the I-V curve of the PV module can be linearized around
the MPP. The resultant expression is a linear equation that relates the maximum power
point current and voltage. A similar approach is made for the current of the electrolyzer.
These expressions are then expanded by including the number of series and parallel PV
modules and electrolyzer cells. When the linearized equations of both components are
equated, the number of series and parallel modules and cells for a given temperature are
obtained. This system will operate with very high coupling efficiencies regardless of the
changing irradiance, as long as the operating temperature is kept at the design parame-
ter [298].
Metaheuristic approaches, which are based on stochasticity and the repetitive evalua-
tion of the objective function [299], are also often used to optimize directly-coupled PV
systems. The number of series, parallel PV modules, and series, parallel electrolyzer cells
is used as a decision variable. The genetic algorithm [250, 300], the imperialist competi-
tive algorithm [301], and particle swarm optimization [233, 302] have been employed in
the past to obtain the best configuration of PV and electrolyzer.
Naturally, an a posteriori analysis can also be conducted to study the response of the sys-
tem to different parameters and find an optimal solution. This is the case for the study of
[303] for a combined PV-thermal system. The optimal solution can be found by increas-
ing the number of parallel PV modules and the number of series-connected electrolysis
stacks and then analyzing the efficiency.

For DC-DC coupled systems, Gillesen, et al. [265], found the optimal size that min-
imizes the hydrogen cost for a fictitious power-to-gas installation in Germany powered
exclusively by a PV system. The number of alkaline electrolyzer stacks, along with their
power, were determined using the mixed-integer linear programming (MILP) method.
The system curtails the PV power when it exceeds the maximum power of the electrolyz-
ers. On a second approach, a battery-assisted system was tested using different battery
technology. The main conclusion is that the cheaper option is to allow curtailment, at
the expense of not producing hydrogen continuously [265].
As with directly-coupled systems, the genetic algorithm appears in literature as an opti-
mization tool, for example, in [250]. The authors used the genetic algorithm to vary the
number of PV and electrolyzer cells in series and parallel and obtain optimum solutions
defined by four objective functions related to cost and efficiency. For the DC-DC cou-
pled system the topology of the converter was also analyzed finding that the optimum
solution is sensitive to the converter topology.
A different approach for sizing the off-grid PV system powering an alkaline electrolyzer
was followed in [304] by using the HOMER software to design the PV system and battery
bank. They considered the load profile of a glass-producing factory and the solar re-
source in Algeria, where the project is located. The study resulted in 1 MWp of fixed-axis
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PV with more than 100 batteries. The PV system is fully powering the whole plant, not
only the electrolyzer but also the auxiliary systems.

A grid-connected PV system powering a fictitious alkaline electrolyzer plant in Tür-
kiye was studied in [305]. The optimization method was the Generic Optimization al-
gorithm (GenOpt) coupled with the simulation software TRNSYS. The objective was to
minimize the electricity withdrawn from the grid by tuning the azimuth and tilt of the
PV modules [305]. Setting either the electrolysis technology or the electrolyzer capac-
ity as decision variables also allows minimizing energy taken from the grid and meeting
production goals at minimum cost [306].

Piveta et al. [307] used MILP to minimize the cost and CO2 emissions of a grid-
connected PV system that provides electricity to a simulated hydrogen production fa-
cility in northeastern Italy. They achieved the optimization objectives by tuning the PV,
electrolyzer and storage tanks and using the grid and production targets as constraints.
The minimum found Levelized Cost of Hydrogen (LCOH) was 7.8 e/kgH2 for a system
supplying hydrogen to a steel plant and a hydrogen refueling station with a 341 kWp of
PV and 89 kW PEM electrolyzer. Similarly, Engstam, et al. determined the operating con-
ditions for a grid-connected hydrogen facility in Sweden which minimize the LCOH and
CO2 [308]. The grid model is a multi-country system, and while this model does not aim
to sizing, it demonstrates that the LCOH, and carbon emissions are greatly influenced
by the operative decisions [308]. For directly coupled systems, the LCOH is a function of
the ratio between PV and electrolyzer capacities with a single minimum [309, 310].

Table 6.1 summarizes the selected optimization methods reported in the literature.
Note that this list can be considerably expanded for directly coupled systems, as in the
literature review of [311].

6.0.2. RELEVANCE OF THIS STUDY

While the literature studies (Table 6.1) have focused on sizing studies, there is a clear gap
in the design of stand-alone, DC-DC coupled (indirect coupled) systems. Furthermore,
the strategies of direct coupling systems imply that the design of either, or both, com-
ponents, PV and electrolyzers must be tailor-made for a particular system, because their
number of cells and connection are used as decision variables. This prevents the use of
readily available components. Grid-connected systems have different optimization ob-
jectives and constraints which are also not suitable for stand-alone systems.
The study of Gillesen, et al. [265] is one of the few focusing on readily available compo-
nents at an industrial scale focusing on indirectly coupled, stand-alone systems.

The purpose of this study is to develop an optimization procedure for a stand-alone
PV-alkaline electrolysis system. The output of such procedure is a relative sizing factor,
which gives a better insight on the relation between the size of the PV plant and the size
of the electrolyzer, as well as the azimuth and tilt of the PV modules, which are often
overlooked.
These are typically optimized for the PV production, or decoupled in the optimization
process. While the tilt of PV modules is explored in [305] as a decision variable for grid-
connected systems and in [312] as an analysis of its effect, these variables have not been
used to size off-grid solar-hydrogen systems. In addition, this work considers that the
load is not only the electrolyzer but also a compressor, which needs to be also powered



6

85

Ref. Coupling Optimization
tool

Optimization ob-
jective

Decision vari-
ables

[295]
Direct

Statistical MPP coupling series EL & PV
cells

[242,
252,
298, 303,
309]

Analytical Efficiency, MPP
coupling, cost

series-parallel EL
& PV cells

[233,
241,
300–
302]

Metaheuristic Cost, H2 produc-
tion, efficiency,
losses

Series-parallel EL
& PV cells; EL
temperature; wa-
ter activity

[250] Direct
& in-
direct

Metaheuristic Cost, H2 produc-
tion, losses; effi-
ciency

Series-parallel EL
& PV cells

[312] Analytical Cost, efficiency,
H2 production

PV & EL size & ca-
pacity

[265] Indirect MILP System cost EL power & bat-
tery type

[305]
Grid

GenOpt Grid electricity PV azimuth &tilt
[306–
308]

MILP Cost & CO2 emis-
sions

PV peak power,
EL power, EL
technology,
Power flows in
European coun-
tries

Table 6.1: Comprison of optimization methods found in literature. Indirect methods refer to DC-DC coupled
systems. MILP stands for Mixed Integer Linear Programming, PV for photovoltaic, EL for electrolyzer and,
GenOpt for Generic Optimization.
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by the PV system in a stand-alone system. Using a metaheuristic approach allowing the
optimization of complex and diverse objective functions.
The model used, although programmed in MATLAB, can be easily translated into any
programming language that supports the Particle Swarm Optimization algorithm (e.g.
[313] and [314]).
Determining of the orientation of the PV modules, the focus on a fully autonomous sys-
tem and the inclusion of a compressor to model the balance-of-plant form the main
contributions of the present work.
The rest of this paper is structured as follows. Section 6.1 proposes the system descrip-
tion and models of the electrolyzer and compressor. This is extended in Section 6.2 with
the optimization procedure. The results and analysis are discussed in Section 6.3 before
closing with the conclusion in Section 6.5.

6.1. SYSTEM MODEL
The studied model consists of an off-grid PV system coupled to an alkaline electrolyzer
using a DC-DC converter. A compressor is added as a Balance-of-Plant component. Fig-
ure 6.1 illustrates the studied system.

=
=

PV system

Alkaline
electrolyzer

Compressor

H2

������

Figure 6.1: Description of the studied system. The solid line represents the electrical connection between
components, while the dashed line indicates the flow of hydrogen.

6.1.1. ELECTROLYZER MODEL
The electrolyzer in this work was assumed to be of alkaline technology with a nominal
power of 100 kW, and modeled with Ulleberg’s model [195]. This model assumes that the
total cell voltage is a sum of the reversible voltage and the overvoltage caused by resistive
effects and activation of the electrodes.

Vcell =Vrev +Vohm +Vact (6.1)

The reversible voltage Vrev is the minimum voltage needed to start the decompo-
sition of water. It is related to the change of Gibbs free energy, ∆G , and is a function
of temperature. At 25 °C and 1 atm (standard conditions), ∆G0 =237.2 kJ/mol, which
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is equivalent to Vrev =1.229 V [167]. The ohmic losses Vohm represent the losses at the
electrolyte, electrodes, and bubbles, while the activation losses, Vact, model the overpo-
tential caused by the energy needed to start the reaction. This is often described with the
Butler-Volmer equation, or one of its simplifications [177]. The activation overpotential
has a logarithmic dependency on the applied current.

Equation 6.2 shows the semi-empirical equation to describe the electrolyzer voltage
as a function of the applied current density i (in A/m2) and the operating temperature
(in °C) [195].

Vcell =Vrev + r i + s log(t i +1) (6.2)

The current density normalizes the applied current to the electrolyzer, I , by the cell
area (A): i = I /A. The terms r and t are coefficients linked to the resistivity of the sep-
arator and the exchange current density respectively. The latter is related to the charge
transfer between the electrodes in an open circuit condition [315]. Both r and t are tem-
perature (T ) dependent, as seen in Equations 6.3 and 6.4. The coefficient s is linked to
the Tafel slope. Note that the rx , tx , and s terms are fitting parameters [195].

r = r1 + r2T (6.3)

t = t1 + t2/T + t3/T 2 (6.4)

The values for the parameters were taken from [316] and shown in Table C.1 of the
appendix

Equation 6.2 defines the voltage of a single electrolyzer cell; however, for a stack of
cells, it is assumed that all the cells are identical and connected in series. The total volt-
age of the stack Vele is the number of cells (Ncells) multiplied by the voltage of a single cell
(Vcell). Figure 6.2 shows the simulated I-V curve. Constant temperature of 60°C and 186
series-connected cells were assumed. The reason for this is to simulate an industrial-
sized electrolyzer. The I-V model used here is reproduced from [316] where the I-V curve
of a small-scale electrolyzer was demonstrated to be scalable to an industrial size with an
electrolyzer of 186 cells. This number allows the results to be traceable and comparable.

According to Faraday’s law of electrolysis, the hydrogen flow, Ḣ2, is proportional to
the current applied to the electrolyzer, I as in Equation 6.5.

Ḣ2 = ηF
I

2F
(6.5)

The term ηF accounts for the difference between the theoretical rate of production
and the real one, and is called the Faraday efficiency. For simplification, ηF = 1. F is
Faraday’s constant, indicating the electric charge of one mole of electrons (F = 96485
C/mol).

The alkaline technology cannot operate below 20% of its nominal current to avoid
gas crossover from the oxygen to the hydrogen chamber. This, if happens, can result in
an unsafe situation [195]. For this reason, whenever the PV power, PPV, is insufficient to
meet the minimum power demand of the electrolyzer, Pmin, the system will be switched
off. When the PV power exceeds the nominal power of the electrolyzer, Pnom it will be
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Figure 6.2: Current-Voltage curve of the simulated alkaline electrolyzer.

curtailed to the nominal power of the electrolyzer. The conditions are expressed in Equa-
tion 6.6.


Pele = 0, PPV < Pmin

Pele = Pnom, PPV > Pnom

Pele = PPV, otherwise

(6.6)

6.1.2. COMPRESSOR MODEL

The compressor is modeled as an isentropic process. The main assumption is that the
hydrogen behaves as an ideal gas and there is no heat transfer from the gas to the struc-
ture of the compressor or the ambient. From these assumptions and applying the First
Law of Thermodynamics, the work (W ) needed to compress hydrogen at constant vol-
ume is the change of enthalpy (H) of the gas as seen in Equation 6.7. The change of
enthalpy can be obtained from the specific heat of hydrogen at constant pressure (Cp ),
the difference of temperature at the inlet (T1) and outlet (T2) of the compressor, and the
amount of gas involved (n) [317], [318].

W = n∆H = nCp (T2 −T1) (6.7)

The law of ideal gases is recalled in Equation 6.8. This equation describes the behav-
ior of the amount of gas (n) at given pressure (P ), volume (V ), or temperature (T ). R is
the universal gas constant with a value of 8.314 Jmol−1K−1.

PV = nRT (6.8)

For an isentropic compression process, the entropy remains constant, and the rela-
tion between the input and output pressures is given by the Compression Pressure Ratio
(CPR) as in Equation 6.9 [319].
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CPR = P2

P1
=

(
T2

T1

)γ/(γ−1)

(6.9)

The term γ is the ratio of the specific heats at constant pressure Cp and constant
volume Cv (Equation 6.10). The latter can be derived from the former using the fact that
the universal gas constant, R, is the difference of both specific heats (R =Cp −Cv ) [319].

γ= Cp

Cv
(6.10)

Under ideal conditions, the electrical power to compress hydrogen (wc ) is the same
as the work applied to the gas (Equation 6.7) per unit of time. To consider non-idealities,
an efficiency term needs to be considered (η= 0.6 [303]). Working out Equations 6.7 6.8,
6.9, and 6.10 leads to the expression for the electric power needed by the compressor
(Equation 6.11) [303].

wc =Cp Ḣ2
T1

η

(
CPR(γ−1)/γ−1

)
(6.11)

Note the term Ḣ2 which is the hydrogen flow in kg/s defined in Equation 6.5. It results
from replacing n with Ḣ2 in Equation 6.8. This allows the calculation of electric power
instead of energy. This model is typically applied in describing PV-hydrogen systems as
in [303]. Table C.2 in the appendix shows the used values for the model.

6.1.3. PV MODEL
The production of the PV system was calculated using data from the Royal Meteorologi-
cal Institute of The Netherlands [320]. This data was collected in 2013 in Cabauw, a small
town located in the center of The Netherlands. The dataset contains 1-minute resolution
irradiance values including Global Horizontal Irradiance (GHI), Diffuse Horizontal Irra-
diance (DHI), Direct Normal Irradiance (DNI) and, ambient temperature.
The PV system is assumed to be installed on flat ground, with free horizon. Further, all
the PV modules receive the same irradiance, and there is no partial shading either from
clouds, self-shading or any other obstacle.
The total irradiance that the PV module receives (Gm) is needed to calculate the instan-
taneous PV power. Gm is the sum of direct (Gdir), diffuse (Gdiff) and reflected (Gref) irra-
diance components as seen in Equation 6.12

Gm =Gdir +Gdiff +Gref (6.12)

The direct irradiance on a tilted surface (PV module) can be obtained from the DNI
by calculating the angle of incidence (AOI) between the Sun (described by its altitude in
degrees above the horizon, as , and its azimuth in degrees starting from the North, As )
and the normal vector of the PV module (described by the module’s tilt, am and azimuth
Am) as shown in Equations 6.13 and 6.14 [321].

cosAOI = cos am cos as cos(Am − As )+ sin am sin as (6.13)
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Gdir = DNI×cosAOI (6.14)

The diffuse irradiance seen by this (tilted) PV module (Gdiff) was obtained from the
DHI considering an isotropic sky model (Equation 6.15) [321].

Gdiff = D H I × 1+ sin am

2
(6.15)

A tilted module also receives reflected irradiance from the ground which is affected
by the albedo (α) of the site. A constant value of the albedo of 0.2 was assumed (Equation
6.16).

Gref = D H I ×α× 1− sin am

2
(6.16)

The Normal Operating Cell Temperature (NOCT) model accounts for the tempera-
ture effect, which models the difference between the temperature of the solar cell (Tm)
and the ambient temperature (Ta) as a linear function of the incident irradiance on the
PV module (Equation 6.17). [321].

Tm −Ta = TNOCT −20

800
Gm (6.17)

The term TNOCT in Equation 6.17 refers to the solar cell temperature when the mod-
ule is exposed to an incident irradiance of 800 W/m2 and 20 °C ambient temperature
with 1 m/s wind speed [322]. This value is given in the datasheet of manufacturers.

Figure 6.1 shows that the PV module is connected to a DC-DC converter. This con-
verter performs maximum power point tracking (MPPT), which implies that, at every
instant, the instantaneous PV power is the PV module’s maximum power under the in-
stantaneous irradiance. This assumption simplifies the calculation as it does not require
knowledge of the module’s IV curve. The module’s MPP (instantaneous PV power) is
then equal to the received irradiance multiplied by the efficiency of the module (given in
the module’s datasheet) corrected for temperature and irradiance effects and the mod-
ule’s area (Equation 6.18) [321]. At standard test conditions, the maximum power point,
Pmpp, the open circuit voltage Voc, and the module’s efficiency, η, can be obtained from
the module manufacturer’s datasheet as well as the module’s area Amodule and the de-
viation of the maximum power point as the temperature changes, αp . The parameter
nd = 1.5 is the ideality factor of the diode. The technical specifications of a Trina Tallmax
M 450 Wp module [323] were considered.

ηTm,Gm = Pmpp

1000Amodule

(
1+ 0.0258nd

Voc
× ln

(
Gm

1000

))(
1+ 1

η

∂η

∂T
(Tm −25)

)
∂η

∂T
= Pmpp +αp (Tm −25)

(1000Amodule)(Tm −25)
(6.18)

The PV power was further reduced by 97% to account for the losses at the DC-DC
converter (semi-ideal behavior, considering a constant efficiency of 0.97 over the whole
power range. This number was chosen after an analysis with the model proposed in
[324]).
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6.2. OPTIMIZATION PROCEDURE
The optimization consists on finding the values of the decision variables that minimize
the objective function. In this case, the decision variables are the azimuth of the PV
modules, their tilt, and the oversize factor (i.e., ratio between the PV system peak power
to the nominal power of the electrolyzer). The objective functions are the cost, specific
energy use and specific wasted energy, explained in Section 6.2.3. The Particle Swarm
Optimization (PSO), (discussed in Section 6.2.1) is the tool used for finding the optimal
values. For each iteration of PSO, the following steps are taken:

1. Calculate the theoretical instantaneous power of the PV system without load.

2. Distribute the PV power to the electrolyzer and compressor (discussed in Section
6.2.2.

3. Integrate the instantaneous values over the whole year and calculate the perfor-
mance indicator (Section 6.2.3) to be optimized (objective function).

The next section explains the aforementioned steps in detail.

6.2.1. PARTICLE SWARM ALGORITHM (PSO)
The Particle Swarm Optimization (PSO) is an algorithm based on the interactions be-
tween individuals in flocks of birds or school of fish [325]. It relies on the concept of
particles, which are associated to solutions of the objective functions [326]. Each indi-
vidual, or particle, is described by its position in the search space (i.e. the possible values
for the decision variables) and a velocity, an updatable parameter that controls how fast
this particle moves toward the rest of the individuals. Additionally, the particles have
a memory of themselves and the rest of the group. This means that a particle keeps a
record of the best solution it has found over all the iterations, and also knows the best
solution of all the individuals in the swarm [325]. The algorithm starts by creating a pop-
ulation of individuals randomly distributed over the search space, with initial position
and velocity. The objective function is calculated for every particle and the individual
best and group best parameters for each particle are updated. If a particle finds a so-
lution that is lower than the record of its individual best, it replaces its parameter with
the new found solution. The same applies to the group best parameter. The position
and velocity parameters of each particle are updated and then, all the particles are again
randomly replaced. But, this new placement depends on the previous position, velocity,
and individual and group bests. In this way, all the particles begin to move towards the
global minimum of the objective function [325, 326].

PSO performs better than other metaheuristic algorithms (genetic algorithm and im-
perialist competitive algorithm) when optimizing directly-coupled systems. It is faster,
finds the optimum in fewer iterations and converge to the global minimum [327].

6.2.2. POWER DISTRIBUTION
As a completely stand-alone system, the PV system (PPV) must provide all the electricity
needed to operate the electrolyzer Pele and the compressor Pcomp as seen in Equation
6.19.
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PPV = Pele +Pcomp (6.19)

This implies that not all the power of the PV system is available to produce hydrogen.
Hydrogen production is proportional to the applied current to the electrolyzer Istack as
discussed in Section 6.1.1. The Newton-Raphson method shown in Equation 6.20 was
used to calculate this amount.

Istackn+1 = Istackn −
f (Istackn )

f ′(Istackn )
(6.20)

The subindices n + 1 and n are the updated and current values of the current, re-
spectively. As this is an iterative process, the updated value will be used as the current
value in the next iteration. Equation 6.21 shows f (Istack) which is the function of the
electrolyzer current whose root is precisely the current which ensures that the power
balance (Equation 6.19) is valid. This equation was obtained from the power of the elec-
trolyzer, calculated as the product of its voltage and current Pele =Vele × Istack. Note that
the electrolyzer’s voltage (Equation 6.2) is a function of the electrolyzer’s current, Istack,
hence, Pele is also a function of this variable. The hydrogen flow, which is also depen-
dent on Istack (Equation 6.5), is the link between the electrolyzer and the compressor
because the compressor power (Equation 6.11) is governed by the hydrogen flow, and
subsequently, by the electrolyzer current. The power balance can be written in terms of
Istack because both the electrolyzer and compressor powers can be expressed in terms
of the electrolyzer current. Equating the resulting expression to zero leads to Equation
6.21 which is the expression of f (Istack). The coefficient 2.016×10−3 kg/mol is the mo-
lar weight of hydrogen and is included to ensure the match of the units. The term K1 is
defined in Equation 6.22 and it is used to simplify the expressions in Equations 6.21 and
6.23. With the assumptions described in Section 6.1, K1 is a constant.

f (Istack) = s

ln10
ln

(
t

A
Istack +1

)
Istack +

r

A
I 2

stack +
(

2.016×10−3 ×K1

2F
+Vrev

)
Istack −

PPV

Ncells
(6.21)

K1 =
Cp T1

η

(
CPR(γ−1)/γ−1

)
(6.22)

f ′(Istack) (Equation 6.23) is the derivative of this function with respect to Istack, which
is needed in the Newton-Raphson method.

f ′(Istack) = s

ln10

[
t

t Istack + A
Istack + ln

(
t

A
Istack +1

)]
+ 2r

A
Istack +

2.016×10−3 ×K1

2F
+Vrev

(6.23)

6.2.3. PERFORMANCE INDICATORS
Three performance indicators evaluate the system. These indicators were used also as
objective functions.
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The specific energy use of the system was defined as Equation 6.24. This indicator is
a measure of the efficiency of the system, because it relates the energy that could be
produced from the PV system (

∫
year PPV) to the amount of hydrogen that was actually

produced
∫

year Ḣ2. The units are in kWh/kgH2 .

Energy use =
∫

year PPV∫
year Ḣ2

(6.24)

A closely related indicator is the specific wasted energy and contains two compo-
nents: the unused energy energy and the curtailed energy. These indicators arise from
the operational limits of the electrolyzer defined in Section 6.1.1. The unused power,
Punused, is the power that could be generated from the PV system, but it is not, as a result
of the electrolyzer being off due to insufficient power to meet the operating limits. The
curtailed power, Pcurtailed, is defined analogously, as the energy that could be generated
from the PV but it is bounded to meet the maximum operating limit of the electrolyzer.
The wasted energy is then defined as Equation 6.25.

Wasted energy =
∫

year(Punused +Pcurtailed)∫
year Ḣ2

(6.25)

The Levelized Cost of Hydrogen (LCOH) is the third and last indicator. It represents
the cost of producing one kilogram of hydrogen (e/kgH2 ). Equation 6.26 [328] was used
to calculate the LCOH. The numerator is the sum over every year, t , of all the installation
costs of the system It incurred during the lifetime of the project (n =25 years) plus the
maintenance and replacement costs, Mt . The denominator is the yearly production of
hydrogen Ht . The term 1

(1+r )t is the annuity factor to consider for the future value of the
costs and is calculated with the interest rate, r = 4% (which is in line with the sensitivity
analysis carried out by [329]), and the year of the calculation, t . The values used for the
calculation of the LCOH are given in the appendix, Table C.3.

LCOH =
∑n

t=0
It+Mt
(1+r )t∑ Ht

(1+r )t

(6.26)

6.3. RESULTS AND DISCUSSION

6.3.1. OPTIMIZATION RESULTS
Two types of PV systems were studied. First, one with all modules oriented at the same
azimuth and tilt, and second, a PV system whose half of the modules are flipped 180° in
azimuth with respect to the first half, but the tilt is the same for both halves. This second
system opens the possibility for the optimization of east-west oriented modules.
Ten runs were carried out for each indicator for each PV system to check for convergence
of the optimization procedure. Figures 6.3a and 6.3b show the optimization results for
the orientation of the PV modules of single and double orientations, respectively. Figure
6.3c shows the resultant oversize factor for each type of the PV systems as a function of
the objective functions.



6

94 6. OPTIMIZATION OF PV-ELECTROLYZER SYSTEMS

(a) (b)

(c)

Figure 6.3: Optimization results for orientation and oversize factor. Ten runs were carried out. Each point
represents one of the runs. Note that in many cases the points are overlapping, indicating convergence of
PSO. (a) Single-sided configuration (All PV modules have the same azimuth and tilt). The orientation that
maximizes the yearly PV energy is marked with a star. (b) Double-sided configuration (Half of the PV modules
are displaced 180° in azimuth with respect to the first half. All modules share the same tilt). (c) Oversize factor
for all indicators and both PV configurations. The arrows that are labeled with Tilt mark the average tilt of the
pointed clusters.

From Figure 6.3a it is possible to note that the PSO found that the configurations
which minimize the specific energy use are facing north. As a reminder, the PV system
is assumed to be installed in The Netherlands, in the northern hemisphere, and the ex-
pected best azimuth is facing southwards. Even more remarkable is the fact that the
north-facing modules are not horizontal (as would be expected to compensate for the
north-facing azimuth). This means that the PV modules are oriented away from the Sun.
When looking at Figure 6.3c, this configuration corresponds to the upper limit set for
the oversize factor. This is needed to compensate for the fact that the north-facing PV
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system harvests only diffuse irradiance. The minimization of the wasted energy with a
single orientation also results in north-facing PV modules. Although the oversize factor
does not reach its limits. One of the configurations that minimize the wasted energy
results in almost horizontal modules, which are associated with a lower oversize factor
(Figure 6.3c).
Another interesting observation is that, for single-sided systems, the angle that maxi-
mizes the PV production is not the same as the one that optimizes any of the indicators.
This is relevant because typically, the PV system is optimized first for maximum energy
production; then, the electrolyzer is selected.

Figure 6.3b shows the case of the double-sided configuration. For the energy use,
PSO found configurations in the North-South orientation. As opposed to the single-
sided version, where all the modules receive only diffuse irradiance, in the double-sided
version, half of the PV modules are actually facing south.
To minimize the hydrogen cost with a two-sided system, the modules should be placed
horizontally. Under this situation, the azimuth does not play a role anymore (as seen in
the wide range of azimuth values for LCOH in Figure 6.3b). This is the only case where
the orientation for a particular indicator (LCOH in this case) matches the optimal angle
for PV generation. The oversize factor remains almost the same for both configurations
(2.58 and 2.82 for single and double-sided, respectively)(Figure 6.3b).
The double-sided analysis was performed to study the possibility of installing the PV
modules in an East-West configuration. However, PSO did not find this orientation fa-
vorable for any indicator.

The calculation of the indicators of each configuration offers a better insight into the
effect of the configurations. The selection of these configurations is based on the results
of Figure 6.3 and are, two for minimizing energy use, two for the LCOH (one for each
type of PV system), and three for wasted energy (2 single-sided and one double-sided).
The used values are given in Table 6.2.

Indicator PV system Azimuth (°) Tilt (°) O.F. # PV Abbreviation

Energy use
single 0.3 73.4 5 1111 Efficiency 1

double 176.83 62.16 2.63 584 Efficiency 2

LCOH
single 184.5 18.9 2.58 573 LCOH 1

double 243.07 0.0 2.82 627 LCOH 2

Wasted energy
single

355.98 66.54 3.86 858 Wasted 1
348.94 4.63 1.65 367 Wasted 1H

double 95.2 74.66 2.80 622 Wasted 2

Table 6.2: Selected configurations. O.F. stands for "oversize factor" and "#PV" for the number of PV modules

Figure 6.4 shows the value of every indicator for each configuration of Table 6.2. The
minimum hydrogen cost is obtained with configuration LCOH 1, which is a south-facing,
single-sided arrangement. The two-sided configuration did not offer any advantage for
the hydrogen cost. But a horizontal placement of the PV modules opens the possibility of
reducing energy consumption, and wasted energy while boosting hydrogen production
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Figure 6.4: Evaluation of the different configurations with every indicator. The abbreviations on the horizontal
axis correspond to those mentioned in Table 6.2

with just a small increase in the price. It can be even more attractive because the increase
in PV size is not significant.
It is no surprise that the higher costs correspond to the north-facing configurations.
Note that the energy consumption calculated here also considers the curtailed energy.
And for this reason, the obtained values are higher than the expected values for energy
consumption for alkaline technology, which are in the range of 50 kWh/kgH2 [330].

Authors in [331] found an optimal oversize ratio of 1.4 on average to minimize the
hydrogen cost. They compared the performance of 18500 commercial PV modules and
perform the optimization with the number of PV modules as a decision variable. In
the same direction, the oversize ratio which minimizes the LCOH of a stand-alone PV-
hydrogen system located in Townsville, Australia was 1.5 [310], while the oversize factor
obtained from this study is around 2.5. One potential reason for this difference can be
attributed to the energy needed by the compressor. Another important difference is the
geographical location (Algeria [331] and Australia [310]) with a higher irradiance than
The Netherlands. The optimal oversize factor changes depending on the capacity factor
of the PV plant, linked to the solar resource available per location [309]. Lastly, the fact
that the orientation is also taken into account influences the oversize factor compensat-
ing for lower generation from the PV system.

The efficiency is sensitive to the tilt of the PV modules, as demonstrated by the results
and also reported in [312]. As opposed to [312], whose optimal tilt is 60°, the highest
efficiency occurs when the PV modules are vertical. The difference in efficiency values
can be attributed to a) location (Rome [312], and The Netherlands (this study)), b) the
consideration of the oversize factor and azimuth of the PV modules and c) The sensitivity
of PSO to the imposed limits to the oversize factor (see C.1.2).

Albeit the three defined indicators, reliability (expressed with the loss of load prob-
ability), economic (net present cost, LCOH, capital recovery factor), and environmental
(CO2 emisions and energy emission factor) are other indicators discussed in the litera-
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ture for stand-alone hydrogen-based systems [332].

6.3.2. OPERATION AT PARTIAL LOAD

A load duration curve is a tool frequently used in electrical engineering to represent the
time (horizontal axis) that a load is expected (vertical axis) [333]. This tool facilitates
the description of the operation at partial load of the alkaline electrolyzer. Figure 6.5
shows the partial load duration curve of the electrolyzer when different configurations
are used. These figures were obtained by calculating the instantaneous power delivered
to the electrolyzer (following the procedure described in Section 6.2.2). This power, with
a resolution of minutes, was resampled into hourly values by calculating the average of
all powers within an hour. The hourly power values were normalized against the nomi-
nal power of the electrolyzer, sorted in descending order, and then plotted. Note that the
graphs show an average of every hour. For this reason, the graph shows values below the
minimum operating threshold.
Figure 6.5a corresponds to the partial load operation of the electrolyzer when optimized
for maximum efficiency (minimum energy use). The inset at the top right shows the por-
tion of the graph when the electrolyzer operates at full load. In all cases, the electrolyzer
operated for less than 100 hours at full load. The single-sided, north-facing PV system
has a better partial load characteristic than the south-facing PV system operating for an
additional 390 hours (inset, lower right corner).
For the configurations optimizing the LCOH, there is little difference in the partial load
operation for single-sided and horizontally-placed PV modules. The latter allows the
operation for 3 days more than with the former configuration, as seen in Figure 6.5b.
Observe that the electrolyzer operates at full-load for more time for the layout that min-
imizes the LCOH. This results in improved hydrogen production (Figure 6.4).
The layout that minimizes the specific energy use (Figure 6.5a) prioritizes the operation
at lower loads rather than the full-load range. In fact, the electrolyzer only operates for
a few hours at full capacity. A similar situation occurs with the configuration optimizing
the specific wasted energy (Figure 6.5c). The single-sided configuration with an almost
horizontal module (Wasted 1H) leads to very poor use of the electrolyzer despite being
the configuration with the lowest cost among those aiming at reducing the energy spill
(wasted energy and energy use) as seen from Figure 6.4.

The utilization of the PV system can be studied by looking at the histograms of the
potential production for each configuration. The word potential is important because
not all of the PV power can be used. As presented in Section 6.2.3, the electrolyzer im-
poses operative limits, and, whenever the PV power violates these boundaries, it must
be curtailed. Figure 6.6 illustrates the distributions of the PV power (PPV). As a reference,
the distribution of the GHI at the site is also included (Figure 6.6a). A light blue rectangle
marks the regions where the PV power is used by the hydrogen equipment (i.e., elec-
trolyzer and compressor). From Figures 6.6b and 6.6d it is possible to conclude that the
PSO algorithm tries to minimize the curtailed energy (values above 112 kW of PV power).
In doing so, it allocates more power to the low-production region. The power in this re-
gion cannot be used, and despite it being very small, the large occurrence results in more
unused than curtailed energy.
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(a)

(b) (c)

Figure 6.5: Partial load curves for the configurations of Table 6.2. (a) Efficiency (energy use). (b) LCOH. (c)
Wasted energy.

The minimum LCOH is achieved with a more aggressive strategy. Figure 6.6c illustrates
that, in contrast to the other indicators, the PV layout for minimum LCOH attempts to
harvest as much PV power as possible in the operating region of the hydrogen equip-
ment. The trade-off is a considerable amount of curtailed energy.

A different electrolyzer technology, such as Proton-Exchange Membrane (PEM), with
a higher dynamic range (from 0-100%) [277], could improve the utilization of the PV
power. The optimization for reducing the wasted energy already leads to very little cur-
tailed energy (0.59 kWh/kgH2 with a two-sided configuration). Most of the wasted energy



6.4. SENSITIVITY AND UNCERTAINTY ANALYSIS

6

99

(a) (b)

(c) (d)

Figure 6.6: Histograms of the potential PV production for configuration optimizing each indicator. (a) Distri-
bution of the GHI at the analyzed site. (b) PV power when the system is optimized for maximum efficiency
(minimum energy use). (c) PV power when the system is optimized for minimum LCOH. (d) PV power when
the system is optimized for minimum wasted energy. In graphs (b), (c), and (d), the light blue rectangle marks
the operating region of the hydrogen equipment (electrolyzer and compressor). Observe that the horizontal
axis in all figures is a logarithmic scale.

in this configuration comes from the unused energy (Figure 6.6d) which could be well
absorbed by a PEM electrolyzer or multiple smaller units as in [260] or [334].

6.4. SENSITIVITY AND UNCERTAINTY ANALYSIS

6.4.1. UNCERTAINTY ANALYSIS

An uncertainty analysis on the convergence of PSO for each indicator ensures the va-
lidity of the presented results. The uncertainty analysis relies on the results from the
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ten runs carried out for each indicator, as discussed in Section 6.3 and shown in Figure
6.3. The bootstrap resampling method offers an alternative to recalculating hundreds
of new samples and was chosen because the optimization procedure is computationally
expensive. The bootstrap uses the original ten optimization runs as the initial sample
and allows to easily increase the sample size from 10 to 1000. Recall that the bootstrap is
a resampling with replacement method is used to compute population statistics based
on a small sample [335]. The median of each sample describes best the data. The mean
is highly affected by outliers, assumed present in the samples. Then, the 95% confidence
interval of the sample medians was calculated.

Indicator Variable Median CI low CI high

Efficiency single side
Azimuth (°) 0.3701 0.2476 0.4357

Tilt (°) 73.3787 73.3735 73.4190
Oversize (-) 5.0000 4.9999 5.0000

Efficiency double side
Azimuth (°) 196.3287 176.7190 356.8274

Tilt (°) 62.2008 62.1838 62.3933
Oversize (-) 2.6357 2.6305 2.6390

LCOH single side
Azimuth (°) 184.7602 184.3911 186.3103

Tilt (°) 18.8621 18.6695 19.0356
Oversize (-) 2.5777 2.5740 2.5907

LCOH double side
Azimuth (°) 253.5580 157.1478 335.5511

Tilt (°) 0.0005 0.0000 0.0031
Oversize (-) 2.8178 2.8148 2.8215

Wasted single side
Azimuth (°) 355.9400 355.6708 356.2193

Tilt (°) 65.9232 65.5979 67.7439
Oversize (-) 3.8381 3.8261 3.9005

Wasted double side
Azimuth (°) 95.0952 94.9564 95.4597

Tilt (°) 74.6581 74.3982 75.1216
Oversize (-) 2.7984 2.7948 2.8050

Table 6.3: Mean of medians of 1000 bootstrapped samples. "CI low" and "CI high" are the 95% confidence
interval for the low and high limits, respectively.

Table 6.3 shows the mean of medians of the 1000 bootstrapped samples. The 95%
confidence interval limits are a measure of uncertainty. There is a 95% probability that
the true median is found within the confidence interval limits. Note that there are four
significant digits to show that, in general, the confidence intervals are tight, indicat-
ing that the variables tend to converge to the same value, leading to a stable median.
The azimuth has the highest uncertainty, especially in the double-sided efficiency and
LCOH. This high uncertainty comes from the fact that for the double-sided efficiency,
PSO found two opposite configurations, one pointing north and one south. Although
this might seem contradictory, when analyzing the deviations, it is possible to see that
the offset is almost 180° (same as the difference between the low and high confidence in-
terval limits for this configuration), and only for a double-sided system, as defined in this
work, north-facing and south-facing are equivalent. The other situation with very high
uncertainty is the azimuth for the double-sided LCOH. The high dispersion of values can
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be explained when looking at the tilt for this configuration. It can be stated with very
high confidence, that the modules are horizontal, and, under this situation, the azimuth
has no influence on the PV output. Omitting these two scenarios, the highest deviation
for the azimuth is 1.92° and 2.15° for the tilt. With respect to this last variable, Figure 6.3
shows one value that did not converge to the median. With the uncertainty analysis, it is
safe to label this point as an outlier, as it is beyond 1.5 times the interquartile range and
has a negligible effect on the position of the sample median. The maximum deviation of
the oversize factor is 0.0743. This means that the PV installation will have an uncertainty
of ±17 commercial PV modules (450 W).

6.4.2. SENSITIVITY OF THE MODEL PARAMETERS

The modeling parameters influence the PV and hydrogen production calculation, lead-
ing to potential deviations of the results if these are chosen incorrectly. To determine
the extent of these deviations, a sensitivity analysis was performed changing the site’s
albedo, the operating temperature, and the compression ratio. For the last two, the ob-
tained configurations only change slightly, while for the albedo, has a more significant
effect. Figure 6.7 shows the orientation for single (Figure 6.7a) and double (Figure 6.7b)
sided orientations when changing the assumed albedo from 0.2 to 0.5 and 0.8. The re-
sults for the oversize are shown in Figures 6.7c (single-sided) and 6.7d (double-sided).
For single-sided systems, the albedo modifies the tilt of PV modules, which is expected,
as they harvest more reflected irradiance. This has a consequence on the optimal con-
figurations for LCOH which follows the same trend (more vertical installations), but is
negligible for energy consumption and wasted energy. The opposite occurs with the
oversize factor. The LCOH remains almost constant, while the oversize for efficiency
(energy consumption) and wasted energy decreases dramatically. This can be attributed
to the considerably high tilt of the PV modules. Under this situation, they receive more
reflected irradiance, even when facing north.

For a double-sided system, the results remain almost the same. Note that, in Figure
6.7b, the efficiency results remain the same, even when there are opposite azimuths. Re-
member that the modules are back-to-back, making all efficiency results of figure 6.7b
equivalent. For the LCOH, two of the three configurations are horizontal making the az-
imuth of the PV modules irrelevant.
An interesting observation is that with a large albedo (0.8) the configuration for the LCOH
changes dramatically, from horizontal to a vertical East-West one with a slight increase
in the plant size (Figure 6.7c).

The optimization procedure is also sensitive to the computation parameters, espe-
cially to the upper limit imposed on the oversize factor, as this forces PSO to find new
configurations. A detailed description can be found in C.1.2.

Figure 6.8 shows the effect of assuming the wrong albedo value for the optimization.
The reference orientation was calculated assuming an albedo for 0.2. Then the indica-
tors (energy consumption, wasted energy and LCOH) were calculated using the optimal
configuration but using a different albedo, which mean that these systems are subopti-
mal.
The LCOH of the double-sided system is the most resilent, followed by the single-sided
LCOH, which has a positive impact (lower cost at higher albedo). The other indicators
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(a) (b)

(c) (d)

Figure 6.7: Sensitivity analysis of the albedo modeling parameter. The selected albedo values are 0.2, 0.5 and
0.8 (unitless). (a) PV module orientation of single-sided system. The arrow shows that the optimal tilt for PV
production increases with albedo. (b) PV module orientation of a two-sided system. The arrow points a highly
tilted east-west orientation. (c) Oversize factor of the single-sided system, and (d) oversize factor of the double-
sided system.

are underestimated if the albedo used has a lower value than the real one.

6.4.3. INFLUENCE OF NON-IDEAL FARADAY EFFICIENCY
The system model assumed a Faraday efficiency of 1, which indicates that all the current
is used for the generation of hydrogen. In reality, Faraday’s efficiency depends on the ap-
plied current and the operating temperature [336]. A well-accepted model that describes
the Faraday efficiency of an alkaline electrolyzer is Equation 6.27 [195].

ηF = i 2

f1 + i 2 f2 (6.27)
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Figure 6.8: Effect of the albedo on the indicators. The reference system is optimized for an albedo of 0.2. Then
the albedo was changed to 0.5 and 0.8 and the indicators calculated with the optimal system configuration but
with these new albedo values. The system was not re-optimized for these values.

Where the coefficients f1 and f2 are fitting parameters and are temperature dependent
[195, 336].
Figure 6.9a shows that the Faraday efficiency is far from being constant and drops signif-
icantly at low electrolyzer powers. Figure 6.9b shows that, with the ideal approach, the
production of hydrogen per second (the hydrogen flow, Ḣ2) is overestimated.

This overestimation has an influence on the power that the compressor needs, which
is proportional to the hydrogen flow as discussed in Section 6.1.2, Equation 6.11. When
comparing the calculated compressor power under ideal conditions, to the power that
the compressor would have needed if the Faraday efficiency was included, assuming that
the power of the electrolyzer is the same, the median of the differences in the compressor
power is only 0.44 kW, with a maximum of 0.77 kW. These differences are considerably
small to influence the presented results and validate the assumption for a negligible in-
fluence of Faraday efficiency. This is critical because it facilitates the analytic calculation
of the functions used in the Newton-Raphson method (Equations 6.21 and 6.23).

An advantage of this methodology is that it is location-independent. The results pre-
sented in this work are based on data from The Netherlands. On locations with higher
irradiance, the distribution of the GHI (Figure 6.6a) is expected to have higher relative
frequency values on higher irradiance bins. As a consequence, it is possible that the
maximum operating limits of the electrolyzer are reached, leading to more wasted en-
ergy as a result of more energy being curtailed. With the observations from this study,
it can be hypothesized that the oversize factors will be larger for sites with higher irra-
diance, as the orientation results will probably result in north-facing PV modules (for
northern-hemisphere sites) to minimize the specific energy use and specific wasted en-
ergy. On the contrary, lower oversize factors are expected to lead to lower LCOH values.
This work considered ideal conditions for the PV system (flat ground, open space, uni-
form irradiance, constant albedo). Under realistic conditions, nearby obstacles change
the irradiance seen by the module. The orientation results might change slightly for min-
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(a) (b)

Figure 6.9: Influence of the Faraday efficiency on the hydrogen production. (a) Faraday efficiency with respect
to the electrolyzer power, Pele, and (b), a comparison of the ideal hydrogen flow (Ḣ2) as a function of the
electrolyzer power, against the hydrogen flow when the Faraday efficiency is considered.

imizing the LCOH, depending on the horizon profile. However, for specific energy use
and wasted energy, they should not change significantly because the orientations are not
harvesting all the incoming sunlight (vertical configurations or north-facing configura-
tions).

6.5. CONCLUSIONS
This work presented the optimization of a stand-alone PV-electrolyzer system. The sys-
tem consists of an alkaline electrolyzer and a compressor and is coupled using a DC-DC
converter, which forces the PV system to operate always at its MPP. The optimum con-
figuration was defined by three decision variables, namely, azimuth and tilt of the PV
modules and the oversize factor. The optimum configuration to minimize energy use,
wasted energy, and hydrogen cost, was found using the Particle Swarm Optimization al-
gorithm.
Horizontally-placed modules are an interesting option for improving the usage of the PV
system with only a small increase in the hydrogen cost.
The electrolyzer is best utilized in configurations that reduce the LCOH, because it oper-
ates more time at full load in comparison with configurations that minimize energy use
or wasted energy. These last ones, prioritize longer operating times at very low loads,
rather than operation at nominal power.
Although an idealized situation with Faraday’s efficiency being 100% was considered, an
analysis of a realistic situation when this efficiency is not ideal shows a slight overestima-
tion of hydrogen production. This is translated into an increased compressor power of
less than 1 kW that can be considered negligible with respect to the power levels at hand
in this work.
With the optimization procedure and analysis this work contributes to the needed ef-
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forts for the implementation of green hydrogen systems towards meeting the goals of
the Net Zero Emissions scenarios of 2050.





7
OPERATING UNDER UNCERTAINTY.

CONTROL OF PV-ELECTROLYZER

SYSTEMS

The only thing that makes life possible
is permanent, intolerable uncertainty;

not knowing what comes next.

Ursula K. Le Guin

R ENEWABLE energy has grown significantly in the last years and is expected to cover as
much as 38% of the world’s electricity mix by 2027 [78]. In particular, solar energy is

the most rapidly expanding technology, exceeding the expectations by a 30% [78]. Solar
energy is highly variable and, due to passing clouds, it can result in sudden and signif-
icant power changes of a PV plant. These changes, often called ramps can have conse-
quences on the network to which the plant is connected. For grid-connected systems,
these changes might negatively influence the grid voltage and frequency [337]. Further-
more, grid operators often impose limits on the allowed changes of power. For example,
Germany and Puerto Rico establish a ramp rate limit of 10%/min [338]. A straightforward
solution to power ramps of PV systems is to add electric storage, but this is not a fixed
requirement to do power smoothing. This objective can also be fulfilled by curtailing the
output PV power during a ramp event. For ramp-up events, this is straightforward, as
the power can be curtailed to the current production level and slowly climb to the new
maximum power point, thus avoiding a ramp violation. On the other hand, for a ramp-
down event, the power will drop immediately if no storage is available. To prevent this,

This chapter has been published in V.A. Martinez Lopez, O.Isabella, M. Zeman and H.Ziar, Battery-less
Uncertainty-based Control of a Stand-alone PV-Electrolyzer System, Journal of Power Sources, 614, (2024).
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the power must be slowly curtailed before the event [159]. Battery-less smoothing tech-
niques also result in lower levelized costs of electricity, especially when the smoothing
requirement is small because the investment costs of batteries exceed the cost of loss
of energy due to curtailment. However, this is only true when the prediction of ramps
is highly accurate [339]. In the stand-alone case, PV-electrolyzer systems for hydrogen
production can be operated with or without batteries. The advantage of battery-assisted
electrolysis is a constant operation despite the variations in irradiance, and the produc-
tion during nighttime [340]. Also, in these systems, curtailment might be the cheapest
option for off-grid operation of solar-hydrogen systems [265].

Since battery-less power smoothing relies on short-term forecasting (nowcasting),
this tool becomes an essential ramp control [140, 159, 341, 342]. As an example, an al-
gorithm of a power management system relies on nowcasting as a first step to perform
power smoothing based on signal processing techniques [342]. For PV systems, a me-
thod using a sky image facilitates determining whether or not a cloud will (partially)
block the sun. This information allows the estimation of the drop in PV power, which
determines the active power curtailment needed to smooth the ramp [343]. Also, in this
approach, the performance of the smoothing approach depends heavily on the quality
of the prediction.

These systems require a high level of prediction accuracy to perform the control [159,
342] which is not achieved in practice. Nowcasting irradiance ramps is a challenging task
and even systems with artificial intelligence fail to predict irradiance events in the very
short term. While some authors have discussed that knowledge on the accuracy of pre-
dictions can improve the control strategies [341], how to include such knowledge is not
mentioned. Some strategies to deal with the forecasting inaccuracy include using rein-
forced learning to adapt the power curtailment even with low-quality predictions [344].
This study tackles the problem of the inherent inaccuracy of ultra-short-term forecast-
ing (nowcasting) when applied to a smoothing technique based on active power cur-
tailment. Its novelty relies on combining the knowledge of the forecasting uncertainty
with fuzzy logic to smooth the power from an off-grid PV system feeding an alkaline
electrolyzer. An experimental setup validates the control strategy emulating the off-grid
PV-electrolyzer system. Section 7.1 describes the models used (Sections 7.1.1 and 7.1.1),
while the experimental setup is introduced in Section 7.1.2. The prediction module is
presented in (Section 7.1.3) along with the fuzzy logic controller (Section 7.1.3). Section
7.2 reports the results and the discussion before the conclusion, presented in Section 7.3.

7.1. METHODOLOGY
This work proposes a battery-less, uncertainty-based power smoothing technique for a
stand-alone PV-electrolyzer system. We validated the operation of our technique with a
hardware setup that emulates the system. The emulation of this system requires three
domains: a physical domain that emulates the PV system, the electronic converter that
controls the PV system, and the electrolyzer, a modeling domain that describes the be-
havior of the physical domain so it closely represents a real system, and a control domain
which supervises and controls the whole system. Figure 7.1 provides an overview of the
system, and the corresponding domains. Each of these domains is explained in detail
below.
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Figure 7.1: Overview of the implemented system. The physical domain consists of a DC power supply (Chroma
62100H), a boost converter, and a three-phase grid-tied inverter built from Imperix PEB8024 half-bridge mod-
ules. An FPGA board (Imperix Bbox RCP) controls the switches of the boost converter and of the three-phase
inverter. On top of the physical domain, a modeling domain describes how the hardware reproduces the real
system signals. The PV model consists of a set of current-voltage curves calculated from measured data us-
ing the DISC decomposition model, a transposition model to calculate the Plane-of-Array irradiance, and a
two-diode model. The boost converter controlling the PV system performs a modified Perturb-and-Observe
(P&O) Maximum Power Point Tracking (MPPT) algorithm. The inverter uses the Power-Voltage curve of the
electrolyzer to set its input voltage according to the received power, following the electric behavior of the elec-
trolyzer. The control domain sets the reference points that ultimately perform the power smoothing. It relies
on an artificial intelligence module making one-minute ahead predictions of the ramps and the uncertainty
associated with such prediction. Its output feeds a fuzzy logic model that outputs the ramp set point, which is
sent back to the Bbox-RCP in the physical domain. CMV, GHI and S.P. stand for Cloud Motion Vector, Global
Horizontal Irradiance and set point, respectively

7.1.1. MODELLING DOMAIN

PV MODEL

The emulated PV system consists of 6 PV modules connected in series, with a total peak
power of 2700 W. The PV module used as a reference is a TRINA TALLMAX-M 450 [323].
The modules share the same tilt (am = 19°) and azimuth (As = 185°). The size and ori-
entation of this system come from an optimization procedure for stand-alone PV hydro-
gen systems as described in [345]. The model of this system is a set of current-voltage
(I-V) curves, one per simulation step, calculated from measured irradiance and ambient
temperature. The monitoring station of the Photovoltaic Materials and Devices (PVMD)
group of TU Delft (latitude 51.9997°, longitude 4.3689°) recorded the 1-minute Global
Horizontal Irradiance (GHI) using a silicon pyranometer on 13-June-2021 (clear day) and
31-July-2021 (variable day).
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The calculation of the module’s I-V curve at a specific irradiance level requires the knowl-
edge not of the horizontal irradiance, but the irradiance impinging on the PV module
(Plane-Of-Array, POA, irradiance), and for this, the direct and diffuse components are
needed.
The DISC decomposition model [346] allows the retrieval of the Direct Normal Irradiance
(DNI) from the Global Horizontal Irradiance (GHI). The implementation of this model is
readily available as a MATLAB function from PV LIB [347]. Equation 7.1 shows the cal-
culation of the Diffuse Horizontal Irradiance (DHI) from the GHI and the sun’s elevation
angle, as [321].

DHI = GHI−DNI · sin(as ) (7.1)

These three quantities allow the calculation of the Plane-of-array irradiance GPOA.
Equation 7.2 [321] shows the calculation of GPOA. Note that it includes the three irradi-
ance components obtained before. The Greek letters ρ and γ correspond to the albedo
(assumed constant, with a value of 0.2) and the angle between the sun and the PV mod-
ule, (calculated by MATLAB PVLIB’s function pv_getaoi), respectively.

GPOA = DNI ·cosγ+DHI ·SVF+ρ ·GHI · (1−SVF) (7.2)

The model assumes an isotropic sky. This assumption implies that the diffuse irradi-
ance is the same across the sky dome and the portion of the sky that the module, tilted
at an angle αm , sees (sky view factor) is simplified as in Equation 7.3 [321].

SVF = 1+cos am

2
(7.3)

Following the procedure in [348], the plane-or-array irradiance, combined with a
two-diode model leads to the calculation of the module’s I-V curve at each irradiance
point.

ELECTROLYZER MODEL

The electrolyzer is simulated as a power-voltage curve of a fictitious 1280 W, alkaline
electrolyzer. This power is 2.1 times smaller than the nominal power of the PV system,
following the optimization procedure described in [345].
A current-voltage curve models the electrolyzer. When the current flows through the
electrolyzer, its voltage increases as the electrons must overcome energy barriers for the
chemical reaction that decomposes water into hydrogen and oxygen molecules. These
barriers are the reversible voltage (minimum energy that the reaction needs, considered
as 1.229 V) and overvoltages. We consider only the activation overvoltage (energy of
the reaction at the electrodes) described by a modified version of the Tafel equation.
Equation 7.4 gives the current-voltage characteristic of the electrolyzer [349].

I = I0 exp

((
F

RT

)
(

V

ncells
)+1.229

)
(7.4)

Its parameters are the universal gas constant R = 8.314 J
molK , Faraday’s constant

(F = 9.64×104 C, Temperature (T = 333.15 K), exchange current (I0 = 1.8×10−7 A), and
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the number of cells in the stack (ncells = 244). This last one was adjusted so the elec-
trolyzer voltage would lay between 300 and 400 V to avoid problems with the protections
of the inverter (see Section 7.1.2 for an explanation of the setup). The power of the elec-
trolyzer is the product of its current and voltage. Ten voltage levels were defined, ranging
from 300 to 400 V, and at each point, the power was computed using Equation 7.4 mul-
tiplied by the corresponding voltage. The voltage of the electrolyzer, as a function of the
input power, is derived from these points and implemented in a lookup table. Except for
the physical constants, the parameters used in Equation 7.4 are fictitious.
The production of hydrogen (ḣ2, mol/s) is proportional to the current, I , flowing through
every cell of the electrolyzer (number of cells, ncells) according to Faraday’s law of elec-
trolysis (Equation 7.5).

ḣ2 = ηF
I

2F
ncells (7.5)

The Faraday efficiency, ηF , describes losses caused by the current not flowing through
the electrodes (parasitic currents). This phenomenon increases at low current density, i ,
as described by Equation 7.6 [195].

ηF = i 2

f1 + i 2 f2 (7.6)

where the fitting parameters are f1 = 2×104 A2/m4 and f2 = 0.985 (dimensionless)
[195].

7.1.2. PHYSICAL DOMAIN (EXPERIMENTAL SETUP)
The experimental setup consists of two main parts. A solar I-V curve emulator and a
power electronics module which concurrently performs the MPPT and emulates the
electrolyzer’s P-V curve. The solar emulator is a Chroma 62100H - 600S DC-power source.
Its software allows the reproduction of a PV system I-V curve which can be programmed
to change in time [350]. The interface between the electrolyzer and the PV system (out-
put of DC power supply) is a boost converter, responsible for controlling the PV system’s
output either by performing maximum power point tracking (MPPT) or setting a specific
power set point. This converter is connected to a three-phase inverter. Both converters
are implemented using Imperix PEB8024 (half-bridge) power modules and power filters
[351, 352]. The Imperix Bbox-RCP unit controls the power modules [353]. The control
of all the converters can be easily developed using MATLAB Simulink and sent to the
Bbox-RCP.

The Perturb & Observe (P&O) maximum power point tracking algorithm extracts the
maximum power from the PV system. The modification proposed in [354] allows a de-
liberate operation of the PV system at a different power point rather than the maximum
(i.e. curtailment) with only a small change in the original P&O algorithm. This algorithm
drives a boost converter (interface between the PV system and electrolyzer) and is im-
plemented in the Bbox-RCP unit. Varying the voltage of the DC-link between the boost
converter and the inverter according to the P-V curve of the electrolyzer allows the em-
ulation of this component. The P-V curve of the electrolyzer is also implemented as a
lookup table in the Bbox-RCP unit. Note that although the inverter is connected to the
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grid, the system is not a grid-connected system. This connection is there to dissipate
the generated power, that in a real system will be consumed by the electrolyzer. The
emulated system is a stand-alone (off-grid) system.

7.1.3. CONTROL DOMAIN

IRRADIANCE PREDICTION MODULE

The irradiance prediction module predicts one-minute-ahead ramps of the global hori-
zontal irradiance (GHI). In this work, a ramp is defined as the percentage of change with
respect to the last measured GHI value. Rather than a single value, the model outputs
the probability that a certain set of inputs belongs to a ramp class. By doing this, it is
possible to retrieve information not only on the most probable ramp that will occur but
also a measure of uncertainty of the prediction.
The model is based on neural networks whose input are, a single low-resolution (64 × 64
pixels) sky image centered around the sun, last measured GHI, and cloud motion vector.
The sky images were taken using an all-sky imager (CMS-Shreder ASI-16 [355]) equipped
with a fisheye lens located at the above-mentioned PVMD group monitoring station. The
sky images are taken every minute, along with the global horizontal irradiance (GHI),
measured with a silicon pyranometer provided with the sky imager. The high-resolution
images are first corrected to remove the fish eye distortion, cropped around the sun (200
× 200 pixels), and then resized to a resolution of 64 × 64 pixels. Using optical flow from
two consecutive images it is possible to calculate the cloud motion vector which returns
the direction and speed of the main cloud layer and is expressed in cartesian coordinates
whose origin is the center of the sky image, which is also the center of the sun.
The Farneback optical flow [153] is an image-processing method that determines the
vectors indicating how the pixels of two consecutive images are moving. This prepro-
cessing step returns all the vectors of the pixels moving between two sky images. Since
most of the pixels remain static, a histogram of the directions of the vectors will exhibit
a bimodal distribution with one mode close to zero and the second indicating the main
cloud direction. The mean magnitude of the vectors in this direction is the main cloud
speed [356]. In practice, the cloud motion vector is obtained by running a clustering
algorithm (k-means) with two clusters of magnitudes and directions obtained from the
optical flow. All values smaller than one standard deviation of each vector component
are excluded from the clustering (still pixels). The largest of the two cluster centroids
obtained through k-means is the cloud motion vector (in pixels per minute) [356].

The neural network comprises two stages: one responsible for the processing of the
sky image, and the second which combines the image analysis output with the auxil-
iary data (GHI, X and Y components of the cloud motion vector). Figure 7.2 shows the
architecture of the neural networks. The network responsible for processing the sky im-
age is a ResNet50 implemented in the Keras library [357]. The auxiliary data network is
a fully connected network of 3 layers with 64, 32, and 1 neurons, respectively. The first
two layers use the Rectified Linear Unit (ReLU) activation function, and the output layer
uses a softmax activation function. The training loss is the sparse categorical loss en-
tropy. Note that this is a classification problem rather than a regression one. As such, the
softmax function of the last layer returns the probability that a particular set of inputs
belongs to one of the labeled classes. The labeled classes are 20 ramp bins with equal
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Figure 7.2: Architecture of the prediction module. The acronym "CMV" refers to the cloud motion vector; each
component of this vector, X and Y, is a separate input to the model. GHI is the Global Horizontal Irradiance. The
fully-connected network has two hidden layers with 64 and 32 neurons with a Rectified Linear Unit (ReLU) as
activation function. The output layer consists of 20 neurons (one per bin) with the softmax activation function.

frequency in each bin, which means that the width of the bins is different, but the num-
ber of elements is approximately the same. The labels are coded as integers from 1 to
20. The class with the highest probability is the predicted class. Since each class label is
linked to a bin, the actual predicted ramp is the center of the bin corresponding to that
particular class. A cumulative sum of the probabilities of all the classes allows the de-
termination of the 5th and 95th percentiles; their difference is a measure of uncertainty.
These two outputs, the predicted ramp (the bin center of the most probable class) and
the uncertainty (the difference between the 5th and 95th percentiles of the cumulative
sum of the probabilities of all classes), are inputs to the fuzzy logic control. The training
set consists of 27,723 samples and the validation set of 7,431 samples.

FUZZY LOGIC CONTROLLER

Fuzzy logic offers a solution to complex systems by describing them as linguistic vari-
ables rather than complicated equations. The relations between the inputs and outputs
(already described by linguistic variables) are written using a set of if/then rules. This
makes handling the uncertainties and imprecision of the model an easy task. Fuzzy logic
as opposed to traditional set theory, relies on the fact that an element can simultaneously
(and partially) be a member of more than one set. In other words, its degree of member-
ship to a set is not a binary (yes/no) function, but a continuous one. And this is mapped
by a membership function. Membership functions are useful in the fuzzyfication step,
where a crisp variable value is transformed into a fuzzy variable. The linguistic variables
are also linked to the membership functions in the sense, that a variable "slow" can be
described by a particular membership function. The if/then rules describe the relation
between the system variables and constitute the implication step of a fuzzy system (e.g.
if TEMPERATURE is COLD then SPEED is FAST). These are translated as minimum and
maximum operators (equivalent to the intersection and union of the traditional set the-
ory) [358].

Our model used the Mandami min implication rule, which is the minimum value
of both input and output membership functions. This rule typically results in clipping
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the output membership function at the value of the input membership function, evalu-
ated at the crisp input. Converting the fuzzy output back to a crisp number is done by
calculating the centroid of the clipped output membership function [358].

The fuzzy control model takes four inputs, every minute: the predicted ramp (from
the Prediction Module), the uncertainty of the prediction (from the Prediction module),
the last observed change in the Global Horizontal Irradiance (∆GHI), and the previous
slope applied. The output is the slope (given as a percentage of change with respect to
the nominal power). This slope defines the power set point sent to the system, every sec-
ond. Using ∆GHI instead of the Plane-of-array irradiance (GPOA) allows a generalization
of our approach (∆GHI is not system dependent as GPOA.

Table 7.1 shows the system variables and their corresponding fuzzy descriptors and
Figure 7.3a shows the membership functions for all the inputs (Figures 7.3a, 7.3b, 7.3c,
and 7.3d) and the output (Figure 7.3e). A description of the fuzzy rules can be found in
Appendix D.

Variable name Linguistic descriptor
Inputs

∆GHI Negative large, Shallow, Positive high
Predicted ramp Deep down, Shallow, Deep up
Previous slope Negative big, Zero, Positive big
Uncertainty Low, High

Output
Slope Negative large, Zero, Positive large

Table 7.1: Fuzzy controller variables and their linguistic descriptors

7.2. RESULTS
We used two scenarios to test our control strategy. Figure 7.4 shows the GHI of both
scenarios along with the portion of the day considered for the experiments. The first
scenario corresponds to a clear day (13-June-2021, Figure 7.4a). The second scenario
is a day with high irradiance variability (31-July-2021, Figure 7.4b). The reader must be
aware that the results are presented in two time resolutions: the instantaneous, which is
1 s resolution and is the time resolution at which the controller acts. In other words, it
sends a power set point every second (see Section 7.1.3). The irradiance and prediction
data have a lower time resolution, namely one minute. The downsampling of the 1-
second data to 1-minute resolution takes place using the median every 60 s. The median
is less sensitive to extreme values, present within the variable scenario, and the mode
can either be non-existent or have multiple values, especially with a small sample (60
points). Hence we consider that the median can represent better the 1-minute value.

7.2.1. RAMP PREDICTION
The prediction model has a training accuracy of 19.51% and a validation accuracy of
17.29%. Note that the training dataset is relatively small, which can be one of the causes
of the low accuracy. Many of the samples also correspond to images with the sun blocked.
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(a) (b)

(c) (d)

(e)

Figure 7.3: Membership functions of the fuzzy logic controller of (a) the irradiance changes, ∆GHI, (b) the
predicted ramp, (c) the previous slope. (c) The uncertainty. Note that everything above 0.5 is classified as
"high" and everything below 0.3 as "low" uncertainty. The region between these numbers is fuzzy (can be
"high" and "low". (d) The output slope.

Identifying the sun automatically is almost straightforward, through identifying the bright-
est pixels on the image [359]. However, when the sun is covered, its location on the image
needs to be estimated based on the sun’s position in the sky. Although the estimation ac-
curately identifies the sun’s position, when the image is cropped around the sun, the
estimation error causes the sun not to be centered in the cropped image. The mismatch
error on cloudy images is larger because the image is first corrected, and the sun is iden-
tified afterward. This can have negative consequences downstream, because the cloud
motion vector is estimated from two consecutive cropped images, and it assumes that
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(a) (b)

Figure 7.4: Global Horizontal Irradiance of the two used scenarios. (a) a clear day, and (b) a variable day. In
both graphs, the shaded area marked as "This study" shows the period used for the experiments.

the sun is in the middle of the image.
The calculation of the cloud motion vector might also be responsible for the low predic-
tion accuracy. It is calculated from the optical flow results followed by a k-means clus-
tering algorithm (see Section 7.1.3). The optical flow returns the apparent movement of
pixels between two consecutive images. The main assumption is that the difference be-
tween the two consecutive images, especially taken one minute apart, is the movement
of clouds. Although we applied a smoothing filter on the image to remove noise, the
movement of pixels might not entirely correspond to clouds. Changes in the tone of the
sky, clouds, objects moving on the scene, and glare, among others, might be identified
as moving pixels and can affect the estimation of the cloud motion vector.

Figure 7.5 shows an example of the prediction for the interval used for the clear and
variable scenarios shown in Figure 7.4. For the clear scenario (Figure 7.5a), the output
is basically a constant that is lower than the measured ramps. Many measured points
fall into the uncertainty range, as desired. For the variable case (Figure 7.5b), the dis-
crepancy between the measured and the predicted ramps and the uncertainty is higher.
Note that, in Figure 7.5b, the predicted ramp and uncertainty seem to saturate at ±0.4%.
This behavior and the constant output of Figure 7.5a might be attributed to the binning
method used for training the data (see Section 7.1.3). Each ramp bin has a different width
and assigned a number to identify it. Hence the calues that the classifier learns are inte-
gers (bin numbers) and not actual ramp values. To retrieve the actual ramp we used the
value at the center of each bin as a representative value of the whole bin. The extreme
values of this approach are precisely ±0.4%.

Figure 7.6 shows the measured against the predicted ramps for the clear (Figure 7.6a)
and the variable (Figure 7.6b) scenarios. Note that the predicted ramps are located only
at particular intervals (bin centers) that span over a wide range of measured ramps. In-
creasing the number of bins can reduce the scattering within each bin and lead to a more
accurate prediction.

The prediction result do not need to be accurate because the fuzzy logic will convert
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(a) (b)

Figure 7.5: Example of ramp prediction of (a) the clear scenario and (b) the variable scenario.

(a) (b)

Figure 7.6: Measured and predicted ramps of (a) the clear scenario and (b) the variable scenario.

these values into a language descriptor (e.g. LOW, LARGE, see Table 7.1) making it able
to deal with the imprecision and uncertainty, which is the main goal of this work.

7.2.2. RAMP CONTROL
Figure 7.7 shows the results of applying our proposed approach to the clear scenario.
Under clear conditions (Figure 7.7a), our approach always operates in a curtailment con-
dition after the initial system startup. It is worth mentioning, that an initial power drop
of 30% was deliberately introduced to avoid problems with the curtailment set point. Af-
ter this sudden power decrease, the system stabilizes and increases monotonically. For
a clear scenario, the ramps are always within the required limits (Figure 7.7b).

Figure 7.8 shows the results for the variable scenario. Similar to the clear scenario,
the controller curtails the power most of the time, and under shallow ramps, the con-
troller even keeps the power at a constant level (Figure 7.8a). This results in an evident
ramp smoothing, reducing ramp violations (Figure 7.8b) and proving that our approach
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(a) (b)

Figure 7.7: Results of the clear scenario with 1 s resolution. (a) Instantaneous PV power (PP v), and (b) one-
minute PV power ramps, given as a percentage of the nominal PV power, (Pnom. The 10% ramp limit is marked
as a red band. Points outside these bands are considered ramp violations.

(a) (b)

Figure 7.8: Results of the variable scenario with 1 s resolution. (a) Instantaneous PV power. Note the sudden
power drops to zero as a result of a failure of the P&O algorithm. An example of these peaks is marked with an
arrow ("P&O error"). (b) One-minute PV power ramps, given as a percentage of the nominal PV power, (Pnom.
The 10% ramp limit is marked as a red band. Points outside these bands are considered ramp violations.

is able to meet the objective.
Figure 7.8a also shows that the P&O algorithm fails under variable conditions. This oc-
curs because the controller sends a power set point higher than the actual MPP. Note
that the P&O implemented in this work is a modified version of the traditional P&O. This
version tracks MPP in the absence of a power set point. Otherwise, it uses the same P&O
logic to track a curtailment set point [354]. If the power set point is larger than the ac-
tual MPP, the algorithm will keep reducing the voltage until it reaches the short-circuit
condition, attempting to find a point outside the power-voltage curve of the PV module.
The sampling time of the P&O algorithm is 5 ms, which explains the sudden drops in the
power of Figure 7.8a. A watchdog timer monitors the PV power to detect and correct this
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Figure 7.9: Distribution of the operating point of both scenarios. The operating point is given as a percentage
of the theoretical maximum power point with 1-minute resolution.

condition. When this timer detects a faulty condition, it removes the power set point,
restoring the normal operation of the algorithm. The failure of the P&O is only visible
in the 1 s resolution data. It does not affect the power smoothing results. Note that the
aggregation method for the downsampling to 1 minute is the median.

Figure 7.9 compares the operating point (as a percentage of the maximum power
point) of the 1-minute resolution data of the clear and variable scenarios. While in the
clear moments most of the points are centered around 80% of the theoretical MPP, in
the variable scenario, the operating points are more distributed and can even get lower
than 20% of the theoretical maximum. This stricter control, needed to smooth 1-minute
ramps, leads to an energy loss of 53.1% with respect to the theoretical maximum power
point. Section 7.2.3 provides an in-depth discussion on how to improve this aspect.

Applying control to a clear day results in unnecessary power curtailment that can go
as low as 70% of the theoretical maximum power point (Figure 7.9). The system gen-
erates 3.77 kWh during the 100 minutes at its theoretical maximum power point and
2.91 kWh under controlled power. This represents a loss of 22.8% of the potential gener-
ated energy. Because of this, for a clear moment, no control action is needed. An ideal
controller should be able to (a) avoid any control action in clear conditions or (b) en-
sure a minimum curtailment. In this sense, the traditional P&O MPP algorithm is more
than suitable. Identifying clear moments before they occur is fundamental to applying
the traditional P&O during these moments instead of unnecessarily curtailing energy.
Our approach is based on one-minute ahead prediction to smooth instantaneous ramps.
With a single-prediction value it is impossible to identify clear moments. Using histori-
cal data could give an indication of the present conditions. The probability that the sky
conditions remain the same in a very short period is very high, so a simple persistence
model could be already an improvement for clear moments. A larger forecasting horizon
has the drawback that as the prediction horizon increases, so does the prediction uncer-
tainty. This could result in more ramp violations in exchange for higher energy produc-
tion because it is possible that the controller misapplies the traditional P&O instead of
curtailment in a variable situation.
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Figure 7.10: Theoretical 1-minute hydrogen generation of the clear and variable scenarios with and without
control. Note that the vertical axis has a logarithmic scale. Although the typical unit used for hydrogen is kg,
because hydrogen is very light and its production is low, for clarity’s sake, the hydrogen generation is expressed
in grams (g).

Figure 7.10 shows the effect of our strategy on hydrogen generation. In line with Fig-
ure 7.7 and 7.9, the effect of the control strategy on the clear scenario is only a generation
reduction, without affecting the generation rate, which remains constant (the hydrogen
generation increases linearly with time. Note that the vertical axis is logarithmic). This
also occurs with the controlled power of the variable scenario, with the lowest genera-
tion. The uncontrolled variable scenario has steep changes. While the electrolyzer can
handle these changes in power, other components in the system might have problems
with the sudden increase in generation, as they respond slower [340]. Even though this
study does not consider the electrolyzer temperature, this variable might determine the
hydrogen production efficiency. With steep up ramps, the efficiency might be lower be-
cause a higher temperature results in higher efficiency, but the temperature cannot fol-
low the ramps as fast as the changes in the electric set points. Then, the electrolyzer
would operate at a higher power with a lower temperature, reducing efficiency.

7.2.3. LIMITATIONS OF THIS STUDY AND FUTURE IMPROVEMENTS

Our study assumes that the irradiance remains constant during each minute, changing
only at the top of the minute. In reality, irradiance is not discrete. The measurement
system takes images every minute, which justifies the time resolution. Additionally, the
hardware emulator is limited to 100 I-V curves per simulation block, making time down-
sampling impractical as only a few minutes could be simulated rather than a full hour.
The prediction module and the fuzzy logic controllers can still be optimized. The study
aims to prove the concept rather than provide a fully optimized system.

Although the prediction module has a low classification accuracy, the system was
designed to deal with imperfect predictions, turning the disadvantage of its low accuracy
into a tool for analyzing our solution. Naturally, the prediction module can be improved
by increasing the number of training points (nearly 28,000 in this study), the number of
classification bins and hyperparameter tuning. The dataset consists of many training
examples with the sun covered, which might affect the low accuracy of the algorithm. A
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more balanced dataset can also boost the prediction accuracy.
The approach in this work used empirically determined rules based on the obser-

vations of the system. Adding more rules can improve the system’s performance, but
manual tuning might be cumbersome. Switching to a neuro-fuzzy approach where the
shape and position of the membership functions and the inference rules can be deter-
mined from training data [358], can facilitate the process and improve the system’s per-
formance.

The simulation of the electrolyzer assumes a constant operating temperature, which
is only true if there is an external control system. This assumption simplifies the sys-
tem considerably. In reality, without thermal control, the temperature of the electrolyzer
depends on the current flowing through the electrolyzer. At the same time, the cur-
rent force the applied voltage to change because the current-voltage characteristic of
the electrolyzer also depends heavily on temperature.

7.3. CONCLUSION
We presented a control strategy for a battery-less stand-alone PV-electrolyzer system to
smooth power ramps from the PV system without the need for electrical storage using
active power curtailment. This approach typically needs ultra-short-term forecasting to
determine the curtailment level. Our control system acknowledges that the prediction is
imperfect and incorporates information on the uncertainty to deal with inaccurate pre-
dictions using fuzzy logic.
We validated our control strategy with a hardware emulator and prediction from mea-
sured data. Using this approach, although it compromises 53% of the potential energy
generation, is possible to smooth PV power ramps to a limit of 10% of the PV plant ca-
pacity on very high variable moments, and with very imprecise predictions without any
storage nor power interruption to the electrolyzer.





8
CONCLUSION AND OUTLOOK

8.1. CONCLUSIONS
This work presented the integration of PV systems and electrolyzers for hydrogen pro-
duction, focusing on stand-alone operation without the backup of electric storage. Part
I focused on PV systems covering the design phase (Chapter 2) and operating challenges
(Chapters 3 and 4).

In particular Chapter 2 proposes a methodology to identify potential sites for new
land-based PV projects. It aims at reducing the land degradation caused by the (po-
tential) new PV projects. During the design (prospection) phase of a new project, the
most suitable sites, from an environmental perspective are those where land is highly
degraded, identified with the Compatibility Index. This metric can, using the Analytic
Hierarchy Process (AHP), be combined with economic and technical factors to deter-
mine the suitability of a site. The approach in Chapter 2 puts a strong weight on the
Compatibility Index, which means that the environmental aspects dominate the deci-
sion of the suitability of a site. The main advantage of using the Compatibility Index in
the AHP is that it is independent of whether a specific site is inside, or in the proximity
of a nature-protected exclusion area. This leads to a better evaluation of non-protected
areas that can still be nature-valuable but not identified as such.

Chapter 3 studies the loss of efficiency of one of the most popular maximum power
point tracking algorithms used in the PV industry: the Perturb&Observe. This algorithm
can work incorrectly with quick variations in irradiance, even under uniform irradiance
(i.e. no partial shading), moving the operating point of the PV module away from its
maximum power point. This results in momentary power loss (hence efficiency loss).
This worsens with improper selection of perturbation step size and sampling time, the
tuning parameters of the traditional P&O algorithm. Larger and slower perturbations
lead to increased power loss, reaching up to 2% efficiency loss. The efficiency loss of
the P&O is independent on the control hardware which will introduce additional power
losses.

Chapter 4 presents a method for predicting the clear-sky index on the very short term
(20 minutes ahead) using sky images and a convolutional neural network and a sky clas-
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sifier. The proposed model consists of five convolutional neural networks trained on a
particular set of sky conditions (clear, overcast, partially cloudy, mostly clear with the
sun covered and mostly cloudy with the sun visible). Although a universal model is more
accurate on all classes, except on clear skies, the classified approach is more precise and
has the advantage of requiring less training data. Moreover, a classified approach opens
the possibility for combining different models that predict best for each class, for in-
stance, using a specialized network for clear-skies, and a smart persistence for overcast
days. The convolutional neural network does not need to be extremely complex to pro-
duce accurate results. In fact, a single convolutional layer and a fully-connected network
are sufficient to make the predictions. Interestingly, adding information of the move-
ment of pixels using optical flow does not yield improvement on the prediction. One
potential reason is that the optical flow detects differences in pixels for two consecutive
images. These pixels do not necessary corresponds to clouds. The optical flow also de-
tects changes in hue, shadings, and objects (such as passing birds) as changes between
two images. This extra information might only introduce noise in the prediction.

Part II of this thesis focuses on the integration of PV with water electrolyzers. Chap-
ter 5 focuses on the variable operation of water electrolyzers powered by solar energy.
All low-temperature electrolyzer technologies, namely alkaline, Proton and Anion Ex-
change Membranes have a good dynamic response and are well suited for variable op-
eration. The bottlenecks are at the supporting equipment (balance-of-plant) which also
deals with slowly-changing variables such as temperature and pressure. Electrically, the
electrolyzer has minimum operating limits due to safety, which need to be considered
when operating in a non-constant regime, for example, when directly powered by re-
newable energy sources. The discussion over the accelerated aging of the electrolyzers
caused by dynamic operation is still ongoing in the literature.

Of the three coupling methods, stand-alone systems are best suited for small projects
such as refuelling stations, while projects in the MW range benefit from grid-connected
systems. Battery-assisted electrolysis have higher costs. An economically successful PV-
hydrogen project needs to have a solar-to-hydrogen efficiency greater than 10%.

In Chapter 6 the sizing of a PV-electrolyzer-hydrogen compressor system was intro-
duced. The optimization procedure, based on Particle Swarm Optimization, minimizes
separately three indicators, namely, energy use, wasted energy and, hydrogen cost. The
decision variables for all the indicators are the same: orientation of the PV modules and
an oversize factor. The system converts more sunlight to hydrogen with horizontally-
placed modules. Although it is not the cheapest option, it results in just a small increase
in hydrogen cost. Optimizing for the energy use or wasted energy, results in the elec-
trolyzer not being fully used, which means that the electrolyzer operates more time at
a setting lower than its nominal power. In contrast, an electrolyzer functioning at rated
power for longer periods leads to minimum hydrogen cost.

Chapter 7 combines the content of the previous chapters to propose a control strat-
egy for a stand-alone PV-electrolyzer system aiming at reducing the abrupt changes in
the PV power caused by passing clouds. The novelty of this approach is that it utilizes
the fact that the prediction f these ramps, crucial for the control strategy, is imperfect.
The prediction uncertainty can be calculated using a probabilistic prediction. A natural
way to deal with this uncertainty is through fuzzy logic. The elimination of the electric
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storage is achieved by timely curtailing the PV power, using a modified P&O maximum
power point tracking algorithm. Although the proposed approach results in very high
losses close to 53%, it is able to limit the PV power ramps to a maximum change of 10%
of the PV plant’s peak power on variable days. Under a cloudless sky, there is no need for
curtailment and the PV plant can operate at its maximum power point.

8.2. OUTLOOK
This thesis presents recent advances in powering low-temperature water electrolyzers
with solar energy. Based on the results presented in the previous chapters, the following
recommendations are put forward.

• Nature’s Contributions to People (NCP) can be used as a metric for environmental
impact. The NCP have been globally mapped [360] which indicate that it is pos-
sible to quantify them. The advantage over the Compatibility Index is the avail-
ability of Open Source data [360], and, most importantly, NCP also identifies re-
gions where damage to Nature impacts people. The methodology proposed in
this work was tailored specifically for PV systems, but it can be easily applied to
other projects, even non-energy related. The weights applied to Analytic Hier-
archy Process can be modified depending on the stakeholders’ interests, yet the
whole process remains the same leading to results that are more suitable for the
stakeholders’ interests. This, however, needs to be considered carefully to avoid a
misuse of information. For example, a developer that assigns a negligible weight to
the Compatibility Index and claims that the environmental impact was considered
since the design phase.

• Incorporating conservation information into the design phase of a project, could
reduce the mitigation actions needed in more advanced stages. This could bring
benefits not only in economic terms but also potentially facilitating some aspects
of social acceptance of the project.

• The optimization of PV-hydrogen systems should consider a proper optimization
objective. This objective, which is typically cost of hydrogen produced, can be
selected to minimize also the environmental impact of the installation, in terms of
land use change, materials or land degradation. Efficiency cannot be regarded as
such indicator, because, as seen in Chapter 4, a system that uses the energy most
efficiently, is a very large system, with, potentially, the largest land footprint. Multi-
objective optimization can harmonize the conflicts between different objectives
with the problem that the output of such method is a set of optimal solutions and
the selection of the most suitable one, depends on a decision-maker.

• Many control approaches rely on perfect predictions, and very few works tackle
the operation under uncertainty. Given the difficulty of getting accurate irradiance
predictions, a probabilistic approach gives the decision-maker extra information
over the uncertainty of the prediction than point predictions. In this respect, the
development of decision tools suited for uncertain conditions might even be more
important than improving the forecast accuracy.
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The results presented here can help with the reduction of greenhouse emissions
and aimed to bring attention in the responsibility of engineers and scientists to develop
projects that consider their effect on Nature since the design phase. Changing people’s
point of view regarding their relation with Nature begins with its re-valuation [361], con-
sidering that humans are part of the ecosystem, and not owner of it [362, 363] and that
all inhabitants of the Earth have an intrinsic value, whether or not they are usable or
economically valuable to humans. [362–364]. This change in point of view will lead to a
moral obligation to Nature, resulting in concrete rules and actions [361]. These actions,
along with a responsible application of technology, could finally slow climate change
ensuring a livable 2050, and beyond.



A
PARAMETERS OF THE BINNED

EFFICIENCY MODEL

Table A.1 shows the fitting parameters of Equation (3.7) for different variability metrics
for the Oahu dataset and 3-second data. Note that the offset term, p3, is always close to
99.9 because the expected algorithm efficiency lies within this range.

Table A.1: Parameters of the binned efficiency model.

Metric p1 p2 p3 R2

σ(∆G) −1.22×10−5 −8.03×10−4 99.97 0.99
σ(∆kt ) −28.90 0.61 99.95 0.99
σ(∆kc ) −19.63.94 0.33 99.97 0.97
σ(r ) −2.50×10−4 2.15×10−3 99.92 0.90

max(r ) 0 −2.94×10−3 1.00 0.92
VI 0 −2.98×10−4 99.9 0.92
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B
CLOUD DETECTION AND DATA

DISTRIBUTION FOR IRRADIANCE

FORECASTING

B.1. EXAMPLES OF CLOUD DETECTION
This section shows examples of the cloud identification of each class. The examples were
taken randomly from the training dataset. In all cases, the images on the left correspond
to the image under evaluation. On the right is the cloud identification output. The cloud
pixels are highlighted with clear areas. Figures B.1, B.2, B.3, B.4, and B.5 show the exam-
ples per class.

B.2. DATASET DISTRIBUTION
Figure B.6 shows the distribution of the dataset in terms of the sun’s elevation. As a re-
mainder, the minimum sun elevation that we considered is 10°.
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Figure B.1: Random examples of Class 1 cloud identification. The images on the left column are the original
images. On the right, the clearer areas identify "Cloud" pixels while the darker are "Not cloud" pixels. The label
"None" indicates that there are no clouds identified in that image. Note that the horizon has a mask of black
pixels.
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Figure B.2: Random examples of Class 2 cloud identification. The images on the left column are the original
images. On the right, the clearer areas identify "Cloud" pixels while the darker are "Not cloud" pixels. Note
that the horizon has a mask of black pixels.
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Figure B.3: Random examples of Class 3 cloud identification. The images on the left column are the original
images. On the right, the clearer areas identify "Cloud" pixels while the darker are "Not cloud" pixels. Note
that the horizon has a mask of black pixels.
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Figure B.4: Random examples of Class 4 cloud identification. The images on the left column are the original
images. On the right, the clearer areas identify "Cloud" pixels while the darker are "Not cloud" pixels. Note
that the horizon has a mask of black pixels.
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Figure B.5: Random examples of Class 5 cloud identification. The images on the left column are the original
images. On the right, the clearer areas identify "Cloud" pixels while the darker are "Not cloud" pixels. Note
that the horizon has a mask of black pixels.



B.2. DATASET DISTRIBUTION

B

135

Figure B.6: Distribution of the dataset to the sun’s elevation above the horizon.





C
EXTRA ANALYSIS FOR THE

OPTIMIZATION OF

PV-ELECTROLYZER SYSTEMS

C.1. VALUES FOR THE MODEL PARAMETERS

Parameter Value
r1 0.0004296
r2 −4.153×10−7

s 0.1803
t1 0.05171
t2 -2.415
t3 8134
A 0.2082

Table C.1: Electrolyzer parameters from [316].

Parameter Value
Cp 14.4 kJ/kgK
T1 333.15 K / 60°C
η 0.6

CPR 198.0198
γ 1.4058

Table C.2: Parameters of the compressor model.
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Concept Cost
Installation PV 737e/kW

Maintenance PV 13e/kW
Installation electrolyzer 600e/kW

Maintenance electrolyzer 4% installation costs
Electrolyzer replacement 20% installation costs

Table C.3: Parameters used for the calculation of the LCOH with data from [328]

C.1.1. CONFIGURATION OF PARTICLE SWARM OPTIMIZATION
The Particle Swarm optimization was implemented using the MATLAB function
particleswarm with default values. To reduce computational time, the option of paral-
lel computing was used.

The limits for the variables are shown in Table C.4. Note that the limits for the az-
imuth are negative. This was done to allow the algorithm to discover azimuth angles
near the north (0°).

Variable Min Max
Azimuth -45 370

Tilt 0 90
Oversize 0.1 5

Table C.4: Computational parameters of the Particle Swarm Optimization algorithm

C.1.2. SENSITIVITY ANALYSIS FOR PSO PARAMETERS
The azimuth and tilt of the PV modules cannot be modified because they cover a full
hemisphere: the azimuth describes a full circle and the tilt one-quarter of it. Combin-
ing azimuth and tilt, then a half sphere is obtained. For this, the values are kept fixed.
The oversize is the only PSO parameter that can be modified. The sensitivity analysis
changes this parameter from 5, 3 and 2. Figure C.1a and C.1b show the sensitivity anal-
ysis regarding the orientation of single and double-sided systems respectively. Figures
C.1c and C.1d show the sensitivity of the oversize factor for single and double-sided re-
spectively.
The wasted energy and efficiency are the most affected indicators. for single-sided sys-
tems, the efficiency will change the orientation dramatically, from north-facing modules
with an oversize factor of five, to a south-facing configuration with an oversize factor that
does not surpass two. Yet, the efficiency is lower in the south-facing configurations (74
kWh/kgH2

, for the north-facing system to 78 kWh/kgH2
for the south-facing ones). The

wasted energy tends to allocate more vertical PV modules as the oversize factor limit de-
creases.
For the double-sided system, the indicators need an oversize factor above 2 (Figure C.1d).
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(a) (b)

(c) (d)

Figure C.1: Sensitivity analysis for the higher limit of the oversize factor. The tested values are 2, 3, and 5
(unitless). (a) PV module orientation of the single-sided system. (b) PV module orientation for the double-
sided system. (c) Oversize factor for the single-sided system. (c) Oversize factor of the double-sided system.
Note that the LCOH converges to the same values as long as it can go beyond an oversize factor of two.





D
FUZZY RULES OF THE

UNCERTAINTY-BASED CONTROL OF

ELECTROLYZER

1. If uncertainty is LOW and predicted ramp is DEEP DOWN and previous slope is
POSITIVE BIG then slope is NEGATIVE LARGE.

2. If uncertainty is LOW and predicted ramp is DEEP DOWN and ∆GHI is NEGATIVE
LARGE and previous slope is not NEGATIVE BIG then slope is ZERO.

3. If uncertainty is LOW and predicted ramp is DEEP DOWN and ∆GHI is NEGATIVE
LARGE and previous slope is ZERO then slope is ZERO.

4. If uncertainty is HIGH and ∆GHI is POSITIVE HIGH and previous slope is ZERO
then slope is POSITIVE LARGE.

5. If uncertainty is HIGH and ∆GHI is NEGATIVE LARGE and previous slope is ZERO
then slope is NEGATIVE LARGE.

6. If uncertainty is HIGH and ∆GHI is NEGATIVE LARGE and previous slope is POSI-
TIVE BIG then slope is NEGATIVE LARGE.

7. If uncertainty is HIGH and ∆GHI is POSITIVE HIGH and previous slope is POSI-
TIVE BIG then slope is ZERO.

8. If uncertainty is HIGH and ∆GHI is POSITIVE HIGH and previous slope is NEGA-
TIVE BIG then slope is POSITIVE LARGE.

9. If uncertainty is HIGH and ∆GHI is NEGATIVE LARGE and previous slope is NEG-
ATIVE BIG then slope is POSITIVE LARGE.
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10. If uncertainty is HIGH and∆GHI is SHALLOW and previous slope is NEGATIVE BIG
then slope is POSITIVE LARGE.

11. If uncertainty is HIGH and ∆GHI is SHALLOW and previous slope is ZERO then
slope is ZERO.

12. If uncertainty is HIGH and ∆GHI is SHALLOW and previous slope is POSITIVE BIG
then slope is ZERO.

13. If uncertainty is LOW and predicted ramp is DEEP DOWN and ∆GHI is SHALLOW
and previous slope is NEGATIVE BIG then slope is ZERO.

14. If uncertainty is LOW and predicted ramp is DEEP DOWN and ∆GHI is SHALLOW
and previous slope is ZERO then slope is NEGATIVE LARGE.

15. If uncertainty is LOW and predicted ramp is DEEP DOWN and ∆GHI is POSITIVE
HIGH and previous slope is NEGATIVE BIG then slope is ZERO.

16. If uncertainty is LOW and predicted ramp is DEEP DOWN and ∆GHI is POSITIVE
HIGH and previous slope is ZERO then slope is NEGATIVE LARGE.

17. If uncertainty is LOW and predicted ramp is SHALLOW and ∆GHI is NEGATIVE
LARGE then slope is ZERO.

18. If uncertainty is LOW and predicted ramp is SHALLOW and∆GHI is SHALLOW and
previous slope is NEGATIVE BIG then slope is ZERO.

19. If uncertainty is LOW and predicted ramp is SHALLOW and∆GHI is SHALLOW and
previous slope is POSITIVE BIG then slope is NEGATIVE LARGE.

20. If uncertainty is LOW and predicted ramp is SHALLOW and∆GHI is SHALLOW and
previous slope is ZERO then slope is ZERO.

21. If uncertainty is LOW and predicted ramp is SHALLOW and ∆GHI is POSITIVE
HIGH and previous slope is NEGATIVE BIG then slope is POSITIVE LARGE.

22. If uncertainty is LOW and predicted ramp is SHALLOW and ∆GHI is POSITIVE
HIGH and previous slope is ZERO then slope is POSITIVE LARGE.

23. If uncertainty is LOW and predicted ramp is SHALLOW and ∆GHI is POSITIVE
HIGH and previous slope is POSITIVE LARGE then slope is ZERO.

24. If uncertainty is LOW and predicted ramp is DEEP UP and∆GHI is POSITIVE HIGH
and previous slope is NEGATIVE BIG then slope is POSITIVE LARGE.

25. If uncertainty is LOW and predicted ramp is DEEP UP and∆GHI is POSITIVE HIGH
and previous slope is ZERO then slope is POSITIVE LARGE.

26. If uncertainty is LOW and predicted ramp is DEEP UP and∆GHI is POSITIVE HIGH
and previous slope is POSITIVE BIG then slope is ZERO.
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27. If uncertainty is LOW and predicted ramp is DEEP UP and ∆GHI is NEGATIVE
LARGE and previous slope is NEGATIVE BIG then slope is POSITIVE LARGE.

28. If uncertainty is LOW and predicted ramp is DEEP UP and ∆GHI is NEGATIVE
LARGE and previous slope is ZERO then slope is POSITIVE LARGE.

29. If uncertainty is LOW and predicted ramp is DEEP UP and ∆GHI is NEGATIVE
LARGE and previous slope is POSITIVE BIG then slope is ZERO.

30. If uncertainty is LOW and predicted ramp is DEEP UP and ∆GHI is SHALLOW and
previous slope is ZERO then slope is ZERO.

31. If uncertainty is LOW and predicted ramp is DEEP UP and ∆GHI is SHALLOW and
previous slope is NEGATIVE BIG then slope is POSITIVE LARGE.

32. If uncertainty is LOW and predicted ramp is DEEP DOWN and ∆GHI is SHALLOW
and previous slope is POSITIVE BIG then slope is ZERO.
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