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I leave Sisyphus at the foot of the mountain. One always finds one’s burden again. But
Sisyphus teaches the higher fidelity that negates the gods and raises rocks. He too

concludes that all is well. This universe henceforth without a master seems to him
neither sterile nor futile. Each atom of that stone, each mineral flake of that night-filled

mountain, in itself, forms a world. The struggle itself toward the heights is enough to fill a
man’s heart. One must imagine Sisyphus happy.

Albert Camus, The myth of Sisyphus (1942)
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SUMMARY

Fundamental scientific questions such as how the first stars were formed or how the
universe came into existence and evolved to its present state drive us to observe weak
radio signals impinging on the earth from the early days of the universe. During the
last century, radio astronomy has been vastly advancing. Important discoveries on the
formation of various celestial objects such as pulsars, neutron stars, black holes, radio
galaxies and quasars are the result of radio astronomical observations.

To study celestial objects and the astrophysical processes that are responsible for
their radio emissions, images must be formed. This is done with the help of large ra-
dio telescope arrays. Next generation radio telescopes such as the Low Frequency Array
Radio Telescope (LOFAR) [1] and the Square Kilometer Array (SKA) [2], bring about in-
creasingly more observational evidence for the study of the radio sky by generating very
high resolution and high fidelity images.

In this dissertation, we study radio astronomical imaging as the problem of estimat-
ing the sky spatial intensity distribution over the field of view of the radio telescope array
from the incomplete and noisy array data. The increased sensitivity, resolution and sky
coverage of the new instruments pose additional challenges to the current radio astro-
nomical imaging pipeline. Namely, the large amount of data captured by the radio tele-
scopes cannot be stored and needs to be processed quasi-realtime. Many pixel-based
imaging algorithms, such as the widely-used CLEAN [3] algorithm, are not scalable to the
size of the required images and perform very slow in high resolution scenarios. There-
fore, there is an urgent need for new efficient imaging algorithms. Moreover, regardless
of the amount of collected data, there is an inherent loss of information in the measure-
ment process due to physical limitations. Therefore, to recover physically meaningful
images additional information in the form of constraints and regularizing assumptions
are necessary. The central objective of the current dissertation is to introduce advanced
algebraic techniques together with custom-made regularization schemes to speed up
the image formation pipeline of the next generation radio telescopes.

Signal processing provides powerful tools to address these issues. In the current
work, following a signal processing model of the radio astronomical observation process,
we first analyze the imaging system based on tools from numerical linear algebra, sam-
pling, interpolation and filtering theory to investigate the inherent loss of information
in the measurement process. Based on these results, we show that the imaging prob-
lem in radio astronomy is highly ill-posed and regularization is necessary to find a stable
and physically meaningful image. We continue by deriving an adequate model for the
imaging problem in radio interferometry in the context of statistical estimation theory.
Moreover, we introduce a framework to incorporate regularization assumptions into the
measurement model by borrowing the concept of preconditioning from numerical lin-
ear algebra.

Radio emissions observed by radio telescopes appear either as distributed radiation

xi
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from diffuse media or as compact emission from isolated point-like sources. Based on
this observation, different source models need to be applied in the imaging problem
formulation to obtain the best reconstruction performance. Due to the ill-posedness of
the imaging problem in radio astronomy, to guarantee a reliable image reconstruction,
proper modeling of the source emissions and regularizing assumptions are of utmost im-
portance. We integrate these assumptions implementing a multi-basis dictionary based
on the proposed preconditioning formalism. In traditional radio astronomical imaging
methods, the constraints and prior models, such as positivity and sparsity, are employed
for the complete image. However, large radio sky images usually manifest individual
source occupancy regions in a large empty background. Based on this observation, we
propose to split the field of view into multiple regions of source occupancy. Leverag-
ing a stochastic primal dual algorithm we apply adequate regularization on each facet.
We demonstrate the merits of applying facet-based regularization in terms of memory
savings and computation time by realistic simulations.

The formulation of the radio astronomical imaging problem has a direct consequence
on the radio sky estimation performance. We define the astronomical imaging prob-
lem in a Bayesian-inspired regularized maximum likelihood formulation. Based on this
formalism, we develop a general algorithmic framework that can handle diffuse as well
as compact source models. Leveraging the linearity of the radio astronomical imaging
problem, we propose to directly embody the regularization operator into the system by
right preconditioning. We employ an iterative method based on projections onto Krylov
subspaces to solve the subsequent system. The proposed algorithm is named PRIor-
conditioned Fast Iterative Radio Astronomy (PRIFIRA). We motivate the use of a beam-
formed image as an efficient regularizing prior-conditioner for diffuse emission recov-
ery. Different sparsity-based regularization priors are incorporated in the algorithmic
framework by generalizing the core algorithm with iterative re-weighting schemes. We
evaluate the performance of PRIFIRA based on simulated measurements as well as as-
tronomical data and compare to the state-of-the-art imaging methods. We conclude
that the proposed method maintains competitive reconstruction quality with the cur-
rent techniques while remaining flexible in terms of different regularization schemes.
Moreover, we show that the imaging efficiency can be greatly improved by exploiting
Krylov subspace methods together with an appropriate noise-based stopping criterion.

Based on the results from this thesis we can conclude that with the help of advanced
techniques from signal processing and numerical linear algebra, customized algorithms
can be designed to tackle some of the challenges in the next generation radio telescope
imaging. We note that since radio interferometric imaging can be considered as an in-
stance of the broad area of inverse imaging problems, the numerical techniques as well
as regularization methods developed in this dissertation have a direct impact on many
different imaging application areas, such as biomedical and geophysics/seismic imag-
ing.



SAMENVATTING

Fundamentele wetenschappelijke vragen, zoals hoe de eerste sterren gevormd zijn, of
hoe het universum ontstaan is en is geëvolueerd tot zijn huidige toestand, motiveren ons
om zwakke radiosignalen waar te nemen die ons bereiken vanuit de begindagen van het
universum. In de vorige eeuw heeft de radio-astronomie een grote ontwikkeling doorge-
maakt. Belangrijke ontdekkingen over de vorming van diverse hemelobjecten, zoals pul-
sars, zwarte gaten, radiostelsels en quasars zijn het resultaat van radio-astronomische
waarnemingen.

Om hemelobjecten en de bijbehorende astrofysische processen te bestuderen moe-
ten afbeeldingen gemaakt worden. Dit wordt gedaan met behulp van grote arrays van
radiotelescopen. De volgende generatie van radiotelescopen, zoals de Low Frequency
Array Radio Telescope (LOFAR) [1] en de Square Kilometer Array (SKA) [2], leveren toe-
nemend bewijs omtrent de studie van de hemel door hun hoge resolutie en nauwkeu-
righeid van de gemaakte afbeeldingen.

In dit proefschrift bestuderen we radio-astronomische beeldvorming als het pro-
bleem van het schatten van de spatiële verdeling van de intensiteit van de hemel over
het beeldvlak van het array van radiotelescopen, uit de onvolledige en verstoorde waar-
nemingen. De toegenomen gevoeligheid, resolutie en hemelafdekking van de nieuwe in-
strumenten resulteren in nieuwe uitdagingen aan de huidige manier van het maken van
afbeeldingen. Namelijk, de grote hoeveelheid gegevens die de radiotelescoop produ-
ceert kan niet worden opgeslagen en moetequasi-realtime worden verwerkt. Veel pixel-
gebaseerde beeldvormings-algoritmes, zoals het veelgebruikte CLEAN [3] algoritme, scha-
len niet op naar de beeldafmetingen die nu nodig zijn, en worden erg langzaam als hoge
resolutie gevraagd wordt. Het is daarom nodig om nieuwe efficiënte beeldvormings-
algoritmes te ontwerpen. Afgezien van de hoeveelheid gemeten data, is er bovendien
een inherent verlies aan informatie in het waarnemingsproces vanwege fysische beper-
kingen. Om fysisch betekenisvolle beelden te maken is extra informatie nodig, in de
vorm van randvoorwaarden en regularisatie-aannames. Het centrale doel van dit proef-
schrift is het introduceren van geavanceerde algebraische technieken en geschikte vor-
men van regularisatie om de beeldvorming voor de nieuwe generatie van radiotelesco-
pen te versnellen.

Signaalbewerking geeft krachtige gereedschappen om deze problemen aan te pak-
ken. Uitgaande van een signaalbewerkingsmodel van het radio-astronomische waar-
nemingsproces, analyseren we in dit proefschrift eerst het beeldvormingssysteem, met
behulp van gereedschappen uit de numerieke lineaire algebra en bemonstering-,
interpolatie- en filtertheorie, om hiermee het inherente verlies aan informatie in het
meetproces te beschrijven. Dit toont aan dat het probleem van beeldvorming in radio-
astronomie een wiskundig slecht bepaald probleem is, zodat regularisering nodig is om
een stabiel en betekenisvolle afbeelding te krijgen. Vervolgens leiden we een geschikt
model voor het beeldvormingsprobleem af in de context van statistische schattingsthe-
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xiv SAMENVATTING

orie. Bodendien introduceren we een kader waarmee regularisatie-aannames in het
meetmodel ingebracht kunnen worden, door het overnemen van het concept van pre-
conditionering uit de numerieke lineaire algebra.

Radiostraling opgevangen door radio-telescopen is afkomstig ofwel van straling die
uitgesmeerd werd door diffuse media, ofwel door straling van geïsoleerde compacte
puntbronnen. Om hier rekening mee te houden moeten verscheidene bronmodellen
toegepast worden in de formulering van het beeldvormingsprobleem. Omdat dit pro-
bleem slecht bepaald is, is het van het grootste belang dat deze bronstraling en
regularisatie-aannames goed gemodelleerd worden. We integreren deze aannames mid-
dels een multi-basis woordenboek gebaseerd op het voorgestelde preconditionerings-
formalisme.

De randvoorwaarden en voorkennis in traditionele radio-astronomische beeldvor-
mingstechnieken zijn gebaseerd op positiviteit en “schaarsheid” (puntbronnen). Echter,
grote hemelkaarten hebben meestal gebieden met bronnen temidden van grote lege ge-
bieden. Hiervan maken we gebruik door het gebied dat we willen afbeelden te splitsen
in kleinere deelgebieden waar bronnen aanwezig zijn. Gebruik makend van een sto-
chastisch primal-dual algoritme passen we een geschikte regularisatie toe op ieder deel-
gebied (“facet”). Met realistische simulaties demonstreren we de voordelen van deze
facet-geörienteerde regularisatie in termen van verminderde hoeveelheid geheugen en
rekentijd.

De formulering van een radio-astronomisch beeldvormingsprobleem heeft directe
gevolgen voor de kwaliteit van het schattingsprobleem. We definiëren het astronomi-
sche beeldvormingsprobleem als een Bayes-achtig geregulariseerd maximum likelihood
probleem. Gebaseerd hierop ontwikkelen we algemene algoritmische kaders waarbin-
nen zowel diffuse als compacte bronnen behandeld kunnen worden. Gebruikmakend
van de lineariteit van het radio-astronomische probleem stellen we voor om de
regularisatie-operator direct in de systeemvergelijking mee te nemen, door middel van
een preconditioner aan de rechterkant. We gebruiken een iteratieve methode gebaseerd
op projecties op Krylov deelruimtes om het onderliggende systeem van vergelijkingen
op te lossen. Het voorgestelde algoritme noemen we PRIor-conditioned Fast Iterative
Radio Astronomy (PRIFIRA). We motiveren het gebruik van een afbeelding verkregen
door bundelvorming als een efficiente regulariserende prior-conditioner geschikt voor
diffuse bronnen. Diverse regulariserende priors gebaseerd op “schaarsheid” worden in
het algoritmische kader ingebouwd, door het centrale algoritme te herhalen met iteratief
bepaalde wegingen. We evalueren de resultaten van PRIFIRA door middel van gesimu-
leerde metingen en astronomische data, en vergelijken dit met de huidige standaard ge-
bruikte beeldvormingstechnieken. We concluderen dat de voorgestelde methode een
vergelijkbare reconstructie-kwaliteit heeft, terwijl het flexibel is in termen van de ge-
bruikte regularisatie. We laten ook zien dat de efficientie van beeldvorming drastisch
verbeterd kan worden door gebruik te maken van methodes gebaseerd op Krylov deel-
ruimtes, samen met een geschikte drempel om het algoritme te stoppen.

Gebaseerd op de resultaten van dit proefschrift concluderen we dat door gebruik te
maken van geavanceerde technieken van signaalbewerking en numerieke lineaire alge-
bra, het mogelijk is algoritmes te ontwerpen die toegespitst zijn op de uitdagingen van
beeldvorming met de volgende generatie van radio telescopen. Omdat beeldvorming
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voor radio-astronomie een voorbeeld is voor meer algemene problemen van beeldvor-
ming, zijn de numerieke technieken en regularisatie-methoden die in dit proefschrift
ontwikkeld werden ook van toepassing op veel andere gebieden, zoals biomedische en
geofysische/seismische beeldvorming.
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1
INTRODUCTION

We are just an advanced breed of monkeys on a minor planet of a very average star. But
we can understand the Universe. That makes us something very special.

Stephen Hawking

It all started with the Big Bang! After the explosion in about 13.8 billion years ago, in a
fraction of a second, the universe started to expand and gradually cool down to form the
first particles. After about 300,000 years, the first atoms, mainly hydrogen and helium,
were formed. In the subsequent 6 to 7 hundred million years galaxies and quasars began
to form in an otherwise dark universe. About a billion years ago the first stars began to
shine and the cosmic dawn started. Fast forward to today, astronomers and engineers
work hand-in-hand to build powerful telescopes to unravel the history of the universe
with increasingly more observational evidence.

Figure 1.1 shows an artist’s impression of the stages in Big Bang cosmology. The cos-
mic phenomena and timelines are derived by observing waves from the early universe.
Radio waves are in particular informative due to radio emissions from the neutral hydro-
gen, the first and most abundant element in the universe. These emissions are caused
by a change in spin direction of the electron in a neutral hydrogen (HI) atom and result
in an emission of the 21 cm spectral line (1420 MHz). This discovery had a huge impact
on the importance of radio astronomy. Probing HI resulted in mapping of the Cosmic
Microwave Background (CMB), the massive radiation that followed the Big Bang. CMB
maps provide valuable information about the early universe and is itself the best evi-
dence of the Big Bang theory. Furthermore, due to the expansion of the universe, HI
emissions are observed at different red-shifts (a.k.a. Dopplers). This phenomena helps
astronomers to put a date on cosmic events.

With the success of radio astronomy in resolving mysteries about formation of the
universe, increasingly more accurate and powerful radio telescopes are being developed.
The Square Kilometre Array (SKA) [4] is the most sensitive and accurate radio telescope

3



1

4 1. INTRODUCTION

Figure 1.1: Creation of the universe. (Image courtesy of NASA/WMAP science team)

that has ever been designed. The SKA is a future radio telescope, currently under de-
velopment, that is expected to generate an unprecedented amount of data. Storage and
processing of the SKA data for scientific research purposes are extremely challenging
tasks that need to be addressed before the instrument becomes fully functional.

In this chapter, we give a brief overview of the field of radio astronomy and in par-
ticular radio interferometric imaging. We investigate the challenges of future radio tele-
scopes and introduce the motivation behind the current work and the research ques-
tions we have pursued with the current research.

1.1. RADIO ASTRONOMY
In observational astronomy, electromagnetic (EM) waves originating from cosmic sources,
that impinge on earth are measured with the help of telescopes. Astronomers study the
cosmic objects and phenomena based on these measurements. The received waves oc-
cupy a large portion of the EM spectrum with each frequency range providing a different
view on the cosmos. As an example, different views of the Milky Way galaxy observed at
different frequencies are shown in Figure 1.2.

In the early 1930s, with the discovery of the cosmic radio waves by Karl Jansky, the
field of radio astronomy was born. Radio astronomy (RA) is a branch of astronomy that is
concerned with observations of the sky at radio frequencies using radio telescopes. The
observable radio waves constitute the EM spectrum from around 30 MHz up to 40 GHz
(wavelength 10 m to 7 mm). Waves with higher wavelength than 10 m are blocked by the
earth’s ionosphere and the ones with lower wavelength than about 1 cm are absorbed
by atmospheric gases [6]. Radio waves are minimally affected by the atmosphere (in
contrast to optical waves) as shown in Figure 1.3. Therefore even under cloudy skies and
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Figure 1.2: Multi-wavelength view of the Milky Way galaxy. (Image courtesy of [5])

during daytime observations at radio frequencies can be performed.

Apart from blockage by the atmosphere, optical telescopes only observe the light
emitted from the stars. On the other hand, highly sensitivity radio telescopes can look
back in time by observing weak radio emissions originating from the hydrogen line and
ionized gases even before the first stars were created. These observations provide us with
evidence to study the creation of the universe and formations of the stars. In Big Bang
cosmology, the era when the first stars started forming and the neutral gases started be-
coming ionized again is referred to as the “Epoch of Reionization" (EoR). EoR provides
a fundamental case of study for radio astronomical research. In particular, studies of
HI emissions are fundamental to radio astronomy. These studies have already resulted
in the discovery of the CMB. As can be seen from Figure 1.2, the interstellar medium
appears completely dark (empty) in optical observations. However, at radio frequencies,
this medium is almost entirely filled with a faint background radiation (CMB). CMB is the
oldest detectable radiation in the universe. Furthermore, radio frequency observations
reveal more accurately the scale, structure and dynamics of the galaxies. In particular,
radio galaxies, i.e. active galaxies that emit radio frequencies due to the synchrotron pro-
cess, are best (or only) observable at radio frequencies. As an example, the view of the
radio galaxy Centaurus A at optical as well as radio frequencies is shown in Figure 1.4.
This figure clearly shows that the radio extent of this galaxy (shown as a blue-green radi-
ation) is observable far beyond its optical extent.

1.2. RADIO INTERFEROMETRY
The first purpose-built radio telescope was a 9-meter parabolic dish constructed by Grote
Reber in his backyard in Wheaton, Illinois in 1937. Using this telescope, he conducted
a sky survey which is often considered as the beginning of the field of radio astronomy.
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Figure 1.3: Atmospheric absorption (Image courtesy of [7])

Figure 1.4: From left to right: Centaurus A galaxy at optical frequencies, at radio frequencies and
superposition of the two views. (Image credit: NASA and ESA)

The resolution of a telescope is proportional to the wavelength of observation divided
by its diameter. Radio waves are about 1 million times longer than optical waves. There-
fore, to attain a similar resolution as optical telescopes, very large radio telescopes are
required. Furthermore, radio telescopes must be able to detect weak signals from very
distant objects. As a consequence, sensitivity is a defining factor for radio telescopes.
Sensitivity of a radio telescope is proportional to its total collecting area. Hence, to make
high resolution and high dynamic range images of the radio sky, telescopes with large
apertures and large collecting areas are required.

Building extremely large dishes to achieve high resolution images is impractical. In-
stead, in a technique called radio interferometry (RI), or aperture synthesis, a large tele-
scope is synthesized by combining the received signals from an array of radio telescopes
with smaller apertures [8] as shown in Figure 1.5. In this technique, the aperture of the
resulting telescope is equal to the maximum distance between the individual telescopes
and its total collecting area is the sum of the collecting areas of the individual elements.

Radio interferometry was first introduced by Martin Ryle in 1946 [9] and has become
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Figure 1.5: Interferometry

the principal instrument for the study of distant radio sources. In this technique, arrays
of tens of elements, extending from hundreds of meters to nearly the diameter of the
earth with dimensions up to hundreds of millions of wavelengths are interconnected
and used in the study of the radio sky.

As shown in Figure 1.5, radio interferometry is based on estimating the propagation
time (geometric delay) of celestial signals impinging on the telescope array, as this relates
to the angle of arrival. In this technique, the direction and intensity of cosmic signals are
obtained by measuring the cross-correlation of signals received by an array of telescopes
placed at different locations. Doing so, an image of the radio sky over the Field of View
(FoV) of the telescope array is formed by combining the cross-correlations of the tele-
scope pairs that constitute the interferometer. Since the celestial sources are statistically
stationary, not all interferometer elements need to be present simultaneously. In this
regard, in a technique called “earth rotation synthesis" [8] the earth’s rotation is used to
collect more measurement points. Moreover, radio telescopes can collect observations
over a wide range of frequency channels.

1.3. RADIO INTERFEROMETRIC IMAGING

Based on observations at radio frequencies, celestial sources and phenomena that orig-
inate radio emissions can be studied. To study the celestial objects and the astrophys-
ical processes that are responsible for radio emissions, images of the radio sky must be
formed. Proper astrophysical interpretations require the image to have a high resolu-
tion and dynamic range. The objective of radio interferometric imaging is to obtain an
estimate of the intensity and Direction of Arrival (DoA) of the celestial sources over the
FoV of the telescope array. This translates to a linear inverse problem: given the radio
telescope measurements the aim is to invert the measurement process to attain an es-
timate of the intensity of the celestial sources that originated the observed radio waves.
The measurement process in radio astronomy can be described as a linear measurement
equation of the form

r̃ = Mσ+e (1.1)
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where σ is the image of the radio sky to be estimated based on correlation data r̃. M
describes the measurement process and e is the noise affecting the measurements. This
equation will be described in more detail in Chapter 2. A schematic of the inverse prob-
lem in radio astronomy is shown in Figure 1.6.

Figure 1.6: Inverse problem in radio astronomy

In this figure, dirty image refers to the image obtained by back-projecting the re-
ceived signals by multiplication with MH . As can be seen from the figure, the dirty image
contains many artifacts and cannot be accepted as a good estimate of the true radio sky.
One major issue in radio interferometric imaging is the sparse sampling of the mutual
coherence by the available baselines. Due to the physical limitations of the radio tele-
scopes, the measurement set is inevitably incomplete and due to the inherent loss of
information in the measurement process the inverse problem is ill-posed. Therefore,
trying to directly invert the measurement process to obtain an estimate of the sky map
results in noise amplification. Therefore, to achieve astronomically plausible images,
side information and constraints available about the sky image need to be incorporated
in the imaging process. This ensures to contain the noise amplification effect on the in-
tensity estimate to within the bound as dictated by the constraints. Therefore, correct
regularizing assumptions are required to ensure a unique and physically meaningful sky
map estimate.

The measurement accuracy is further degraded by propagation and instrumental
defects. These issues are mainly addressed in the calibration process that is done be-
fore imaging and/or in combination with the imaging process. In spite of complicated
calibration procedures, radio telescope measurements are unavoidably affected with er-
rors [10]. As a result of these issues, advanced and expensive processing, for both image
reconstruction and calibration, is necessary to reconstruct meaningful images of radio
sources from the incomplete, inexact and noisy data. [10]

Finally, inverse problems are not restricted to radio interferometric imaging. Similar
problems arise in different imaging fields where an array of sensors is used to make in-
direct observations of an object by observing waves originating (or scattered) from that
object. These fields include, but are not restricted to, biomedical imaging (tomography,
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ultrasound, etc.) and geophysics/seismic imaging. The mathematical techniques devel-
oped for one field can be easily carried over to another field with minor changes. There-
fore, advances in imaging techniques in radio astronomy will also have a direct impact
on the related imaging areas.

1.4. NEXT GENERATION RADIO TELESCOPES
Since the invention of radio interferometry in 1946, increasingly larger and more sen-
sitive radio interferometers are being built with the aim to achieve high resolution and
high dynamic range images of the radio sky. Driven by ambitious science goals, cur-
rently the Square Kilometre Array (SKA) is being designed and is expected to be the
largest and most sensitive radio telescope that has been built to date [4]. The SKA con-
tains several instruments that together cover most of the radio spectrum. The telescope
sites are planned to be in the southern hemisphere, in radio-quite zones in Southern
Africa and Australia. Some of the path-finders and precursors of the SKA are currently
in function providing high resolution, high dynamic range and wide field of view obser-
vations of the radio sky. These telescopes include, but are not limited to, Australian SKA
Pathfinder (ASKAP) [11] and the Murchison Wide-field Array (MWA) [12] in Western Aus-
tralia, MeerKAT [13] and Hydrogen Epoch of Reionization Array (HERA) [14] in Southern
Africa and the Low Frequency Array (LOFAR) [1] in Europe. Figure 1.7 shows an overview
of these telescopes.

1.5. SKA OVERVIEW
The broad goal of the SKA is to study the history of the universe in more detail. In fact,
the main question that derived the design and construction of the SKA was “What size
radio telescope would it take to permit us to read the history of the Universe as written in
the language of its most abundant constituent, Hydrogen?" [18]. The answer is reflected
in the name of the instrument, one square kilometer.

1.5.1. SCIENCE CASES
While a broad group of engineers are designing and implementing the SKA, astronomers
are identifying in more detail the science goals to be achieved from this large and mul-
tidisciplinary project. The astrophysical goals expected to be achieved with the SKA are
detailed in [18]. Some of the key scientific drivers of the SKA are as briefly stated below.

• Investigating how the very first stars and galaxies formed just after the big bang by
probing the EoR based on observations of the HI in much greater detail.

• Studying the galaxy evolutions by probing neutral Hydrogen using both wide and
deep surveys of the galaxy.

• Challenging Einstein’s general theory of relativity to the limits by probing into ex-
treme environments such as black holes and orbiting neutron stars by the help of
high precision pulsar timing to observe the gravitational waves.

• Helping scientists understand the nature of a mysterious force known as the dark
energy with more observational evidence to model this phenomenon.
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(a) ASKAP (b) MWA

(c) MeerKAT (d) HERA

(e) LOFAR

Figure 1.7: New generation radio telescope arrays (images courtesy of CSIRO [15], the SKA Telescope [16] and
LOFAR [17])
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• Understanding the vast magnetic fields which permeate the cosmos (cosmic mag-
netism) and have a vast influence on the cosmic processes by providing a detailed
magnetic map of the Milky Way.

• Observing the bursting sky to map the universe’s plasma content by the study of
fast radio bursts.

• Understanding why the rate of star formation has changed over the course of the
universe by detecting signals and making resolved images of super star clusters
when the universe was 0.5 to 1 billion years old.

• Studying the formation of the planets from coalescing particles by observing at
exact radio frequencies matched to the size of the particles.

Apart from these main science goals, the increased observational power of the SKA
may lead to discoveries of new astrophysical phenomena [19, 16].

1.5.2. THE INSTRUMENT
The science cases of the SKA can be divided into imaging and non-imaging cases [20].
The imaging cases are concerned with providing high accuracy sky images from which
quantities such as source count or background noise level can be inferred. The non-
imaging cases deal with the transient sky and short-time phenomena such as pulsars
and bursts. In this dissertation, we focus on the imaging cases.

For imaging purposes, the SKA is expected to produce large images with more than
108 pixels and a dynamic range of over 60 dB [21]. It will be one to two orders of mag-
nitude more sensitive than the current radio telescopes. To achieve the high resolution
requirements, the SKA will be composed of a large aperture consisting of millions of
coherently connected antennas extended over an area of about 3000 kilometers. Fur-
thermore, to provide the required sensitivity, the SKA has a large total collecting area of
about one square kilometer [4]. The SKA is composed of several instruments that to-
gether cover a large frequency band between 50 MHz to 20 GHz. [16]. The antennas
used to build the aperture array for the SKA are composed of sparse aperture arrays and
dense aperture arrays for low frequencies, parabolic reflectors with phased array feeds
and reflectors with single pixel feeds [4].

The design and construction of the SKA is divided into two phases. Phase-one SKA
(SKA1) baseline design is detailed in [19] followed by a more feasible re-baselined design
detailed in [22]. The exact design for the second phase of the SKA is still under consider-
ation and is expected to follow the current phase-one design with more collecting area
and larger maximal baselines. The most accurate design of SKA currently available is
the re-baselined SKA1 design. SKA1 will be located in South Africa and Australia con-
taining two different instruments. The Australian and South African core arrays are re-
spectively called “SKA1-LOW" and “SKA1-MID" denoting they operate in low-frequency
and mid-frequency range of the SKA, respectively. Both of these core arrays contain re-
mote stations. Some of the specifications of these instruments, together with an artist’s
impression of the telescope types are shown in Figure 1.8. At the time of writing, one
SKA1-LOW station has been commissioned, as well as 64 dishes for the SKA1-MID [23].
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SKA1 MID (image courtesy of [24]) SKA1 LOW (image courtesy of [25])

Figure 1.8: SKA1 instruments

1.5.3. IMAGING AND DATA REDUCTION PIPELINE
The imaging science cases heavily depend on efficient signal and image processing of
the SKA. Focusing on the imaging science cases, a potential imaging pipeline for SKA
instruments, similar to the current processing pipeline for LOFAR has been described
in [16, 26]. The data acquisition and signal processing steps are broken down into three
main stages: (i) Station Processing, which involves digitalization of the station data and
division into frequency channels, (ii) Central Signal Processing (CSP), which involves
the formation of the raw correlation data from the station signals and (iii) Science Data
Processing (SDP), where the calibration and imaging operations are performed to form
radio astronomical images. In the next chapter we will discuss the data model and the
processing pipeline in more detail.

1.5.4. IMAGING CHALLENGES
The imaging science requirements of the SKA are very ambitious and result in an excep-
tional need for accurate measurements. On the other hand, the increased sensitivity,
resolution and sky coverage of the new instruments pose additional challenges to the
current radio astronomical imaging processing pipeline.

A wide field of view of the individual antennas of the phased array telescope ele-
ments, long non-coplanar baselines, very large amounts of data and the required com-
puting power with low energy consumption are among the technical challenges of the
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SKA. More precisely, to satisfy high fidelity imaging requirements of radio interferomet-
ric images, next generation telescopes are expected to produce streams of extremely
large data volumes. The expected data volumes for SKA1-MID instrument is 2 terabytes
per second and for the low-frequency instrument is 157 terabytes per second [16]. These
data volumes cannot be stored for long astronomical observations and have to be pro-
cessed and reduced by post-processing in near-realtime [20, 26]. The acquired data del-
uge pushes the computing requirements of the SKA to Exascale limits [21]. Transport
of the large amount of data and the processing power required to form astronomically
sound images from the captured data introduce significant challenges. These issues
make the SKA a data and compute-intensive application.

Image formation is the main computational bottleneck of the SKA. On the other
hand, image formation provides a means of data reduction by performing transforma-
tion from the size of the data to image size. As a result, the burden in dealing with large
volumes of data is shifted to imaging algorithms. These algorithms are required to be
extremely efficient in dealing with data and produce reliable high fidelity images in soft-
realtime. However, the current imaging algorithms are not scalable to the image and
data size requirements of the SKA. Furthermore, the imaging computational require-
ments imposed by the SKA are not affordable by the current high performance comput-
ers and pushes the computational requirements to Exascale limit. Therefore, imaging al-
gorithms have to be adjusted to the scale of SKA to reduce the burden from the hardware
without sacrificing the quality of the reconstructed image. Many pixel-based imaging
algorithms, such as the widely-used CLEAN [3] algorithm, are not scalable to the size of
the required images and perform very slow in high resolution scenarios. Therefore, there
is an urgent need for new efficient imaging algorithms.

Moreover, regardless of the amount of collected data, there is an inherent loss of in-
formation in the measurement process due to the physical limitations. Therefore, to
recover physically meaningful images additional information in the form of constraints
and regularizing assumptions are necessary. Regularization is applied by imposing prior
knowledge and assumptions about the sky map on the solution of the imaging problem.
These prior assumptions depend on the science case under study. Choosing a correct
regularization that can be applied in an efficient manner is very important for the next
generation of radio telescopes.

1.6. SCOPE OF THIS DISSERTATION
In this section, we present the scope, goals and research questions pursued in this dis-
sertation. In addition, we give a brief summary of the main results from each chapter.

1.6.1. DRIFT
The work presented in this dissertation was supported by the NWO DRIFT (Data Reduc-
tion and Image formation for Future radio Telescopes) project under the context of the
ASTRON-IBM DOME project [27] collaboration. Netherlands Institute for Radio Astron-
omy (ASTRON) and IBM are co-developing a computing system that is expected to be-
come the IT backbone of the SKA. They face many hurdles how to gather, transmit, store
and analyze an incredible volume of radio signals generated by the SKA. This project



1

14 1. INTRODUCTION

is considered as the ultimate big-data challenge and is introduced under the name of
Big Bang Big Data (BBBD). The purpose of DRIFT was to consider novel processing and
imaging algorithms that are feasible at the scales required by the SKA.

1.6.2. PROBLEM STATEMENT AND RESEARCH GOALS
Image formation is the most computationally expensive step in the SKA processing
pipeline [26]. Imaging methods are implemented in the SDP pipeline as iterative algo-
rithms consisting of many iterations of transforms between the domain of correlation
data and the image. Massive data sizes of the SKA cause these repeated steps to be
very demanding in terms of both amount of computations and storage. As analyzed
by Jongerius et al. [26], the image-data domain transform operations are expected to be
responsible for about 50% of the compute load of the SKA [20]. Furthermore, due to
the unprecedented data volumes, current storage facilities are not able to store the data
and there is a need for fast imaging algorithms that are able to process the data in near-
realtime. Near-realtime means that the observations must not be halted due to process-
ing of the data. Furthermore, reliable image reconstruction for the science cases of the
SKA (high sensitivity and dynamic range) requires novel regularization schemes. There-
fore, efficient and accurate regularization methods need to be integrated in the imaging
algorithm.

Based on these arguments, the main requirements of the image formation algorithms
for the next generation radio telescopes can be summarized in three categories: (i) com-
putationally efficient, (ii) near-realtime performance and (iii) reliable and accurate regu-
larization. In this context, the main question of the current dissertation is how to design
novel imaging algorithms for the SKA science cases that are fast, efficient and scalable to
the extent of the SKA and produce reliable results? In consequence, the main aim of the
current work is to introduce advanced algebraic techniques together with custom-made
regularization schemes to speed up the image formation pipeline of the next generation
radio telescopes.

The main research question can be further broken down into a number of research
objectives that are pursued in this dissertation.

• A framework for introducing prior knowledge on the image (beyond simple point
sources) as required to regularize the ill-posed inversion problem;

• New efficient numerical techniques to solve the resulting optimization problems
in quasi-realtime;

• Advanced regularization methods for scalable imaging.

The solutions are in turn required to be accurate (free of artifacts), robust, computa-
tionally efficient, scalable, fully automated yet with some tuning flexibility.

1.6.3. OUTLINE AND CONTRIBUTIONS
In this dissertation, we focus on introducing new imaging methods for the imaging
pipeline of the next generation radio telescopes. Therefore, we consider the radio in-
terferometric imaging problem in much detail. We present the topics discussed in each
chapter of this dissertation in the following outline.
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Chapter 2: In this chapter, we introduce the radio interferometric measurement model,
in familiar terms for astronomers as well as in array signal processing formulations and
show both perspectives result in the same discrete measurement model. We further align
the measurement model with the proposed processing pipeline of the SKA. We inter-
pret the measurement equation from the point of view of inverse problems and show
the analogy with compressive second-order statistic estimation. We finalize the chapter
with introducing two main statistical estimation frameworks for the imaging problem
formulation.

Chapter 3: In this chapter, we analyze the imaging system based on the measurement
model developed in Chapter 2 to investigate the identifiability of the sky intensity dis-
tribution based on the measured telescope data. We conclude that the radio interfer-
ometric imaging problem is highly ill-posed and thus finding a numerically stable and
physically meaningful solution requires regularization. We continue by introducing reg-
ularization methods and reviewing some common regularization methods applied in
RA. Furthermore, we borrow the concept of preconditioning from numerical linear alge-
bra and introduce a framework to incorporate regularization assumptions into the mea-
surement model.

Chapter 4: In this chapter, we start our quest towards efficient regularization for radio
interferometric imaging by proposing two regularization methods for the direct solu-
tion method. The first method, benefits from a weighted truncation of the eigenvalue
decomposition of the image deconvolution matrix and the other is based on the prior
knowledge of the “dirty image" using the available data. The latter has the design of the
data-driven regularization method that we apply on the iterative algorithm proposed
later on in Chapter 5. The methods are evaluated by simulations as well as by actual data
from the LOFAR station.

Chapter 5: In this chapter, we present a general algorithmic framework based on a
Bayesian-inspired regularized maximum likelihood formulation of the radio astronom-
ical imaging problem with a focus on diffuse emission recovery from limited noisy cor-
relation data. The algorithm is dubbed PRIor-conditioned Fast Iterative Radio Astron-
omy (PRIFIRA) and is based on a direct embodiment of the regularization operator into
the system by right preconditioning. The resulting system is then solved using an it-
erative method based on projections onto Krylov subspaces. We motivate the use of
a beamformed image (which includes the classical “dirty image”) as an efficient prior-
conditioner. Iterative reweighting schemes generalize the algorithmic framework and
can account for different regularization operators that encourage sparsity of the solu-
tion. We show the generality of the proposed method in terms of regularization schemes
while maintaining a competitive reconstruction quality with the current reconstruction
techniques. Furthermore, we show that exploiting Krylov subspace methods together
with proper noise-based stopping criteria results in a great improvement in imaging ef-
ficiency.
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Chapter 6: In this chapter, we present some further realistic simulation results to com-
pare PRIFIRA with the state-of-the-art radio interferometric imaging techniques. Fur-
thermore, we test the performance of PRIFIRA on data sets from (i) a single station of
LOFAR and (ii) core LOFAR stations (Superterp).

Chapter 7: In this chapter, we introduce a remedy on the design of a right precondi-
tioner for differentiating between point sources and extended emissions that can co-
exist in a radio interferometric image. We show that by designing a multi-dictionary ba-
sis we can guarantee super-resolution recovery for point sources as well as reliable recov-
ery of extended emissions. In a preliminary effort, we generalize the greedy method of
active-set to incorporate multi-dictionary extensions. Furthermore, we apply the multi-
dictionary extension on the PRIFIRA-based sparse recovery methods presented in Chap-
ter 5.

Chapter 8: In this chapter, we focus on introducing advanced and scalable regular-
ization assumptions into the radio interferometric imaging problem. More precisely,
we propose a scalable regularization scheme by splitting the image under scrutiny into
source occupancy regions which we call facets. Each facet incorporates its own complex
regularization assumptions. Leveraging a stochastic primal dual algorithm, we show the
potential merits of applying facet-based regularization on the radio-interferometric im-
ages which results in both computation time and memory requirement savings.

Chapter 9: In this chapter, we present a summary of the main results and conclude the
dissertation. Furthermore, we suggest some possible future directions for radio interfer-
ometric imaging with the future radio telescopes.

1.6.4. LIST OF PUBLICATIONS
Some of the works presented in this dissertation have already resulted in publications in
a journal as well as conferences/workshops. A list of the publications are as follows.

JOURNALS

• S. Naghibzadeh and A.-J. van der Veen, “PRIFIRA: General regularization using
prior-conditioning for fast radio interferometric imaging". In Monthly Notices of
the Royal Astronomical Society (2018).

• “Semi-realtime joint covariance sketching and imaging for future radio telescopes".
In preparation.

CONFERENCES AND WORKSHOPS

• S. Naghibzadeh and A.-J. van der Veen, “Bayesian-inspired regularization using
prior-conditioning for fast radio interferometric imaging". In proceedings of the
international BASP frontiers workshop, February 2019, invited poster.

• S. Naghibzadeh, A. Repetti, A.-J. van der Veen, Y. Wiaux, “Facet-Based Regulariza-
tion for scalable radio-interferometric imaging". In proceedings of the 26th Euro-
pean Signal Processing Conference (EUSIPCO), pp. 2696−2700, September 2018.
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SAP), pp. 1−5, December 2017.
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reconstruction with iteration regularized Krylov subspaces and beamforming-based
prior conditioning". In Proceedings the 42nd IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) , pp. 3385−3389, March 2017.

• S. Naghibzadeh, A. Mouri Sardarabadi and A.-J. van der Veen, “Point and beam-
sparse radio astronomical source recovery using non-negative least squares". In
Proceedings of the 9th Sensor Array and Multichannel Signal Processing Workshop
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image reconstruction with regularized least squares". In Proceedings the 41st IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) , pp.
3316−3320, March 2016.





2
DATA MODEL AND PROBLEM

FORMULATION

Every man takes the limits of his own field of vision for the limits of the world.

Arthur Schopenhauer

In this chapter, we introduce the signal processing data model for radio interfero-
metric imaging. The imaging techniques developed in the rest of the chapters are based
on the data model introduced in this chapter. We start by introducing some of the most
important symbols, notations, operators and matrix relations used in this chapter and
the rest of the thesis. We continue with describing the radio interferometric imaging
measurement model that is widely used in the astronomical society. Furthermore, we
consider radio interferometric imaging as an array processing problem and describe the
array processing data model for radio interferometric imaging.

Moreover, based on the developed data model for radio interferometric imaging, we
discuss the properties of the radio astronomical imaging problem from the point of view
of inverse problems and show the analogy with the power spectrum estimation problem.
Furthermore, we formulate the radio interferometric imaging problem as an intensity
estimation problem.

19



2

20 2. DATA MODEL AND PROBLEM FORMULATION

2.1. SYMBOLS, NOTATIONS, OPERATORS AND MATRIX RELATIONS

2.1.1. SYMBOLS

a, A plain lowercase and uppercase letters denote scalars
A calligraphic letters denote continuous functions
A calligraphic boldface letters denote operators
a boldface letters denote column vectors
A boldface capital letters denote matrices
ai for a matrix A denotes the i th column of A
ai , j for a matrix A denotes the i , j th entry
1 vector with all the elements equal to 1
I identity matrix of appropriate size
Ip p ×p identity matrix
ei vector with all zero elements with the i th element equal to one
0 vector with all the elements equal to 0
j square root of −1

2.1.2. OPERATORS

E {·} expectation operator
(·)T transpose operator
(·)∗ complex conjugate operator
(·)H Hermitian transpose
(·)† Moore-Penrose psuedo-inverse operator
‖a‖p p-norm of a vector a defined as ‖a‖p

p =∑ |ai |p
‖A‖F Frobenius norm (matrix norm)
trace(A) computes the sum of the diagonal elements of a matrix
det(A) the determinant of the matrix A
vect(A) stacks the columns of the argument matrix A to form a vector
vectdiag(A) stacks the diagonal elements of the argument matrix A to form a vector
diag(a) is a diagonal matrix with its diagonal entries from the argument vector a
diag(A) = diag(vectdiag(A)) if the argument is a matrix (A)
⊗ Kronecker product
◦ Khatri-Rao product (column-wise Kronecker product)
¯ Hadamard (element-wise) product
R the set of real numbers
Rm×n the set of real-valued m by n arrays
C the set of complex numbers
∈ belongs to

2.1.3. MATRIX PRODUCT RELATIONS

Kronecker, Khatri-Rao and Hadamard products are used in this thesis. Based on model
matrices A and B, these products are defined here and some useful relations are pre-
sented. Assuming ai j is the element of A corresponding to the i th row and j th column,
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the Kronecker product is defined as

A⊗B =

a11B a12B · · ·
a21B a22B · · ·

...
...

. . .

 . (2.1)

The Khatri-Rao product is a column-wise Kronecker product defined as

A◦B = [a1 ⊗b1,a2 ⊗b2, · · · ] (2.2)

where ai and b j denote the i th and j th columns of A and B, respectively. Furthermore,
the Hadamard product of A and B is defined as

A¯B =

a11b11 a12b12 · · ·
a21b21 a22b22 · · ·

...
...

. . .

 . (2.3)

The following properties are used throughout the thesis (for matrices and vectors
with compatible dimensions):

(BT ⊗A)vect(X) = vect(AXB)

(B⊗A)H = (BH ⊗AH )

(B⊗A)−1 = (B−1 ⊗A−1)

(BT ◦A)x = vect(Adiag(x)B)

(BC⊗AD) = (B⊗A)(C⊗D)

(BC◦AD) = (B⊗A)(C◦D)

(BH C¯AH D) = (B◦A)H (C◦D)

vectdiag(AH XA) = (A∗ ◦A)H vect(X) .

2.2. MEASUREMENT MODEL FOR IMAGE FORMATION
In this section, we discuss the data model (i) as developed in the conventional radio
astronomy and (ii) from an array processing point of view. Furthermore, we compare the
two approaches and show that they result in a similar discrete measurement model. The
measurement equation is the cornerstone for developing imaging and data reduction
algorithms.

2.2.1. MEASUREMENT MODEL IN CONVENTIONAL RADIO ASTRONOMY
An interferometer is a device that measures the correlation of the electric field received
by a pair of telescopes (antennas). The electric field is generated from the celestial sources.
Due to the large distance of celestial sources form the earth, in the far field context,
the sources are assumed to be placed on an imaginary sphere of unit radius around the
earth, called the “celestial sphere".

We consider a setting in which an interferometer is observing a portion of the celes-
tial sphere at a narrow frequency band centered at f . Figure 2.1 shows a schematic of a
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Correlator

τ

s

s

b

Figure 2.1: A two-element interferometer

two-element interferometer. The unit norm vector s denotes the direction of arrival of a
celestial source. We denote the intensity (brightness) of the source as a function of s by
I (s). In this setting, denoting the difference between the antenna pair locations by b, for
a narrow-band observation, this difference in location determines a delay computed as

τ= sT b
c , with c indicating the speed of light. Therefore, the corresponding phase delay is

computed as 2π f τ= 2πsT b/λ where λ= c
f is wavelength of the impinging electric field.

Normalizing the difference between the antenna pair locations by the wavelength, we
call bλ = b/λ the baseline vector.

Correlations, a.k.a. “visibilities", are complex quantities that are related to the sky
brightness distribution via the relation [28]

V (bλ) ≈
∫

4π
I (s)e−2π j sT bλdΩ . (2.4)

In this relation, V (bλ) is the visibility as a function of the frequency-dependent baseline
vector bλ and dΩ is the surface area over the sphere. For this integration it has been
assumed that the celestial sources are spatially incoherent. Therefore, the elements dΩ
over the source intensity distribution are uncorrelated and the integration can be ap-
plied. The integration in Equation (2.4) is calculated over the entire celestial sphere (4π).
However, in practice the FoV is limited by factors such as the primary beam of the inter-
ferometer. Therefore, the integration region can be reduced to the FoV of the telescope
array. The FoV is mainly defined based on the angular scale of the primary beam of the
radio interferometer [8, 29].

Observing Equation (2.4), we see a relationship in the form of a Fourier transform
between the intensity distribution function I (s) and the visibility function V (bλ) which
is known as the Van-Cittert-Zernike theorem for radio interferometry [8]. As a result, by
measuring the complex visibility function of an astronomical object, we can reconstruct
a map of two-dimensional brightness distribution of the object.

“Synthesis mapping" or imaging is to determine the intensity distribution I (s) for
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the area of interest on the sky using the earth-bound visibility measurements V (bλ). In
synthesis imaging, a point at the center of the field of view of the interferometer is chosen
as the “phase reference position" or “phase tracking center". The position of this point
in the FoV is denoted by the unit norm vector s0. The position of any other point s in
the FoV is calculated with respect to the phase reference point, i.e., s = s0+% as shown in
Figure 2.2. Denoting the antenna collecting area in direction s0 as A0 and introducing the

s0
s

dΩ
FoV

celestial sphere

%

Figure 2.2: Source and interferometer geometry

normalized reception pattern as AN (%) = A(%)/A0, the complex visibility, with amplitude
|V | and phase φv , is defined as

V (bλ) = |V |e jφv =
∫

FoV
AN (%)I (%)e−2π j%T bλdΩ , (2.5)

[8, 28, 30]. We can infer from this equation that V (bλ) =V ∗(−bλ).
To identify the measurement equation for radio interferometric imaging a Cartesian

coordinate system is used. This coordinate system is shown schematically in Figure 2.3
for a two-element interferometer. We assume the antennas are placed in a field on the
surface of the earth denoted by M . A point in the approximate center of the measure-
ment field is chosen as the origin of the coordinate system, denoted by O. Assuming a
field of view F on the celestial sphere, a point at the approximate center of the field of
view is chosen as the phase reference center, denoted by C [31], with the vector s0 point-
ing towards it. The antennas in the interferometer track the phase reference center over
the course of observation. In the conventional coordinate system in radio astronomy, a
right-handed Cartesian coordinate system is used to measure the baseline vector. The
magnitude of the baseline vector is represented in units of wavelength at the center fre-
quency of the observing band. The components of the baseline coordinate system are
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(u, v, w). In this system, the w axis points towards the phase reference center and the w
component is measured in direction s0. The u and v axes lie in a plane perpendicular
to the direction of the phase reference center and the w axis. This plane is called the
u − v-plane or baseline plane.

u

v
w

l
m

O

M

s0

C

North celestial pole

C
el
es
ti
al
sp
he
re

F

Figure 2.3: Coordinate system of the baseline and the source under observation

The intensity distribution is measured by projecting the celestial sphere on a plane
parallel to the u − v plane centered at C . This plane has axis l and m parallel to u and
v in the baseline plane. Positions on the sky are defined in the l and m components
which are the direction cosines measured with respect to the u and v axis, respectively.
In this notation, l is the dimension along the equatorial plane pointing towards the east
and m is pointing towards the north. It is also customary in radio interferometry to
introduce a third auxiliary dimension along the reference direction s0, called n where
n =

p
1− l 2 −m2. This dimension accounts for the spherical nature of the image plane

by posing limitations on the values of l and m. The (l ,m,n) components describe the
direction cosines of a source.

Starting from Equation (2.5) and considering the aforementioned Cartesian coordi-
nate system, the parameters in Equation (2.5) in terms of the coordinate system are pre-
sented as

bT
λ s0 = w (2.6)

bT
λ s = ul + vm +w

√
1− l 2 −m2 (2.7)

bT
λ%= bT

λ s−bT
λ s0 (2.8)

dΩ= dldmp
1− l 2 −m2

(2.9)
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where n =
p

1− l 2 −m2 is the third direction cosine with respect to the w axis and dl and
dm are the increments on the image plane and define a square cross section. Inserting
in Equation (2.5) and indicating bλ = [u, v, w]T , the visibility measurements V (u, v, w)
and the intensity distribution I (l ,m) are related as

V (u, v, w) =
∫

l

∫
m

AN (l ,m)I (l ,m)e− j 2π[ul+vm+w(n−1)] dl dm

n
. (2.10)

This equation shows how the complex visibility function is related to the “modified" in-
tensity AN (l ,m)I (l ,m). This equation is valid for a narrow frequency band around the
center frequency f .

There exists a more general treatment of the radio interferometric measurement equa-
tion which considers wave polarization, Direction-Dependent Effects (DDEs) and Di-
rection Independent Effects (DIEs) given by Hamaker et al. [32] and more recently by
Smirnov [33]. These effects are mainly considered in the calibration process. In this the-
sis, we focus on the imaging aspect of the measurement equation and therefore abstract
the DDEs and DIEs from the measurement equation. Furthermore, the primary beam
AN (l ,m) and the effect of the w component of the telescope array can also be consid-
ered as DDEs and abstracted from the imaging problem.

DISCRETIZATION OF THE MEASUREMENT EQUATION

In practice, the synthesis telescope obtains discrete samples of the visibility function
in the baseline plane. An intensity map (image) of radio sources can be reconstructed
based on these samples [10]. The visibility measurements are time dependent due to
the rotation of the earth. To capture more visibility measurements, the earth’s rotation
can be used to gain more visibility measurements by tracking the phase reference center
over the course of observation which can last up to 6 to 12 hours. This process is called
“earth rotation synthesis" [8, 28].

Assuming a single frequency band and one snapshot of visibility data, we also dis-
cretize the FoV over a grid of pixels to obtain the discrete version of the measurement
equation based on the measured visibility samples. An example of a pixel grid on (l ,m)
of half of the celestial sphere for l 2 +m2 ≤ 1 is shown in Figure 2.4.

1
0.5

l

0
-0.5

-1-1

-0.5

0

m

0.5

1

0.8

0.6

0

0.4

0.2

1

n

(a)

l
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 2.4: (a) Grid of the celestial sphere based on l and m direction cosines, (b) top view
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Assuming M visibility measurements, and a pixel size of ∆l and ∆m , defined based
on the resolution of the telescope array, and the total number of pixels Nl and Nm over
the l and m dimensions of the image, neglecting the DDEs, the discrete version of Equa-
tion (2.10) can be stated as

V (uk , vk , wk ) =
Nl∑

p=1

Nm∑
q=1

I (lp ,mq )e
−2π j (uk lp+vk mq+wk (

√
1−l 2

p−m2
q−1) ∆l∆m√

1− l 2
p −m2

q

,

k = 1,2, · · · , M .

(2.11)

In another way, expressing the total number of pixels over the complete grid in l and
m dimension as Q = Nl ×Nm and neglecting the constant factor ∆l∆m, the discretized
measurement equation becomes

V (uk , vk , wk ) =
Q∑

q=1

I (lq ,mq )√
1− l 2

q −m2
q

e
−2π j (uk lq+vk mq+wk (

√
1−l 2

q−m2
q−1)

,

k = 1,2, · · · , M .

(2.12)

Vectorizing the visibility samples in vector r as

r =


V (u1, v1, w1)
V (u2, v2, w2)

...
V (uM , vM , wM )

 , (2.13)

Equation (2.12) can be stated in matrix form as

r = Mσ , (2.14)

where

σ=



I (l1,m1)√
1−l 2

1−m2
1

I (l2,m2)√
1−l 2

2−m2
2

...
I (lQ ,mQ )√
1−l 2

Q−m2
Q


, (2.15)

and

mk,q = e
−2π j (uk lq+vk mq+wk (

√
1−l 2

q−m2
q−1)

(2.16)

is the (k, q)-th component of the kernel matrix that relates the discretized intensity points
over the image grid to the visibility samples. The kernel matrix M is known for a certain
configuration of the source and array. If the telescopes are not tracking the reference
source, we can express the (k, q)-th component of the kernel matrix as

mk,q = e
−2π j (uk lq+vk mq+wk

√
1−l 2

q−m2
q )

. (2.17)



2.2. MEASUREMENT MODEL FOR IMAGE FORMATION

2

27

Expressing the kth baseline components in a vector as bk = [uk , vk , wk ]T and source
components for the qth pixel as

zq =

 lq

mq√
1− l 2

q −m2
q ,

 , (2.18)

the components of the kernel matrix M can be stated in terms of the inner product be-
tween the baseline and source components as

mk,q = e−2π j bT
k zq . (2.19)

In practice, the available visibility data is noisy and non-uniformly sampled. The
imaging problem is to estimate the source σ from the noisy discrete visibility measure-
ments r̂. Therefore, the discrete measurement equation boils down to

r̂ = Mσ+e , (2.20)

where e expresses the measurement noise and the quantization error. As a further com-
ment, measurements from multiple time snapshots and/or frequency bands can be stacked
in the measurement vector r̂.

The aim of radio interferometric imaging is to estimate intensity from the visibility
measurements. This discrete measurement model is widely used in developing imaging
algorithms especially in the context of compressed sensing e.g. [34, 35, 36]. Additive
noise e on the observed visibilities is a result of sky, receiver and ground pick up, etc.
noise. As suggested in Chapter 16 of [28], this noise, to a very good approximation, can
be considered Gaussian having equal variance in the imaginary and real parts of the
complex visibility.

2.2.2. ARRAY PROCESSING FORMULATION
In this section, we develop the array processing data model for radio interferometric
imaging. We build our data model for RA imaging in the array signal processing frame-
work based on prior efforts presented in [37, 38, 39, 40]. The data model is developed
based on a perfectly calibrated array without DDEs and DIEs. We briefly present these
effects in the data model in the next section.

We assume a telescope array of P distinct receiving elements (antennas or beam-
formed stations) with an arbitrary arrangement. The celestial signals are received by the
array elements with different delays depending on the placement of the elements. The
raw analog output signals of the array elements are digitized and divided into narrow
frequency sub-bands. We assume that the narrow-band condition holds, so that prop-
agation delays across the array can be replaced by complex phase shifts. Although the
sources are considered stationary, because of the earth’s rotation the apparent position
of the celestial sources will change with time. For this reason the data is split into short
blocks or “snapshots” of N samples, where the exact value of N depends on the reso-
lution of the instrument. The sampled output station signals of the telescope array are
stacked into P ×1 vectors xk [n], where n = 1, · · · , N is the sample index, and k = 1, · · · ,K
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denotes the snapshot times the frequency channel index (assuming ordered stacking of
frequency channels and time snapshots). We can stack all the short-time samples and
define a data matrix Xk of size P×N . Similarly, assuming Q mutually independent source
signals sq [n] impinging on the array, we stack them into Q ×1 vectors sk [n]. We model
the receiver noise as mutually independent zero mean Gaussian signals stacked in a P×1
vector nk [n].

The output of the telescope array is a linear combination of the source signals and
receiver noise:

xk [n] = Ak sk [n]+nk [n] (2.21)

where Ak = [a1, · · · ,aQ ] of size P ×Q is called the array response matrix, and aq is its qth
column. Ideally, entry (p, q) of Ak follows from the geometric delay of source q arriving
at antenna p:

ap,q = 1p
P

e− j 2π
λ

yT
p zq , (2.22)

where the scaling by
p

P is such that ‖aq‖ = 1. For an incoming monochromatic wave at
frequency f , λ = c

f denotes the wavelength of the received signal, yp is a 3×1 vector of
the Cartesian location of the pth array element (at time-frequency-index k) with respect
to a chosen origin in the field of array, and zq contains the direction cosines of the qth
pixel in the image plane (defined in Equation (2.18)).

In practice, the array also suffers from antenna-dependent gains and direction-
dependent gains that need to be estimated and multiplied with Ak . This estimation is
done in an outer loop (the selfcal loop) and therefore, for the purpose of the research
in this thesis, we can assume that Ak is known (although not necessarily of exactly the
form (2.22)) based on the known geometry of the array elements and the image grid.
Nonetheless, before selfcal has converged, the data will suffer from a model mismatch.

Without loss of generality, we will from now on consider only a single snapshot and
frequency channel k, and will drop the index k. Assuming the signals and the receiver
noise are uncorrelated and the noise on different antennas are mutually uncorrelated,
the data covariance matrix of the received signals is modeled as

R := E {x[n]xH [n]} = AΣsAH +Σn, (2.23)

where Σs = diag{σs } and Σn = diag{σn} represent the covariance matrices associated
with the source signals and the received noise, σs = [σ2

s,1,σ2
s,2, · · · ,σ2

s,Q ]T and

σn = [σ2
n,1,σ2

n,2, · · · ,σ2
n,P ]T . We assume that the receiver noise powersΣn are known from

the calibration process.
An estimate of the data covariance matrix is obtained using the available received

data samples. The sample covariance matrix for a single snapshot is calculated as

R̂ = 1

N

N∑
n=1

x[n]xH [n] = 1

N
XXH , (2.24)

and is used as an estimate of the true covariance matrix R.
The radio astronomical imaging process amounts to estimating the image pixel in-

tensities σ based on the covariance data measured by a telescope array R̂ over the FoV
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of the array. To obtain a linear measurement model, we vectorize the covariance data
model (2.23) as

r = (A∗ ◦A)σ+ rn = Mσ+ rn , (2.25)

where r = vect(R), rn = vect(Rn) = (I◦I)σn, and M = A∗ ◦A is the system matrix of the lin-
ear measurement model of size P 2×Q. Based on (2.22), one element of M corresponding
to the baseline between the i th and j th antenna and the qth pixel is computed as:

mi j ,q = a∗
i ,q a j ,q = 1

P
e j 2π

λ
(yi−y j )T zq . (2.26)

This expression is modified in the presence of calibration parameters (antenna-dependent
gains and direction-dependent gains) which we assume to be known at this point.

Similarly, we vectorize the covariance measurement matrix as

r̂ = vect(R̂) , (2.27)

and compensate r̂ for the (known) receiver noise powers,

r̃ = r̂− rn , R̃ = R̂−Rn . (2.28)

This results in a linear measurement equation for estimating σ based on the measured
r̃:

r̃ = Mσ+e , (2.29)

where e represents the error due to the finite sample modeling of the covariance data. e
is zero-mean with covariance [41]

Ce = E {(r̂− r)(r̂− r)H } = 1

N
(RT ⊗R). (2.30)

For a large number of samples N we can assume that e is distributed according to a zero-
mean complex Gaussian distribution C N (0,Ce ) where Ce = 1

N (RT ⊗R) [41], which will
be estimated from R̂.

Comparing Equations (2.20) and (2.29) we see that the two methods result in a similar
measurement model. However, applying array processing models for the radio interfer-
ometric imaging problem, the structure of the measurement matrix M can be expressed
in terms of the array response vector (as stated in Equation (2.25)). Furthermore, statis-
tics of the noise on the correlation measurements can be inferred from the statistics of
the thermal noise on the array elements.

2.2.3. SOME FURTHER REMARKS AND GENERALIZATIONS
We present some remarks on the measurement model (2.29) and briefly discuss the cases
where the actual radio interferometric measurements may deviate from (2.29) and intro-
duce generalizations to the model.

1. In actual instruments, the autocorrelations of the data are often not formed (or at
least not used for imaging) because they are considered too much contaminated.
In that case, r̃ is not computed from (2.28), but rather by omitting the autocorre-
lation terms from r̂ (they correspond to the nonzero entries of rn). Equation (2.29)
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holds but some rows of M have been dropped. Unfortunately, with the missing
autocorrelation data we lose the estimate for Ce .

However, in the signal processing community, measuring the autocorrelations is
considered essential since without the autocorrelations, R̂ would not constitute
sufficient statistics for the collected data {xk [n]}, i.e., information is lost. If these
autocorrelations are deemed to be “more noisy” then that should be represented in
the data model. Estimates of the variance of the measurements are equivalent in-
formation and usually available in RA via the natural weights [42] or System Equiv-
alent Flux Density (SEFD) [1]. We believe that in any case the autocorrelations
will have been used in the calibration and subsequent whitening of the system
noise, so that we arrive at the implicit assumptions where Rn =σ2

n I and astronom-
ical signals much weaker than the noise. Furthermore, it is shown in [43] that the
Cramer-Rao lower bound for the estimation ofσ increases if the information from
the autocorrelations is not used. This means that we are only able to estimate the
source powers worse than when the autocorrelations are present.

2. Many recent papers on radio astronomy image formation start from (2.20) and
model the covariance of e as spatially white, Ce ∝ I. However, this is correct only
under two assumptions, (i) the additive noise n is much stronger than the astro-
nomical signals s, and (ii) the additive noise is spatially white, Rn = σ2

n I. This
requires a whitening operation after calibration of the antenna-dependent gain
parameters. These assumptions are usually considered valid in radio astronomy
practice.

3. In the general case where we have measurements for multiple time snapshots
and/or frequency channels, assuming the measurements from different snapshots
and channels are uncorrelated, we can stack them into one vector as

r̂ =


r̂1

r̂2
...

r̂K

 . (2.31)

Accordingly, the covariance data model becomes

r =


r1

r2
...

rK

=


M1

M2
...

MK

σ+


rn,1

rn,2
...

rn,K

= Mσ+ rn , (2.32)

and therefore the measurement equation can be stated as

r̂ = r+e

= Mσ+ rn +e
(2.33)

where e = [e1,e2,e3, · · · ,eK ]T and similar as before by defining r̃ = r̂− r̂n we arrive
at Equation (2.29). However, in this case we have a larger amount of data (better
u − v coverage) from multiple frequencies and/or snapshots.
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4. In practice, the radio signals impinging on a telescope array are corrupted by in-
strumental and propagation effects. The measurement model (2.29) is derived
based on ideal and identical array elements by neglecting the propagation effects.
Neglecting these effects in imaging will result in erroneous intensity estimates.

The propagation and instrumental effects can be included in the measurement
model with the aim to compensate for the errors introduced in the imaging. Cali-
bration is the process of compensating (correcting) for these effects. The calibra-
tion procedure is applied on the data before (external calibration) and during (self
calibration) the imaging procedure in the SDP.

We briefly introduce parameters for DIE and DDE calibration in measurement
model (2.29) based on [44, 45, 40, 46]. With a similar setting as in Section 2.2.2, the
array elements are assumed to have the same direction-dependent gains denoted
in matrix form as B = diag([b1,b2, · · · ,bQ ]) where bq is the gain factor towards the
qth source as received by the telescope array. The direction independent gains and
phases are stated as G = diag([g1, g2, · · · , gP ]) where gp = γp e jΦp with γp and e jΦp

are the gain and phase factors on the pth array element, respectively. Therefore,
we can write the output of the telescope array as

x[n] = GABs[n]+n[n], n = 1, · · · , N . (2.34)

where G is the P ×P matrix of direction dependent gains and phases and B is the
Q×Q matrix of direction independent gains. In this case the autocorrelation func-
tion can be stated as

R = GABΣs BH AH GH +Rn, . (2.35)

Assuming known directional response of antennas, B can be absorbed in A. If the
directional gains are not known, the directional response and pixel powers can be
estimated simultaneously by defining

Σ= BΣs BH

= diag([|b1|2σ2
s,1, |b2|2σ2

s,2, · · · , |bQ |2σ2
s,Q ]) = diag(σ).

(2.36)

with real and positive values σ = [σ2
1,σ2

2, · · · ,σ2
Q ]. Therefore, the data model in

(2.35) can be restated as
R = GAΣAH GH +Rn (2.37)

Similarly as before, we can vectorize the covariance data model (2.37) as

r = (G∗A∗ ◦GA)Hσ+ rn, (2.38)

where r = vec(R) and rn = vec(Rn) = (I ◦ I)σn. Subsequently, by vectorizing the
sample covariance matrix, we arrive at the measurement model

r̂ = r+e. (2.39)

The main difference of the data model obtained in this section with the pure imag-
ing data model presented in Section 2.2 is in the presence of the direction-
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independent and the complex direction-dependent gain matrices, G and B, ap-
plied to A to account for the instrumental and propagation effects. DDEs are ap-
plied on the right of A and appear as a multiplication in the image domain as they
are dependent on the direction of the source. DDEs contain effects such as the an-
tenna beams, ionospheric propagation and the non-coplanarity of the array. DIEs
are related to the complex gain (phase and gain) of the individual antennas and
appear on the left of A. The main aim of calibration is to estimate the parameters
in B and G. In fact, if we assume identical array elements with equal gains i.e. G = I
we arrive at a similar measurement model as Equation (2.29).

2.2.4. SKA PROCESSING PIPELINE
We have briefly mentioned the proposed data acquisition and processing pipeline for
the SKA in Chapter 1, Section 1.5.3. We show that this pipeline nicely aligns with the
array processing data model presented in Section 2.2.2. This pipeline is summarized in
Figure 2.5 and its relation to the array processing data model is explained bellow.

Station
Processing

Central
Signal
Processing

Science
Data
Processing

Station data Visibilities Image

Xk R̂k
σ̂

Figure 2.5: End-to-end processing pipeline of the SKA

Station processing Raw analogue measured signals of radio telescopes are digitized,
split into regular narrow frequency channels (sub-bands) of width ∆ f . SKA1-LOW con-
tains phased array telescope systems. In these systems, some antennas are grouped into
a station and mimic a single large telescope by beamforming [22]. Beamforming is an
operation that is performed electronically on the output of the individual antennas in
a phased array that results in pointing the array towards a specific portion of the sky.
This is done by introducing phase delays on the array signals depending on the beam
direction and integrating the resulting signals. After station beamforming, the signals
are time-sampled regularly at the Nyquist rate of 2∆ f Hz. The station data is split into
short blocks of N time samples (depending on the reolution of the instrument). We can
associate the output of this stage to the data matrix Xk .

Central signal processing The measured data from beamformed stations and dishes
are transported to the CSP for correlation. In this step, correlation of the data stream
from all pairs of stations and/or dishes, a.k.a. baselines, are performed and integrated
(time averaged) over a short time span T . The output of this step is the snapshot- and
frequency-dependent sample covariance matrix which we denote by matrix R̂k of size
P ×P .

Science data processing The measured correlations are calibrated to correct for in-
strumental and propagation errors. Furthermore, an image of the radio sky over the
FoV is formed. The output of this step is the radio astronomical image that we indicate
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by vector σ̂. We will focus on this step and design imaging algorithms in the following
chapters.

2.3. INTERPRETATIONS OF THE MEASUREMENT EQUATION
We focus our attention on the linear measurement equation for radio interferometric
imaging presented in Equation (2.29). In radio interferometric imaging, the aim is to
estimate the sky brightness map σ from the measured correlations (or visibilities) r̃. Al-
though the measurement system is linear, due to the existence of noise, r̃ is not in the
range of M. Therefore, to estimate σ we should minimize the distance of r̃ from the
model Mσ. Having shown the connections of radio astronomy with array processing, in
this section we show that we can apply different interpretations to radio interferometric
imaging and therefore benefit from the tools developed in relevant areas for estimating
the intensity distribution from the correlation (visibility) measurements. In particular,
we consider “calibrated" visibility measurements and investigate approaches to estimate
an image based on the visibility measurements.

2.3.1. DISCRETE LINEAR INVERSE PROBLEM
Measurement equation (2.29) describes a linear “forward problem". This means that,
if the true sky intensity distribution is known, correlation (visibility) measurements can
be calculated based on the known measurement process described by the measurement
matrix M. In the imaging process, the objective is to invert the measurement process
to obtain an estimate of the sky intensity distribution from the visibility measurements.
This is an instance from the broad area of “inverse problems" [47]. In this problem, since
we are unable to measure the source intensities directly, we obtain the noisy covariance
measurements by indirect observations from the far field of the sources by the telescope
array pointing at the FoV of interest. Due to the physical limitations of the radio tele-
scopes, the measurement set is inevitably incomplete and corrupted by noise. Due to
the inherent loss of information in the measurement process the inverse problem is “ill-
posed". A problem is said to be ill-posed if (i) the solution to the problem does not exist,
(ii) the solution is not unique, or (ii) the solution is not stable, i.e. it does not depend
continuously on the data.

The inverse problem in radio interferometric imaging can be formulated as to esti-
mate a sky map that agrees with the measured visibility data within a bound imposed
by the level of the noise on the data. This is a linear regression analysis problem. Least
squares is a powerful tool for linear regression analysis problems. The simplest problem
formulation for radio astronomical imaging is based on the Least Squares (LS) formula-
tion. That is

{σ̂} = argmin
σ

∥ r̃−Mσ ∥2
2 , (2.40)

where {σ̂} indicates the set of all the possible solutions when the imaging problem is
underdetermined.

If the problem is underdetermined, the solution to problem (2.40) is not unique. Oth-
erwise, the solution may not exist or if it exists it may be completely deprived of physical
meaning. The latter is due to the propagation and amplification of the noise from the
data to the estimate of the solution [48] and sensitivity of the solution to modeling errors.
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To achieve a physically meaningful solution, it is required to regularize the problem by
imposing constraints on the image based on some prior information.

2.3.2. SECOND-ORDER STATISTICS ESTIMATION
We present this section as a side-track to illustrate the relation of radio interferometric
imaging with compressive covariance sampling. The imaging system in RI is an inco-
herent imaging system in which the sources emit radiations which are received by the
telescope array. Since the emission is incoherent, the narrow-band radiation from dif-
ferent parts of the source can be considered uncorrelated. In incoherent imaging sys-
tems, the intensity distribution of the sources and autocorrelation function in the array
plane are related via a Fourier transform relationship [49], i.e. Equation (2.4). In the
spatial domain, estimating the Power Spectral Density (PSD) corresponds to incoherent
imaging [49] and the PSD can be regarded as the intensity distribution of the sources.

FOURIER TRANSFORM RELATIONSHIP

Radio interferometers perform the transform between two spaces; (i) the real space of
the sky image and (ii) the Fourier space of the visibility measurements. Observations
by radio interferometers are in the Fourier space and the sampling of the Fourier space
depends on the geometry of the telescope array. The largest spatial scale that is mea-
sured by the telescope array (FoV) is determined based on the smallest measured spatial
frequency. Furthermore, the natural sensitivity of the telescope array to different spatial
scales is determined based on the sample density within the measured range [50]. Based
on the power spectrum estimation interpretation, the domain of the intensity image is
called the “real" domain and its transform domain is called the “spatial frequency" or
Fourier domain. Baselines in spatial domain can be regarded as the lags in time domain.

If the visibility samples are placed regularly on a rectangular grid, which is the trans-
form of the image pixel grid, the Fourier transform relationship can easily be imple-
mented as a Fast Fourier Transform (FFT). The Fourier relation is shown schematically
in Figure 2.6.

We assume, as described in Section 2.2.1, that the image field is divided into equally-
distant grid points in the l and m dimension with Nl and Nm total pixels, respectively in
l and m. The Nyquist-Shannon sampling criterion can be expressed in terms of the max-
imum baseline length in the direction of the u-axis and v-axis, umax and vmax , as [51]

∆l ≤ 1

2umax
, ∆m ≤ 1

2vmax
, (2.41)

Furthermore, the angular extent of the image in the direction of l- and m-axis is defined
by [51],

Nl∆l ≥ 1

umi n
, Nm∆m ≥ 1

vmi n
, (2.42)

where umi n and vmi n are the minimum baseline length (discarding the autocorrelations)
measured in u and v axis, respectively. If we consider ∆u = umi n and ∆v = vmi n , the
relation of the grid spacing in the u- and v-axis to the angular region of the sky covered
in the FoV becomes

∆u = (Nl∆l )−1 , ∆v = (Nm∆m)−1. (2.43)
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Figure 2.6: Image plane and the spatial frequency plane relation

To compare with the conventional PSD estimation, we can replace the temporal in-
dexes with the image (angular) domain indexes (l ,m,n) and the frequency indexes with
the indexes in the spatial frequency domain (u, v, w). Therefore, we can use interpreta-
tions from the time-frequency domain in the angular-spatial frequency domain.

The extent of the u−v plane should ideally be identified based on the spatial band of
the sources in the sky map. In RA, due to the existence of point-like sources, the source
signals are not spatially band limited. In fact, point sources require an infinite aper-
ture for perfect reconstruction. However, due to the physical constraints of the aperture
plane, it is not possible to make an infinitely large aperture. In practice, the size of the
image is determined by the FoV of the telescope array. Extrapolation schemes can be
used to address some of these issues for point sources if some prior information is avail-
able. Furthermore, the data samples (visibility measurements) are incomplete and are
not placed regularly on the uniform grid points. Therefore, there is a need for an inter-
polation scheme to make FFT possible. These schemes are called gridding in RA. The
gridding process is a demanding part of the imaging computations. In practice, to grid
the measured u − v points, they are first convolved with a smooth “gridding kernel", or
“gridding convolution function" and then re-sampled at the center of the grid cells (in-
terpolation operation)[28].

COMPRESSIVE COVARIANCE ESTIMATION

We show the Fourier transform relationship and the effect of irregular sampling of the
telescope array. Assuming that all the spatial samples are available in y, the sub-sampled
vector x can be indicated as

x =Φy (2.44)

where Φ indicates the (sparse) sampling matrix. The aim is to reconstruct the angular
(spatial) PSD based on the measured samples x. The covariance measurements have a
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2-dimensional Fourier transform relation with the PSD

Ry = E {yyH } = FΣsFH (2.45)

whereΣs = diag(σ) and F is the Discrete Fourier Transform (DFT) matrix. Vectorizing Ry

we obtain

ry = vect(Ry ) = (F∗⊗F)σ. (2.46)

We know based on the derivations of Section 2.2.2 that the covariance data model for the
measured samples x can be stated as

Rx := E {x[n]xH [n]} = AΣsAH (2.47)

Based on Equation (2.44) we can write

Rx =ΦRyΦ
H =ΦFΣsFHΦH (2.48)

Therefore, we conclude that A can be written as

A =ΦF (2.49)

and the linear relation between the vectorized measured correlations rx = vect(Rx ) with
the PSD (or source intensities) is

rx = (Φ∗⊗Φ)(F∗ ◦F)σ= (Φ∗F∗ ◦ΦF)σ . (2.50)

This corresponds to a sub-sampled Fourier relation between the measured covariance
data and the source intensity distribution. (Φ∗⊗Φ) denotes the sampling of baselines.
We note that the sampling matrixΦ need not be defined on a regular grid and therefore
non-regular sampling patterns are also possible. This is the case in radio interferome-
try where the placement of the baselines is irregular. Comparing to Equation (2.29) we
notice that the measurement matrix can be written as

M =Φ∗F∗ ◦ΦF. (2.51)

Matrix M performs the transform between the image domain and the visibility domain
and contains the sampling by the telescope array and the Fourier transform relationship.

In radio interferometric imaging we are only interested in estimating the second-
order statistics of the cosmic signals (the power spectrum) and not the signals them-
selves. It is shown that under this assumption, we do not need the Nyquist-sampled
complete covariance matrix. In a field called the compressive covariance sampling, the
second-order statistics are estimated based on a subset of the covariance samples. It is
shown that under certain conditions, this allows for perfect reconstruction of the sig-
nal powers [52]. The field of compressive covariance sampling is concerned with de-
signing a compression scheme for the correlation measurements, i.e. designing Φ in
Equation (2.44), such that perfect reconstruction of the second-order statistics Ry orσ is
possible based on the sub-sampled correlation Rx . In fact, radio interferometric imaging
is an application of second-order statistics estimation based on inherently compressive
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covariance samples. This is because the baseline plane is, by design, compressively sam-
pled.

In the compressive covariance estimation, the concept of co-array is used [49]. The
co-array is a virtual array by considering all the possible differences of the antennas
(baselines) within the telescope array. It is shown that in a considerably sub-sampled
array, if the sub-sampling is such that all the lags of the antennas are preserved (with
minimum repetition), then the second-order statistics can be estimated perfectly. This
is the main concept in designing minimum redundancy arrays [53]. However, if these
conditions are not satisfied, i.e. not all the spatial lags are present, it is not possible to
retrieve the exact solution and we must resort to approximate solutions.

The correlation function Rx is estimated based on temporal samples of x[n] by tem-
poral averaging. The sample covariance matrix is called R̂. We note that in incoherent
imaging, not only the number of spatial samples are limited but also the number of time
samples to construct the sample covariance matrix R̂ is limited by the coherence time
between the source and the telescope array. The former is similar to applying a spatial
windowing on the spatial frequency measurements and the latter imposes a temporal
window on the length of the available temporal samples to construct the correlation ma-
trix. The larger the aperture of the telescope array, the smaller the coherence time and
the smaller the temporal window.

The concept of a virtual array can be explained based on the construction of the mea-
surement matrix M. For simplicity we assume an array of two elements with positions
denoted by vectors y1 and y2 and a celestial source on the celestial sphere with direc-
tion cosine zq as shown in Figure 2.7. The qth column of the measurement matrix M,

x
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y2 b21

zq

Earth

Ce
les
tia
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Figure 2.7: Measurement geometry

denoted by mq , is computed based on the corresponding column of the array response
vector, aq , as

mq = a∗
q ⊗aq (2.52)
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As an example, the second row of mq is computed as

a∗
1,q a2,q = 1

P
e j 2π

λ
yT

1 zq e− j 2π
λ

yT
2 zq (2.53)

= e− j 2π
λ

(y2−y1)T zq (2.54)

= e− j 2π
λ

(b21)T zq (2.55)

where b21 denotes the baseline pointing from element 1 to element 2. For a p-element
telescope array, mq contains the response of all the pairwise antenna interactions (base-
lines) to the qth source. In fact, the rows of the measurement matrix M simulate a larger
virtual array with elements located at yi −y j with 1 ≤ i , j ≤ P . In other words, mq shows
the array response vector of the “difference coarray" towards the qth pixel. Therefore, the
measurement equation shows a mapping between the sky intensity domain as described
byσ to the measured covariances r̃ with a phase delay compensation per baseline by the
elements of the measurement matrix M.

2.4. RADIO INTERFEROMETRIC IMAGING PROBLEM FORMULA-
TION

In this section, we formulate the imaging problem in radio astronomy as an intensity
estimation problem with the aim of finding the best approximation to the unknown sky
map based on the correlation measurements. The problem can be presented in terms
of a covariance matching estimation problem [41] that differs based on the statistical
assumptions on the noise and sky map.

2.4.1. BEAMFORMING-BASED ESTIMATION
In incoherent imaging, spatial processing and beamforming techniques (parametric and
non-parametric) can be regarded as spectrum estimation techniques in the spatial do-
main and the analysis can be carried over. More precisely, an initial estimate of the image
can be obtained via beamforming. In this case, the i th pixel of the image is estimated as

σB,i = wH
i (R−Rn)wi , i = 1, · · · ,Q (2.56)

where wi is a spatially dependent beamformer (a spatial filter). In practice, since we do
not have access to the true covariance matrix, we use the sample covariance matrix R̂
instead to obtain the beamformed image, i.e.,

σ̂B,i = wH
i R̃wi = wH

i (R̂−Rn)wi , i = 1, · · · ,Q . (2.57)

For a linear beamformer, σB,i is the expected value of σ̂B,i .
We consider two common beamforming approaches: Matched Filtering (MF) and

Minimum Variance Distortionless Response (MVDR) beamforming [54]. The image es-
timate obtained by the MF beamformer is obtained by setting wi = ai , so that

σ̂MF,i = aH
i (R̂−Rn)ai ⇔ σ̂MF = MH r̃ . (2.58)
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This estimate is known as the “dirty image” in the RA community. The expected value of
this image is

σMF,i = aH
i (R−Rn)ai , i = 1, · · · ,Q . (2.59)

Dirty image estimation from the correlation measurements, in terms of the power spec-
trum estimation, corresponds to the periodogram [55], more precisely the Welch peri-
odogram, estimate of the power spectrum [49].

Similarly, the MVDR beamformer is defined as [39]1

wi = R−1ai

aH
i R−1ai

, i = 1, · · · ,Q (2.60)

leading to the MVDR dirty image

σMVDR,i =
aH

i R−1(R−Rn)R−1ai

(aH
i R−1ai )2

= 1

aH
i R−1ai

− aH
i R−1RnR−1ai

(aH
i R−1ai )2

. (2.61)

In this expression, the first term is the “classical” MVDR solution, while the second term
is a correction for the unwanted contribution of the noise covariance to this image.
MVDR beamforming in incoherent imaging corresponds to the minimum variance spec-
trum estimation [55]. Similarly, many other techniques from spectrum estimation can
be carried over to incoherent imaging.

We note that under the typical radio astronomical assumptions, i.e. white noise and
weak signals, the factors R−1 in the nominator and denominator of (2.60) cancel each
other and the MVDR reduces to the matched filter beamformer in (2.59). Furthermore,
if the autocorrelations are not available, as may be the case with visibility measurements
in radio interferometry, R−1 cannot be formed and we need to resort to the MF estimate.

It is shown in [56] that, if the corrections by Rn are ignored in (2.59), (2.61), then

0 ≤σtrue ≤σMVDR ≤σMF (2.62)

Without ignoring Rn, we can prove that the same result holds at least if Rn = σ2
n I (see

below). This indicates that the MVDR dirty image is always closer to the true image than
the MF beamformer.

PROOF OF ((2.62))
It is known that [56]

aH
i Rai ≥ 1

aH
i R−1ai

.

Therefore, it is sufficient to prove that

aH
i Rnai ≤

aH
i R−1RnR−1ai

(aH
i R−1ai )2

.

1Actually, a correct derivation based on minimization of (2.56) subject to wH
i ai = 1 would give a result where

R−1 is replaced by (R−Rn)−1 in (2.60), but this inverse is not numerically stable if R is replaced by its estimate
R̂.
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This is the same as

aH
i R−1ai ·aH

i Rnai ·aH
i R−1ai ≤ aH

i R−1RnR−1ai .

For this to hold, it is sufficient if

ai aH
i Rnai aH

i ≤ Rn .

While this is not true in general, the relation holds if ai is an eigenvector of Rn, which
includes special cases such as Rn =σ2

n I, this relation holds. �

2.4.2. LEAST SQUARES ESTIMATION
The most straightforward formulation of the source intensity estimation problem is via
LS. In this problem formulation, no statistical assumptions are made about the sources,
only the available measurements are fitted to the model in a LS sense. Due to the absence
of probabilistic assumptions onσ, claims about statistical optimality of the solution and
its statistical performance cannot be made [57].

Equation (2.29) shows a parametric model of the sky. LS estimation can be regarded
as “model fitting". Based on the parametric model, the expected measurements ob-
tained from the imaging equation are fitted to the measurements. Statistically, the ap-
propriate way for model fitting is via the maximum likelihood method if the error statis-
tics of the observations are known. A sub-optimal way is via the LS method. In this
method, the implicit assumption is that the measurement errors are actually white Gaus-
sian.

The LS RA imaging problem can be stated as

σ̂= argmin
σ

‖r̃−Mσ‖2
2. (2.63)

The solution to (2.63) satisfies the normal equations

MH Mσ̂= MH r̃, (2.64)

where the left hand side shows the convolution of the image pixels with the beam pattern
of the array via MH M, and the right hand side σ̂MF = MH r̃ is recognized as the MF dirty
image which is the same as the image obtained by matched filtering the data.

In RA imaging, the columns of M corresponding to neighboring pixels are nearly par-
allel, making MH M poorly conditioned and the problem ill-posed. For large Q, MH M is
not even invertible and a unique solution cannot be obtained without regularizing as-
sumptions. Usually the LS cost function is regarded as the “data fidelity" term since it
represents the fidelity of the expected measurements from the model to the measured
data. However, the data fidelity term is in general insufficient to obtain a unique and
physically meaningful estimate of the sky map.

2.4.3. MAXIMUM LIKELIHOOD ESTIMATION
Equation (2.29) shows the linear measurement model for RA imaging. For such a model,
Maximum Likelihood Estimation (MLE) results in an efficient estimator that is also a
Minimum Variance Unbiased (MVU) estimator [57]. If σ is considered deterministic



2.5. CONCLUSIONS

2

41

(i.e., a parameter vector without associated stochastic model), the likelihood function
for (2.29) with complex Gaussian noise e is

p(r̃|σ) = 1

πP 2 det(Ce )
exp[−(r̃−Mσ)H C−1

e (r̃−Mσ)], (2.65)

where, as mentioned before, Ce = 1
N (RT ⊗R). MLE suggests finding the σ that results in

the most probable set of measurements r̃. Maximizing the likelihood function is equiva-
lent to minimizing the cost function

J(σ) = (r̃−Mσ)H C−1
e (r̃−Mσ) (2.66)

which results in the weighted least squares (WLS) formulation of the imaging problem
as shown in [40, 39]

σ̂= argmin
σ

‖Γ(r̃−Mσ)‖2
2 , (2.67)

where C−1
e =ΓHΓ. The corresponding normal equations are

MH C−1
e Mσ̂= MH C−1

e r̃ , (2.68)

and the WLS (or MLE) solution is given by

σ̂= (MH C−1
e M)−1MH C−1

e r̃ . (2.69)

As before, the inversion problem is ill-posed. The weighting by Ce is omitted if the au-
tocorrelations are not known, or if we may assume that the noise is white and much
stronger than the sources.

There exists a third statistical formulation of the imaging problem by making statis-
tical assumptions about the sky map σ. We will consider this problem formulation in
more detail in Chapter 3.

2.5. CONCLUSIONS
In this chapter, we derived the radio interferometric imaging measurement equation.
From this measurement equation we introduced the radio interferometric imaging prob-
lem and made interpretations to gain insight into the problem. We have briefly men-
tioned the ill-posedness of the radio interferometric imaging problem. In the following
chapter we will analyze the ill-posedness in more detail and introduce methods to com-
pensate for the loss of information in the measurement process.





3
ILL-POSEDNESS AND

REGULARIZATION

A lack of information cannot be remedied by any mathematical trickery.

Cornelius Lanczos

In this chapter, we analyze the imaging system to investigate the identifiability of the
sky intensity distribution based on the measured telescope correlation data. We show
that due to the ill-posedness of the radio interferometric imaging problem, finding a nu-
merically stable and physically meaningful solution requires regularization. We further
discuss some regularization methods that can be applied to the radio interferometric
imaging problem. We conclude with a discussion on preconditioning and how it can be
used to integrate the regularization assumptions and priors into the imaging system.

3.1. ANALYSIS OF THE MEASUREMENT SYSTEM
In this section, we analyze the measurement system in RI based on tools from numerical
linear algebra, sampling, interpolation and filtering theory to investigate the inherent
loss of information in the measurement process. Based on these results, we show that the
imaging problem in radio astronomy is highly ill-posed and regularization is necessary
to find a stable and physically meaningful image.

3.1.1. ILL-POSEDNESS OF THE INTEGRAL EQUATION
An interpretation of the information loss in the measurement process in RI can be drawn
based on the continuous forward measurement model presented in Equation (2.10) in
Chapter 2. Neglecting the DDEs, Equation (2.10) is restated here as

V (u, v, w) =
∫ 1

−1

∫ 1

−1
I (l ,m)e− j 2π[ul+vm+w(

p
1−l 2−m2−1)] dl dmp

1− l 2 −m2
. (3.1)
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This equation describes the measurement process in the continuous case in the form
of an integral equation. This integral is in the form of a first-kind Fredholm integral
equation [58] as the unknown appears only under the integral sign. This equation shows
the underlying linear relationship between the visibility function V (u, v, w) and the sky
map I (l ,m) where the model is described by the function

K (u, v, w, l ,m,n) = e− j 2π[ul+vm+w(
p

1−l 2−m2−1)] (3.2)

This function is called the kernel function of the integral. The joint effect of the integral
and multiplication with K is a compact operator. This compact operator has a smooth-
ing effect on the intensity function I (l ,m). This smoothing effect can be described as
the higher frequencies (in terms of more rapidly changing components) of I are damped
in comparison with the lower frequencies [59]. This effect results in an inherent loss of
information. The frequencies lost in the forward measurement process cannot be re-
trieved in the inverse imaging process. The Riemann–Lebesgue lemma [60] mathemat-
ically describes this effect for any arbitrary kernel. Actually, to invert the effect of the
integral equation when going from V to I (the inverse problem), high frequency com-
ponents of V must be amplified. If there is a perturbation in V on the high frequencies,
the perturbation will also be amplified. This is an inherent issue in inverse problems
that causes the solution to become unstable. Therefore, the inverse problem based on
this integral equation is ill-posed.

3.1.2. CONDITIONING ANALYSIS OF THE DISCRETE MEASUREMENT EQUA-
TION

We further explain the loss of information in the radio interferometric measurement pro-
cess based on the discrete measurement system (2.29). As discussed in Chapter 2, this
matrix equation can be derived based on the discretization of the integral equation (3.1).
A direct conclusion can be drawn: since the integral problem is ill-posed, the condi-
tion number of the discrete equation can be extremely large [48]. A finer discretization
for the ill-posed problems, implies a larger condition number of the corresponding dis-
crete problem [48]. Estimating σ from r̃ based on (2.29) depends on the properties of
M. As mentioned, M is ill-conditioned and in some cases where the requested resolution
(number of pixels) Q is very large it may become wide, so that no unique solution exists.
Therefore, the RA imaging problem is ill-posed and in some cases under-determined.

If the sampling of the interferometer is regular, M can be diagonalized by the Fourier
transform. Bracewell and Roberts [61] analyzed the effect of the convolution kernel M
by Fourier transform and frequency domain interpretations. However, in general M is
not exactly a Fourier transform matrix. To be more general, we investigate the effect
of smoothing by the antenna pattern by analyzing the singular value spectrum of the
measurement matrix M. We show that we can achieve similar results as presented in
[61] with this more general analysis. Only if the telescope array is arranged as a Uniform
Linear Array (ULA), the Singular Value Decomposition (SVD) is equivalent to the Discrete
Fourier Transform (DFT). However, for an arbitrary geometry of the telescope array, we
use the SVD as an analysis tool from numerical linear algebra.
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Figure 3.1: (a) one-dimensional irregular array (b) singular value spectrum of M

The SVD of M ∈CP 2×Q can be written as

M = UΛVH =
ρ∑

i=1
uiλi vH

i , (3.3)

where U = [u1,u2, · · ·uP 2 ] and V = [v1,v2, · · · ,vQ ] respectively contain the left and right
singular vectors, ui and vi , and Λ is a diagonal matrix containing the singular values of
M, i.e. λ1,λ2, ..,λρ , on its diagonal in decreasing order. We assume that ρ indicates the
rank of matrix M. In case the rank of M cannot be defined, ρ corresponds to a truncation
length on the singular values.

The singular value spectrum of M for a simple one-dimensional case with P = 10
antennas, positioned as shown in Figure 3.1(a), is shown in Figure 3.1(b). The image is
composed of Q = 201 pixels. The effect introduced by the Fredholm integral equation in
the discrete case translates into the measurement matrix M having a very large condition
number as most of the high frequency singular values of M concentrate very close to
zero. Ill-posed problems are characterized by a large number of small singular values
close to zero and by the smooth transition of the singular values towards zero that results
in an ill-defined rank. In fact, the main difference between the ill-posed problems and
numerically rank-deficient problems is that in the former, in contrary to the latter, there
does not exist a distinct gap between the small and large singular values. This effect can
be seen in Figure 3.1(b).

The SVD provides a way to compute the inverse of the matrix M. In case M is singular,
an approximate inverse, a.k.a pseudo-inverse is computed as

M† =
ρ∑

i=1
vi

1

λi
uH

i , (3.4)

where M† indicates the pseudo-inverse of M. Moreover, the minimum-norm solution of
the LS problem indicated in (2.40) can be computed based on SVD as

σ̂= M†r̃ =
ρ∑

i=1

uH
i r̃

λi
vi . (3.5)
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Figure 3.2: (a) First 4 singular vectors of M (b) last 4 singular vectors of M

Following [62], we call this solution obtained by direct inversion of the measurement
matrix M the “naive" solution.

Based on Equation (3.5), the naive solution σ̂ can be represented as an expansion

based on the right singular vectors vi with coefficients
uH

i r̃
λi

. We demonstrate the basis
vectors vi with an example. The first 4 and last 4 singular vectors corresponding to the
array shown in Figure 3.1 are shown in Figure 3.2(a) and (b), respectively. As can be seen
from the figure, as the index i increases, vi exhibits more oscillations.

We can assume that vi s are representing the frequencies in the sky map where in-
creasing the index i results in larger oscillations and higher frequency components. There-
fore, the small singular values carry mainly high-frequency information of the image.
These high frequency components are not well-presented by the measurements r̃ as the
high frequencies are largely suppressed in the response of the interferometer. By in-
verting M, since the high frequency components are divided by the corresponding small
singular values, the recovered value is significantly amplified. Therefore, the recovered
values of these frequencies are subject to substantial errors and this causes the solution
to become unstable. This explains the numerical instability of the inverse solution.

By computing the pseudo-inverse via truncated SVD (TSVD), by choosing the right
truncation length, the contribution of the high frequency components to the image is
disregarded. This is in effect similar to applying a low-pass rectangular window on the
frequency spectrum of the sky map. However, applying the TSVD on an ill-posed prob-
lem results in spurious and implausible oscillations. Furthermore, the main issue in
computing the TSVD in ill-posed problems is choosing the right truncation length. This
is due to the fact that the system matrix in ill-posed problems exhibits no distinct gap
between the large and small singular values and the notion of rank is ill-define. We show
this effect with a single unit point source in the middle of the FoV for the array presented
in Figure 3.1(a). Theoretically, we can compute the rank of the imaging system based
on the number of unique baselines. This amounts to 2P −1 for a ULA and to P (P−1)

2 for
a more general array with non-overlapping antennas. Choosing the truncation length
equal to 2P − 1 = 19 for this example, the TSVD result is shown in Figure 3.3(a). The
result is reminiscent of the impulse response of an ideal low-pass filter. On the other
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Figure 3.3: TSVD result for a unit point source in the middle of the FoV (a) truncation length 2P −1 (b)

truncation length P (P−1)
2

hand, setting the truncation length equal to P (P−1)
2 = 45, which is the theoretical rank

for this example, results in allowing many small singular values to the computation of
the pseudo-inverse which causes instability, dominance of high frequency oscillations,
of the solution as shown in Figure 3.3(b). In this case, the solution is devoid of physical
meaning.

We explain the sidelobes in Figure 3.3(a), in which the effect of the small singular
values are negligible, via Gibbs oscillations. It is well-known that if the Fourier series
or Fourier integrals describing a discontinuous function are truncated, i.e. not infinite,
oscillations occur in the function representation especially around discontinuities. This
is known as the “Gibbs phenomenon" or “Gibbs oscillations". The same effect happens
in radio interferometric image reconstruction based on TSVD. Considering the singu-
lar values are roughly presenting the spatial frequencies, TSVD implies a band-limiting
effect by truncating the high spatial frequencies. We note that these frequencies are
actually not measured by the system due to the finite extent of the array in the spatial
frequency plane. In restoring an image containing point sources, spurious oscillations
occur around the discontinuities. This is called the ringing effect [48].

3.1.3. PRINCIPAL SOLUTION AND INVISIBLE DISTRIBUTIONS

There are two major deficiencies in the sampling of the spatial frequencies of the sky
intensity distribution by the radio interferometer: (i) sparse and incomplete sampling
that results in the existence of holes in the u − v coverage and (ii) limited spatial band-
width since the high spatial frequencies are not measured by the interferometer. The
former is a cause of aliasing and sidelobes and the latter performs a low-pass filtering.
Therefore, the fine details of the observed distribution are irreversibly lost in the mea-
surement process, while the less fine details may be substantially modified [61]. Con-
sidering Equation (2.29), if we directly invert the measurement matrix M to achieve the
solution, this means that all the unsampled visibility points are set to zero. This corre-
sponds to the naive solution derived in Section 3.1.2 and is known in RA as the “principal
solution" [47, 10]. The intensity distributions containing only the unsampled spatial fre-
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quencies produce no output when observed by the telescope array. These distributions
are called the “invisible distributions" or “ghosts" for the telescope array [61].

We can interpret the invisible distributions in terms of the subspaces of the mea-
surement matrix M. In case there is no observation noise, i.e. e = 0, the measured cor-
relations r̃ lie in the range of M. However, since M is ill-conditioned, we can assume a
null-space for M. Therefore, the invisible distributions correspond to the null space of
M, i.e.,

Mσnull = 0, (3.6)

where σnull is a member of the null-space of M, i.e. σnull ∈ N (M). This shows the in-
herent loss of information in the measurement process by the telescope array. The null-
space of M does not produce any visible data. In fact, resorting only to Equation (2.29),
if σ̂ is a solution, then σ̂+ασnull is also a solution where α denotes any arbitrary scal-
ing. Therefore, the invisible distributions are responsible for the non-uniqueness of the
solution. In fact, it would be possible to make a solution containing an element of the
null-space arbitrary large and hence unphysical. Furthermore, due to the noise on the
measurements, r̃ is not in the range of M, i.e. r̃ ∉R(M). Instead, we minimize the differ-
ence between the data and the model by means of a LS. If M has a clear null-space the
corresponding singular values are exactly zero and the TSVD results in the minimum-
norm solution among the set of all possible solutions. However, this is not the case in
ill-posed problems. The main problem of radio interferometric imaging is to choose
adequate invisible distributions to add to the principal solution to obtain a plausible
distribution [28].

These issues, known to radio astronomers [61], signify the ill-posedness claim about
the inverse problem in RA: (i) due to the existence of the null-space, the solution of the
imaging problem is not unique, (ii) for a noisy distribution that is not in the range of
M, the solution of the imaging problem does not exist and (iii) if we have two close in-
tensity distributions, the reconstructed distributions may be very distant. Therefore, the
solution of the imaging problem does not depend continuously on the initial distribu-
tions [48]. Therefore, we can see that all the criteria for well-posedness of the problem
are violated.

3.1.4. NORMAL EQUATIONS AND THE “DIRTY IMAGE"
Assuming there is no noise in the measurement process, i.e., e = 0 in Equation (2.29), in
this section we obtain interpretations based on the normal equations of the measure-
ment system. The normal equations of the measurement system can be written as

MH Mσ= MH r̃. (3.7)

We recognize the right hand side as the dirty image, i.e.,

σMF = MH (Mσ). (3.8)

These equations show the convolution process of the true sky intensity σ with the array
pattern where multiplication of the image with MH M represents the convolution oper-
ation. The dirty image is obtained by back-projecting, represented by multiplication by
MH , the received signals r̃ to the source.
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Figure 3.4: (a) PSF (b) dirty image (overlapped with the source)

To obtain the impulse response of the imaging system, we consider the image only
contains a unit norm point source in the middle of the FoV. Thus we can rewrite (3.8) as

b = (MH M)emid, (3.9)

where emid is the unit vector with the element in the middle of the FoV equal to 1. In
this case the dirty image is called the dirty beam, indicated by b. We note that the Point
Spread Function (PSF), the impulse response of the telescope array or the beam pattern
of the array all refer to the dirty beam. If we insert an arbitrary image σ in the FoV of
the array, the resulting σMF would be the convolution of the dirty beam with the array.
Another way to obtain b is via

b = MH 1. (3.10)

This equation shows that the array pattern is the matched filtered response of a telescope
array when all the antennas are receiving unit power.

For the one-dimensional irregular array presented in Figure 3.1(a), we present the
PSF and the dirty image of a unit point source in Figure 3.4(a) and (b), respectively. In
this case the normalization for computing the PSF is such that the height of the peak cor-
responds to the total number of array elements. We can see from the figure that the dirty
image in this case is equivalent to the scaled PSF that is shifted to the source position.
For the one-dimensional array, the beam pattern of the antenna array is calculated as

b(lq ) =
P∑

m=1

P∑
p=1

e− j 2π
λ

(xm−xp )lq . (3.11)

Based on this equation we infer that the half power beam width of the array is approxi-
mately HPBW ≈ λ

∆xmax
radians [63]. We see that the size of the main beam, indicating the

resolution of the array, is determined by the maximum baseline.
We present some further remarks about the PSF and the dirty image below:

• The linear imaging system of Equation (2.29) is completely characterized by its
PSF. In fact, two imaging systems with the same PSFs are equivalent [49]. The point
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spread function is completely defined based on the system matrix M by knowing
the geometry of the array and the weightings that can be applied on the measured
correlations [49, 28]. In fact, the PSF is the transform of the sampling function of
the baseline plane to the image domain [28].

• The PSF is the response of the system to a point source. Due to the sampling de-
ficiencies of the radio telescope; namely (i) spatial band limit and (ii) existence of
holes in the u − v coverage, the PSF contains sidelobes. The former is responsible
for the existence of sidelobes in the PSF, similar to the effect of applying a rect-
angular window on the Fourier domain measurements of a signal. On the other
hand, the latter may cause grating lobes in the PSF that can cause aliasing in the
dirty image.

• The existence of sidelobes in the PSF results in an unavoidable confusion in de-
termining the true intensity distribution. This confusion can only be resolved by
introducing some side information about the intensity distribution. For example,
consider the dirty image resulting from a unit norm point source as presented in
Figure 3.4. In this case, by only looking at the dirty image, we cannot distinguish
if the source is a point source or shaped like the dirty beam [28]. Furthermore, the
sidelobes resulting from strong sources may obscure fainter emissions in the dirty
image.

• We can regard the radio interferometer as a spatial filter. This interpretation can
be described by writing MH Mσ as

σ̂MF, j =σ j +
Q∑

k=1,k 6= j
σk mH

k m j (3.12)

where σ̂MF, j indicates the j th pixel of the MF dirty image and mi corresponds to
the i th column of M. We can write mH

k m j based on the expression for M in (2.26)
as

mH
k m j = 1

P 2

P 2∑
i=1

e j 2π
λ

(ui )T (z j −zk ), (3.13)

where ui corresponds to the i th baseline. Comparing with Equations (3.11), we see
that the function mH

k m j for k = 1,2,3, · · · ,Q indicates the PSF centered at pixel j .
Furthermore, Equation (3.13) corresponds to a sum of complex exponential func-
tions where the angle depends on the difference z j − zk between pixel j and k of
the image. Since the baselines appear in conjugate pairs, the exponential function
can be reduced to a cosine. Therefore, mH

k m j indicates a sum of cosine functions
and the first null location is related to the inverse of the maximum baseline. This
shows for a nearby pixel k the damping of the term mH

k m j in computing σ̂ j ,MF is
not very large and σk is added to σ j almost in phase. A similar effect happens if
pixel k is in a sidelobe of the function mH

k m j for k = 1,2,3, · · · ,Q. As a result, if
extended structures and resolved sources are present in the image, the dirty image
will highly over-estimate the value of each pixel in the extended structure due to
the additive contribution from the nearby pixels and sidelobes. An example of this
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Figure 3.5: (a) Extended source (b) Dirty image (overlapped with the source)

phenomenon for the one-dimensional array with the PSF shown in Figure 3.4(a) is
shown in Figure 3.5. In this example, an extended structure is simulated by 9 adja-
cent pixels with intensity equal to one. The rest of the pixels are set to zero. We can
see from Figure 3.5(b) that the dirty image highly over-estimates the source struc-
ture such that the pixel in the middle of the image has an intensity approximately
equal to the sum of all the sources. This is while for the single point source shown
in Figure 3.4(b) the intensity of the corresponding pixel is correctly estimated by
the dirty image.

Furthermore, we can see that Equation (3.12) indicates a moving average-type fil-
tering on the image. Therefore, application of this filter on the image results in
smoothing of the small-scale variations (e.g. point sources) and enhances the
large-scale trends (e.g. extended emissions). As a result, the details of the im-
age that are smaller than the width of the main beam of the PSF are lost in the
measurements and cannot be retrieved in the restored image without providing
additional information.

3.2. REGULARIZATION
As we have discussed, the radio interferometric imaging problem is inherently ill-posed.
Due to the intrinsic loss of information in the measurement process, we cannot opt for
an exact solution and we need to resort to an approximation. The set of plausible ap-
proximate solutions is very broad [48]. However, not all of the possible solutions are
physically meaningful. In fact, as shown before, due to the noise amplification some of
the solutions are very unstable, wildly oscillating and deprived of physical meaning. The
idea of regularization is to constrain the approximate solution based on a priori infor-
mation such that the physically implausible solutions are disregarded. In fact, the prior
information that is imposed on the sky map must be carefully chosen since it biases
the solution towards the preferred solutions by the constraint. The additional informa-
tion can be imposed in terms of additional constraints on the model fitting problem.
The constraints help to discriminate between meaningful and spurious solutions and
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replace the ill-posed problem with a nearby well-posed problem.
Assuming a maximum likelihood-type problem formulation, we can write the gen-

eral regularized WLS radio interferometric imaging problem as

σ̂= argmin
σ

‖Γ(r̃−Mσ)‖2
2 +τR(σ) (3.14)

where Γ is a LS weight, τ is a regularization parameter, R(·) denotes the regularization
operator and R(σ) is referred to as the penalty term. The first term in the cost func-
tion assures the fidelity of the solution to the data and the second term acts as a penalty
to control some (undesired) features of the unknown presented by the function R(σ).
The regularization parameter controls how much emphasis is put on each of the two
terms. The penalty term controls overfitting of the model to the data and avoids nu-
merical problems (instabilities) that make the MLE problem unfeasible for noisy data.
Alternatively, we can rewrite the problem formulation (3.14) as

min
σ

R(σ) subject to ‖Γ(r̃−Mσ)‖2
2 ≤ ε. (3.15)

There is a data-dependent one-to-one correspondence between τ in (3.14) and ε in (3.15)
for which the two optimization problems have the same solution and can be used inter-
changeably. In fact, the former can be achieved from the latter by incorporating the
constraint via a Lagrange multiplier τ [59]. Both ε and τ are related to the level of noise
in the data.

Regularization is needed, in the form of prior knowledge, structure, or other con-
straints on the solution σ. Many choices for the regularization operator are possible, a
typical regularization operator is the general `p norm which in general can be stated by
R(σ) =∥ F (σ) ∥p . Some examples include ‖σ‖2

2 (an `2 constraint or Tikhonov regular-
ization) or ‖σ‖1 or ‖σ‖0 (an `1 or `0 constraint) a total variation constraint or a maxi-
mum entropy constraint. The quality of the solution depends on the properties of the
penalty term. These options induce smoothness or sparsity of the solution. Another
structural constraint is to require the image pixels to be positive. It is clear that, in this
generic form, the problem has been widely studied in many areas of mathematics, engi-
neering, signal processing, and computer science (e.g., machine learning) [64]. In recent
years, some of these techniques are now gradually being introduced in the radio astron-
omy context.

3.2.1. REGULARIZING ASSUMPTIONS IN RADIO INTERFEROMETRIC IMAG-
ING

In this section, we briefly mention some of the common regularizing assumptions and
constraints that are extensively used in radio interferometric imaging. In fact, different
imaging algorithms can be categorized based on the regularization operator, R(σ), used.
Usually, a non-linear and iterative method is performed to remove the sidelobes of the
PSF from the image and attain a “clean" image. In these procedures, the value of the
visibility function at the unmeasured spatial frequencies are estimated. This is done by
interpolating the unsampled u−v points (holes) and extrapolating the unmeasured spa-
tial band. To do so, an optimization problem is defined by introducing constraints and
assumptions on the sky intensity distribution [55]. For example, extrapolation can be
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done by introducing discontinuity assumptions on the sky map such as applying sparsity
constraints. Some theoretical studies of the latter has been presented under the name of
“super resolution" by Candes and Fernandez-Granda [65].

First of all, there are some basic assumptions that result from the physical features
of the sky intensity distribution. Mainly, the distribution is always real-valued and non-
negative. That is, σ≥ 0 and σ ∈ RQ . Nonnegativity is the main regularizing assumption
imposed in the Non-Negative Least Squares (NNLS) algorithm [66] which has been in-
troduced in radio interferometric imaging by Briggs [42] and optimized in this context
by Sardarabadi et al. [56]. The objective function for the NNLS can be stated as

min
σ

‖r̃−Mσ‖2
2 subject to σ≥ 0. (3.16)

Furthermore, Sardarabadi et al. showed that additional upper bounds on the image val-
ues can also be imposed using a beamforming-based estimate of the image. They de-
fined the imaging problem via a maximum likelihood estimation formalism with the ob-
jective

min
σ

‖Γ(r̃−Mσ)‖2
2 subject to 0 ≤σ≤σprior. (3.17)

where in this case σprior refers to the initial image obtained from beamforming.
The CLEAN algorithm [3] is undoubtedly the most popular imaging algorithm in ra-

dio interferometry. Many various modifications have been proposed to the core al-
gorithm such as Clark [67], Cotton-Schwab [68], Multi-Scale CLEAN (MS-CLEAN) [69],
multi-resolution CLEAN [70] and a recent optimized version by Offringa and Smirnov [71].
These modified versions have been developed with the purpose to make CLEAN more
computationally efficient and increase the accuracy of the estimate. The basic assump-
tion of CLEAN is that the image is composed of a distinct set of point sources and em-
ploys a non-linear and greedy algorithm to obtain the support and the source intensity
estimates. The regularization provided by CLEAN is based on this assumption that the
radio sources can be represented by a number of point sources and the rest of the FoV
is empty. It is shown by Marsh and Richardson [72] that the regularizing constraints in
CLEAN can be represented as

min
σ

∑
j
σ j subject to ‖Γ(r̃−Mσ)‖2

2 ≤ ε and σ≥ 0. (3.18)

which is actually an `1 regularized problem due to the non-negativity of the image pixels.
Furthermore, it is shown in [69, 34] that CLEAN is a Matching Pursuit (MP) algorithm [73]
which is in the family of greedy sparse recovery methods.

We note that the NNLS algorithm as proposed by Lawson and Hanson [66] is based
on the active-set method. The active set method is a greedy method similar to CLEAN

and in effect also assumes a sparse point source model.
Instead of pixel-based discretization of the sources (point source assumption), they

can be discretized over arbitrary basis functions, or dictionaries, based on the physical
properties of the astronomical sources [36], that is,

σ(`) =
J∑

j=1
α jΨ j (`),
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where α j s are the basis coefficients, Ψ j s are the basis functions, ` shows the continu-
ous coordinates of the source and J is the total number of basis functions. This is the
assumption for the Multi-Scale version of the CLEAN algorithm (MS-CLEAN) [69] where
the image is expanded over a set of basis functions (modeled by truncated parabola)
of different scales. Moreover, wavelet basis expansion was introduced in astronomy by
Starck, Pantin and Murtagh [74] and further developed together with the convex opti-
mization formalism by Carrillo et al. [36] and many efficiently implemented variants fol-
lowed from the initial average sparsity assumption over the multi-wavelet representation
of the intensity distribution [75, 35]. The initial formalism is based on an analysis-based
weighted `1 stated as

min
σ∈RQ

‖WΨHσ‖1 subject to ‖r̃−Mσ‖2
2 ≤ ε and σ≥ 0. (3.19)

which is known as the "Sparsity Averaging Re-weighted Analysis" approach (SARA). By
leveraging the versatility of optimization theory in incorporating complex signal mod-
els into the image recovery, the SARA formalism has been extensively shown to provide
significant improvements in imaging quality in comparison to CLEAN [34, 36, 75, 76].

Another well-known radio interferometric imaging algorithm is the Maximum En-
tropy Method (MEM) [77, 78]. This algorithm is based on a constrained LS formalism of
the imaging problem where the constraint is applied into the problem via the entropy-
based penalty function. The most famous version applies the relative image entropy
R(σ) = σln( σ

σprior
). In this formulation, the image estimate is biased towards the priori

image σprior [50]. σprior can be chosen as a low resolution initial estimate of the image
such as the MF or MVDR dirty images. Usually a flat image is chosen as the prior image
and thus the solution is biased towards being smooth. Therefore, in this case MEM is
more suitable for the recovery of extended emissions. MEM is also widely used in power
spectrum estimation. In this interpretation, it extrapolates the autocorrelation function
outside of the aperture plane defined by the sampling of the antennas [55]. This miti-
gates the effect of the windowing due to the constraints of the aperture plane. The ex-
trapolation is based on a randomness assumption and is obtained by assuming that the
image is as flat as possible [55]. Moreover, ln(σ) imposes a positivity constraint on the
image pixels. Entropy in the context of imaging is a broad term. One of the interpreta-
tions is “lowest common denominator" which states that entropy is a measure that when
minimized produces a positive image with a compressed range in pixel values [47]. Fur-
thermore, Donoho et al. [79] have shown that if the underlying sky map is nearly black,
the MEM method results in signal to noise enhancements as well as super-resolution.
One possible objective for MEM can be stated as

min
σ

σln(
σ

σprior
) subject to ‖r̃−Mσ‖2

2 ≤ ε. (3.20)

Since sampling in the spatial frequency domain is bounded and incomplete, linear
regularization methods such as Wiener or Tikhonov result in band-limited (smooth) im-
age estimates. This is not optimal for images where there exist point sources [74] since
point sources have a flat frequency response that is not band-limited. However, lin-
ear regularizations can be applied for the recovery of band-limited extended emissions.
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Furthermore, regularization based on truncated iterative methods where the signal sub-
spaces are retrieved in the initial iterations has a similar smoothing effect and provides
a linear regularization.

Finally, if some prior knowledge about the existence of isolated point sources in the
image is present, this can be imposed via the sparsity-promoting norms `0 or `1 into the
problem. This results in non-linear methods that provide super-resolution by extrapo-
lating the measurements in the spatial frequency domain to attain sparse images [65].

3.2.2. BAYESIAN PROBLEM FORMULATION AND REGULARIZATION
An alternative approach to regularization is via the Bayesian framework. In this frame-
work, both the noise term and the image are assumed random variables, and a prior
distribution p(σ) is posed. The Maximum A Posteriori (MAP) estimator is defined as [57]

σ̂= argmax
σ

p(σ|r̃) = argmax
σ

p(r̃|σ)p(σ)∫
p(r̃|σ)p(σ)dσ

= argmax
σ

p(r̃|σ)p(σ) .
(3.21)

Here, p(σ|r̃) denotes the posterior probability density function of the image given the
observation, and Bayes’ rule is used to replace it by p(r̃|σ)p(σ), which is a product of
the likelihood of the observation given an image with the prior probability of that image.
The likelihood is given in (2.65). Assuming for simplicity that the prior for the image is
also distributed according to a Gaussian distribution, with mean µσ and covariance Cσ,
then σ∼N (µσ,Cσ), or

p(σ) ∝ exp[−1

2
(σ−µσ)T C−1

σ (σ−µσ)] . (3.22)

The log of the posterior likelihood is then

log p(σ|r̃) ∝
− (r̃−Mσ)H C−1

e (r̃−Mσ)− 1

2
(σ−µσ)T C−1

σ (σ−µσ) .
(3.23)

If we define the Cholesky factorization of the inverse image covariance matrix as

C−1
σ = LT L , (3.24)

we can equivalently write this as

log p(σ|r̃) ∝−‖Γ(r̃−Mσ)‖2
2 −

1

2
‖L(σ−µσ)‖2

2 , (3.25)

where C−1
e =ΓHΓ.Therefore, maximizing the posterior likelihood is equivalent to solving

the minimization problem

σ̂= argmin
σ

‖Γ(r̃−Mσ)‖2
2 +τ‖L(σ−µσ)‖2

2 , (3.26)

where τ = 1
2 . This is also known as ridge regression and a specific case of (3.14), with

the advantage that there is some insight in the role of L. E.g., if we have accurate prior
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knowledge, then Cσ is small and L is large, and the solution σ̂ will be close to µσ. If
instead of a Gaussian prior we assume a Laplace distribution for σ,

p(σi ;µi ,b) = 1

2b
exp

(
− |σi −µi |

b

)
,

we obtain an `1 constrained MLE formalism of the problem, i.e.,

σ̂= argmin
σ

‖Γ(r̃−Mσ)‖2
2 +τ‖σ−µ‖1 , (3.27)

The Laplace distribution is more concentrated around zero and has long tails, which
models images that are mostly zero with occasional outliers, explaining why `1 con-
straints lead to sparse solutions. Similarly, a lognormal density prior will lead to con-
straints that generate a maximum-entropy solution [64], and such a prior was used in
RESOLVE (Radio Extended SOurces Lognormal deconVolution Estimator) [80]. Thus, the
Bayesian framework is a general method to derive constrained optimization problems.

Returning to the Gaussian prior, we can rewrite (3.26) as

σ̂= argmin
σ

∥∥∥∥[
ΓMp
τL

]
σ−

[
Γr̃p
τLµσ

]∥∥∥∥2

2
.

The corresponding normal equations are

(MH C−1
e M+τC−1

σ )σ= MH C−1
e r̃+τC−1

σ µσ , (3.28)

and the solution is

σ̂= (MH C−1
e M+τC−1

σ )−1(MH C−1
e r̃+τC−1

σ µσ) .

For the specific case whereµσ = 0, and assuming white processes Ce = ν2I and Cσ = η2I,
Equation (3.28) can be written as

(MH M+τI)σ= MH r̃, τ= 1

2
(
ν

η
)2 (3.29)

which is recognized as a Tikhonov regularized LS problem [48]. Thus, these standard
regularization methods are all included in the Bayesian framework.

More generally, many of the regularization techniques can also be formulated in a
Bayesian framework, where σ is modeled as a random variable, and prior knowledge on
σ is given in the form of a prior statistical distribution p(σ), often containing unknown
parameters (e.g., scale) which can be modeled statistically as well using hyperpriors [81,
82].

3.3. PRECONDITIONING AS A TOOL FOR REGULARIZATION
In this section, we discuss data weighting and regularizing assumptions on the image
under the unifying framework of preconditioning. This section serves as a reference that
relates the rest of the chapters and methods developed in this thesis. We do not follow
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the formal definition of preconditioning where the main purpose is to speed up the con-
vergence of iterative methods. In fact, in discrete ill-posed problems convergence with
the conventional meaning is not the main interest due to the huge condition number
of system matrices. The main interest is however in finding a “good" estimate of the
image and stopping criteria are chosen with this aim. Therefore, in this section we use
preconditioning to incorporate the regularization operator directly into the system ma-
trix such that linear iterative methods can be easily applied. This framework has been
introduced in tackling Bayesian estimation problems from a statistical point of view by
Calvetti et al [83] and is termed prior-conditioning. We broaden this definition and bor-
row the name preconditioner superficially as a left or right multiplicant matrix, linear
operator, on the system matrix. Borrowing the name preconditioner, we show that we
can present statistical regularization as well as selection, support information, baseline
weighting and image model basis functions under this unifying framework.

3.3.1. PRECONDITIONING IN NUMERICAL MATHEMATICS

The concept of preconditioning is extensively used in numerical linear algebra to speed
up the convergence of iterative solution methods. Iterative solution methods are the
method of choice for large scale image reconstruction such as the radio interferometric
imaging problem. It has been shown that many iterative methods for image reconstruc-
tion can be considered variations of one basic method where the difference is in the type
of preconditioner used [84].

The speed of convergence of iterative algorithms is mainly determined by the condi-
tion number of the system matrix. A large condition number usually results in the slow
convergence of algorithms. The aim of preconditioning in its prime meaning is to cluster
the singular values of the system matrix around one to improve the conditioning of the
system. This results in faster convergence of the iterative solution methods. The oper-
ator that applies the preconditioning into the system matrix is called a preconditioner.
There are two variants of preconditioners distinguished based on the placement of the
operator, i.e. right and left preconditioners. If the preconditioner is applied at the left of
the system matrix, it is called a left preconditioner. A similar definition holds for a right
preconditioner that is applied from the right to the system matrix [85].

Based on these definitions, we can transform the radio interferometric imaging sys-
tem by applying right and left preconditioners as

M =ΠMΘ , (3.30)

where M denotes the transfomed system andΠ and Θ respectively denote left and right
preconditioners. Therefore, the measurement system (2.29) is transformed into a pre-
conditioned system as

Πr̃ =ΠMΘα+Πe . (3.31)

Applying the right preconditioner changes the image model as σ=Θα where α are the
coefficients of the new model. To cluster the singular values of M around one, in a well-
posed problem, right and left preconditioners approximate an inverse of M. This is not
feasible in ill-posed problems since a good inverse of M would be highly unstable [86].
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3.3.2. PRECONDITIONING OF ILL-POSED PROBLEMS

Preconditoning is largely used to accelerate the convergence of well-posed problems by
clustering the singular values around one. However in ill-posed problems, there exist a
large number of small singular values that cluster around zero and if the precondition-
ing is not done appropriately, the algorithm will converge fast to a poorly approximated
solution [84]. In ill-posed problems the singular value distribution of the system matrix
provides important information about the signal and noise subspaces as mentioned in
Chapter 2. Mainly, the large singular values correspond to subspaces that contain well-
presented information about the image (signal subspaces) and the small singular values
correspond to noisy subspaces. By conventional preconditioning, these singular values
are clustered around one and the information about signal and noise subspaces is lost
and cannot be retrieved by the iterative method. This in turn results in fast convergence
of the iterative method to a noise corrupted solution. In ill-posed problems, precon-
ditioning must be applied in a way such that the singular values corresponding to the
signal subspace (corresponding to large singular values) are modified and the small sin-
gular values are not affected [87]. This is in order not to destroy the information on the
signal and noise subspaces which provide valuable means for regularization. In fact, if
preconditioners are applied correctly in ill-posed problems, they can be used as a means
for regularizing the problem.

Some iterative methods for solving a linear system similar to (2.29) exhibit a “precon-
vergence" behavior. Preconvergence refers to the property of some iterative methods to
obtain a better estimate of the underlying variable at the intermediate iterations than
at convergence. Preconvergence is due to the fact that the components of the solution
corresponding to the signal subspace are mainly obtained during the initial iterations.
As the iteration continues, some components of the noise subspace are also recovered
resulting in instability in the solution. In these methods, the iterations may be truncated
before convergence to avoid recovery of the solution components presented by the noisy
subspaces. In these methods, the truncation length is used as a type of regularization
where the regularization parameter is defined based on a function of the iteration count.
Iterative regularization [59] is based on truncating the iterations prematurely such that
the components from the noise subspace do not obscure the solution.

Dealing with ill-posed problems, preconditioning provides a tool for applying reg-
ularizing assumptions, constraints, prior models of the sky intensity distribution and
statistical information directly into the measurement system. We call these precondi-
tioners “regularizing preconditioners". These preconditioners may not increase the rate
of convergence of the iterative methods or they may even slow down the convergence
but the solution is guaranteed to be in accordance with the prior and thus credible.

We have seen in Equation (3.31) that applying regularization changes the system.
A right preconditioner is a linear operator that affects σ and can be used to represent
additional requirements and prior models for the solution. On the other hand, the left
preconditioner is applied on the measurement vector r̃ and can be used to influence
the measurements in some way. As an example we can see that in the MLE problem
formulation from Chapter 2, statistical assumptions about the measurement error e are
applied by the matrix Γ into the system. Γ can be viewed as a left preconditioner.

In the rest of this section, we show some information that can be incorporated into
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the radio interferometric imaging system matrix by a preconditioner to regularize the
solution. We benefit from these regularizations in later chapters to develop efficient
custom-made regularized iterative solution methods for the radio interferoemtric imag-
ing problem.

3.3.3. STATISTICAL PRECONDITIONING: PRIORCONDITIONING
We reconsider the Bayesian problem with Gaussian priors stated in Section 3.2.2, Equa-
tion (3.26). As stated earlier, this formulation corresponds to the Generalized Tikhonov
regularized solution and the second term penalizes the growth of the solution affected
by the operator L. However, the operators L and Γ are computed based on the prior sta-
tistical assumption about the signal and noise. In fact these operators are computed as
the Cholesky factor of the inverse of the prior signal and noise covariance matrices, i.e,
C−1
σ = LH L and C−1

e =ΓHΓ.
We restate problem (3.26) with a single LS to observe the resulting system of equa-

tions and apply the transformα= Lσ. The resulting system can be stated as

α̂= argmin
α

∥∥∥∥[
ΓML−1
p
τI

]
α−

[
Γr̃p
τLµσ

]∥∥∥∥2

2
. (3.32)

The system matrix in this case is M̄ =ΓML−1. We see that operators Γ and L−1 appear as
right and left preconditioners. These preconditioners that are computed based on the
prior statistical assumptions about the signal and the noise are called “priorcondition-
ers" [83]. In fact, they apply whitening of the prior and the noise, i.e. Cov(α) = IQ and
Cov(Γe) = IP 2 .

This type of preconditioner can be used in combination with the iterative methods
that exhibit preconvergence. The truncation length applies a regularization based on the
signal and noise subspaces and applying priorconditioners is shown to enrich the signal
subspace [88]. In fact they have been shown to accelerate the rate of convergence of
the portion of the solution corresponding to the signal subspace while leaving the noise
subspace unaffected [88].

3.3.4. PRECONDITIONERS FOR SPARSE REPRESENTATION
As mentioned earlier, right preconditioners provide a means to incorporate assumptions
about the model of the sky map directly into the measurement system. In the context of
compressive sensing, where the underlying signal exhibits some sparsity, right precon-
ditioners can be used to incorporate available information about the support of the sig-
nal into the system. This is especially interesting in radio astronomy as most of the sky
is empty and source emissions appear either as clusters of diffuse emission or isolated
point sources. Therefore, the image exhibits a bounded support. We recall the precon-
ditioned system matrix stated in Equation (3.30) as M = ΠMΘ. If there is some prior
knowledge about the support of the image, e.g. via a low resolution initial image, this
can be inserted intoΘ. Therefore, in this caseΘ is a diagonal masking matrix defined as

[Θ]i ,i =
{

1, if [σtrue]i > 0

0, if [σtrue]i = 0.
(3.33)
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Applying the right preconditioner as defined corresponds to a column selection oper-
ation on the system matrix M. Applying the support information this way, reduces the
size of the system as many pixels are discarded (set to zero) for image formation.

Furthermore, if the sky map can be presented sparsely in some (overdetermined)
basis, the right preconditioner can be adjusted to incorporate the sparsity basis. In this
case, the modeling of the image changes asσ=ΘαwhereΘ represents the new basis for
image representation andα is a sparse vector containing the coefficients of the image in
the new basis.

3.3.5. ANTENNA/BASELINE SELECTION

The concept of sensor selection is used in incoherent imaging and compressive sampling
to design antenna arrays. The goal is mainly to find the best (based on some optimiza-
tion objective) arrangement of the antennas in the spatial frequency field such that the
minimum number of antennas are applied. The motivation is to have an inexpensive
array especially when the sensors, in our case radio telescopes, are expensive.

Selection can be applied on the antennas or directly on the baselines. We call the for-
mer baseline selection and the latter sensor selection. Baseline selection is particularly
interesting for data reduction in radio interferometry. The motivation in this case is to
reduce the amount of data that is used in image formation without sacrificing the image
reconstruction performance such that it results in savings in data transport and imaging
computations. Since doing so, the size of the data is reduced and the redundant data are
neglected.

We can use a left preconditioner to model sensor/baseline selection. Sensor selec-
tion can be applied based on Equation (2.44) from Chapter 2. We define the sensor se-
lection matrix as Φ = diag(w) where w is the selection vector containing only zeros and
ones. This translates into a left preconditioning matrix on the measurement system de-
fined as Ξ = (Φ∗⊗Φ), corresponding to the cross-correlation of all the weights applied
on the sensors. For baseline selection we can directly define the left preconditioning
matrix asΞ= diag(w) where in this case w is the baseline selection vector of size P 2 with
zero and one elements. Therefore, in this case the size of the correlation data will reduce
as Ξr̃. Applying baseline selection instead of sensor selection increases the degrees of
freedom [49]. Baseline or sensor selection can be viewed as a row selection operation on
matrix M to discard non-informative rows.

The point spread function provides a characterization of the sensor placement ge-
ometry and the weighting applied on the baselines. Based on the formulation of Chap-
ter 2, we can integrate the left preconditioning in the definition of PSF, i.e,

b = MHΠH 1 . (3.34)

Discarding the redundant baselines, the shape of the PSF does not change. This concept
is used in minimum redundancy [53] array or sparse ruler [89] array designs to minimize
the number of redundant baselines. However by discarding elements, the sensitivity
of the array, corresponding to the peak of the PSF, is altered. This can be remedied by
increasing the integration time for correlation formation.
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3.3.6. PRECONDITIONING IN RADIO ASTRONOMY
The concept of preconditioning has been used in radio astronomy to refer to baseline
weighting [28, 90]. We can regard baseline weighting as a left preconditioner similar to
the one applied in baseline/sensor selection where the weights can be arbitrary numbers
(rather than zeros and ones). The purpose of baseline weighting is to adjust the shape
of the PSF such that the quality of image reconstruction is improved. There are mainly
two criteria for selection of weights; (i) maximizing sensitivity of the instrument, or (ii)
minimizing PSF sidelobe level [91]. In fact, by applying weights to the baselines, we
can artificially construct arrays for which the PSF is a subset of the PSF of the original
array [49]. Selection of weights differs based on the science case.

Translating baseline weighting to left preconditioning, Π is a diagonal matrix with
arbitrary values. In radio astronomyΠ can be decomposed as

Π= KTD (3.35)

where K, T and D are all diagonal matrices. K indicates the reliability of the visibility
sample depending on the integration time, system temperature and bandwidth at the
corresponding baseline. This parameter cannot be controlled or changed during image
formation. However, T and D can be adjusted to control the beam shape. T is the base-
line tapering function to control, “fine tune", the shape of the PSF. T is implemented as
a smooth function, usually a Gaussian, used to weigh down the data at the outer edge
of the u − v coverage. This results in a suppression of the small-scale sidelobes at the
expense of broadening the main beam (reducing the resolution). This is similar to side-
lobe reduction windows, Bartlett, Hamming, Hann etc., in spectral analysis [55]. Fur-
thermore, D is the weighting applied to control the effect of sampling density in the u−v
plane in image reconstruction [28]. D is used to simulate a more uniform sampling in
the u − v plane by reducing the effect of high sampling in the center of the plane and
to lessen the sidelobes due to the existence of gaps in the u − v coverage. This is done
by applying weights to each measurement with a reciprocal of the local measurement
density [28].

Different weighting schemes exist in radio interferometric imaging; Natural weight-
ing applies equal weights to all the samples and therefore, preserves the natural resolu-
tion and the peak sensitivity of the instrument. Therefore, it gives the best SNR for de-
tecting weak sources. However, this scheme does not provide enough resolution for im-
ages containing large- and small-scale sources. If the measurement noise is white, natu-
ral weighting can be applied as K = I or in case of non-white noise as K = Γ.Sardarabadi
et al. [56] have shown the correspondence between natural weighting and the statistical
weighting applied in the ML formulation. In fact, left preconditioning affects the statis-
tics of the noise on the system. Therefore, left preconditioning must be applied with
care as it may affect the statistical assumptions (such as maximum likelihood) made in
the problem formulation [84].

By applying uniform density weights to all the samples the main beam of the PSF can
be narrowed resulting in an increase in the resolution of the instrument. This concept is
used in the uniform weighting scheme. In uniform weighting, D is such that the value of
each visibility sample is divided by the sampling density in a symmetric region around it.
Size and shape of the region can be controlled. Uniform weighting is used to obtain the



3

62 3. ILL-POSEDNESS AND REGULARIZATION

maximum resolution and to emphasize small-scale structure of bright sources whereas
natural weighting is better suited to emphasize extended structures of faint sources.

There exist some intermediate weighting schemes such as the robust weighting [42]
and adaptive weighting [91]. Baseline weighting has recently been used as a left pre-
conditioning method to accelerate the convergence of a primal-dual distributed imag-
ing algorithm [92]. Onose et al. [92] have shown that convergence acceleration can be
achieved using the sampling density information, especially for highly nonuniform sam-
pling patterns. They have shown that by incorporating the sampling density informa-
tion, the algorithm step size can be adjusted such that it makes a large step toward the
solution in each iteration. This in turn accelerates the convergence. In fact, by apply-
ing left preconditioning, both sampling density and the noise statistics of visibility mea-
surements can be incorporated in the algorithmic structure resulting in an increase in
convergence speed and increase in image reconstruction quality.

3.4. CONCLUSIONS
In this chapter, we analyzed the radio interferometric imaging system and concluded
that the radio interferometric imaging problem is highly ill-posed. Furthermore, we re-
viewed the available regularization methods. Last but not least, we proposed a frame-
work based on preconditioning to incorporate the regularization operator directly into
the measurement system. In the following chapters, we use this formulation to design
regularized radio interferometric imaging algorithms and methods.
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4
DATA-DRIVEN REGULARIZATION

FOR DIRECT DECONVOLUTION

4.1. INTRODUCTION
In this chapter, based on a MLE formulation of the radio interferometric imaging prob-
lem, we propose two regularization methods for the deconvolution problem in RA. The
first method is based on weighted truncation of the eigenvalue decomposition of the
image deconvolution matrix. In the second method, we introduce a conditioning of the
deconvolution matrix based on the prior knowledge of the dirty image using the avail-
able data. The effectiveness of the proposed regularization methods is demonstrated by
simulations and on actual data from a LOFAR [1] station.

4.2. RADIO INTERFEROMETRIC DECONVOLUTION PROBLEM
We recall the MLE problem formulation for RA imaging stated in Chapter 2, Equation (2.69),

σ̂= argmin
σ

‖Γ(r̃−M)σ)‖2
2 ,

and the corresponding normal equations:

MH C−1
e Mσ̂= MH C−1

e r̃ ,

where C−1
e = ΓHΓ and Ce = 1

N (RT ⊗R). The closed form solution of this problem can be
stated as

σ̂= (ΓM)†Γr̃ = (MH C−1
e M)−1MH C−1

e r̃ . (4.1)

Part of this chapter is published as: S.Naghibzadeh, A. Mouri Sardarabadi and A.J. van der Veen. Radioastro-
nomical image reconstruction with regularized least squares. 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 3316-3320, 2016.
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This formulation assumes the receiver noise power rn is known and subtracted from the
measurements to obtain r̃. However, if rn is not known, as proposed by Wijnholds [44],
the weighting Γ can be changed to a modified weighting Γ̃ obtained as

Γ̃=Γ−Γ((I◦ I)H C−1
e (I◦ I))−1(I◦ I)HΓHΓ . (4.2)

Equation (4.1) describes the deconvolution problem in RA where (MH C−1
e M)−1 rep-

resents the deconvolution operation. With this operation, the effect of the convolution
by the PSF is removed from the image. In this equation, H = MH C−1

e M is called the de-
convolution matrix and σ̂MF = MH C−1

e r̃ denotes the MF dirty image. To enable the as-
tronomers to draw proper interpretations of the cosmic objects and phenomena, the
image is required to have a high dynamic range. In the dirty image, due to the convolu-
tion of the true distribution with the PSF there exist high sidelobes that limit the dynamic
range of the image significantly. In fact, some weak sources may be completely drawn
under the sidelobes of the bright sources. Therefore, to achieve a high dynamic range,
deconvolution is performed to remove the effect of the sidelobes of the PSF from the
dirty image to obtain a reasonable estimate of the sky image.

If multiple frequency channels and/or time snapshots are measured, e.g. K fre-
quency channels and/or snapshots, and the sky map does not change over the K fre-
quency channels and snapshots, we can write the aggregate normal equations as

K∑
k=1

Hk σ̂=
K∑

k=1
σ̂MF,k k = 1,2,3, . . . ,K . (4.3)

We call H = ∑K
k=1 Hk and σ̂MF = ∑K

k=1 σ̂MF,k . Therefore, the deconvolution problem for
the aggregate snapshot and frequency channels becomes

σ̂= H−1σ̂MF . (4.4)

Since in RA the deconvolution matrix H is highly ill-conditioned, instead of a direct in-
version, a pseudo-inverse, indicated by H† is applied. A linear deconvolution is obtained
by the direct inversion of the deconvolution matrix by means of a (truncated) SVD, or
since the deconvolution matrix is Hermitian via a (truncated) Eigen Value Decomposi-
tion (EVD). This is first considered in the context of RA by Briggs [42]. However, this
method cannot be applied to large scale problems due to the storage and computational
limitations. Furthermore, since the deconvolution problem is ill-posed this results in
many complications due to noise amplifications.

4.3. PROPOSED METHODS
The authors in [93] have proposed a direct data-driven model-based least squares method
based on Karhunen-Loeve transform (KLT) to obtain the signal power estimates σ̂ from
the noisy covariance data. As the results in [93] suggest, the KLT-based deconvolution
process introduces a ripple effect, similar to the Gibbs oscillations introduced in Chap-
ter 2, Section 3.1.2, in the reconstructed image due to the truncation of the eigenvalues
with a rectangular window. In this section, we propose two regularization methods to
improve the reconstructed image quality based on a linear deconvolution performed by
the EVD.
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4.3.1. WEIGHTED TRUNCATED EIGENVALUE DECOMPOSITION
The first method is based on introducing a weighting matrixΦ in the eigenvalue decom-
position of the deconvolution matrix H to perform smoother spectral windowing [94]
and to reduce the ripple effect caused by the KLT-based method proposed in [93].

The eigenvalue decomposition of the deconvolution matrix is stated as

H = VΩVH , (4.5)

whereΩ is a diagonal matrix containing the eigenvalues of H sorted in decreasing order
and the columns of the matrix V contain the corresponding eigenvectors. According
to [93], by truncating the eigenvalues of H, the deconvolution matrix can be represented
by the set of dominant eigenvalues and eigenvectors as

H ≈ V̂Ω̂V̂H , (4.6)

where Ω̂ is a diagonal matrix composed of the significant eigenvalues of H and the columns
of V̂ contain the corresponding significant eigenvectors. This method is known as nu-
merical filtering [95].

To reduce the effect of spectral truncation with a sharp rectangular window, we pro-
pose to introduce a diagonal weighting matrixΦ to correct for the different dominance of
the remaining spatial frequencies. Defining H† as the weighted inverse of the truncated
eigenvalue decomposition of H, the proposed method computes the image estimate as

σ̂= H†σ̂MF = V̂ΦΩ̂
−1

V̂H σ̂MF. (4.7)

Truncating the eigenvalues acts in a similar way as low-pass spatial filtering. Based
on the analysis in Chapter 3, Section 3.1.2, we know that the smaller eigenvalues corre-
spond to higher frequency information of the image which is mostly captured by the
longer baselines. Since usually the longer baselines are sampled more sparsely, they
contain less information. Therefore, the corresponding eigenvalues have smaller mag-
nitude. This affects the condition number of the deconvolution matrix H adversely.

TSVD implies a band-limiting by truncating the high spatial frequencies. We note
that these frequencies are actually not measured by the system due to the finite ex-
tent of the array in the spatial frequency plane. In restoring an image containing point
sources, spurious oscillations occur around the discontinuities. This is called the ringing
effect [48].

Furthermore, the high frequency information of the image is not measured by the
interferometer since the spatial frequency coverage by the interferometer is inevitably
band-limited. Truncated EVD imposes a hard threshold to discard the eigenvalues corre-
sponding to these spatial frequencies and by doing so, causes spurious Gibbs oscillations
around the discontinuities. Using smoother filter shapes such as a triangular window in-
stead of the rectangular window, that is normally used in numerical filtering, reduces the
sidelobes at the cost of a decreased resolution [55].

4.3.2. BEAMFORMING-BASED CONDITIONING
The second proposed regularization method uses the prior knowledge that the expected
value of the dirty image is an upper bound on the desired source power and that the
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source powers are positive [56], that is,

0 ≤σ≤σMF, (4.8)

where σMF = MH r represents the expected value of the dirty image. This relation has
been further explained in Chapter 2, Section 2.4.1. By defining a conditioning vector
d based on the true dirty image, the inequality condition (4.8) can be translated into
conditioning weights di satisfying 0 ≤ di ≤ 1, that is,

σ=σMF ¯d . (4.9)

The conditioning weights are then computed as

σMF = Hσ= Hdiag{σMF}d (4.10)

d = (Hdiag{σMF})†σMF. (4.11)

In practice, we use the dirty image obtained from the noisy data, i.e. σ̂MF, to obtain an
estimate of d denoted as d̂. Furthermore, we compute the pseudo-inverse mentioned
in (4.11) by (.)† by a truncated singular value decomposition of the deconvolution matrix
H conditioned by weights obtained from the dirty image. That is,

(Hdiag{σ̂MF})† = ŶΨ̂
−1

ÛH , (4.12)

where Ψ is a diagonal matrix containing the significant singular values of (Hdiag{σ̂d })
and the columns of Ŷ and Û contain the corresponding right and left singular vectors.
Therefore, the source power estimates are then obtained by

σ̂= σ̂MF ¯ d̂.

The idea behind conditioning the deconvolution matrix with the dirty image is that the
discrete source model assumes a point source per image pixel. However, if the resolution
is chosen high, source distributions are spread over multiple pixels which causes a lin-
ear dependence in the columns of the deconvolution matrix. Applying the conditioning
weights to the deconvolution matrix H based on the dirty image promotes the columns
with more available information, i.e. source power while demoting the columns related
to the empty parts of the sky, that contribute to less power in the dirty image, before
applying the inversion.

4.4. SIMULATION RESULTS
In this section, the performances of the proposed methods are evaluated using a set of
simulations. A uniform linear array (ULA) configuration with P = 15 antennas, placed
at half-wavelength spacing, with scanning angles in the range [−90◦,90◦] is considered.
The resolution of the image is chosen to be 0.1 of the main beam which results in Q = 235
image pixels. 5 point sources with intensities [5,5,0.8,5,5] are placed at angles
[−23◦,−17◦,7.5◦,23◦,32.5◦]. N = 105 time samples are used to construct the sample co-
variance matrix and the eigenvalues are truncated to the length T = 2P − 1 due to the
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fact that in the special case of a ULA matrix V represents a spatial Fourier transform with
the unique weights defined by the number of unique baselines, i.e. 2P −1. The obtained
dirty image is shown in figure 4.1(a). Following section 4.1, figure 4.1(b) shows the source
power estimates obtained by a truncated eigenvalue decomposition. As can be seen, the
truncation causes sinc-like ripple effects, the two nearby sources are not distinguish-
able and the smallest source is completely buried in the sidelobes of the other sources.
Figure 4.1(c) illustrates the effect of applying the triangular weighting function on the
truncated eigenvalues. The result shows significantly reduced sidelobes at the expense
of reduced resolution, the close sources are still not distinguishable but the small source
is recovered. The triangular weighting function with weights φi is computed as [94]

φi =
{

1− i−1
T i ≤ T

0 i > T
. (4.13)

and is scaled by window power per length, i.e. 1
T

∑T
i=1 |φi |2.

Furthermore, the effect of the proposed conditioning method on the point source
estimates, as discussed in section 4.2, is demonstrated in Figure 4.1(d). As can be seen,
by using the prior knowledge from the dirty image in the deconvolution process, the
dynamic range is significantly increased, the sidelobes are reduced and a sharper esti-
mate of the source positions with less bias is obtained. Moreover, the nearby sources are
clearly distinguishable. Focusing on Figure 4.1(d), we see that the reconstructed image
exhibits negative sidelobes. We think that this effect is caused since multiplying H on the
right by the dirty image as discussed in Equation (4.11), hampers the positive definite-
ness of the deconvolution matrix H which exhibits itself in the reconstructed image.

In the special case of a regularly-sampled linear array, the unitary spectral decom-
position matrix U equals a Fourier transform matrix F and a rectangualr window on the
frequency content of the signal causes a sinc function in the spatial content. By applying
a triangular window, the sidelobes of the sinc function are reduced at the expense of a
wider main beam.

4.5. EXPERIMENTAL RESULTS
Actual data from the LOFAR telescope [17] was used to investigate the effect of the pro-
posed methods on the reconstructed image quality. For comparison reasons, the same
data set as introduced in [93] was used. The data is captured by 48 semi-randomly
spaced planar antennas and consists of 25 time snapshots of 10 seconds each in 25 dis-
tinct frequency channels of bandwidth 156 kHz between 45.156 and 67.188 MHz. Since
we have multiple frequency channels and time snapshots, we use Equation (4.3) to con-
struct the deconvolution problem. The image is sampled regularly on the projected
plane and the same number of image pixels, Q = 8937 and eigenvalue truncation thresh-
old of λmax /200 as in [93] was chosen, where λmax denotes the maximum eigenvalue of
the deconvolution matrix H. The normalized dirty image obtained form matched filter
beamforming is shown in Figure 4.2(a).

Using a weighted LS formulation, the resulting normalized KLT-based image as pro-
posed in [93] is shown in Figure 4.2(b). Next, the triangular spectral weighting method
was used to reduce the ripple effect in the resulting image. The resulting normalized
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Figure 4.1: Simulation results for (a) dirty image, and point source estimates based on (b) truncated
eigenvalue decomposition, (c) triangular-weighted eigenvalue decomposition, (d) dirty image based

conditioning.

reconstructed image is shown in Figure 4.2(c). Moreover, the normalized reconstructed
image using the dirty image based conditioning method is shown in Figure 4.2(d). As
the figure suggests, conditioning based on the computed dirty image results in a sharper
image with less sidelobes and higher dynamic range as compared with the KLT-based
method.

We focus on the image of Cassiopeia A supernova remnant and Cygnus A radio galaxy
seen as two point-like emissions on the right edge of the image. These two objects can
be considered as discontinuities in the otherwise rather smooth image. These ringing
effects are due to the Gibbs phenomena. Comparing Figure 4.2(a) and (b) we can see
that the definition of the position of these discontinuities is more precise in 4.2(b) but
this comes at a cost of distortion by “ringing" around the discontinuities. As mentioned
in Section 3.1.2, we expect the discontinuities to result in ringing effects in restoration
by TSVD as can be seen in Figure 4.2(b) due to the Gibbs phenomena. By applying
smooth weights in Figure 4.2(c) we trade resolution for ringing. On the other hand, in
Figure 4.2(d), the dynamic range and the sharpness of the image is increased however
the ringing effects are still observable. We can see that the combined regularizing effect
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Figure 4.2: Image estimates based on (a) MF dirty image (b) truncated eigenvalue decomposition, (c)
triangular-weighted eigenvalue decomposition, (d) dirty image based conditioning.
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of TSVD and weighting by the dirty image helps in increasing the sharpness of point-like
sources but the recovery for extended emissions are not satisfactory.

4.6. CONCLUSIONS
Image deconvolution for radio astronomy is a highly ill-posed problem. In this chap-
ter, two regularization methods are proposed to control stability of the solution. The
first method uses a weighting function to control the dominance of the available spatial
frequencies in the data and the second uses the prior information on the dirty image
to condition the spatial distribution of the celestial sources. The proposed regulariza-
tion methods are validated by actual data from the LOFAR radio telescope and through
simulations. We can see that by applying windowing, we trade sharpness of the image
and ringing effects with resolution. Furthermore, we see that applying the dirty image
conditioning results in a higher dynamic range and sharpness of the image. We would
like to note that, due to the considerable memory and computational demands of the
SVD, solving large-scale radio interferometric problems using the direct method is not
feasible.

In the next chapter, we derive a similar data-driven regularization method starting
from a Bayesian RA imaging formulation. Estimating the covariance of the image from
an MVDR dirty image, we show that we can obtain a regularized MLE formulation such
that the system matrix M is right-preconditioned with a dirty image. This provides a
means for regularization. Applying the weights directly on M rather than H eliminates
the adverse effect of one-sided preconditioning of H. We further generalize the frame-
work to account for sparsity-promoting regularizations and propose efficient iterative
methods to obtain the solution of the regularized problem.



5
FAST IMAGING WITH GENERAL

REGULARIZATION

5.1. INTRODUCTION
The advent and development of increasingly large radio interferometers such as LOFAR
[1] and the SKA [4] has sparked renewed interest in the image formation task. More pre-
cisely, image formation is expected to be the main computational bottleneck in the pro-
cessing pipeline of next generation radio telescopes [26]. The main issue in image re-
construction in the context of next generation radio telescopes is the huge scale of the
problem both in terms of the size of the measurements as well as the size of the image
due to the scientific requirements. Owing to the considerable memory and computa-
tional demands, solving large-scale interferometric problems using the direct method,
as discussed in Chapter 4, is not feasible. More precisely, the SVD requires storage of the
measurement matrix M and computations of order cube of the problem size which is in-
feasible on the scales of SKA. As an alternative, custom-made iterative methods should
be applied.

We have introduced the radio interferometric imaging measurement equation in
Chapter 2 and highlighted its ill-posedness and the need for regularization together with
some of the most commonly used regularization methods in RA in Chapter 3. Differ-
ent iterative methods not only differ on the optimization problem that they tackle but
also on the algorithm used for finding the solution of the optimization problem. Some
iterative solution methods, such as the conjugate gradient method, exhibit a property
such that they can provide for another form of regularization by prematurely stop the
iterations, restricting the solution to a particular data-dependent subspace.

Part of this chapter is published as S. Naghibzadeh and A.J. van der Veen. PRIFIRA: General regularization using
prior-conditioning for fast radio interferometric imaging. Monthly Notices of Royal Astronomical Society. June
2018
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Considerations in algorithm selection are (1) the accuracy (fidelity) of the resulting
image, related to the definition of the optimization problem, (2) computational com-
plexity, related to the scalable solution of the optimization problem, and (3) the automa-
tion and flexibility of the process regarding the selection of unknown parameters or set-
tings such as iteration counts. For future radio telescopes, not all measurement data can
be stored and image formation has to be done in an automated and quasi-real time man-
ner. One of the main advantages of the iterative methods is that there is no need to store
and invert M. Instead, the action of the linear operator on a vector in the form of matrix-
vector multiplications with M and MH must be applied. These multiplications can be
implemented as operators which eliminate the need for construction and storage of the
matrix M and allows for the implementation of fast methods based on the structure of
the measurement matrix. Furthermore, the cost of the iterative methods is determined
based on the amount of computations per iteration times the total number of iterations
needed for a good restoration of the image [96, 84].

This chapter is a quest to introduce efficient algebraic techniques for radio interfer-
ometric imaging with the aim to tackle some of the deficiencies in the imaging pipeline
of the next generation radio telescopes. A wealth of research has been dedicated to
the recovery of discrete emissions from distant galaxies, with sparsity as the main reg-
ularizing assumption. In this chapter we focus on the recovery of extended emissions.
We present a general algorithmic framework based on a Bayesian-inspired regularized
maximum likelihood formulation of the radio astronomical imaging problem with a fo-
cus on diffuse emission recovery from limited noisy correlation data. The algorithm is
dubbed PRIor-conditioned Fast Iterative Radio Astronomy (PRIFIRA) and is based on a
direct embodiment of the regularization operator into the system by right precondition-
ing. The resulting system is then solved using an iterative method based on projections
onto Krylov subspaces. We motivate the use of a beamformed image (which includes the
classical “dirty image”) as an efficient prior-conditioner. Iterative reweighting schemes
generalize the algorithmic framework and can account for different regularization oper-
ators that encourage sparsity of the solution. The performance of the proposed method
is evaluated based on simulated one- and two-dimensional array arrangements as well
as actual data from the core stations of the Low Frequency Array radio telescope antenna
configuration, and compared to state-of-the-art imaging techniques. The simulation
and experimental results of PRIFIRA are included in Chapter 6. We show the generality of
the proposed method in terms of regularization schemes while maintaining a compet-
itive reconstruction quality with the current reconstruction techniques. Furthermore,
we show that exploiting Krylov subspace methods together with the proper noise-based
stopping criteria results in a great improvement in imaging efficiency.

5.1.1. STATE OF THE ART IMAGING ALGORITHMS

Classical radio astronomical imaging algorithms are based on the CLEAN algorithm [3,
68] and its multiresolution and multiscale variants [69, 70, 97, 71]. The considered cost
function is the LS objective, implicitly regularized by an `0 constraint [72] which favors
maximal sparsity of the solution. The CLEAN algorithm was recently interpreted as a
gradient descent method combined with a “greedy” procedure to find the support of the
image [75]. We will explain this in more detail in Chapter 7.
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Alternatively, the problem can be regularized by posing a non-negativity constraint
on the solution [42]. The resulting Nonnegative Least Squares (NNLS) optimization can
be implemented using the active set method [56] and similarly consists of two levels of
iterations: (i) an outer loop to iteratively find the sparse support of the image and (ii) an
inner loop in which a dimension reduced version of the LS problem is solved. The in-
creased resolution, bandwidth, sensitivity and sky coverage of these instruments result
in many more sources, including unresolved sources and extended structures, render-
ing the traditional greedy imaging algorithms based on point source detection, such as
CLEAN and NNLS, iterations less effective.

Another classical RA imaging algorithm is the maximum entropy method (MEM) [77,
78]. The regularization term is the entropy functionσT log(σ), and the problem is solved
using computationally expensive nonlinear optimization methods such as Newton-
Raphson.

Finding the nonzero support of an image using an `0 constraint is an NP-complete
problem. Instead, this constraint may be weakened to an `1 constraint, which still pro-
motes sparsity of the solution, but admits a solution based on the theory of compressed
sensing and convex optimization, for which efficient techniques exist. Recently, many
algorithms in this direction have been proposed [34, 35, 36, 75, 98, 99, 100]. These meth-
ods are based on a gradient descent approach. Instead of a constraint on ‖σ‖1 (sparse
image), also a more general constraint ‖ΨTσ‖1 or ‖α‖1 where σ =Ψα can be used, in
which Ψ is an overcomplete dictionary of orthonormal bases. E.g., Sparsity Averaging
Reweighted Analysis (SARA) [36] employs a concatenation of wavelet dictionaries. The
advantage of the methods based on convex optimization is the simplicity of imposing
additional constraints on the solution, the existence of many well-developed methods
with guaranteed convergence and the ability to split the work into simpler, paralleliz-
able sub-problems [101, 75]. The disadvantage of these algorithms is that the gradient
descent steps make the algorithm convergence rather slow. Also, as remarked in [71],
many of these algorithms have not yet been tested on real data.

Taking another direction, the RESOLVE algorithm introduced techniques from Bayesian
statistics to propose priors that regularize the solution [80], aimed specifically at ex-
tended sources, and modeled these a priori using log-normal distributions. Unfortu-
nately, the resulting method appears to be extremely slow [80].

5.1.2. RESULTS

In this chapter, our interest is in developing a new method for science cases where a
considerable amount of complex diffuse emissions is present such as in the studies of
galactic magnetism, the epoch of reionization, and polarized imaging.

We start from a Bayesian statistical approach for regularization, but formulate a short-
cut that immediately connects to a numerical method called prior-conditioning, i.e., a
data-dependent Jacobi-like right preconditioner that scales the columns of M. In this
general framework, the prior conditioner can take the form of a beamformed image,
such as the classical dirty image, or the MVDR image, or any other low resolution prior
image that is strictly positive on the true support of the image. This could also be deter-
mined iteratively, which gives a connection to reweighted least squares solutions, often
used to approximate `0 or `1 norm optimization by least squares optimization, in par-
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ticular the FOCUSS algorithm [102] and the algorithm presented in [103].
Next, we propose to solve the obtained regularized LS problem by a fast and effi-

cient iterative algorithm based on the Krylov subspace-based method of LSQR [104].
Krylov methods often exhibit a faster convergence than methods based on gradient de-
scent [105]. Therefore, they appear to be good candidates as alternative iterative solution
methods for the RA imaging problem. The stopping criterion of the LSQR algorithm is
based on the norm of the residual, which provides another form of regularization, called
iterative regularization or semiconvergence [84, 59]. The resulting algorithm is straight-
forward to implement and computationally very efficient.

We compare the proposed method to classical RA imaging methods as well as meth-
ods based on convex optimization both in terms of speed and quality of the estimate. It
will be seen that the proposed method is accurate and converges extremely fast (around
10 iterations).

5.2. PROPOSED SOLUTION METHOD
We consider the Bayesian problem formulation framework from Chapter 3, Section 3.2.2.
The main question in the Bayesian framework is the selection of a suitable prior. E.g., we
can select a Gaussian prior where µσ is the currently best known estimate for the image
(the current sky map), with Cσ related to the accuracy of that knowledge. As it is hard
to quantify this, Cσ could be modeled as a diagonal matrix, with the unknown variances
on the diagonal modeled in turn as statistical parameters, for which a distribution (with
unknown parameters called hyperparameters) has to be proposed. The estimation of
these hyperpriors from the data is known as Sparse Bayesian Learning (SBL) [81] and
in the context of our problem has been worked out by [82]. The RESOLVE method [80]
follows a similar approach. Unfortunately, the computational complexity is reported to
be rather high.

Since the prior in this framework is data-dependent, the question at this point is
whether it would be possible to use a (perhaps less optimal) data-dependent prior that
is easier to estimate.

5.2.1. PROBLEM REFORMULATION

We focus on the Tikhonov regularized WLS problem formulation and will useµσ = 0 and
restrict L to be diagonal. Our aim is thus to propose a suitable L. Since C−1

σ = LH L, the
diagonal entries of L model the precision of our prior knowledge, and a large entry of L
will result in a dark pixel (since µσ = 0), whereas a small entry of L will make that pixel
be determined by the data.

With change of variablesα= Lσ, we can rewrite the objective function (3.14) in terms
ofα as

α̂= argmin
α

‖Γ(r̃−ML−1α)‖2
2 +τ‖α‖2

2 , (5.1)

The image can be recovered from α̂ by the linear transform σ̂= L−1α̂.
Equation (5.1) is equivalent to the solution of

(L−H MH C−1
e ML−1 +τI)α= L−H MH C−1

e r̃ . (5.2)
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With the choice of C−1
σ = LH L and C−1

e = ΓHΓ and change of variables M̄ = ΓML−1 and
r̄ =Γr̃ we can rewrite this as

(M̄H M̄+τI)α= M̄H r̄ . (5.3)

Such a scaling of the columns of M by a matrix L−1 related to the prior distribution is
known as prior-conditioning [83], as it is similar in shape to the preconditioning that
is sometimes done in iterative solvers to improve convergence. The difference is that
preconditioning only involves M whereas prior-conditioning is not just based on M but
on the interaction of M with the data r̃.

5.2.2. SELECTION OF THE PRIOR COVARIANCE
To obtain a prior, data-dependent, estimate of Cσ, the idea is to compute from the data
an unbiased estimate for the image, using minimal assumptions, i.e., we consider σ de-
terministic. The variance of this estimate can then be used as estimate for Cσ.

The best possible estimate under this assumption is the MLE estimate, in this case
equal to the WLS estimate

σ̂MLE = (MH C−1
e M)−1MH C−1

e r̃ . (5.4)

It is known that this estimator is an efficient MVU estimator [57] with covariance

Cσ̂ = (MH C−1
e M)−1 , (5.5)

where Ce = 1
N (RT ⊗R). Therefore

MH C−1
e M = N (A∗ ◦A)H (R−T ⊗R−1)(A∗ ◦A)

= N (AT R−T A∗)¯ (AH R−1A) .
(5.6)

If we denote the variance of σ̂ as Var(σ̂), it consists of the diagonal elements of Cσ̂, i.e.

Var(σ̂) = vectdiag(Cσ̂) . (5.7)

Based on Equation (5.6), the i th diagonal element of MH C−1
e M can be computed as

N (aH
i R−1ai )2. Although Equation (5.6) shows that the estimated pixel intensities are cor-

related, we ignore that and set Cσ̂ ≈ diag(Var(σ̂)) where

Var(σ̂i ) = 1

N (aH
i R−1ai )2

, i = 1,2, . . . ,Q, (5.8)

with Var(σ̂i ) denoting the variance of the i th pixel estimate. Comparing (2.61) and (5.8)
we conclude that (if Rn is ignored in (2.61))

Cσ̂ ≈ diag(Var(σ̂)) = 1

N
diag(σMVDR)2. (5.9)

Since the true data covariance matrix is not available, we will use the sample covariance
matrix R̂, and obtain the estimated MVDR image σ̂MVDR. This leads to the choice to set

L−1 = diag(σ̂MVDR) (5.10)
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as regularizing operator. (A factor
p

N is absorbed in τ.) Subsequently, we set M̄ =ΓML−1

and solve Equation (5.3).
While this choice is obviously a shortcut from a truly Bayesian approach (e.g., the

mean value of the initial image is ignored and only the variance is taken into account),
we will show in the simulations that this simple idea is very effective in obtaining reg-
ularized solutions. Moreover, it is computationally not very involved as it amounts to
constructing a beamformed image (similar to computing the classical dirty image), fol-
lowed by solving Equation (5.3). We propose to use Krylov subspace iterations to do this
efficiently (Section 5.3.1).

5.2.3. DISCUSSION AND GENERALIZATIONS
Before we develop an efficient algorithm for finding the solution of the problem stated
in Section 5.2.1, we discuss some of the properties of the problem and address potential
generalizations of the framework.

1) RA images contain substantial black background of radio quiet zones. The working
principle of greedy algorithms such as CLEAN and NNLS is to first obtain the support of
the image, also called the active set, and to solve only for the elements of the image in the
active set. Therefore, as shown by [72], these methods solve the regularized LS or MLE
problem (3.14) with R(σ) = ‖σ‖0,

σ̂= argmin
σ

‖Γ(r̃−Mσ)‖2
2 +τ‖σ‖0 , (5.11)

with the addition of a nonnegativity constraint for NNLS. Minimizing the `0 norm pro-
duces satisfactory results both in terms of the support of the image and the intensity es-
timates if the underlying image is sufficiently sparse and only consists of scattered point
sources.

In line with our problem formulation, the `0 constraint can be translated into a right
preconditioner. If we assume for the moment the knowledge of the true σ, denoted as
σtrue, we can define a diagonal matrix D as

[D]i ,i =
{

1, if [σtrue]i > 0

0, if [σtrue]i = 0.
(5.12)

Therefore, in terms of the LS formulation, we need to solve the problem

α̂= argmin
α

‖Γ(r̃−MDα)‖2
2 +τ‖α‖2

2 , (5.13)

where the image estimate is found by the transform σ̂= Dα̂. Thus, σ̂ will be zero where
Di ,i is zero, and D would be the optimal prior conditioner. In reality we do not know
σtrue. Finding the active set in greedy algorithms is done iteratively through outer iter-
ations. This increases the cost of the algorithms substantially. Clearly, Problem (5.13) is
connected to Problem (5.1) considered in Section 5.2.1 via D = L−1. In this context, our
use of a beamformed image D = diag(σ̂MVDR) or D = diag(σ̂MF) can be interpreted as a
surrogate for this.

2) Low resolution initial estimates of the image can be obtained via MF or MVDR
beamforming. Previously, we suggested in [106] and [107] to use the MF dirty image
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diag(σ̂MF) for regularization purposes. Moreover, we showed the relation to Bayesian
estimation when applying MVDR-based right prior-conditioning weights in [108]. If the
noise is lower or comparable to the signal, we have the Relation (2.62),

0 ≤σtrue ≤σMVDR ≤σMF. (5.14)

Therefore, the prior variance Cσ based on the MF dirty image is higher than when the
MVDR dirty image is used, and the latter provides a better start. The correction by Rn

introduced in Equation (2.61) moves the MVDR image even further towards the true im-
age. It is also important to note from this relation that the true image is black wherever
the initial image is black. This way the initial estimate provides a rough estimate for the
true support of the image.

If we do not know the autocorrelations in the measurement data, we can use the
MF estimate without the diagonals or the MVDR image obtained by diagonal loading.
However, we must take care that all brightness estimates are strictly positive by adding
a constant value to the image since negative weights will be completely wrong while
zero weights will result in pixels that will stay black throughout the iterations and in the
final solution. We note that without autocorrelation information the results will be sub-
optimal. Section 5.5 gives a brief analysis and provides additional remarks related to the
proposed imaging techniques.

3) We show that applying MF or MVDR dirty images as prior conditioners favors
smooth reconstructions and is therefore more interesting for the recovery of diffuse struc-
tures and smooth features of the sky map rather than point sources. We motivate our
claim for prior-conditioning with the MF. Analysis for MVDR-based prior-conditioning
would be similar.

Assuming for the moment that there is no noise and error on the covariance mea-
surements, i.e. e = 0 and rn = 0, based on Equation (2.58) we can write the true dirty
image as

σMF = MH (Mσ) . (5.15)

If we consider an image that only contains a unit norm point source in the middle of the
FoV, we can rewrite Equation (5.15) as

b = (MH M)emid , (5.16)

where emid is the unit vector with the element in the middle of the FoV equal to 1. In
this case the dirty image is called the dirty beam, indicated by b. The dirty beam is also
known as Point Spread Function (PSF) (impulse response of the imaging system). If we
insert an arbitrary image σ in the FoV of the array, resulting σMF would be the convolu-
tion of dirty beam with the image. Dirty beam by construction acts as a low-pass filter
with the main beam corresponding to the resolution of the array. Therefore, the resulting
dirty image will be a low-pass filtered version of the sky map and is smooth.

When we use the dirty image as a prior, the smoothness will be preserved in the re-
sulting image from Equation (5.1). Since the extended emissions exhibit a smooth struc-
ture, in the reconstruction they will be preserved. By the same token, isolated point
sources will not be imaged sharper than the resolution of the instrument and will be
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spread out. This spreading is similar to the post-processing applied to the CLEAN so-
lution to restore the natural resolution of the telescope array. In our method, since the
prior obeys the resolution of the array, spreading is done automatically.

By relating Equation (5.1) to the effect of right preconditioning explained in Chap-
ter 3, when L−1 = diag(σ̂MF) we find another interpretation. We have seen that right
preconditioning implies modeling of the image. In this case, the image σ is confined to
the model σ = σ̂MF ◦α. This reduces the degrees of freedom for σ to a smooth model
assigned by σ̂MF. Therefore, the solution by definition favors smooth reconstructions.
We note that confining σ by σ̂MF ◦α is not sufficient to obtain a unique solution. The
additional regularization term ‖α‖2

2 also constraints the norm of free parameter α such
that a unique estimate is obtained.

4) Next, we show that applying the regularization operator as a prior-conditioner
opens the door to various regularizations. This can be applied in cases where the un-
derlying sky map contains isolated point sources.

It is well-known that `1 constraints result in sparse solutions. The associated regu-
larized MLE problem is

σ̂= argmin
σ

‖Γ(r̃−Mσ)‖2
2 +τ‖σ‖1 . (5.17)

One way to solve Equation (5.17) is via the Iteratively Reweighted Least Squares method [103].
The `1 constraint is transformed to an `2 constraint by

‖σ‖1 =
Q∑

i=1
|σi | =

Q∑
i=1

|σi |2
|σi |

= ‖Wσ‖2
2, where W = diag(σ−1/2) .

(5.18)

Equation (5.18) suggests that ‖σ‖1 can be computed from a properly weighted `2-norm.
Although this optimal weight is unknown, we can enter an iteration wherein, at each
step, the weight is based on the solution obtained at the previous step. It is thus sufficient
to solve only weighted LS problems. Specifically, we define the weight matrix at iteration
k as Wk = diag(σ̂−1/2

k−1 ) where σ̂k−1 is the solution obtained at the previous iteration k−1 1.
Therefore, Equation (5.17) is replaced by

σ̂k = argmin
σ

‖Γ(r̃−Mσ)‖2
2 +τ‖Wkσ‖2

2 (5.19)

which can be transformed into a right preconditioned system using the transform α =
Wkσ,

α̂k = argmin
α

‖Γ(r̃−MW−1
k α)‖2

2 +τ‖α‖2
2 . (5.20)

After the estimate σ̂k is obtained, Problem (5.20) is solved again with the new weights.
Therefore, this method requires solving Problem (5.20) multiple times where the outer
iterations are indicated by k. Comparing to Problem (5.1), we see that Problem (5.20) is
a prior-conditioned problem where the prior is iterated upon as more accurate images
are being computed.

1A modification may be required by adding a small ε to the weights, i.e. W−1
k = diag(σ̂1/2

k−1 + ε) for stability
reasons. Similar modifications are proposed in [109] and [103].
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If we start the iteration with W0 = I, then the first estimate σ̂1 will be the MLE esti-
mate (presented in Equation (2.69)). The next iteration will solve a right preconditioned
system where the square-root of this image is the prior.

In contrast, the prior we proposed in Equation (5.10) uses the MVDR image and omits
the square-root. Nonetheless, it is interesting to consider what happens if we iterate this
estimate in the same way as (5.20), but with Wk = diag(|σ̂k−1|−1). If this converges to a
fixed point, the corresponding constraint is

‖Wσ‖2
2 =

Q∑
i=1,σi 6=0

|σi |2
|σi |2

= ‖σ‖0 . (5.21)

This shows that iteratively minimizing (5.20) in this way is a surrogate for using the `0

norm as regularizer, and will result in a very sparse image (even if the true image is not
sparse). We show this effect with simulations in a one dimensional setting.

Iterations of this form have been proposed in the context of our problem by [102],
and are known as the FOCUSS algorithm. As mentioned in that paper, sparsity by it-
self does not form a sufficient constraint to obtain a unique estimate for an underdeter-
mined problem, and the use of a low-resolution initial estimate provides the necessary
additional constraint. The paper proves the quadratic convergence to a local fixed point
in the neighborhood of the initialization, and also mentions a technique to impose a
positivity constraint on the solution. Unfortunately, the proposed solution method is
based on the truncated Singular Value Decomposition (SVD) and is not applicable for
large-scale problems.

Overall, the regularization penalty ‖σ‖0 assumes the image is composed of a set of
separate point sources. On the other hand, the ‖σ‖2 penalty favors solutions with simi-
lar intensity levels over different pixels to minimize the overall power and is suitable for
the recovery of diffuse emissions. The ‖σ‖1 penalty is intermediate between smoothness
and sparsity penalties but is not specifically designed for extended or point sources. It is
known that if the `0-constrained problem (5.11) contains a sufficiently sparse solution,
the `1-constrained problem (5.17) as a surrogate for (5.11) will recover it [110]. How-
ever, in cases where both resolved and unresolved sources co-exist in the sky map, (5.17)
recovers both types of sources but it is not optimal for any of them. In Section 7.4 we
discuss some attempts to generalize the formulation such that both resolved and unre-
solved sources can be recovered. This is done by means of introducing overcomplete
dictionaries. Section 7.4 shows the capability of the proposed framework for generaliza-
tion.

We see that by applying outer iterations, based on the prior-conditioning formula-
tion, we are able to also impose sparsity-promoting norms into the framework of Sec-
tion 5.2.1. Doing so, we are able to benefit from the efficient algebraic algorithms that
exist for solving the `2 regularized problem to also recover images with sparsity priors.
In the next section, we present an efficient algorithmic framework to solve the prior-
conditioned problem.
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5.3. THE PRIFIRA ALGORITHM
The proposed solution method from Section 5.2 is now further worked out into an algo-
rithm which we call PRIFIRA.

5.3.1. IMPLEMENTATION USING KRYLOV SUBSPACE METHODS

We solve Problem (5.1) by an iterative method based on projections onto Krylov sub-
spaces. Let M̄ =ΓML−1 and r̄ =Γr̃, then (5.1) is written as

α̂= argmin
α

‖r̄−M̄α‖2
2 +τ‖α‖2

2 . (5.22)

Define the t-dimensional Krylov subspace Kt , for t = 1,2, · · · , as

Kt (M̄H M̄,M̄H r̄)

= span{M̄H r̄, (M̄H M̄)M̄H r̄, · · · , (M̄H M̄)t−1M̄H r̄}.
(5.23)

Krylov subspace methods instead solve the problem

α̂=argmin
α

‖r̄−M̄α‖2
2

subject to α ∈Kt (M̄H M̄,M̄H r̄)
(5.24)

for t = 1,2, · · · . As the iteration count t increases, the Krylov subspace gradually increases
in dimension as well, so that the residual ‖r̄− M̄α̂t‖2

2 decreases while ‖αt‖2
2 usually in-

creases.
Due to the ill-posedness of the problem, ‖αt‖2

2 will grow out of bound as the iteration
progresses [111]. One way to stop the iterations while the solution is still numerically
stable is via the discrepancy principle [111], [112]. In this case, the iteration is stopped at
iteration T once ‖r̄−M̄αt )‖2

2 ≤ ε, which then gives an approximate solution to (5.22).
The restriction to the Krylov subspace before it spans the complete space provides a

regularization, called semiconvergence [59]. If the iteration is allowed to continue, then
the residual converges to zero and the solution converges to the pseudo-inverse mini-
mum norm solution (2.69), so that we obtain the unregularized solution. In contrast to
Tikhonov regularization or truncated SVD where the regularization only depends on M
and not on the measured data, the regularization provided by Krylov subspace methods
adapts to the data via the initial vector r̄. While problem (5.22) is not exactly equivalent
to (5.24), their solutions are considered very similar [113].

Krylov subspace methods are attractive because we do not need to store M̄, rather
we need to provide functions that return matrix-vector products of the form M̄u and
M̄H v [105]. With the functional form of M as given in (2.26), we can implement such
a subroutine. This greatly reduces storage requirements. Related details are in Section
5.3.4.

To solve (5.24) iteratively for a non-square M̄ with arbitrary rank, the LSQR method
[104] is appropriate [114]. This is analytically equivalent to the Conjugate Gradient method
applied to the normal equations, but is numerically preferred [111]. The LSQR method
is based on the Golub-Kahan (GK) bidiagonalization algorithm [115], also referred to as
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Lanczos iterations. First define

β1 = ‖r̄‖ , u1 = r̄/β1 ,

α1 = ‖M̄H u1‖ , v1 = M̄H u1/α1 .

Using these as initialization, in the GK process, at iteration t , two orthonormal vectors
vt and ut are computed as

βt ut := M̄vt−1 −αt−1ut−1 ,

αt vt := M̄H ut −βt vt−1
(5.25)

where βt and αt are chosen such that ut and vt are normalized. Let

Bt =



α1

β2 α2

β3
. . .
. . . αt

βt+1

 . (5.26)

It can then be shown that solving (5.24) reduces to solving the bidiagonalized LS problem

min
yt

‖Bt yt −β1e1‖2
2 , (5.27)

where e1 is the unit vector with its first element equal to one. LSQR uses QR updates to
obtain yt at each iteration t [104].

The complete algorithm to solve (5.24) and compute the estimate of the image σ̂ is
summarized in algorithm 1.

If we are going to apply the generalized reweighted prior-conditioning as discussed
in Section 5.2.3, we can do so by defining an outer iteration loop around Algorithm 1
where the weights are obtained using the values of σ̂ at the previous iteration. The
reweighted algorithm is summarized as Algorithm 2, where f (σ) refers to an arbitrary
function applied toσwhich depends on the constraint as discussed in Section 5.2.3, and
PRIFIRA(·) denotes Algorithm 1 with the mentioned input. The outer loop also allows
for applying more constraints such as projecting the solution into the real and positive
orthant but comes at a greater computation expense due to the repeated application of
the LSQR algorithm. As initialization, we can choose the MVDR dirty image, the MF dirty
image, or simply set σ0 = 1.

5.3.2. STOPPING CRITERIA
Algorithm 1 requires an appropriate stopping rule. As mentioned, this goes back to
Equation (5.24), where we increase the iteration count t until ‖r̄− M̄αt‖2

2 ≤ ε. This is
known as the discrepancy principle [116]. The threshold ε on the residual norm can be
set using the expected error on the data at the “true” solutionα,

E‖r̄−M̄α‖2
2 = E‖Γe‖2

2 = trace(Cov(Γe)) , (5.28)

whereΓe is the whitened error on the data, and Cov(·) denotes the covariance. Note that,
by definition of Γ,

Cov(Γe) = E {ΓeeHΓH } = I , (5.29)
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Algorithm 1: PRIFIRA (based on LSQR)

input : r̄, M̄ (or operator function), L−1, ε
output: image σ̂

1 Initialize: β1u1 := r̄, α1v1 := M̄H u1,ω1 := v1,α1 := 0, Φ̄1 :=β1, ρ̄1 :=α1, t := 1;
2 while stopping criteria not satisfied do
3 βt+1ut+1 := M̄vt −αt ut ,

4 αt+1vt+1 := M̄H ut+1 −βt vt ;
5 Construct and apply orthogonal transform:

6 ρt = (ρ̄2
t +β2

t+1)1/2

7 ct = ρ̄t /ρt , st =βt+1/ρt

8 θt+1 = stαt+1, ρ̄t+1 =−ctαt+1

9 Φt = ct Φ̄t , Φ̄t+1 = st Φ̄t ;
10 Update:
11 αt+1 =αt + (Φt /ρt )ωt

12 ωt+1 = vt+1 − (θt+1/ρt )ωt

13 t := t +1;
14 end
15 α̂=αt ;
16 Transform to the image: σ̂= L−1α̂

Algorithm 2: Reweighted PRIFIRA

1 Initialize:
2 σ0 = 1, W−1

1 = diag( f (σ0)), M̄1 =ΓMW−1
1 ;

3 for k = 1,2, . . . ,K do
4 σk = PRI F I R A(r̄,M̄k ,W−1

k ,ε);

5 W−1
k+1 = diag( f (σk )),;

6 M̄k+1 =ΓMW−1
k+1,

7 end
8 σ̂=σK
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where I is a P 2 ×P 2 identity matrix. Therefore, we set ε= P 2, or a slightly larger value to
account for finite sample noise.

If the autocorrelations of the measurements are not available, we need to resort to
the unweighted LS estimator (Γ = I). The stopping criteria are based on an estimate of
the noise on the visibilities.

5.3.3. COMBINED REGULARIZING EFFECT OF PRIOR-CONDITIONING AND

EARLY STOPPING
In this Section we discuss the combined regularizing effect of the prior-conditioning and
early stopping on the solution of Problem (5.24). The SVD is a powerful tool for the anal-
ysis of least squares problems. It is well-known that the minimum norm solution of a
linear least squares problem is obtained via the pseudo-inverse [66]. For example we
consider Problem (2.69). If the SVD of ΓM can be stated as ΓM = UΛVH where U and V
contain the left and right singular vectors respectively and Λ is a diagonal matrix con-
taining the singular values of ΓM, the minimum norm solution can be expressed as

σ̂= (ΓM)†r̃ = VΛ†UH r̃ . (5.30)

Unfortunately, for ill-posed problems the pseudo-inverse solution is unstable due to the
noise amplification by the inversion of small singular values [59].

Applying regularization stabilizes the solution. The solution of many regularized
least squares problems can be stated in the form of a filtered SVD [113]. If regulariza-
tion is applied on (2.69), the solution in terms of filtered SVD can be stated as

σ̂= VΦΛ†UH r̃ , (5.31)

whereΦ is a diagonal matrix containing the regularization filter factors and is dependent
on the type of regularization applied. The purpose of the regularizing filter factors is
to filter out the effect of small singular values in Λ that cause noise amplification and
instability of the estimated solution when inversion is performed.

We present the solution of (5.24) in terms of filtered SVD to show the regularizing
effect of the iteration count and the prior-conditioner. Assuming in this case the SVD of
M̄ =ΓML−1 is given as ŪΛ̄V̄H , starting from (5.23) and following the approach from [117,
113] we obtain:

Kt (M̄H M̄,M̄H r̄)

= span{V̄Λ̄ŪH r̄, V̄Λ̄3ŪH r̄, · · · , V̄Λ̄2t−1ŪH r̄} .
(5.32)

Since the solution is a linear combination of vectors, the filtered SVD solution of σ̂ can
be stated as

σ̂= L−1V̄Φ̄tΛ
†ŪH r̃ , (5.33)

where Φ̄t is a diagonal matrix of the form Φ̄t = Pt (Λ̄
2

)Λ̄
2

where Pt indicates a poly-
nomial of degree smaller than t −1. This polynomial is shown to be dominated by large
singular values in the initial iterations. As the iteration continues, more singular val-
ues are recovered and the effect of small singular values becomes prominent. Therefore,
choosing the right stopping iteration, T , limits the influence of the small singular values
and therefore stabilizes the solution [59].
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We can conclude from Equation (5.33) that the sky map obtained using PRIFIRA
is in the form of a regularized least squares solution. In this solution, both the prior-
conditioning weights and the iteration count contribute to the regularization filter fac-
tors for filtering out the small singular values and thus stabilizing the inversion.

5.3.4. IMPLEMENTATION DETAILS

As mentioned earlier, the system matrix M̄ is a full matrix. However it exhibits a “data
sparse” structure. Since M = A∗ ◦A, we can represent the system matrix M of dimen-
sion P 2 ×Q with a lower dimensional matrix A of dimension P ×Q. In the case of M̄ we
need to apply the proper right and left preconditioners to A. Considering the Cholesky
factorization

R̂−1 = BH B , (5.34)

we find Γ= N 1/2(B∗⊗B) and therefore M̄ = Ā∗ ◦ Ā with Ā := N
1
4 BAL− 1

2 . If the dimensions
of the imaging problem are such that we can store matrix Ā in memory, we implement
the matrix vector operations M̄v and M̄H u as

M̄v = vect(Ādiag(v)ĀH ),

M̄H u = vectdiag(ĀH UĀ) = [āH
i Uāi ]Q

i=1 ,
(5.35)

where diag(v) is a diagonal matrix with the vector v on its main diagonal, vectdiag(·) se-
lects the diagonal of a matrix and stores it in a vector, and U is a P ×P matrix such that
u = vect(U). The diagonal matrices are stored in a sparse manner for memory consider-
ations.

If the dimensions of A are also higher than the available physical memory, the matrix-
vector multiplications can be directly implemented through the function representation
of matrix M as denoted in Equation (2.26), or more efficiently through the W-projection
algorithm or its various implementations [118].

5.3.5. COMPUTATIONAL COMPLEXITY OF PRIFIRA
As can be seen from the description of Algorithm 1, the computational complexity of
PRIFIRA is dominated by the two matrix-vector multiplications M̄vt and M̄H ut . There-
fore, the implementation of these matrix-vector multiplications determines the compu-
tational complexity of the algorithm. The first operation is in fact equivalent to comput-
ing correlation data from an image (sky model) using the measurement equation, while
the second corresponds to the computation of an MF dirty image from correlation data.
These are standard operations in any radio astronomy imaging toolbox, and many fast
algorithms (based on gridding and FFTs) have been proposed and implemented.

Assuming that no fast transform is used to obtain the matrix-vector multiplications,
the complexity of computing M̄vt is O(P 2Q), and computing M̄H ut has the same com-
plexity. The complexity of PRIFIRA is thus O(T P 2Q) where T denotes the required num-
ber of iterations until the stopping criteria are satisfied. Simulations indicate that T is
usually quite small (around 5 to 10). In case of the reweighted PRIFIRA, the complexity
increases to O(K T P 2Q) where K is the total number of reweighted outer iterations.

To compare this complexity to the existing imaging algorithms, we first note that all
of them require basic operations of the form Mv (a forward step, computing correla-
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tion data from a sky model) and MH u (a backward step, computing a dirty image from
correlation data), and often these are implemented efficiently using gridding, FFTs, and
W-projections.

Existing algorithms can be classified into (1) greedy algorithms such as CLEAN and
NNLS, which require an exhaustive search over all the pixels of the image to find po-
tential sources; and (2) compressed-sensing based algorithms, implemented using con-
vex optimization, such as SARA implemented using ADMM. The first category requires
a large number of iterations where the basic work is comparable to PRIFIRA, although
significant reductions are possible by utilizing multi-resolution and image partitioning
techniques. NNLS also requires a number of sub-iterations for each iteration to solve a
system of equations and is therefore more costly. These algorithms are sensitive to grid
mismatch due to misalignment of the sources with the grid points.

Like PRIFIRA, compressed sensing algorithms consider the complete image at once
and therefore are less sensitive to grid mismatch. CS algorithms are based on gradient
descent steps which in the end boil down to matrix-vector multiplications with M and
MH . Less costly sub-iterations and (nonlinear) outer loops are used to satisfy positivity
and sparsity constraints through proximity operators. While the amount of work per
iteration is therefore comparable, the simulations presented in Section 5.4 show that the
prior-conditioning used by PRIFIRA provides an order of magnitude faster convergence.
A good estimate of the image is already obtained after a few iterations, resulting in major
savings on the overall cost of the imaging algorithm.

5.4. ONE-DIMENSIONAL SIMULATION RESULTS
In this section, we show the performance of PRIFIRA based on a simple one-dimensional
case. Further realistic simulation and experimental results are deferred to Chapter 6.

5.4.1. TERMINOLOGY

We proposed several variants of the PRIFIRA algorithm, based on the initial prior-
conditioners and the optional use of reweighting iterations. We therefore indicate the
right prior-conditioner as a prefix to the name of the algorithm; i.e., X -PRIFIRA where
X indicates the prior-conditioner. We consider X as MF, MVDR, IR0 and IR1 where MF
and MVDR respectively denote the matched filtered and MVDR dirty images, and IR0
and IR1 indicate the iteratively reweighted PRIFIRA resulting in `0 and `1 image norm
minimizations respectively, as discussed in Section 5.2.3. For comparison and to show
the effect of right preconditioners on the reconstruction quality, we also consider the
LSQR algorithm which is equivalent to PRIFIRA when there is no right preconditioner
applied.

5.4.2. ONE-DIMENSIONAL TESTS

We first demonstrate the effects of prior-conditioning using a one-dimensional test ex-
ample. For this simulation, we use a nonuniform linear array with P = 10 elements as
shown in Figure 5.1(a). The conditioning of matrix M is shown via its singular value
spectrum in Figure 5.1(b). Two Gaussian sources with the same height 2 and different
width positioned at direction cosines l = −0.5 and l = 0.5 are used to model resolved
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Figure 5.1: (a) Antenna positions, (b) singular value distribution of M, (c) source distribution, (d) PSF, (e) MF
and MVDR dirty images, (f) LSQR reconstruction, (g) MF-PRIFIRA reconstruction, (h) MVDR-PRIFIRA

reconstruction, (i) IR1-PRIFIRA reconstruction, (j) IR0-PRIFIRA reconstruction, (k) modified IR1-PRIFIRA
reconstruction, (l) IR1-PRIFIRA reconstruction after 100 outer iterations
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and unresolved sources, respectively. The sources are shown in Figure 5.1(c). We dis-
cretize the line “image” into Q = 201 pixels. The operating frequency is set to 80 MHz
and the covariance data contains correlated noise with power 100. The correlation data
R̂ is constructed from N = 105 samples.

The PSF of the antenna array is shown in Figure 5.1(d) and as can be seen contains
large sidelobes. We can see based on the PSF that the left Gaussian source, with a width
larger than the main beam, can be considered as a resolved source and the right Gaus-
sian, that is significantly narrower than the main beam, can be considered as an unre-
solved source. The MF and the MVDR dirty images are plotted in Figure 5.1(e). As can
be seen, due to the large noise power, the MF and MVDR images are relatively close.
Figure 5.1(f),(g),(h),(i) and (j) respectively show the reconstruction results for LSQR, MF-
PRIFIRA, MVDR-PRIFIRA, IR1-PRIFIRA and IR0-PRIFIRA. The total number of iterations
until the stopping criteria are achieved for LSQR, MF-PRIFIRA, MVDR-PRIFIRA, IR1-
PRIFIRA and IR0-PRIFIRA are 4, 3, 3, 60 and 60, respectively. 20 outer iterations are used
for IR1- and IR0-PRIFIRA. For IR0-PRIFIRA, the non-zero coefficients in α̂k converge to
1 after 20 iterations. Therefore, the solution σ̂ becomes invariant with the increase of
outer iterations. We have added two more reconstructions based on IR1-PRIFIRA. Fig-
ure 5.1(k) is a modified version of IR1-PRIFIRA such that the prior-conditioning weights
are computed as W−1

k = diag(σ̂1/2
k−1 +ε) with ε = 0.2. Similar modifications are proposed

in [109] and [103] for stability reasons. The number of outer iterations is kept at 20 for
this result. Furthermore, Figure 5.1(l) shows an extreme case of IR1-PRIFIRA with 100
outer iterations.

The figure shows that the LSQR reconstructed image has many sidelobes, some of
which are negative. MF-PRIFIRA and MVDR-PRIFIRA stabilize the solution such that
the sidelobes disappear to a large extent with MVDR-PRIFIRA being more successful in
this regard. Both MF-PRIFIRA and MVDR-PRIFIRA recover the resolved source reliably
and smear out the unresolved source as was expected from the third argument in Sec-
tion 5.2.3. IR1-PRIFIRA attempts to narrow the smearing while IR0-PRIFIRA aims for an
optimally sparse and spiky solution which is not the preferred solution in cases where re-
trieving extended emissions are of interest. The modified version of IR1-PRIFIRA is more
faithful to the recovery of the extended emission while smearing the unresolved source.
In the extreme case, IR1-PRIFIRA recovers the unresolved source almost perfectly while
narrowing the extended emission into two peaks similar to the effect observed with the
recovery of IR0-PRIFIRA. Both IR1- and IR0-PRIFIRA do not observe the natural resolu-
tion of the instrument while MF and MVDR-PRIFIRA maintain this resolution.

In Section 5.5, we discuss the effect of removing the autocorrelations analytically and
based on a simulation for a one-dimensional scenario.

We now look more closely into the Krylov basis vectors produced by the various al-
gorithms. As mentioned in Section 5.3, Krylov subspace-based methods restrict the so-
lution space to the first t Krylov vectors. When applying the LSQR algorithm, the Krylov
vectors are reorthogonalized as Lanczos vectors indicated by vt at iteration t . Therefore,
the solution space is spanned by [v1,v2, . . . ,vt ]. It is informative to look at the Lanczos
vectors with and without the application of prior-conditioners. We show these effects
for the simple one-dimensional test case. Figure 5.2 shows the first four initial Lanczos
vectors. It is seen that the LSQR basis has a non-zero support where the true image is
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Figure 5.2: (a) LSQR basis vectors, (b) MF-PRIFIRA basis vectors, (c) MVDR-PRIFIRA basis vectors

zero while MF- and MVDR-PRIFIRA bases capture the support of the image already in
the initial Lanczos vectors. This indicates that the latter bases provide a good space to
represent the image.

5.5. EFFECT OF MISSING AUTOCORRELATIONS
Traditionally in radio astronomy, the autocorrelations are not measured or are discarded
for image formation, as they are considered inaccurate due to the addition of large noise
power terms. We briefly discuss the effect of missing autocorrelations on the proposed
method.

If the autocorrelations are not available, we need to change the data model accord-
ingly. We redefine r̃ as

R̃ = R̂−diag(R̂) , r̃ = vect(R̃) , (5.36)

which includes “zero” entries in place of the missing autocorrelations. It is straightfor-
ward to derive that r̃ is related to r̂ as

r̃ =Πr̂ , (5.37)

where
Π= IP 2 − (Ip ◦ Ip )(Ip ◦ Ip )H (5.38)

is an orthogonal projection matrix that projects out the diagonal entries from r̂. The
resulting data model is

r̃ = M̃σ+ ẽ ,

where M̃ = ΠM, and ẽ = Πe is the finite sample noise, modeled as complex Gaussian
with zero mean and variance

C̃e =ΠCeΠ= 1

N
Π(RT ⊗R)Π .

This has a number of consequences:

1. r̃ does not correspond to a positive (correlation) matrix;

2. A straightforward estimate of C̃e is unknown as R̂ is unavailable. Moreover, C̃e is
not invertible. Thus, the weight matrix Γ in the regularized WLS Problem (5.1) is
not available, and we need to resort to the unweighted LS formulation

α̂= argmin
α

‖Π(r̃−ML−1α)‖2
2 +τ‖α‖2

2 ; (5.39)
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3. The MVDR beamformer weights cannot be formed, for the same reason. We used
this to form an initial image for the regularization operator L. Instead, we should
resort to the MF (classical) dirty image (omitting autocorrelation terms), σ̃MF =
M̃H r̃ (cf. (2.58)) and set L−1 = diag(σ̃MF) as a surrogate.

Under the usual assumptions in radio astronomy (noise much stronger than the sources,
noise powers have been whitened), it can be argued that the difference between WLS and
LS is small, and also the difference between MF and MVDR is small. Alternatively, we can
apply diagonal loading and replace R̃ by R̃+ηI, where η is a noise variance estimate.

More important is the fact that r̃ does not correspond to a positive matrix. The result-
ing MF dirty image σ̃MF does not have to be positive and sources can have negative side-
lobes. Similarly, the PSF, or dirty beam, is defined as b = MH 1, and becomes b̃ = M̃H 1.
Since M = A∗ ◦A, and assuming normalized array response vectors ‖ai‖ = 1, it can be
shown that b̃ = b−1. Thus, also the modified PSF can have negative sidelobes, although
it is straightforward to correct this.

The negative sidelobes in σ̃MF makes this unsuitable to be used as weight in (5.39).
Some entries in this vector may be close to zero, causing the resulting solution to have
a black pixel at that location. Negative values should be avoided by shifting up all the
pixels by (at least) the smallest negative value of the sidelobes. If we assume the entries
of A to contain only phases, as in (2.22), then all entries have equal magnitude, and it is
straightforward to show that the difference between the original MF image and the MF
image without autocorrelations is a constant, equal to the total neglected power. (This
is essentially because the MF dirty beam is spatially invariant.) Thus, to correct the MF
dirty image we only have to estimate a single shift common to all the pixels. For MVDR,
the PSF is spatially variant and we cannot use a single common shift to obtain the MVDR
image where autocorrelations are available.

Discarding autocorrelations results in the PSF, MF and MVDR image to have negative
sidelobes. Since MF and MVDR are applied as weights to the columns of the M, any zero
value in the weights will enforce zero values in the estimated coefficients and eventually
in the solution. The upper bound property of MF and MVDR ensures that none of the
non-zero image pixels will not be set to zero. However, when autocorrelations are miss-
ing we should avoid zero values by shifting up all the pixels in the MF and MVDR image
by the smallest negative value of the sidelobes.

In Figure 5.3, we illustrate with a one-dimensional simulation the effect of dropping
the autocorrelations on the PSF, MF, and MVDR image, and on the reconstructed MVDR-
PRIFIRA image (MF-PRIFIRA would give similar results). We use a similar setting as
for the one-dimensional example presented in Section 5.4 but with a different antenna
placing to better show the effect of the negative sidelobes. We choose for this exper-
iment two Gaussian sources of heights 5 and 1 centered at direction cosines l = −0.5
and l = 0.5 respectively from left to right. Figure 5.3(a),(b),(c) and (d) respectively show
the antenna placement, PSF, MF dirty image and MVDR dirty image. Lines related to
the setting where we have access to the complete correlation matrix are shown in blue,
while the red lines represent the case where the autocorrelations are not available. Fig-
ure 5.3(e) and (f) represent MVDR-PRIFIRA, and MVDR-PRIFIRA when we do not have
the autocorrelations. Figure 5.3(g) is when we make the MVDR image strictly positive
by adding the smallest negative sidelobe to the image and apply it as the right precon-
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Figure 5.3: Effect of missing autocorrelations: (a) Antenna positions, (b) PSF, (c) MF dirty image, (d) MVDR
dirty image, (e) MVDR-PRIFIRA, (f) MVDR-PRIFIRA without autocorrelations, (g) MVDR-PRIFIRA without

autocorrelations with correction to make sidelobes positive.

ditioner in MVDR-PRIFIRA. As can be seen, this correction improves the estimation per-
formance, although the performance of the algorithm is still suboptimal compared to
the case where we have full information.

5.6. AFTERWORD

In this chapter, we have introduced an algorithmic framework to efficiently solve ra-
dio astronomical imaging problems with a focus on the recovery of extended emissions.
An initial image based on beamforming techniques is used to regularize the Maximum
Likelihood image estimation problem by means of prior (or right) preconditioning. We
further generalize the proposed framework to also handle images with sparsity priors.
To achieve an efficient implementation, we have proposed the use of Krylov subspace
methods. We call the algorithmic framework PRIFIRA which consists of different vari-



5.6. AFTERWORD

5

93

ants referring to the type of regularization applied. In the next chapter, we evaluate the
methods proposed in this chapter based on realistic simulations and real radio astro-
nomical data.





6
PRIFIRA EXPERIMENTAL RESULTS

6.1. INTRODUCTION
In this chapter, we present some realistic simulation and experimental results to test the
performance of the PRIFIRA algorithmic framework, presented in Chapter 5, on sim-
ulated as well as calibrated real astronomical data. Via simulations, we compare the
performance of PRIFIRA with the state-of-the-art radio interferometric imaging meth-
ods. The experiments are performed in MATLAB for (i) a data set from a single station of
LOFAR, (ii) data set from core stations of LOFAR (Superterp).

We recall the main problems that are tackled in Chapter 5 here. First, we have pro-
posed to state the radio interferometric imaging problem based on a left and right pre-
conditioning formalism, with the change of variablesα= Lσ, as

α̂= argmin
α

‖Γ(r̃−ML−1α)‖2
2 +τ‖α‖2

2 , (6.1)

by choosing L−1 = diag(σ̂MVDR) or L−1 = diag(σ̂MF). The resulting problem is solved
based on the Krylov subspace-based method of LSQR benefiting from the semiconver-
gence property. The resulting framework is referred to as the MF- or MVDR-PRIFIRA
depending on the choice of the right preconditioner.

We have further generalized this framework to incorporate sparsity-based regular-
ization by introducing outer iterations. Defining a right preconditioned system using
the transformα= Wkσ, in each outer iteration k, the problem

α̂k = argmin
α

‖Γ(r̃−MW−1
k α)‖2

2 +τ‖α‖2
2 . (6.2)

is solved using LSQR. In this context, Wk is chosen as either Wk = diag(σ̂−1/2
k−1 ) or Wk =

diag(|σ̂k−1|−1) where the former promotes `1 sparsity and the latter promotes `0 sparsity
in the solution. The resulting frameworks are called IR1- and IR0-PRIFIRA, respectively.

6.2. TESTS ON MODEL IMAGES
We compare variants of PRIFIRA with the MATLAB implementations of some of the
state-of-the-art algorithms. Among the greedy sparse reconstruction methods we use

95



6

96 6. PRIFIRA EXPERIMENTAL RESULTS

the NNLS optimization implemented using the active set algorithm as discussed in [56].
The CLEAN algorithm [3] is implemented in MATLAB with both minor cycles and occa-
sional major cycles. MEM is implemented based on Newton-Raphson iterations. Among
the compressed sensing techniques based on convex optimization we focus on `1 norm
minimization and the SARA formalism [36] implemented based on the Alternating Di-
rection Method of Multipliers (ADMM) [119]. Furthermore, we compare the results with
the conventional deconvolution method of Richardson-Lucy (RL) [120].

We mention that there is no shortage of RA imaging algorithms and it is not possible
to compare the proposed method with all the implementations of the present methods.
Therefore, we have categorized the imaging methods and compare our algorithm with
the basic implementation of the main methods. It is also worth noting that many of the
imaging methods have been optimized both in software and hardware to perform faster.
There are many possibilities to also optimize PRIFIRA in the future but for the current
chapter we focus on the most basic implementation and for a fair comparison compare
it with basic implementations of the state-of-the-art algorithms.

We test the proposed methods on the noisy simulated data using the configuration
of antennas from the core stations of the LOFAR telescope. As test image, we consider a
normalized image of the W28 supernova remnant, shown in Figure 6.1(a), obtained from
https://casaguides.nrao.edu/index.php. The core stations contain P = 273 antennas
with a maximum baseline length of about 326 m as shown in Figure 6.1(b). The operat-
ing frequency is chosen as 58.975 MHz and a single time snapshot is considered. The u-v
coverage of the antenna array is shown in Figure 6.1(c). Figure 6.1(d) illustrates the PSF
of the array showing the limited resolution of the array and the existence of sidelobes. To
construct the sampled covariance matrix, R is generated from the test image, R1/2 is used
to shape white Gaussian noise into data vectors x[n] that has the required covariance
structure, and white Gaussian receiver noise with varianceσ2

n = 4 is added. N = 105 data
samples x[n] are used to construct R̂. The image is discretized into Q = 84681 pixels. The
dirty image obtained from the matched filtered beamformer is shown in Figure 6.1(e),
and the MVDR dirty image is shown in Figure 6.1(f). The simulations were performed in
MATLAB R2014b on a computer with Intel i5-4670 CPU 3.40 GHz under 64-bit Windows
7 with a 8 GB RAM. The images are shown in logarithmic scale and for demonstration
and for comparison reasons are limited to scales in the range 1 to 10−3.5.

Figure 6.2 compares the reconstructed images for the various imaging algorithms.
Figure (a) and (b) respectively show the CLEAN and NNLS [56] reconstructions after ap-
plying post-processing with a Gaussian main beam which was fitted to the PSF. 10 major
cycles of 500 minor cycles are chosen for running the CLEAN algorithm. Figure 6.2(c)
shows the ADMM reconstruction with an `1 sparsity constraint. Figure 6.2(d) is the re-
constructed image based on the SARA formalism [36], implemented with ADMM. Fig-
ure 6.2(e) is the reconstruction based on the Richardson-Lucy algorithm [120]. Fig-
ures 6.2(f) is the maximum entropy reconstruction [77] based on the implementation [121].
This method is very sensitive to the choice of the regularization parameter and the start-
ing vector, and we chose the scaled MF dirty image as the starting vector. Figures 6.2(g),(h),
(i),(j) and (k) show the results for LSQR, MF-PRIFIRA, MVDR-PRIFIRA, IR1-PRIFIRA and
IR0-PRIFIRA, respectively. 5 outer iterations are chosen for IR0-PRIFIRA and IR1-PRIFIRA.

Qualitatively, Figure 6.2 shows that CLEAN and NNLS have less resolution than the
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Figure 6.1: (a) Test image in logarithmic scale, (b) antenna placement, (c) u-v coverage, (d) normalized PSF in
logarithmic scale, (e) MF dirty image in logarithmic scale, (f) MVDR dirty image in logarithmic scale
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Figure 6.2: (a) CLEAN, (b) NNLS,(c) ADMM, (d) SARA, (e) RL, (f) MEM, (g) LSQR, (h) MF-PRIFIRA, (i)
MVDR-PRIFIRA, (j) IR1-PRIFIRA , (k) IR0-PRIFIRA
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Figure 6.3: (a) Relative residual per iteration, (b) `2 norm error, (c) `1 norm error

other methods due to the correction with the main beam. MEM results in a rather “flat"
image outside the area of significant emission. LSQR has significant remaining side lobes
(ringing effects indicating insufficient regularization), and MF-PRIFIRA also shows this
to a lesser extent. MVDR-PRIFIRA and IR1-PRIFIRA are comparable, although the latter
results in a “sharper" image due to the imposed sparsity. IR0-PRIFIRA has converged to
a very sparse solution, indicating it is not suitable to capture extended structures. These
observations are consistent with the 1-D case.

The convergence in terms of relative residual, `1-norm error and `2-norm error per
iteration are compared in Figure 6.3. The relative `i -norm error for i = 1,2 at iteration t ,
ei ,t , is defined as

ei ,t = ‖σ̂t −σ‖i

‖σ‖i
, (6.3)

whereσ is the model true image and σ̂t is the reconstructed image at iteration t . We use
e1,t as an indicator of how accurately the algorithm is capable of retrieving the source po-
sitions as well as the intensities whereas e2,t is mostly concerned with retrieving the cor-
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# iterations Reconstruction time (s) ‖σ̂−σ‖2 ‖σ̂−σ‖1

CLEAN 5000 69.53 2.86 116.7
NNLS 2656 11.88 (hrs) 3.08 124.8

ADMM 79 134.61 1.45 3.01
SARA 200 353.66 1.76 2.85

RL 200 342.9 1.7 2.61
MEM 30 43.9(min) 1.8 94.4
LSQR 12 22.57 2.27 9.8

MF-PRIFIRA 15 35.08 1.57 3.5
MVDR-PRIFIRA 15 32.57 1.76 2.79

IR1-PRIFIRA 66 128 1.34 2.53
IR0-PRIFIRA 84 165.45 6.42 8.34

Table 6.1: Performance summary

rect overall intensity in the image. ADMM, LSQR, MF-PRIFIRA and MVDR-PRIFIRA are
shown in blue, black and red graphs, respectively. For comparison reasons, LSQR, MF-
PRIFIRA and MVDR-PRIFIRA are run beyond the stopping threshold. The figure shows
that methods based on LSQR exhibit a substantially faster convergence than steepest
descent-based ADMM while maintaining comparable reconstruction quality.

The performance of the imaging algorithms is summarized in Table 6.1, which shows
the number of iterations, reconstruction time, and error norm for the considered algo-
rithms. The table shows that methods based on LSQR and PRIFIRA with one iteration
level (i.e. no outer iterations), namely MF- and MVDR-PRIFIRA, exhibit greatly reduced
number of iterations and reconstruction time. We can see that SARA, ADMM and RL ex-
hibit good reconstruction qualities but are considerably slower than the PRIFIRA-based
methods. Among the PRIFIRA-based methods IR1-PRIFIRA, MF-PRIFIRA and MVDR-
PRIFIRA exhibit the best reconstruction quality.

6.3. SINGLE LOFAR STATION DATA
Next, we test the proposed imaging algorithm on measured correlation data from a sin-
gle LOFAR station. The data set as introduced in [93, 44] is used. The station consists of
an array of 48 antennas as shown in Figure 6.4(a). An observation from a single 10 second
snapshot at frequency 50.3125 MHz is considered to construct an image with Q = 8937
pixels. The u − v coverage and PSF of the array is shown in Figure 6.4 (b) and (c), re-
spectively. The normalized MF and MVDR images are shown in Figure 6.5(a) and (b),
respectively. The power of the additive noise on the antennas is unknown, and we com-
pute an estimate of it as

σ̂n = |R̂−1|−¯2vectdiag(R̂−1) , (6.4)

as discussed in [44], where the notation | · |−¯2 denotes entrywise taking the absolute
value, inverting and squaring. MF and MVDR images are computed based on the noise
corrected covariance data R̂−Rn.
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Figure 6.4: (a) LOFAR single station antenna position, (b) u − v coverage, (c) PSF
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Figure 6.5: (a) MF dirty image, (b) MVDR dirty image
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The reconstruction results with the X-PRIFIRA family are shown in Figure 6.6. Since
the ground truth of the sky map is unknown with the real data, we show the residual
image after reconstruction as is customary in the radio astronomical community. The
residual image is computed as

δ= MH (r̃−Mσ̂) , (6.5)

where δ indicates the residual image and σ̂ is the estimated image.
Figures 6.6(a),(b) and (c) respectively show the reconstruction results for LSQR, MF-

PRIFIRA, MVDR-PRIFIRA after 7 iterations and Figures 6.7(a),(b) and (c) show the cor-
responding residual images. Figures 6.6(d) and (e) respectively show the reconstructed
images using IR1-PRIFIRA and IR0-PRIFIRA after 3 inner iterations and 4 outer iterations
and Figures 6.7(d) and (e) are the corresponding residual images. The image scales on
the residual images are cropped at [−0.2,0.2] for ease of comparison.

As a reference to judge the reconstruction quality of the methods, we use the least
squares image generated from combining 25 frequency channels and 10 seconds inte-
gration per channel as discussed in [44]. The bright sources are identified as Cyg A and
Cas A and the presence of a Galactic loop emerging from Cyg A is identified as loop III
in the Haslam survey [44]. Most of the middle and west part of the image do not contain
recognizable emissions. This example is interesting as the data contains the contribu-
tion from both point sources as well as extended emissions. It is worth noting that we
only use data from one frequency and snapshot to test our algorithm. We can see from
the LSQR reconstruction in Figure 6.6(a) that there is considerable excess power in the
middle and west part of the image due to the instability of the solution. MF-PRIFIRA and
MVDR-PRIFIRA correct to a large extent for the faulty reconstruction in the middle and
west part of the image while reducing the residual power with MVDR-PRIFIRA showing
the smallest and smoothest residual image. IR1-PRIFIRA seems to capture most of the
relevant emissions with a similar residual level. However, IR0-PRIFIRA only captures the
point sources discarding the extended emissions as predicted and is more appropriate
for images with only point sources.

6.4. LOFAR CORE STATIONS
Furthermore, we present the results of X-PRIFIRA applied on the data from 6 core sta-
tions of LOFAR (called Superterp). Each station is composed of 48 low-band dipole an-
tennas resulting in a total of 288 antennas [1]. However, 15 antennas have been flagged
during the observations and the number of active antennas is reduced to P = 273. The
station and antenna layout is similar to the layout used for simulations in Section 6.2
shown in Figure 6.1(b) and a picture of the LOFAR Superterp is shown in Figure 6.8.

The data is collected in the context of the Amsterdam-ASTRON Radio Transient Fa-
cility And Analysis Center (AARTFAAC) project [122]. The goal of the AARTFAAC project
is to implement a near real-time, 24×7 All-Sky Monitor (ASM) for the LOFAR. Since ASM
is aimed at providing full-sky images, the data before station beamforming is used for
imaging by individual treatment of the antennas contained in a station. To avoid time
and bandwidth smearing, the spectral and temporal resolution of the measurements are
set to 24 kHz and 1 second, respectively. The ASM pipeline requires low-latency snap-
shot images to provide near real-time full-sky images for transient detection.
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Figure 6.6: Reconstruction results of (a) LSQR, (b) MF-PRIFIRA, (c) MVDR-PRIFIRA, (d) IR1-PRIFIRA,
(e)IR0-PRIFIRA
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Residual image
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Figure 6.7: Residual images of reconstruction with (a) LSQR , (b) MF-PRIFIRA, (c) MVDR-PRIFIRA, (d)
IR1-PRIFIRA, (e) IR0-PRIFIRA
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Figure 6.8: LOFAR Superterp. (Image courtesy of [1])

The requirements of ASM fit very well with the characteristics of PRIFIRA. In fact,
PRIFIRA can provide a fast imaging framework for near-realtime snapshot imaging. The
snapshot data under consideration is at the observing frequency of 58.975 MHz and the
observation time (UTC) is 2012− 07− 11− 22 : 22 : 20. The u − v coverage for this ex-
periment is shown in Figure 6.10(a). The data set is calibrated in accordance with the
procedure described in [122] prior to performing the imaging. The FoV is discretized
into Q = 206685 pixels. Since an estimate of the receiver noise is not known, we use the
correlation data R̂ for imaging. The normalized full-sky PSF and the MF and MVDR dirty
images are shown in Figure 6.10(b),(c) and (d), respectively. We use the logarithmic scale
to better represent the dynamic range of the images. The color scale range for the PSF
is limited from 1 to 10−3 and the normalized dirty images are presented at their actual
logarithmic range which is between 1 and about 0.2.

Figure 6.11 (a), (b) and (c) present the normalized reconstruction results for LSQR,
MF- and MVDR-PRIFIRA, respectively. The results are obtained after 10 iterations. The
normalized reconstructed images are also shown in logarithmic scale and for compari-
son reasons the scales are limited from 1 to 10−3. Furthermore, the results for IR1- and
IR0-PRIFIRA obtained by 10 inner iterations and 5 outer iterations are shown in Fig-
ure 6.11 (d) and (e) with the same logarithmic range as before. More outer iterations
are required for IR1-PRIFIRA to approximate the point sources. Furthermore, the abso-
lute value of the normalized residual image obtained form LSQR, MF-,MVDR-,IR1- and
IR0-PRIFIRA are shown in Figure 6.12(a), (b), (c), (d) and (e), respectively.

Comparing with the dirty images in Figure 6.10, the reconstructed images in Fig-
ure 6.11 contain significantly higher dynamic range and the co-existence of emission
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Figure 6.9: AARTFAAC ASM main components. (Image courtesy of [122])

clouds as well as point sources are more prominent. The LSQR reconstruction exhibits
ripple effects as expected and this effect is largely reduced by regularizing by the MF
or MVDR dirty images. However, the ripple effect is less prominent than the results of
Section 6.3 that where obtained using the coverage of a single LOFAR station due to
the better u − v coverage of the core stations that results in a better conditioning of the
system. Considering MF- and MVDR-PRIFIRA reconstructions, we recognize multiple
fainter point sources besides the two bright point sources. These fainter sources are not
visible in the dirty images. As before, due to the large level of receiver noise, MF- and
MVDR-PRIFIRA provide similar results. We see that IR1- and IR0-PRIFIRA are not the
method of choice for this image due to the existence of large emission clouds with simi-
lar intensity as the fainter point sources. In fact, `1 and `0 sparsity prior on the image do
not provide a good prior for this image as it is dominated by extended emissions. From
the residual images in Figure 6.12 we arrive at a similar conclusion. While the residual for
MF- and MVDR-PRIFIRA are mainly noise-like throughout the FoV, we see the remain-
der of the dominant point sources in IR1- and IR0-PRIFIRA residual images. This sug-
gests that these methods require many more iterations to completely recover the point
sources and therefore are not favorable for quasi-realtime snapshot imaging.

6.5. CONCLUSIONS
We have compared the performance of PRIFIRA with several state-of-the-art imaging al-
gorithms and have shown the computational savings and improvements in accuracy of
the estimations. In particular, prior-conditioning using a MF or MVDR dirty image is
seen to provide very fast convergence of the Krylov iterations to a solution that has com-
parable reconstruction quality as the state-of-the art methods at a significantly reduced
computational cost. Furthermore, we have shown the performance of PRIFIRA on real-
istic data sets from LOFAR to demonstrate the applicability of the method to real astro-
nomical data. These results suggest that regularizing assumptions can be applied on nu-
merical methods based on projections onto Krylov subspaces via prior-conditioning to
provide comparable reconstruction results with the existing reconstruction techniques
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Figure 6.10: (a) u − v coverage (b) PSF, (c) MF dirty image, (d) MVDR dirty image
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Figure 6.11: Reconstruction results of (a) LSQR, (b) MF-PRIFIRA, (c) MVDR-PRIFIRA, (d) IR1-PRIFIRA,
(e)IR0-PRIFIRA
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LSQR residual image
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Residual image MF-PRIFIRA
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Residual image MVDR-PRIFIRA
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Residual image IR1-PRIFIRA
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Residual image IR0-PRIFIRA
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Figure 6.12: Residual images of reconstruction with (a) LSQR , (b) MF-PRIFIRA, (c) MVDR-PRIFIRA, (d)
IR1-PRIFIRA, (e) IR0-PRIFIRA
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while resulting in computational savings. However, applying sparsity regularization on
images which contain sparse as well as extended structures produce suboptimal results.
In the next chapter, we investigate ways to solve this issue with introducing overcom-
plete dictionaries.
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7
DUAL-BASIS SPARSE RECOVERY

They were never meant to be together. Some signals just cannot be represented efficiently
in an orthonormal basis.

Joel A. Tropp

7.1. INTRODUCTION
Radio emissions observed by the radio telescopes can be categorized as (i) isolated dis-
crete point-like emissions due to the distant galaxies and quasars and (ii) diffuse ex-
tended emissions which are defining features of the radio emissions. In fact, radio tele-
scopes have made it possible to detect such emissions far beyond the optical extent of
the galaxies.

Discrete point-like sources are called “unresolved" sources and extended emissions
or closely-spaced sources that cannot be distinguished based on the finite resolution of
the telescope array are called “resolved" sources. Resolved and unresolved sources can-
not be distinguished based on the dirty image without proper side information. Regular-
izing assumptions and deconvolution procedures for resolved and unresolved sources
must ideally be different. However, this requires a remedy to distinguish resolved and
unresolved emissions.

In this chapter we introduce such a remedy based on the design of a right precon-
ditioner. Recalling the right preconditioner from Chapter 3, the right-preconditioned
measurement system is represented as

r̃ = MΘα+e. (7.1)

Part of this chapter is published as: S.Naghibzadeh, A. Mouri Sardarabadi and A.J. van der Veen. Point and
beam-sparse radio astronomical source recovery using non-negative least squares. 2016 IEEE Sensor Array
and Multichannel Signal Processing Workshop (SAM), 1-5, 2016.
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We see that applying the right preconditioner changes the image model asσ=Θαwhere
α contains the coefficients of the new model.

It is known that redundant systems, called dictionaries, can be deployed for repre-
senting complicated functions [123, 124]. In the presence of extended emissions, the
sky map σ is not sparse. However, if presented in a correct (redundant) dictionary the
coefficients of the sky map in the corresponding dictionary will be sparse. Therefore,
right preconditioners can be adjusted to incorporate the (overdetermined) sparsity ba-
sis (dictionary). In this case, Θ represents the new basis for image representation and α
is a sparse vector containing the coefficients of image in the dictionary.

Based on these definitions, the sparse coefficient recovery problem can be stated as

α̂= argmin
α

‖Γ(r̃−MΘα)‖2
2 +τ‖α‖0 . (7.2)

We see that R(α) = ‖α‖0 performs the regularization task. The problem in this case is
to recover the sparse coefficients (called atoms) from a redundant dictionary based on
the model and the available data. Problem (7.2) corresponds to a synthesis-based sparse
recovery problem [123, 125].

If the sky map only contains a sparse set of discrete point sources, the pixel basis
is sufficient, i.e. we can set Θ = I. The working principle of greedy algorithms such as
CLEAN and NNLS is to first obtain the support of the image, also called the active set,
and to solve only for the elements of the image in the active set. Therefore, as shown by
[72], these methods solve the regularized LS or MLE Problem (3.14) with R(σ) = ‖σ‖0,

σ̂= argmin
σ

‖Γ(r̃−Mσ)‖2
2 +τ‖σ‖0 , (7.3)

with the addition of a nonnegativity constraint for NNLS. Minimizing the `0 norm pro-
duces satisfactory results both in terms of the support of the image and the intensity es-
timates if the underlying image is sufficiently sparse and only consists of scattered point
sources.

CLEAN and NNLS are members of a broader family of algorithms which we call Match-
ing Pursuit-type (MP-type) [126, 127] algorithms. MP-type algorithms are iterative greedy
sparse recovery algorithms that at each step select the component in the dictionary Θ
that is best correlated with the residual part of the image. Then they produce a new ap-
proximation by projecting the signal onto these already-selected elements [124]. CLEAN

and NNLS only consider a pixel basis and encounter limitations in deconvolving ex-
tended emissions since these emissions cannot be presented sparsely in the pixel-basis.
More specifically, the convergence of these algorithms is very slow and the intensity esti-
mates are not reliable in existence of extended emissions. Cornwell [69] has presented a
multi-scale version of CLEAN that allows for representing the image by components with
different size scales.

We categorize the radio interferometric imaging algorithms into three groups: (i)
greedy (sparse) reconstruction methods such as CLEAN and NNLS, (ii) algorithms based
on convex optimization such as MEM and compressive sensing formulations and (iii)
projection-based methods. The first two groups have been extensively studied in the
context of RA and the third method has been proposed for radio interferometric imag-
ing applications in Chapter 5.
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The first part of this chapter is an attempt on extending the greedy sparse method
presented in [56] to recover sky maps where resolved and unresolved sources co-exist.
We employ a simple beamforming-based basis function to show the effectiveness of the
method. We show based on simulations that employing a simple overcomplete dictio-
nary greatly improves the reconstruction quality.

Furthermore, we show a similar sparsity basis can be introduced for the projection-
based method of PRIFIRA introduced in Chapter 5. We show the effect of the sparsity
basis based on the iteratively-reweighted scheme, namely IR0-PRIFIRA, presented in
Chapter 5.

To integrate more advanced regularization schemes we require advanced and highly
flexible algorithms that allow for inclusion of sophisticated dictionaries and priors. In
the next chapter we show that benefiting from proximal operators and advanced stochas-
tic block coordinate descent algorithms we are able to incorporate advanced regulariza-
tion assumptions and allow for scalable implementations by block-parallelism on the
data as well as in the image. These algorithms fit in the category of convex optimization-
based algorithms.

7.2. GRADIENT DESCENT-BASED IMAGING METHODS
We have shown in Chapter 3 that the imaging problem in RA boils down to constrained
optimization problems where the objective is to minimize the model fitting error in a LS
or MLE sense subject to some constraints based on a prior model on the sky intensity
distribution. Iterative algorithms are employed to solve the large-scale imaging problem
in RA.

Iterative methods in general start from an initial estimate (guess) of σ and find re-
finements to the estimate iteratively. In general, in the iterative solution method, the
solution of the optimization problem

σ̂= argmin
σ

J (σ, r̃) (7.4)

where J (·) is the objective function to be optimized, is found by iterations of the form

σ(t+1) =σ(t ) +δt P−1∆σ(t ), t = 1,2,3, . . . (7.5)

where t is the iteration count, σ(t ) indicates the intensity estimate at iteration t , ∆σ(t )

is the refinement to the solution at iteration t , δt is an iteration-dependent scaling con-
stant (step size) and P−1 is an arbitrary preconditioner. The term δt P−1∆σ(t ) indicates a
refinement on the previous solution [85].

More precisely, considering the MLE imaging problem formulation, the objective
function can be stated as

J (σ, r̃) = ‖Γ(r̃−Mσ)‖2
2 . (7.6)

The cost function is quadratic, i.e.,

J (σ, r̃) = (r̃−Mσ)H C−1
e (r̃−Mσ). (7.7)

The cost function is optimized when 5J (σ, r̃) = 0, where 5J (·) indicates the gradient of
the objective function. The gradient of (7.6) is equal to

5 J (σ, r̃) = MH C−1
e Mσ−MH C−1

e r̂ = MH C−1
e (Mσ− r̃) . (7.8)
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At the minimum, the gradient vanishes (5J (σ) = 0) and we have

MH C−1
e Mσ= MH C−1

e r̃ (7.9)

which results in the normal equations for the MLE problem.
The iterative solution method used in many convex optimization problems is based

on the gradient descent algorithm. CLEAN can be regarded as a constrained optimization
problem and as stated by Carillo et al. [35] and Onose et al. [75], the CLEAN procedure can
be interpreted as a regularized gradient descent method. In the gradient decent method
the correction term ∆σ(t ) in (7.5) is the negative of the gradient function which for the
MLE problem (7.6) is computed as

∆σ(t ) =−5 J (σ(t )) = MH C−1
e (r̃−Mσ(t )) (7.10)

∆σ(t ) in the context of radio interferometric imaging is called the residual image and
the term ∆r = r̃−Mσ is called the residual. The square norm of the residual is dubbed
“discrepancy" [48].

To incorporate regularizing assumptions and constraints into the gradient descent
procedure, proximity operators [101] can be exploited. Therefore, most of the traditional
RA imaging problems can be identified under the broad category of the gradient descent
methods. Incorporating the proximity operator, the gradient descent-based methods in
RA can be described in a general form as

σ(t+1) =P(σ(t ) +T (MH C−1
e (r̃−Mσ(t )))), t = 1,2,3, · · · (7.11)

where P is a projection or proximity operator to take some priors such as positivity of
the image into account and T can be considered as a nonlinear deconvolution operator
such as the one used in CLEAN, a step size and a preconditioner αk P−1 similar to the
formalism of Equation (7.5) or merely a step size scalar.

In CLEAN, T refers to a nonlinear deconvolution operator that finds the occupied
pixels and removes a scaled version of the array beam pattern from the identified loca-
tion to remove the effect of that source from the image [75].

7.2.1. THE CLEAN-BASED IMAGING PIPELINE
In this section, we discuss the working principle of the CLEAN algorithm in more de-
tail. CLEAN is the primary implemented imaging method in the pipeline of many radio
telescope arrays, including LOFAR. Therefore, it serves as a reference for the iterative
imaging algorithms for RA. We explain the radio interferomteric imaging pipeline based
on the CLEAN iterations.

CLEAN was initially introduced as a procedural approach. Schwarz [128] analyzed
CLEAN mathematically and showed that it is equivalent to solving a system of linear
equations by iterative methods based on a least squares fitting of the real and the imag-
inary part of the visibility function to the measurements. As mentioned earlier, CLEAN

has been identified as a greedy sparse MP-type algorithm as well as a method based on
gradient descent [35, 75]. CLEAN is a sequential source removal technique in which at
each step of the algorithm, the strongest source position and power are estimated and
the effect is removed from the residual image until the residual is noise-like. The proce-
dure in the CLEAN algorithm can be described as:
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1. Initialization: σ(0) = 0 or a priori known model image

2. Major cycle (iteration count t ): Compute the residual image from the model image

∆σ(t ) = MH C−1
e (r̃−Mσ(t ))

The major cycle is performed in two steps

• Forward step: computing the model visibility (must be done with high accu-
racy)

r(t ) = Mσ(t )

• Backward step: Computing the residual image

∆σ(t ) = MH C−1
e ∆r(t )

where ∆r(t ) = r̃−Mσ(t ) is the residual visibility at iteration t

3. Minor cycle (iteration count k): finding update to the model image σ(t+1) based
on ∆σ(t ) and σ(t )

• while ∆σ(t ) > ε (ε is the noise level threshold)

– j = argmax(∆σ(t ))

– Update the corresponding pixel j in the model image

σ(t ),(k+1)
j =σ(t ),(k)

j +αk∆σ
(k)
j

– Update the residual image

∆σ(t ),(k+1) =∆σ(t ),(k) − [MH C−1
e M] jαk∆σ

(k)
j

where [MH C−1
e M] j is the j -th column of the Hessian which is actually

the PSF for pixel j .

4. After a number of minor cycles, n, update the model image and return to the major
cycle

σ(t+1) =σ(t ),(n) .

We can identify two iteration levels for CLEAN: (i) an outer loop to iteratively find
the sparse support of the image and (ii) an inner loop in which the dimension-reduced
version of the LS problem is solved. The inner loop works purely in the image domain
and performs the deconvolution of the PSF, explained in Chapter 3, Section 3.1.4, from
the residual image and the outer loop validates the estimated pixel values by fitting the
obtained values in the model to the visibility measurements.

The major cycle corresponds to going back and forth between the visibility domain
and the image domain (Forward and backward steps). This step is the most costly step
of the CLEAN algorithm that requires two matrix vector multiplications with M and MH .
These multiplications are implemented based on convolutional gridding and FFT. As-

suming G ∈CQ×P 2
represents the precomputed interpolation and resampling matrix, the
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forward and backward steps, as implemented in practice, can be stated as r(t ) = GH Fσ(t )

and ∆σ(t ) = FH GC−1
e (r̂− r(t )), respectively.

The minor cycle performs an approximate deconvolution of the dirty beam from the
residual image and updates the model image σ(t ). This is done by finding the peak pixel
in the residual image and iteratively removing the beam pattern centered at that pixel.
If the PSF is shift-invariant, a scaled and shifted version of the PSF is removed from the
pixel. Location and strength of a potential point source is then added to the model im-
age. After the minor cycle is complete, CLEAN goes back to the data to recalculate the
residual image in the major cycle. We note that the shift-invariant assumption of CLEAN

is not valid when the FoV is large and/or the baselines are not coplanar.
To increase the efficiency of CLEAN, multiple minor cycles are done in the image do-

main before going back to the data with a major cycle. We note that the minor cycle
needs not be done with high accuracy as the errors in the pixel values will be corrected
in the major cycle [118]. However, if we do not run major cycles for a long time, the errors
will accumulate. The processing pipeline of CLEAN is schematically shown in Figure 7.1,
where the operations are demonstrated in white boxes and the intermediate stored vari-
ables are shown by blue boxes.

r̃
r̃ σ̂

Major Cycle

Minor
Cycle

∆σ(t)

Source
extract

Restore

σ̂(t)

-

Visibilities
Image

MH∆r̂(t)

Forward Step

Backward Step

M

Figure 7.1: The CLEAN-based imaging pipeline

7.2.2. THE ACTIVE SET-BASED IMAGING PIPELINE
In this section, we demonstrate the procedural similarity of the NNLS algorithm (based
on the active-set method [66]) with CLEAN. The holistic procedure described below is
based on the implementation by Sardarabadi et al. [56].

1. Initialize: F =;, A = {1, · · · ,Q}, σ(0) = 0

2. Compute the residual image: ∆σ(t ) =−5 f (σ(t )) = MH C−1
e (r̃−Mσ(t ))

3. while A 6= ; and max(∆σ(t )
m ) > ε,∀m ∈A

• j = argmax(∆σ(t )
m )

• add j to F and remove from A
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• Update all the pixels in the set F by solving

σ(t+1)
F

= argmin
σF

∥Γ(r̃−MFσ(t )
F

) ∥2
2 (7.12)

for example with Krylov methods.

4. If some of the elements inσ(t+1)
F

do not satisfy the constraints additional steps are
required.

5. Otherwise go to step 2 to recompute the residual image.

In short, the active-set algorithm for NNLS [66] iteratively reduces the residual im-
age, which is the negative of the gradient vector, until it converges to the noise threshold
vector of the image. This algorithm is based on the definition of free set F and active set
A . At the start, all the pixels of the image are in the active set (the black background).
In each iteration, the residual image is computed based on the current estimate of the
image, σ(t ), and the pixel corresponding to the maximum of the residual image is re-
moved from the active set and placed in the free set. Then a reduced MLE problem,
Equation (7.12), consisting only of the pixels of the image that are in the free set is solved
to find an estimate of the model image with the pixels in the free set (MF only contains
the columns of M corresponding to the pixels in the free set). If some of the pixels in the
model image do not satisfy the positivity constraints, projection steps are performed to
ensure the positivity of the pixels. The NNLS processing pipeline is shown in Figure 7.2.

r̃
r̃ σ̂

MH ∆σ̂(t) Source
extract

Restore

σ̂(t)

Visibilities
Image

∆r̂(t)

Major Cycle

-

M

Figure 7.2: The NNLS pipeline

Based on this figure, we can see the procedural similarity of CLEAN and the active-set
algorithm where the main difference is in the source extraction procedure. In the active-
set method, the minor cycle is replaced by a solving an MLE problem of reduced order.
Sardarabadi et al. [56] have proposed to solve the reduced MLE problem at each step by
a Krylov-subspace solution method.

By iteratively selecting the columns of M, with the underlying assumption of the
sparsity of the sources in a black background, active-set performs a sparsity-promoting
regularization. This is since, for a sufficiently sparse image, most of the columns of M
correspond to zero pixel values and remain in the active set. Furthermore, the gra-
dient calculation and maximum selection is similar to performing a matched-filtering
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on the residual vector r̃ − Mσ(t ) at the t th iteration. The authors in [129] have inves-
tigated the similarity of the active-set algorithm with the orthogonal matching pursuit
algorithm [130] in terms of sparse recovery. It was shown that the NNLS algorithm ob-
tains good position and intensity estimates in scenarios where the underlying image is
composed of a sparse set of point sources [42, 56]. However, the convergence rate and
the intensity estimates are adversely affected in scenarios where extended emissions are
present.

7.3. DUAL-BASIS NNLS
In order to tackle the problems of the active-set method where point sources and ex-
tended emissions co-exist in an image, we propose to represent the image with a dual-
basis dictionary as

σ=Θα, whereΘ= [I,B]. (7.13)

In this formulation, Θ is a Q ×2Q matrix that is composed of two Q ×Q matrices I and
B. I is the identity matrix that represents pixel basis for the recovery of point sources.
We choose this basis to retain the super-resolution point source recovery feature of the
NNLS algorithm. We propose to capture the extended emissions with the actual reso-
lution of the antenna array. For this purpose, we choose a Gaussian function with the
same Full Width at Half Maximum (FWHM) as the Half Power Beam Width (HPBW) of
the antenna array. Each column of B is a shifted version of the aforementioned Gaussian
function with the peak shifted to the location of the corresponding pixel and normalized
such that the total underlying energy is 1.

With the choice of a positive basis matrix Θ, we restrict our attention to the positive
coefficient setα. Therefore, we can reformulate the image reconstruction problem as

α̂= argmin
α

‖r̃−MΘα‖2
2 +τ‖α‖0 subject toα≥ 0 , (7.14)

and correspondingly the image estimate is obtained as σ̂=Θα̂. We see that in this case
the basis matrix Θ is the right preconditioner. The prior information about the image
that is incorporated in this problem is: the radio-astronomical image is positive and is
composed of both point sources and extended emissions with a substantial black back-
ground. We apply the modified active-set algorithm to the aforementioned problem to
recover the basis coefficientsα. The proposed algorithm works on the implicit assump-
tion of the sparsity of the signal over the predefined basis to obtain a unique solution.
We call this new method the dual-basis non-negative least squares as explained in Algo-
rithm 3.

As illustrated in Algorithm 3, we begin with an empty sky (zero basis coefficients).
Therefore, all of the indices are in the active set A and the free set is empty. The initial
residual basis coefficient vector is computed in step 2 as ∆α=ΘH MH (r̃−MΘα).

In fact ∆α represents the matched filter output power projected in the basis coeffi-
cient space. The stopping criteria for the algorithm as explained in step 3 are when there
are no more indices in the active set and when all of the indices in the residual coeffi-
cient vector∆α have reached the corresponding detection threshold. In order to choose
the pixel-based detection threshold ε, based on Equation (2.30), when all the sources are
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Algorithm 3: Dual-basis non-negative least squares

input : r̃,M,Θ,ε
output: Basis coefficient vectorα

1 Initialize: F =;, A = {1,2,3, · · · ,2Q} andα= 0;

2 Compute the initial residual basis coefficient vector ∆α=ΘH MH (r̃−MΘα);
3 while A 6= ; and ∆αt > εt for any t ∈A do
4 m = argmax

t
{∆αt | t ∈A };

5 add m to F and remove from A ;
6 Solve for the coefficients in the set F βF = argmin

αF

∥ r̃−MΘFαF ∥2
2 ;

7 Define βn := 0 for n ∈A ;
8 if βu ≤ εu for any u ∈F then
9 while βu ≤ εu for any u ∈F do

10 h = argmin αu
αu−βu

for u ∈F , βu ≤ εu ;

11 Set δ= αh
αh−βh

;

12 Setα=α+δ(β−α);
13 Move from F to A all indexes s for which |αs | < εs ;
14 Repeat steps 6 and 7;
15 end
16 else
17 Setα=β;

18 Compute ∆α=ΘH MH (r̃−MΘα)
19 end
20 end
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estimated the covariance of the residual basis coefficient vector is

Cov(∆α) = 1

N
ΘH MH (R∗⊗R)MΘ. (7.15)

To set the detection threshold, we compute an estimate of the standard deviation of the
residual basis coefficient vector based on the available data R̂ and allow for a false alarm
rate of 0.01 %. Therefore, for the 2Q × 1 vector of index-based detection threshold we
have

ε= 6× 1p
N

(vectdiag(ΘH MH (R̂∗⊗ R̂)MΘ))¯
1
2 . (7.16)

At step 4 of the algorithm, the coefficient corresponding to the maximum output power
of the matched filter projected in the coefficient space is computed. This is the step
that explains the key idea of the proposed method. The maximum not only shows the
location (Direction of Arrival, DoA) of the potential source but it also provides the most
likely shape of the source by choosing the coefficient in the basis that maximizes the
output power. This way, we can distinguish between point sources and extended sources
and estimate the source power in the next steps based on the chosen basis as done in step
6. The regularized minimization problem in step 6 is solved by an iterative algorithm
such as LSQR [104]. Steps 8 to 14 check if all of the computed coefficients in the free set
satisfy the corresponding bound. If the bound is violated for some of the coefficients,
the maximum step size, δ, towards the bound is found and the coefficients and the sets
are updated accordingly in step 11 and 12. Afterwards, the minimization in step 6 is
recomputed until all of the coefficients in the free set satisfy the bound, after which the
residual basis coefficients are recomputed in step 12 and the iteration is continued until
convergence is reached. The imaging pipeline of dual-basis NNLS is shown in Figure 7.3.

σ̂
Coefficient
extract Image

Θr̃
r̃

ΘHMH

Major Cycle

∆α̂(i)

α̂(i)MΘ

-

Data
∆r̂(i)

Figure 7.3: Dual-basis NNLS imaging pipeline

7.3.1. NUMERICAL RESULTS AND PERFORMANCE ANALYSIS
We consider a one-dimensional test example to evaluate the performance of the pro-
posed algorithm. A random non-uniform linear array with P = 30 antenna elements is
considered. The FoV of the array in terms of the θ angle is in the range (−90◦,90◦). The
wavelength of the radio frequency is chosen to be λ = 2 m. Assuming the placement
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of the antenna elements on the x axis and indicating the position of the pth antenna
element as xp , the beam pattern of the antenna array is calculated as

f (lq ) = 1

P

P∑
m=1

P∑
p=1

e− j 2π
λ

(xm−xp )lq . (7.17)

The maximum of the beam pattern is P and the half power beam width of the array is
approximately HPBW ≈ λ

∆xmax
radians [63] where ∆xmax is the maximum distance be-

tween all of the antenna pairs. This indicates the resolution of the system. The image
resolution is chosen as ∆θ = 0.1×HPBW ≈ 0.4◦; Therefore, the number of image pixels
is Q = 429. The direction cosine on the sky for the qth pixel is computed as lq = sinθq [8].
We fit a Gaussian function to the main beam of the array. The Gaussian function with the
same maximum amplitude as the beam pattern function centered at zero is

g (lq ) = P exp(
l 2

q

2ρ2 ), q = 1,2,3, · · · ,Q. (7.18)

The FWHM for the Gaussian function happens at 2ρ
p

2ln2. Settingλ/∆xmax = 2ρ
p

2ln2,
the width of the Gaussian to fit the main beam of the array is ρ = λ

2∆xmax
p

2ln2
. An in-

stance of the non-uniform linear array and the corresponding array beam pattern and
the Gaussian function fit to its main beam is shown in Figure 7.4. We then normalize this
Gaussian function such that the contained energy over all the discrete points is summed
to 1. The array beam pattern and the Gaussian fit are shown in Figure 7.4(a).

To investigate the performance of the proposed algorithm, we apply the algorithm
on the aforementioned non-uniform linear array. The underlying source intensities and
the matched-filtered dirty image are shown in Figure 7.4(b) and (c). The sources are
composed of two point sources with the intensities 4 and 3 placed at the angles 8.8◦ and
35.6◦ respectively and two Gaussian sources with the peak intensities 5 and 1 with dif-
ferent widths placed respectively at the angles −54.1◦ −30.6◦. To construct the sampled
covariance matrix, Gaussian receiver noise with varianceσn = 0.5 is added to the covari-
ance R and N = 105 data samples are used to construct the sample covariance matrix R̂.
The image obtained by applying the NNLS algorithm is shown in Figure 7.4(d). As can
be seen, the extended sources are approximated by a large number of point sources and
the intensity estimates are much larger than the actual intensities. Figure 7.4(e) shows
the result of convolving the result of NNLS with the normalized Gaussian beam times
the pixel width. This post processing approximately retains the shape of the extended
sources at the expense of reducing the resolution of point sources; Furthermore, the peak
intensity values are not correctly restored, i.e. the responses of the point sources have
been broadened resulting in a lower peak and the responses of the extended sources
have been narrowed resulting in a higher peak. However, the integrated power over the
source response in this case remains a correct representation of the source powers. Fig-
ure 7.4(f) shows the result of applying the proposed dual-basis NNLS algorithm. As can
be seen, both the extended emissions and the point sources are estimated correctly with
super-resolution estimate of the point sources and the peak and the shape of the inten-
sity estimates are very close to the true intensities.
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Figure 7.4: (a) Array pattern and the Gaussian fit, (b) The underlying source intensity distribution (c)
Matched-filter dirty image, (d) Recovered image based on the NNLS algorithm, (e) Gaussian beam applied on

the result of NNLS and (f) Recovered image based on the dual-basis NNLS algorithm.
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Number of antennas 20 30 40 50
Number of pixels 303 429 611 757

Average computation time (seconds)
NNLS 0.53 0.67 1.47 4

Dual-basis NNLS 0.34 0.69 1.46 3.25
Average number of iterations

NNLS 20.73 21.68 27.5 39.55
Dual-basis NNLS 15.49 20.26 24.05 31

Average number of nonzero basis coefficients
NNLS 19.73 20.52 26.5 37.57

Dual-basis NNLS 10.69 18.39 22.05 28.5
Average error norm

NNLS 54.36 66.5 79.92 72.83
Post-processed NNLS 21.74 14.36 7.4 5.1

Dual-basis NNLS 1.08 0.75 1.49 1.42

Table 7.1: Performance analysis

The performance of the dual-basis NNLS algorithm was compared to the perfor-
mance of the NNLS algorithm and the post-processed version of NNLS by running the
algorithms for 100 noise instances for random linear arrays with different number of el-
ements. The pixel resolution was kept at 0.1 of the main beam of the array. Table 7.1
displays the number of antenna elements, the associated number of pixels, the algo-
rithm computation time in seconds, the number of iterations until convergence to the
threshold, the number of non-zero elements needed to represent the sources and the
average error norm ∥ σ− σ̂ ∥2 /100. Based on the results of the experiments, we con-
clude that by applying the dual-basis NNLS algorithm we are able to capture the actual
intensity of both point sources and extended emissions with a small number of basis el-
ements with high accuracy. Furthermore, the number of iterations and computing time
are decreased with respect to NNLS.

Generally speaking, synthesis-based greedy sparse recovery methods face prohibitive
challenges when employed for large and high resolution image recovery problems. For
large images and overcomplete dictionaries, the coefficient vectorα becomes very large.
The greedy methods search through the complete coefficient vector to find its sparse
support. Therefore, their complexity increases with the increase in the size of the coef-
ficient vector. Furthermore, the solution of the problem is highly dictionary-dependent
and if the chosen dictionary is not well-representative of the underlying image, these
methods provide erroneous results. This problem is alleviated by choosing a highly re-
dundant dictionary, which in turn increases the computational complexity. Further-
more, since in each iteration the complete dictionary is used to compute the residual
basis coefficient vector ∆α, dictionaries for which a fast transform exists must be em-
ployed to keep the computational complexity manageable.
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7.4. MULTI-BASIS GENERALIZATION OF IR0-PRIFIRA
As we have shown in Chapter 5, iteratively reweighted schemes, namely IR0-PRIFIRA,
can also be used to estimate a minimum `0 norm solution, i.e. solve problem (7.2). How-
ever, IR0-PRIFIRA is not reliable in estimating images in which extended emissions and
point-sources coexist as it aggregates the diffused power in a few pixels trying to achieve
a sparse representation. This is due to the fact that the `0 norm by definition only reg-
ularizes the support of the image and is not reliable for recovering intensity estimates.
An interesting feature of IR0-PRIFIRA in comparison with the greedy sparse methods is
that it is not a pixel-based approach. Therefore it is resilient to pixel mismatch and linear
dependence of the number of iterations to the number of pixels. We show here that im-
posing the proposed simple dictionary in Section 7.3 significantly increases the fidelity
of IR0-PRIFIRA for one-dimensional problems where point sources and extended emis-
sions co-exist.

Similarly as before, we assume that we can model the sky map via an overcomplete
dictionary Θ as σ = Θα such that the coefficient α is sparse. We propose to solve the
synthesis-based sparse recovery problem (7.2), i.e.

α̂= argmin
α

‖Γ(r̃−MΘα)‖2
2 +τ‖α‖p , (7.19)

where p = 0, using the iteratively-reweighted schemes proposed in Chapter 5, Section 5.2.3.
More specifically, we apply IR0-PRIFIRA to Problem (7.19) to obtain an estimate α̂. The
image estimate σ̂ can be obtained as σ̂=Θα̂.

As discussed in Chapter 5, Section 5.2.3, the iteratively reweighted schemes solve
Problem (7.19) by replacing the `p -norm regularization by an `2-norm regularization.
This is done by introducing outer iterations, indexed by k, using the transform βk =
Wkαk as

β̂k = argmin
β

‖Γ(r̃−MΘW−1
k β)‖2

2 +τ‖β‖2
2 , (7.20)

where the weight matrix Wk is defined as Wk = diag(α(p−2)/2
k−1 ). This formalism presents a

generalization of the concept of right preconditioning to provide an alternative to greedy
methods for synthesis-based sparse image recovery.

7.5. SYNTHESIS-BASED SPARSE IMAGING WITH CONVEX OPTI-
MIZATION

So far we have discussed solution methods for the synthesis-based sparse recovery prob-
lem based on (i) greedy sparse recovery methods, namely CLEAN and NNLS and (ii)
iteratively reweighted schemes that generalize the numerical recovery methods by an
iterated application of an reweighted right preconditioner. Additionally, if sparsity is
imposed by an `1 norm, i.e. p = 1 in Problem (7.19), convex optimization can also be
applied to find a solution to the synthesis-based sparse recovery problem (7.19). More
specifically, Problem (7.19) is composed of a convex and differentiable function (the
data fidelity term) and a convex and non-differentiable function (the `1 regularization
term). It is well known that proximal gradient methods are well-suited to these prob-
lems. They provide operator splitting for composite functions by incorporating the non-
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differentiable function in the gradient descent by its proximal operator similar to Equa-
tion (7.11). The proximity operator of the `1-norm regularization function is the soft-
thresholding (shrinkage) operator. The soft thresholding operator for the vector u is de-
fined as

Pτ(u) =


−u+τ if u <−τ
0 if −τ< u < τ
u−τ otherwise.

(7.21)

The Fast Iterative Shrinkage- Thresholding Algorithm (FISTA) [131] is a well-known al-
gorithm to address `1-regularized sparse recovery problems. FISTA has been general-
ized to address synthesis-based sparse recovery problems similar to Problem (7.19). The
synthesis-based formalism of FISTA using a starlet dictionary has been considered for
imaging with LOFAR in [132]. FISTA solves the sparse recovery problem by performing
accelerated proximal gradient descent steps as described in Algorithm 4. In this algo-

Algorithm 4: Synthesis-based sparse recovery FISTA

input : r̃,M,Θ,δ,K
output: Image estimate σ̂

1 Initialize:
2 α0 = 0, z1 =α0, t1 = 1;
3 for k = 1,2, . . . ,K do
4 αk =Pτ(zk −δΘH MH (MΘzk − r̃));

5 tk+1 =
1+

√
1+4t 2

k

2 ,;

6 zk+1 =αk + ( tk−1
tk+1

)(αk −αk−1),

7 end
8 σ̂=ΘαK

rithm, zk is an auxiliary variable of the same size as the coefficient vector α and δ is
the gradient descent step size which is computed based on the Lipschitz constant of the
composite operator MΘ such that 0 < δ < 1

‖ΘH MH MΘ‖ to ensure convergence. As can be

inferred from Algorithm 4, the obtained solution with FISTA depends on the choice of τ.

7.6. ANALYSIS VERSUS SYNTHESIS SPARSE RECOVERY
Another method to impose sparsity in the transform domain for images that are not nat-
urally sparse is via the analysis-based formulation of the imaging problem, i.e.

σ̂= argmin
σ

‖Γ(r̃−Mσ)‖2
2 +τ‖Ωσ‖p , (7.22)

assuming p = 0 or1. The matrixΩ in this case is called the analysis operator. In this for-
mulation, the image is considered sparse in the transform domainΩσ and the problem
is directly solved for σ (rather than the coefficient vector α). Therefore, in this formu-
lation, in contrast to the synthesis-based formulation, the images σ is not restricted to
be a linear combination of the atoms in the dictionary matrix. Note that for redundant
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dictionaries there is no equivalence between Problems (7.19) and (7.22). Furthermore,
for overcomplete, and thus non-invertible, dictionaries there is no stable way to trans-
form the analysis-based formulation (7.22) to an iteratively reweighted scheme similar
to (7.20) without the need to invertΩ.

If the analysis operator is tight frame, i.e. ΩHΩ = I, FISTA can be applied on the
analysis-based sparse recovery problem. In this case, the soft thresholding operator is
replaced by the projected soft thresholding operator, i.e. ΩHPτ(Ωu) [133] and the solu-
tion is directly found for the image σ (rather than the basis coefficients α). However, if
the analysis operator is not tight frame, FISTA cannot be easily implemented to find the
solution of the analysis sparse recovery problem.

Elad et al. [125] have compared the analysis and synthesis-based `1-sparse recovery
problems theoretically. They have pointed out that despite the similar structure of the
two problems, there are multiple differences; More specifically (i) in the synthesis-based
approach, the image σ is represented as a sparse linear combination, given by the co-
efficient vector α, of the elements of the dictionary matrix Θ, i.e. σ =Θα. This is while
the analysis-based approach provides a sparsification of the forward projection of the
image on the basis elements of matrix Ω. Therefore, increasing the redundancy in the
dictionary matrix Θ in general results in a better representation of the image. However,
since the image has to agree with all the rows of Ω simultaneously, increased redun-
dancy reduces the usefulness of the analysis operator. (ii) Moreover, if a small dictionary
matrix Θ with insufficient basis functions is used, significance of each individual basis
function increases. In this case, a wrong choice of basis by the algorithm leads to a se-
quential erroneous selection of bases to compensate for the error. On the other hand,
in the analysis-based method, all the bases contribute evenly to describing the image.
Therefore, the individual dependence is reduced which in turn leads to a more stable
solution. (iii) Furthermore, the analysis-based optimization problems, for overcomplete
dictionaries, are easier to solve due to the smaller dimension of the unknowns. (iv) On
the other hand, the synthesis-based formulations are more intuitive and provide a ver-
satile structure, e.g. can be easily incorporated in the iteratively reweighted schemes.

7.7. SIMULATION RESULTS

7.7.1. ONE-DIMENSIONAL SIMULATIONS

For the one-dimensional simulations, we choose the simple dictionary Θ = [I,B] sim-
ilar to Section 7.3, i.e., I is the identity matrix, pixel basis, to model the point sources
and B is the normalized Gaussian clean beam basis matrix. We show the effect of apply-
ing the overcomplete dictionary on IR0-PRIFIRA based on a one-dimensional test with
a point source with amplitude 4 and a Gaussian source with amplitude 2, modeling an
extended emission as shown in Figure 7.5(a). We take as before P = 10 antennas with a
random linear placement as shown in Figure 7.5(b). The number of pixels in the image is
Q = 201 as with the previous simulations. Gaussian receiver noise with varianceσ2

n = 100
is added to the measurements. The beam pattern and the clean beam used in defining
the dictionary are superimposed in Figure 7.5(c). The MF and MVDR dirty images are
shown in Figure 7.5(d). The estimated basis coefficients α̂ and the reconstructed im-
age based on the multi-basis version of IR0-PRIFIRA superimposed with the image are
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Figure 7.5: (a) Sources, (b) antenna positions, (c) PSF and the clean beam, (d) MF and MVDR dirty images

shown in Figure 7.6(a) and (b), respectively. For this estimate 20 outer iterations of IR0-
PRIFIRA are performed with a total number of iterations (outer and inner) amounting
to 100 iterations. For comparison, the estimates obtained by FISTA (without applying
a dictionary) and dual-basis synthesis FISTA with the aforementioned dual-basis dic-
tionary are provided in Figures 7.6 (c) and (d), respectively. The total number of itera-
tions for FISTA-based recoveries are kept at 100 iterations and a t au = 10−3 is chosen.
These simulation results show that dual-basis IR0-PRIFIRA, with a choice of dictionary
that is well-representative (models the underlying image very well) of the true image,
provides an accurate estimate of the original image. Furthermore, we see that simulta-
neous recovery of the point and extended source becomes hazardous with FISTA. More
specifically, while the extended source is recovered well the point source is mainly dis-
carded. This issue has been addressed to some extend by introducing a dual-basis with
synthesis-based FISTA which yields a more balanced recovery. However, full recovery of
the point source requires a large number of iterations due to the approximation of the `0

norm with the `1 norm which in turn hampers the recovery of the extended source.
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Figure 7.6: (a) Estimated basis coefficients, (b) dual-basis IR0-PRIFIRA estimates, (c) FISTA estimates (d)
dual-basis synthesis-based FISTA estimates
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7.7.2. TWO-DIMENSIONAL SIMULATIONS

The proposed dictionary in the one-dimensional simulations provides a very good rep-
resentation of the underlying image and in that sense is rather simplistic. To show the
application of the proposed methods to radio astronomy, we show the performance of a
multi-basis extension of IRX-PRIFIRA (X = 0or1) based on the realistic two-dimensional
simulation setting described in Chapter 6, Section 6.2.

In general, it is hard to find a dictionary that is well-representative of the underlying
image. Especially if the underlying image is not known a priori. The genral observation
in radio astronomical images is that they contain point sources and extended emissions
of different scales. These scales, correspond to different spatial frequency contents in
the image. In order to effectively restore high and low frequency content of the image
at the same time, the wavelet transform of multiple scales can be used. The wavelet
transform is a mathematical tool to decompose a signal into different frequency bands
and it has been used in radio astronomy for image reconstruction [74, 134, 36]. Follow-
ing [36], we use 8 Daubechies wavelet bases, with 2 levels each, and a Dirac basis (for
point sources) as the multi-basis dictionary. Furthermore, there exist fast implementa-
tions for applications of the wavelet-basis on the signals. Since in this case the chosen
dictionary satisfies the tight frame condition, an extension of FISTA based on projected
soft thresholding can be implemented to solve the analysis-based sparse recovery prob-
lem (Equation (7.22)). We compare the results of the multi-basis synthesis-based spare
recovery using the multi-wavelet dictionary implemented by IR0-PRIFIRA, IR1-PRIFIRA
and FISTA in Figures 7.7(a), (b) and (c), respectively. Furthermore, the result of apply-
ing an analysis-based formalism with the multi-wavelet analysis operator implemented
by FISTA is shown in Figure 7.7. For reference, the FISTA recovery (without bases) and
analysis-based FISTA with multi-walet dictionaries of 4 levels each are shown in Fig-
ures 7.7(e) and (f). The reference reconstructions using basis-free IR0- and IR1-PRIFIRA
can be obtained from Chapter 6, Section 6.2. For IR0- and IR1-PRIFIRA, 2 outer iterations
are applied (amounting to a total of 34 iterations) and the FISTA implementations are
stopped after 100 iterations. For comparison reasons, the scales of all the reconstructed
image are restricted to the range 1 and 10−3.5.

As can be inferred from the Figure, in the synthesis-based formulation, IR0-PRIFIRA
and FISTA yield similar results where the weaker extended emissions are not recovered
reliably. This is while IR1-PRIFIRA recovers the weaker extended emissions to some ex-
tent. The analysis-based FISTA also mostly ignores the extended emissions when wavelets
with two levels are used bu recovers the edges of sharper features more reliably. This ef-
fect is reduced when using 4-level wavelet bases. However, the sharper features of the
image are smoothened in the latter case. We note that using 4 levels for the wavelet-
bases in the synthesis formalism results in more pronounced hazardous effects close to
the edges of the sharper features. This effect is due to the fact that in the synthesis-based
formalism, the image is modeled as a linear combination of the dictionary elements and
in this case the wavelet dictionary has difficulty modeling the edges of the sharper fea-
tures such that the corresponding coefficients are sufficiently sparse. In fact, for reliable
reconstruction, the synthesis-based formulation requires a highly redundant dictionary
that can model all the features of the image accurately.
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Figure 7.7: Reconstruction results (a) multi-basis IR0-PRIFIRA, (b) multi-basis IR1-PRIFIRA, (c) multi-basis
FISTA (synthesis problem), (d) multi-basis FISTA (analysis problem), (e) FISTA (without bases) and (f)

multi-basis FISTA (analysis problem) with wavelets with 4 levels
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7.8. CONCLUSIONS
In this chapter, we have proposed a problem formulation to incorporate sparse recov-
ery of resolved and unresolved sources based on the preconditioning concept described
in Chapter 3. We have investigated greedy sparse recovery methods for the solution of
the corresponding problem. Furthermore, we have proposed a generalization for the
IR0-PRIFIRA scheme, presented in Chapter 5, to incorporate source representation dic-
tionaries. We have tested both algorithms on one-dimensional examples in which sparse
and extended emissions co-exist. For the one-dimensional tests, we have used a simple
dictionary composed of Dirac delta functions to represent point sources and a Gaus-
sian function approximated from the main beam of the antenna array to capture the ex-
tended emissions. We see that both methods have resulted in a super-resolution (finer
resolution than prescribed by the main beam of the antenna array pattern) estimate for
the point sources and reliable recovery for the extended emissions.

We have presented a distinction between analysis-based and synthesis-based spare
recovery problems and identified different classes of algorithms that can be used to im-
plement each formalism. To show the application of multi-basis generalization of the
sparse recovery problem to radio astronomy, we have tested the performance of the IR0-
and IR1-PRIFIRA on a two-dimentional example by exploiting 8 Daubechies wavelets
with different scales in combination with a point source basis. We have compared the
results with multi-basis extensions of the FISTA algorithm (for synthesis as well as anal-
ysis problem). We concluded that the synthesis-based IR0-PRIFIRA and FISTA attain
similar results which are not satisfactory since the chosen dictionary cannot sparsely
model the underlying image (especially at the edges of the sharp image features). These
effects are reduced in the synthesis-based IR1-PRIFIRA implementation. Furthermore,
the results of the analysis-based FISTA implementations suggest that non-exact bases
representations can be handled more constructively with an analysis formalism. Apart
from the importance of the right choice of the dictionary, the synthesis-based formalism
is prohibitive in large-scale problems due to the large dimension of the of overcomplete
basis coefficients.

In this chapter we have introduced the multi-basis generalizations of the imaging
methods (greedy, iteratively reweighted and convex optimization) in incorporating sparse
regularization assumptions on non-sparse images. In the next chapter, we focus on the
analysis sparse recovery problem and show the versatility of the advanced convex opti-
mization methods in efficiently incorporating complex regularization assumptions into
the radio astronomical imaging problem.





8
FACET-BASED REGULARIZATION

FOR SCALABLE IMAGING

Nothing is particularly hard if you divide it into small jobs.

Henry Ford

8.1. INTRODUCTION
The imaging problem in radio interferometry is highly ill-posed and the choice of the
prior model of the sky is of utmost importance to guarantee a reliable reconstruction.
Any attempt to image reconstruction requires the regularization of the problem by pos-
tulating an appropriate signal model. Point sources and extended emissions can coexist
in a radio image and require different models to obtain the best reconstruction perfor-
mance as studied in [135]. Traditionally, one or more regularization terms (e.g. sparsity
and positivity) are applied for the complete image. However, radio sky images can often
contain individual source regions in a large empty background. Based on the observa-
tion that most of the radio sky is empty and sources appear as clusters of complex emis-
sions, we develop a regularization formalism. We propose to divide radio images into
source occupancy regions (facets) and apply relevant regularizing assumptions for each
facet. This regularization incorporates two modeling assumptions, (i) bounded support

Part of this chapter is published as: S.Naghibzadeh, A. Repetti, A.J. van der Veen and Y. Wiaux. Facet-Based
Regularization for Scalable Radio-Interferometric Imaging. 2018 IEEE European Signal Processing Conference
(EUSIPCO), 2018.
The work presented in this chapter has been conducted in collaboration with the Biomedical and Astronomical
Signal Processing research group, Heriot-Watt University, Edinburgh, UK.
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of the source clusters (called facets) and (ii) multi-scale wavelet modeling of the sources
within clusters.

Furthermore, the design of the imaging algorithms for the next generation radio tele-
scopes faces extreme challenges due to the unprecedented data volumes and the de-
mand for recovery of sky images at a new range of resolutions and sensitivities. In fact,
the inverse problem in radio astronomy is high dimensional both in the data domain and
the image domain. In the previous chapters we have discussed that numerical methods
can be adjusted to incorporate regularizing assumptions into the imaging problem and
provide efficient imaging methods for image formation with the next generation radio
telescopes. However, these methods are not flexible enough to incorporate complex reg-
ularizing and source modeling assumptions. In this context, advanced convex optimiza-
tion methods can be exploited. Furthermore, modern convex optimization distributed
algorithmic structures enable to split both data and image into an arbitrary number of
blocks which can be handled in parallel. This increases the scalability of the imaging
algorithms. Among these algorithms, the primal dual algorithm [136, 137, 138, 139] en-
ables efficient full splitting of operators involved in the composite convex optimization
problem. An additional randomization functionality of the primal-dual algorithm en-
ables to visit a subset of the blocks at each iteration. A recent work has studied the ben-
efits of the primal-dual algorithm for radio-interferometric imaging by splitting the data
into blocks, and randomizing over the data blocks [75].

The present work is a preliminary attempt to investigate the computational benefit
of splitting the image under scrutiny into blocks as well, here called facets, using opti-
mization theory. Faceting is a common technique in RI. Traditionally, they have been
introduced to handle the so-called direction-dependent effects (DDEs) [140]. Recently,
Tasse et al. [141] proposed a faceting approach to parallelize the facet computation, and
accelerate the global image reconstruction. This method is a CLEAN-based technique,
assuming sparsity in the image domain (e.g. `1 regularization). The method we develop
in this article is similar to [141] in the parallelization of facet computation, but leverages
advanced stochastic optimization techniques rather than greedy approaches. Moreover,
optimization theory allows to use versatile regularization terms and benefits from con-
vergence guaranties [138]. In fact, the proposed method can be seen as a multi-facet
generalization of the data-block SARA method developed in [75].

In particular, beyond the obvious benefit of parallelization of the facet computation
at each iteration, we focus on the following two aspects. Firstly, our work stems from the
realization that a large class of radio images of interest are mostly empty, with few struc-
tured sources appearing in distinct facets. In this context, it should be computationally
more efficient to apply a very simple prior model (i.e. `1) on the background, and con-
fine sophisticated regularization priors (i.e. sparsity averaging) to specific source regions
(facets). We assume prior knowledge of the facet decomposition, which can for example
be obtained from low-resolution reconstruction. Secondly, we investigate how the com-
putation can be further lightened by relying on a stochastic functionality and propose
a procedure to process only a fraction of the facets. Exploiting stochastic block coordi-
nate primal-dual proximal algorithms, we develop a scalable algorithm for facet-based
regularization of radio interferometric imaging problems. Facet-based modeling can be
represented as a right preconditioner which performs two tasks, (i) dictating the support
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of image by discarding the empty columns of M (column-selection) and (ii) complex
facet-based modeling by multi-Wavelet sparsity dictionary.

The remainder of the chapter is organized as follows. In Section 8.2 we restate the RI
imaging problem and recall the data splitting approach developed in [75]. We introduce
our facet-based approach and our algorithm in Section 8.3. We illustrate the perfor-
mance of our approach on simulated data in Section 8.4. Finally, we draw conclusions
and suggest future works in Section 8.5.

8.2. RADIO-INTERFEROMETRIC IMAGING

8.2.1. PROBLEM DESCRIPTION
Following the data model presented in Chapter 2, the telescope array contains P distinct
antennas that capture radio signals that are split into narrow frequency bands. The FoV
of the radio telescope is decomposed into Q pixels that can be independently treated
as the source signals impinging on the array. The received signals are contaminated by
the receiver noise modeled as mutually independent zero mean Gaussian signals. The
objective is to find an estimate σ̂ of the original unknown sky brightness distribution
σ ∈ RQ from the degraded measurement r̃ ∈ CD (also called visibilities), corresponding
to the pairwise correlation of the signals output from the telescope array (D = P 2). We
restate the measurement model as

r̃ = Mσ+e (8.1)

where M ∈ CD×Q is the linear measurement operator and e ∈ CD is a realization of an
additive random noise with bounded energy, i.e. there exists ε> 0 such that ‖e‖2 ≤ ε.

We assume that the measurement operator M is perfectly known, such that no cal-
ibration is needed [142]. In this chapter, M is modeled and implemented as the prod-
uct between a matrix G and an oversampled Fourier operator F (implemented using
the Fast Fourier Transform - FFT). The matrix G contains the compact support kernels
enabling the computation of the continuous Fourier samples from the discrete Fourier
coefficients provided by the FFT [143, 144]. The combined operator is known as the
Non-Uniform FFT (NUFFT) [144]. Note that the w-term can be also incorporated in
this matrix in the case when the non-coplanarity of the baselines is taken into account
[118, 145].

8.2.2. COMPRESSIVE SENSING AND DATA SPLITTING
In [36], the authors have proposed to define the estimate of σ as a solution to a con-
vex minimization problem, leveraging compressive sensing theory [146, 147]. In this
context, the sky image is assumed to have a sparse representation into a given basis
Ψ ∈CQ×L , with L ≥Q. In other words, it is assumed thatΨHσ has only few non-zero co-
efficients, where ΨH denotes the Hermitian transpose matrix of Ψ. This sparsity-aware
approach has been adopted in multiple works such as [148, 36, 75, 142] with different
choices of sparsity basis Ψ. In [36], the authors proposed to promote average sparsity
by choosing Ψ to be the concatenation of the Dirac basis with the first 8 Daubechies
wavelet transforms [149]. More recently, to achieve a highly parallelizable algorithmic
structure, it has been proposed in [75] to split the visibilities into nd > 0 blocks. Formally,
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r̃ = (r̃ j )1≤ j≤nd where r̃ j ∈ CM j is the j th data block of dimension D j . In this context, the
linear system (8.1) can be rewritten as follows:

(∀ j ∈ {1, . . . ,nd }) r̃ j = M jσ+e j (8.2)

where M j = G j F ∈CD j ×Q is the associated block of the measurement matrix and e j ∈CM j

is the j th block of the additive noise e. Since the additive noise is assumed to have a
bounded energy, for every j ∈ {1, . . . ,nd }, there exists ε j > 0 such that ‖e j ‖2 ≤ ε j . Using
this structure, the authors have proposed to define the estimate of the sky image as a
solution to the constrained analysis-based sparse recovery problem

(∀ j ∈ {1, . . . ,nd }) minimize
σ∈RQ

+
∥ΨHσ ∥1 subject to ‖M jσ− r̃ j ‖2 ≤ ε j , (8.3)

or in terms of the indicator function as

(∀ j ∈ {1, . . . ,nd }) minimize
σ∈RQ

+
∥ΨHσ ∥1 +

nd∑
j=1

ιB2(r̃ j ,ε j )(M jσ), (8.4)

where ιB2(r̃ j ,ε j ) denotes the indicator function of the `2 ball B2(r̃ j ,ε j ) centered in r̃ j with

radius ε j , i.e. B2(r̃ j ,ε j ) = {z ∈CD j |‖z− r̃ j ‖2 ≤ ε j }. The indicator function of the `2 ball at
a point z is equal to 0 if z ∈B2(r̃ j ,ε j ), and +∞ otherwise1.

8.3. PROPOSED APPROACH

8.3.1. FACET-BASED IMAGING
Giga-pixel images of the radio skyσ usually consist of a large black background which is
mostly empty and separate extended structures which can be clustered together. An
example of this type of radio image is shown in Fig. 8.1(top) which shows the radio
emission from the Cygnus A radio galaxy image with separate emissions and a large
emission-free background. We propose to take advantage of this particular sky image
structure and split these images into non-overlapping nc facets. Formally, we define
σ = (σk )1≤k≤nc where, for every k ∈ {1, . . . ,nc }, σk ∈ RQk consists of a subpart of the im-
age, and Q =Q1+. . .+Qnc . In Fig. 8.1(bottom), we show an example of the image splitting
of the Cygnus A image. We can see that 3 main facets are identified, corresponding to the
3 main structures of the image. In addition, the background (in black in Fig. 8.1(bottom))
is considered to be a 4-th facet. In this work, we assume that a pre-processing clustering
step has been performed (e.g. using a low resolution estimate), and that we have access
to the support of each facet.

In this context, problem (8.1) can be rewritten for the j th data block as

r̃ j =
nc∑

k=1
[M jσ]k +e j , (8.5)

where [.]k denotes the kth block of its argument and for the NUFFT implementation of
the measurement operator amounts to [M jσ]k = [G j Fσ]k . We note that the FFT operator

1In general, the indicator function of a set C at point z, denoted as ιC (z), is by definition equal to 0 when z ∈C
and +∞ otherwise.
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Figure 8.1: Top: Image of Cygnus A (Q = 512×1024) in log scale. Bottom: Image showing the 4 considered
facets (3 facets with structures, and 1 facet for the background).

is not easily separable on the image facets and requires the complete image σ. However
for a direct implementation of the measurement matrix (instead of approximation by
NUFFT), we have [M jσ]k = M j ,kσk .

Since the considered facets can contain either complex structures, or almost only
zero coefficients for the background, we propose to choose different sparsity regular-
ization terms for the different facets. In particular, the facet associated with the back-
ground, chosen to be the last facet k = nc , is mostly empty in the image domain. To
avoid losing any weak emission that might be present in the background, we propose to
choose a simple regularization, the `1 norm, to regularize this particular facet. For all
the other facets containing sophisticated structures, we use the average sparsity regu-
larization introduced in [36]. The associated minimization problem can be formulated
as

minimize
σ=(σ1,...,σnc )∈RQ

+

nc∑
k=1

γk‖ΨH
k σk‖1 +

nd∑
j=1

ιB2(r̃ j ,ε j )
( nc∑

k=1
[M jσ]k

)
, (8.6)

where, for every k ∈ {1, . . . ,nc }, γk > 0 is a regularization parameter, associated with the
kth facet. In this formulation, for every k ∈ {1, . . . ,nc − 1}, Ψk ∈ RLk×Qk corresponds to
the concatenation of the Dirac basis and the first 8 Daubechies wavelet transforms asso-
ciated to the kth facet σk . The last facet σnc being dedicated to the background, Ψk is
chosen to be the Dirac basis (i.e. identity matrix with Lk =Qk ). This formulation allows
to separate the regularization terms for the disjoint facets.

8.3.2. PROPOSED ALGORITHM
Problem (8.6) consists in minimizing a sum of composite non-differentiable convex func-
tions containing linear operators. Primal-dual proximal algorithms are particularly effi-
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cient to solve such problems [139] and provide efficient splitting of all the operators in-
volved. In these methods, the solution to the original problem is computed iteratively by
solving a sequence of smaller subproblems, where each subproblem involves only one
of the terms appearing in the objective function, handling each of the involved operators
separately [139]. This class of iterative optimization algorithms have been already used
during the last decade in the context of RI, when sparsity-based regularization terms
are considered [34, 36, 75]. In particular, in [75], the authors proposed to leverage the
stochastic primal-dual proximal algorithm developed in [138], to solve problem (8.4).
Basically, in this work, the authors proposed to utilize the stochastic properties to reduce
the computational complexity of the algorithm by activating, randomly, only a subset of
the data blocks per iteration.

The primal dual algorithm is based on iterative alternation between solving a primal
problem and the associated dual optimization problem [139]. Writing all the constraints
in the objective function 8.6 via their indicator functions, we can distinguish the primal
problem and the associated dual problem. More specifically, the primal problem can be
reformulated as

minimize
σ=(σ1,...,σnc )

nc∑
k=1

(
fk (σk )+ gk (ΨH

k σk )
)+ nd∑

j=1
h j

( nc∑
k=1

[M jσ]k
)
, (8.7)

where, for every k ∈ {1, . . . ,nc } and j ∈ {1, . . . ,nd }, fk = ι
R

Qk+
, gk (z) = γk‖z‖1 and h j =

ιB2(r̃ j ,ε j ). The dual problem associated with Problem 8.7 can be stated as

minimize
vk=(v1,...,vnc ),
z j =(z1,...,znd )

nc∑
k=1

f ∗
k (−Ψk vk −

nd∑
j=1

[MH
j z j ]k )+ g∗

k (vk )+
nd∑
j=1

h∗
j (z j ), (8.8)

where vk ∈RQ̃k and z j ∈CD j are the dual variables for the kth source cluster and the j th
data block and f ∗

k , g∗
k and h∗

j denote the conjugates of the functions fk , gk and h j . 2

Furthermore, in the proposed primal-dual facet-based imaging approach, not only
the data are divided into blocks, but also the the image is divided into facets. We propose
to use the block-coordinate structure of the stochastic primal-dual proximal algorithms
developed in [138] to handle efficiently the block data terms and the facet-based regu-
larization terms. However, the FFT operator is not easily separable and has to be applied
on the complete image. The block-coordinate structure relies on sweeps of data and im-
age blocks at each iteration [138]. The resulting faceting primal dual algorithm, to solve
problem (8.6), is described in Algorithm 5.

In Algorithm 5, we can distinguish three main parallel loops. The first loop (step 6)
is used to update the facets. The second loop (step 10) is used to handle the `1 facet-
based regularization terms. Finally, the third loop (step 21) is used to handle the `2-ball
constraints related to the data blocks.

To handle the positivity and the `2-ball constraints, in steps 7 and 24 respectively,
projection steps are performed. The projection onto a convex, closed, non-empty subset

2The conjugate of a function J is defined as J∗(z) := sup
y

(zH y− J (y)) , where sup denotes the supremum.
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Algorithm 5: Faceting primal-dual algorithm

1 Initialization: σ0 ∈RQ , ς0 ∈RQ , υ0 ∈RQ , ν ∈]0,+∞[, τ ∈]0,+∞[,

(∀k ∈ {1, . . . ,nc }) vk,0 ∈RLk , and γk ∈]0,+∞[, and (∀ j ∈ {1, . . . ,nd }) z j ,0 ∈RM j

2 Iterations:
3 for n = 0,1, . . . do
4 Choose randomly Sn ⊂ {1, . . . ,nc }
5 Choose randomly Dn ⊂ {1, . . . ,nd }

6 for k ∈ {1, . . . ,nc } (facet parallel update) do
7 σk,n+1 =ΠRQ

+

(
σk,n −τ(ςk,n +υk,n)

)
8 σ̃k,n = 2σk,n+1 −σk,n

9 end
10 for k ∈ {1, . . . ,nc } (regularization parallel step) do
11 if k ∈Sn then
12 uk,n = vk,n +γkΨ

H
k σ̃k,n

13 vk,n+1 = uk,n −γkPγ−1
k

(
γ−1

k uk,n
)

14 υk,n =Ψk vk,n

15 else
16 vk,n+1 = vk,n

17 υk,n+1 =υk,n

18 end
19 end
20 bn = Fσ̃n

21 for j ∈ {1, . . . ,nd } (data parallel step) do
22 if j ∈Dn then
23 s j ,n = z j ,n +νG j b j ,n

24 z j ,n+1 = s j ,n −νΠB2(r̃ j ,ε j )(ν
−1s j ,n)

25 g j ,n+1 = GH
j z j ,n+1

26 else
27 z j ,n+1 = z j ,n

28 g j ,n+1 = g j ,n

29 end
30 end

31 ςn+1 = FH gn+1

32 end
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C of RQ of c ∈ RP , is defined as ΠC (c) = argmin
ϑ∈RP

‖ϑ− c‖2. On the one hand, in the case

when C =RQ
+ , this projection reduces to

(∀σ ∈RQ ) Π
R

Q
+

(σ) = max
{

0,σ
}
, (8.9)

where the max operation is performed component-wise. On the other hand, in the case
when C =B2(r̃ j ,ε j ), for every j ∈ {1, . . . ,nd }, we have, for every s j ∈C j ,

ΠB2(r̃ j ,ε j )(s j ) =


s j if s j ∈B2(r̃ j ,ε j ),

r̃ j +ε j
s j − r̃ j

‖s j − r̃ j ‖2
otherwise.

(8.10)

Similarly, to handle the `1 regularization terms, soft-thresholding operations are per-
formed in step 13. For every facet k ∈ {1, . . . ,nc }, for every γk > 0 and uk ∈RLk , this oper-
ator is defined as follows [101]:

Pγ−1
k

(uk ) =


−u(i )

k +γ−1
k if uk <−γ−1

k

0 if −γ−1
k < uk < γ−1

k

uk −γ−1
k otherwise.

(8.11)

Algorithm 5 is a stochastic algorithm in the sense that, at each iteration n ∈N, a sub-
set Sn of the nc facet-based regularization terms and a subset Dn of the nd data terms
are selected randomly (steps 4 and 5, respectively), and only the related variables are
updated. It is in particular interesting to notice that the sparsifying operator Ψk is only
applied if the facet k ∈ {1, . . . ,nc } is selected (see parallel loop in step 10). Similarly, as
proposed in [75], the gridding matrix G j is only applied if the data block j ∈ {1, . . . ,nd }
is selected (see parallel step 21). However, the oversampled FFT operator F and its ad-
joint must be performed at each iteration (steps 20 and 31, respectively). Note that when
nc = 1, then the algorithm proposed in [75] is recovered. In addition, if, at each iteration
n ∈ N, we choose Sn = {1, . . . ,nc } and Dn = {1, . . . ,nd }, then the algorithm reduces to a
deterministic primal dual algorithm [136, 137].

Finally, it is important to emphasize that the proposed algorithm benefits from the
convergence properties of the general stochastic primal dual algorithms developed in
[138]. Let ν > 0, τ > 0 and, for every k ∈ {1, . . . ,nc }, let γk > 0 satisfying τ−1 > ν‖M‖2

S +∑nc
k=1γk‖Ψk‖2

S , where ‖.‖S denotes the spectral norm. Then, the sequence (σn)n∈N gen-
erated by Algorithm 5 converges almost surely to a random variable σ̂ solution to Prob-
lem (8.6).

8.4. SIMULATION RESULTS
We evaluate the performance of Algorithm 5 on simulated radio-interferometric data.
We choose as the test image the Cygnus A radio galaxy image of size Q = 512 × 1024
shown in in Fig. 8.1(top), in log scale. The image is split into the nc = 4 facets shown in
Fig. 8.1(bottom). In this image, the black facet represents the background, indexed by
k = nc . The visibilities are generated according to model (8.1), using a random Gaussian
undersampling u−v coverage, with D =Q. The u−v coverage, split into nd = 16 blocks, is
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H

Figure 8.2: Normalized random Gaussian u − v coverage. The light blue and dark blue colors emphasize the
different nd data blocks

shown in Fig. 8.2. In splitting the data, similar to [75] we consider equal sizing of the data
blocks such that the load is balanced over different nodes among which the data term
computations are distributed. Furthermore, we consider a compact support of each of
the data blocks over the u−v plane such that the computation of the FFT can be localized
in the u − v plane. In model (8.1), the additive noise is generated following to a zero-
mean complex Gaussian distribution, considering an input signal-to-noise ratio (iSNR)
of 20 dB, where iSNR = 20log10

( ‖r̃‖2p
Mσ

)
, σ2 being the variance of the noise. For the details

of data generation and the estimation of the bounds (ε j )1≤ j≤nd the reader is referred
to [75].

We compare the performances of the proposed faceting primal-dual algorithm, with
and without randomization over the facet-based regularization terms, with the primal-
dual algorithm developed in [75] to judge the benefit of faceting. Since the data blocks
are handled exactly in the same manner in Algorithm 5 and [75], in our simulations,
we focus on the interest of using a facet-based approach, with possible randomization.
Consequently, in our simulations, we choose, for every n ∈N,Dn = {1, . . . ,nd } (i.e. no ran-
domization over the data terms). The reader is referred to [75] for a complete investiga-
tion of randomizing the primal dual algorithm over the data blocks. Concerning Sn , we
investigate two cases. In the first case, at each iteration n ∈N, we choose Sn = {1, . . . ,nc }.
It corresponds to a deterministic version of Algorithm 5 where all the facet-based reg-
ularization terms are selected at each iteration. This first configuration is used to em-
phasize the advantage of the proposed facet-based approach, considering the simple `1

regularization term on the background. In the second case, we use the randomization
property of Algorithm 5. In this case, we choose to activate, at each iteration n ∈ N the
complete background (i.e. facet k = nc = 4) and select randomly one of the three other
facets. In this context, we choose Sn = {kn ,4}, where kn ∈ {1,2,3} is chosen following a
uniform distribution.

We present in Fig. 8.3 the results of our simulations. Fig. 8.3(a) shows the signal-to-
noise ratio (SNR) as a function of the iterations n ∈ N. The SNR (in dB), for the current
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(a) (b) (c)

Figure 8.3: Results obtained using the primal dual algorihtm from [75] (black - diamond marks), Algorithm 5
without randomization (blue - circle marks), and Algorithm 5 with randomization on the facet-based

regularization terms (red - cross marks). (a) SNR (dB) as a function of iterations. The SNR is an averaged SNR
for 10 realizations of noise and under-sample distributions. (b) Computation time per global iteration. (c)

Computation time to handle the regularization term (i.e. step 10 in Algorithm 5), as a % of the time necessary
to perform a complete iteration. For (b)-(c), the computation time is an averaged computation time for 10

realizations of noise and under-sample distributions, with 10 runs on each setting.

iterate σn is defined as

SNR = 20log10

( ‖σ‖2

‖σ−σn‖2

)
. (8.12)

These curves emphasize that the proposed facet-based regularization term is not affect-
ing the reconstruction quality. In Figs. 8.3(b) and (c), for the three considered algorithms,
we give the time necessary to compute each global iteration, and the % of time spent to
perform the regularization steps (i.e. step 10 in Algorithm 5) per global iteration, re-
spectively. By comparing the black curve ([75]) and the blue curve (Algorithm 5 without
randomization), we can conclude that the proposed facet-based regularization term re-
duces the total computational time. This is due to the fact that the wavelet transforms
are only performed on the facets with complex structures. In particular, the theoretical
complexity to perform the wavelet decomposition with Algorithm 5 (without random-
ization) is

∑nc−1
k=1 O(Lk ), which is smaller than the complexity of performing a wavelet

decomposition on the global image (which is equal to O(L)). The red curves are associ-
ated with the randomized version of Algorithm 5. It can be observed that leveraging the
stochastic properties of this algorithm allows to divide by 2 the computation time per it-
eration (w.r.t. [75]). In addition, with the randomized version, performing the regulariza-
tion steps only requires ∼ 30% of the iteration computation time, while it requires ∼ 60%
without randomization and ∼ 70% for [75]. We note that in this comparison, the facets
being identified manually, the computational contribution from the facet-selection pro-
cedure is not included in Fig. 8.3.

Lastly, we presents some remarks. (i) In this work we assume that the facets are
known based on an initial low-resolution image assuming the cost of forming the facets
is a small percentage of the total computational burden. (ii) The presented algorithmic
framework allows for general faceting schemes which also include overlapping facets.
(iii) In a very recent work, Tasse et. al. [141] have presented facet-based wide-field de-
convolution algorithms based on the greedy matching pursuit-type schemes mainly to
tackle DDEs. Leveraging recent work on self-calibration for DDEs by block-coordinate
algorithms [142], DDEs can be incorporated in the presented imaging algorithm by block-
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processing with convergence guarantees. All in all, stochastic block-coordinate algo-
rithms together with proximal operators provide a robust and versatile scheme to incor-
porate (randomized and parallelized) block operations (both in the image and the u − v
plane) and regularizations with convergence guarantees. Our scheme benefits form two
regularizing assumptions, (i) bounded support of the image and (ii) facet-based regular-
izing assumption.

8.5. CONCLUSION AND FUTURE WORKS
We have reported our attempts to achieve a facet-based regularization for scalable in-
terferometric imaging. Firstly, we have extended the primal-dual algorithm developed
in [75] to incorporate image facets and enable randomization of the facet computation at
each iteration. Secondly, we have shown that based on the nature of radio images where
individual source facets exist in a sea of mostly-empty background, we can apply the
regularization more wisely in order to save computations without sacrificing the recon-
struction quality. Thirdly, we have shown that randomization over facets further saves
computations. We can conclude that, due to the flexibility of the primal-dual proximal
methods, we can incorporate advanced regularization schemes while benefiting from
the scalability and computational savings that are provided by randomization. As we
have mentioned earlier, we can categorize the radio interferometric imaging problems
into three main categories, namely (i) greedy methods, (ii) methods based on convex
optimization and (iii) projection methods. Each of these methods have their pros and
cons. Based on the results from this chapter, comparing with Chapter 7 and Chapter 5,
we conclude that the methods based on convex optimization provide a more versatile
scheme for incorporating advanced regularizations.

For future works, we plan to implement an automated faceting schemes based on
a low resolution initial image and integrate general faceting schemes which also in-
clude overlapping facets in the algorithm by introducing consensus steps as presented
in [138]. In addition, similar to the faceting approach proposed in [141], we will per-
form splitting of the measurement operator over the facets. Finally, we plan to develop
a facet-based DDE calibration version of the proposed method, by leveraging a block-
coordinate approach[142, 150].
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9
CONCLUSIONS AND SUGGESTIONS

FOR FUTURE WORK

The reward of our work is not what we get, but what we become.

Paulo Coelho

9.1. CONCLUSIONS AND CONTRIBUTIONS
In radio interferometry, the radio emissions from the sky are observed via a telescope ar-
ray with the objective to construct radio sky images over the field of view of the telescope
array. Radio telescope arrays probe the sky through incomplete and noisy measurements
of the sky image of interest in the observation plane, leading to an ill-posed inverse prob-
lem for image recovery. This is a common problem in the broad area of inverse imaging
problems which is encountered in many fields such as biomedical imaging, geophysic-
s/seismic imaging, optical spectrometry and remote sensing.

The imaging pipeline of the next generation radio telescopes, and in particular the
SKA, can be considered as a challenging application for the field of array signal process-
ing. Array processing is a well-established field in signal processing where antenna ar-
rays are studied and processing of the data acquired by these arrays are addressed. Array
processing and signal processing in general have much to contribute to the next genera-
tion radio telescopes both in modeling the data acquisition and processing pipeline and
subsequently in designing and analyzing radio interferometric imaging algorithms.

The research on radio astronomy and in particular radio interferometric imaging,
has been around for about 80 years. However, the introduction of the next generation
radio telescopes, and in particular the SKA, have brought about many new challenges.
As a result, imaging techniques developed for the previous generation of radio telescopes
cannot be easily applied to the next generation of telescopes. Some of the challenges for
the next generation radio telescopes are due to

151
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• the unprecedented data volumes that are beyond the current storage facilities.
This highlights a need for fast imaging algorithms that are able to process the data
in near-realtime. Considering the well-developed imaging method of CLEAN as
the benchmark, new imaging methods are required to be at most of similar com-
putational complexity as CLEAN.

• SKA is going to be able to see the sky in a new range of sensitivity and dynamic
range and the ambitious science cases of the SKA demand advanced regularization
schemes to produce reliable results. As a result, point source models (the basis for
CLEAN) are probably not suitable to reach the desired sensitivity limits.

Therefore, the imaging techniques for the next generation radio telescopes are required
to be accurate (free of artifacts), robust, computationally efficient, scalable and fully au-
tomated yet with some tuning flexibility. In this thesis, we categorized the current radio
interferometric imaging techniques into two categories, i.e. (i) greedy (sparse) recon-
struction methods such as CLEAN and NNLS and (ii) convex optimization-based meth-
ods.

We summarize our contributions in this thesis as follows

• We have proposed a regularization scheme based on priorconditioning, both for
the imaging and the deconvolution problem (Chapter 3), that paves the way for
efficient regularization of the projection-based solution methods (in particular the
PRIFIRA framework). We further proposed a data-driven regularization which is
derived from beamforming of the telescope array data (Chapter 4).

• We have proposed a third category for the radio interferometric imaging algo-
rithms based on projections onto Krylov subspaces and have shown that the pro-
posed priorconditioning scheme can be incorporated in these algorithms to pro-
vide efficient regularization. Furthermore, we generalized our algorithmic frame-
work, called PRIFIRA, to increase its flexibility in incorporating different regular-
ization schemes such as sparsity (Chapter 5). We have shown that PRIFIRA is com-
putationally much less demanding than CLEAN and can be a good candidate for
the snapshot imaging pipeline of the next generation radio telescopes (Chapter 6).

• We have investigated the applicability of the greedy sparse methods, in particular
the NNLS algorithm, to science cases of the SKA and concluded that for the scale
and science cases of the SKA, these methods exhibit deficiencies both in incor-
porating regularization and in computations. Furthermore, we have investigated
the analysis vs. synthesis formalism of the radio interferometric imaging problem
for images in which extended emissions and point sources co-exist and have in-
spected the applicability of the three categories of algorithms to such problems
(Chapter 7).

• Finally, we have proposed a method to incorporate complex regularization as-
sumptions into the radio interferometric imaging problem via faceting and have
reported our experience with the convex optimization methods. We have con-
cluded that these methods provide a versatile scheme for incorporating advanced
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and complex regularization assumptions which will be required for the science
cases of the SKA (Chapter 8).

We can conclude that the proposed projection-based methods together with the prior-
conditioning regularization scheme, i.e. the PRIFIRA framework, are the most computa-
tionally efficient and would satisfy the near-realtime requirements of the SKA. Therefore,
they are good candidates to be integrated in the imaging pipeline as methods for fast
snapshot imaging. However, these methods are not very flexible in incorporating com-
plex regularization terms when the underying image contains a mixture of point sources
and complex extended structures. On the other hand, if computations and convergence
times can be tolerated, the advanced convex optimization methods introduced in Chap-
ter 8 provide a versatile scheme for incorporating complex regularization terms (such as
facet-based regularization) and due to their proven potential for distributed implemen-
tation they can provide for the required scalability. In conclusion, we would like to high-
light that there is no “best" method to solve all the challenges of the imaging pipeline of
the SKA and each of the existing and proposed imaging categories have their pros and
cons. Depending on the computation and science requirements we need to choose the
most adequate method for imaging.

Last but not least, the efficient numerical techniques as well as regularization meth-
ods developed in this thesis are not restricted to radio astronomy and find direct appli-
cation in and have a direct impact on many different imaging application areas.

9.2. SUGGESTIONS FOR FUTURE WORK
The present work addresses some of the many challenges of the processing pipelines of
the next generation radio telescopes. We have reported our attempts in designing effi-
cient algorithmic frameworks as well as adequate regularization frameworks for the pro-
cessing pipeline of the next generation of radio telescopes. There are still many hurdles
remaining in the design of the SKA processing pipelines. Furthermore, various ques-
tions arise from the research results we presented in this dissertation. We propose the
following directions for future research on the topic.

Joint calibration and imaging with PRIFIRA We have assumed that we have access to
purely calibrated data for imaging. However, if the visibility measurements are poorly
calibrated, the calibration parameters and the intensity estimates are obtained via an
iterative loop that acts on the correlation data and estimates calibration parameters and
the intensity estimates in turns. This loop is called the self calibration (selfcal) loop [8,
151].

We show the inter-play of the CLEAN-based imaging and self-calibration pipeline in
the following diagram (Figure 9.1). Other imaging algorithms should be translated in this
framework and combined with the self-calibration pipeline. Figure 9.1 shows the Sci-
ence Data Processing pipeline of the SKA where imaging and calibration is performed.
This schematic is based on the implementation of the CLEAN algorithm and shows the
joint imaging and calibration pipeline. The pipeline consists of three nested loops: self-
calibration, major cycle and minor cycle. First, an initial estimate of the sky map is ob-
tained based on the measured visibilities. Afterwards, the sky model is updated after
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several major and minor cycle iterations. After the sky model has been updated, new
calibration parameters are determined based on the current sky model and new itera-
tions are initiated to modify the sky model [26].

Figure 9.1: Science data processing pipeline (image courtesy of [26])

To be able to integrate PRIFRIA in the processing pipleine of the SKA, we must com-
bine PRIFRIA with the existing selfcal loops in the pipeline that are primarily designed
to be compatible with the CLEAN pipeline.

Joint data reduction and imaging Exploiting the PRIFIRA framework, we can imple-
ment adaptive methods for data reduction by integrating online algorithms that attain
a (data-driven) data reduction framework. With this regard, we can benefit from the re-
cently proposed baseline-dependent averaging [152, 153, 29] frameworks to reduce the
amount of data required for image formation by updating the data from short baselines
less frequently than the longer baselines over snapshots time.

Hierarchical Bayesian models for PRIFIRA We started the formulation of PRIFIRA
from a Bayesian problem formulation and based on approximately estimating the signal
covariance matrix by beamforming we made a shortcut to the MLE formalism. However,
we can continue with the Bayesian formalism and devise a systematic way to estimate
the hyper-parameters needed for the statistical modeling of the image. We expect that
this will result in increasing the computational complexity of the framework. However, it
will improve the estimation performance. This has similarities with the Bayesian learn-
ing framework from the machine learning community.

Automated faceting and splitting the measurement operator for facet-based imaging
In Chapter 8, we presented a facet-based framework for scalable radio interferometeric
imaging. We mainly benefited from the faceting to obtain additional regularization and
to distribute the regularization term among the facets. However, we have not proposed
a systematic way to obtain the facets. This can become a future direction of research
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together with obtaining a splitting of the measurement operator that can result in signif-
icant computational savings.

Purely image-domain PRIFIRA The main difference between solving the imaging and
deconvolution problem, if implemented by iterative methods, is that in the former we
need to alternate between the image domain and the visibility domain during the iter-
ations while the latter is completely performed in the image domain and only requires
computing the dirty image from the visibility data once. Therefore, by tackling the de-
convolution problem, we can eliminate the need for frequent travels to the visibility do-
main. We are able to adjust PRIFIRA by replacing LSQR with a different Krylov-based it-
erative method, namely MINRES-QLP [154], to obtain a purely image-domain algorithm
by tackling the deconvolution problem instead of the imaging problem. We can further
exploit the structure present in the deconvolution matrix to speed-up the iterations.

PRIFIRA for calibration MF- and MVDR-PRIFIRA are mainly aimed at the recovery of
smooth and extended source structures. Similar circumstances are observed in multi-
frequency calibration where the variation of the parameters are considered smooth. It
would be fruitful to investigate the applicability of PRIFIRA in estimating the calibration
parameters.

Exploiting the applicability of the proposed methods in other applications The im-
pact of the methods developed in this thesis is beyond only radio interferometry. An
interesting research direction would be to figure out the applicability of these methods
in different areas of research such as biomedical imaging.

Parallel implementation of PRIFIRA PRIFIRA is based on the Krylov subspace-based
method of LSQR. For highly scalable implementations of PRIFIRA, it is important to in-
vestigate parallel implementations of LSQR (or similar Krylov-based methods). Paral-
lelism can be applied both over the image pixels as well as the visibility measurements.

Implementation of PRIFIRA in the imaging pipeline PRIFIRA as well as many new
compressive sensing-based algorithms are implemented in MATLAB. However, in MAT-
LAB we do not have access to advanced implementations of W-projection and W-stacking
for forward and backward operations. To benefit from the cutting-edge fast implementa-
tions of the forward and backward operations available in the WSClean imager software
package1 [155], we have made a Python implementation of PRIFIRA. We have interfaced
this implementation based on the PYWSCLEAN wrapper (developed by Andre Offringa)
with WSClean for performing the forward and backward operations. A schematic of the
platforms for performing the imaging by PRIFIRA is shown in Figure 9.2.

This scheme provides a means for comparing the performance of PRIFIRA with the
state-of-the-art implementations of CLEAN by directly working on the real radio interfer-
ometric data available in the Measurement Set (MS) format. Due to some compatibility

1https://sourceforge.net/p/wsclean/wiki/Home/
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PRIFIRA
Python
script

WSClean soft-
ware package
(in C++)

Pywsclean
wrapper

Translate

Forward and
backward oper-
ator calls

Perform forward
and backward
operations

Figure 9.2: PRIFIRA-WSClean platform relations

issues, we have not yet reached a consistent implementation. Therefore, we present this
as the content of future work.
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RI radio interferometry
RA radio astronomy
LS least squares
WLS weighted least squares
MLE maximum likelihood estimation
MVU minimum variance unbiased
MF matched filter
MVDR minimum variance distortionless response
SKA square kilometer array
LOFAR low frequency aperture array
ASTRON Netherlands institute for radio astronomy
AARTFAAC Amsterdam-ASTRON radio transient facility and analysis center
DRIFT data reduction and image formation for future radio telescopes
MWA Murchison wide-field array
EOR epoch of reionization
CMB cosmic microwave background
FoV field of view
DDE direction-dependent effect
DIE direction-independent effect
ME measurement Equation
EM electromagnetic
HI neutral Hydrogen
CSP central signal processing
SDP science data processing
PSD power spectral density
ULA uniform linear array
DoA direction of arrival
SVD singular value decomposition
FFT fast Fourier transform
FWHM full width at half maximum
HPBW half power beam width
DFT discrete Fourier transform
MP matching pursuit
OMP orthogonal matching pursuit
SNR signal to noise ratio
SVD singular value decomposition
TSVD truncated singular value decomposition
CSP central signal processing
SDP science data processing
PSF point spread function
EVD eigen value decomposition
ASM all-sky monitor
SARA sparsity averaging re-weighted analysis
FISTA Fast Iterative Shrinkage- Thresholding Algorithm
MEM maximum entropy method
NNLS non-negative least squares
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