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ABSTRACT

Considering the inherent uncertainty of structural geological models, the non-uniqueness of geo-

physical inverse problems, and the growing availability of data, there is a need for methods that

combine different types of data and allow for updating knowledge in a consistent way. By making

use of the development of efficient, gradient-based MCMC algorithms, probabilistic inversion

provides a tool for this. To test to what extent we can reduce the uncertainty of an initial geo-

logical model, we integrate geological modelling into a Bayesian inverse framework. Additional

information can then be included in this inverse framework through likelihood functions.

The proposed methodology is tested on a geological model of the structurally complex Kevitsa

deposit in Finnish Lapland. By starting with an initial interpretation-based 3D geological model,

we define the uncertainties in our geological model by means of probability density functions.

Magnetic data and geological interpretations of borehole data are used to define geophysical and

geological likelihoods respectively. To use the magnetic data in the inference, the mathematical

description of the magnetic forward calculation is implemented for a 3D voxelised space, linking

the geophysical data through magnetic rock properties to the uncertain structural parameters.

The result of the inverse problem is presented in the form of probability distributions and ensem-

bles of the realised models through visual analysis. The former is a statistical consideration of the

results, whereas the latter is a visual representation for direct interpretation in a geological sense.

The uncertainties in these visual representations are best presented by means of information en-

tropy, which allows for a quantitative analysis. The results show that well-defined likelihood func-

tions can reduce uncertainties in geological models and build on the complementary strength of

different types of data. Where probabilistic inversion inherently provides uncertainty analysis,

finding a single representative solution is less trivial. Therefore we conclude that the strength of

the used methodology mainly lies in data integration and uncertainty quantification.
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1
INTRODUCTION

Two scientific breakthroughs resulted in a useful tool that formed the foundation of the methods

used in this thesis. The first was Isaac Newton’s Universal Law of Gravitation (Newton, 1687), fol-

lowed by Marquis de Laplace’s finding that gravitational attraction obeys a differential equation

that we now know by his name. These two events have formed the basis of potential theory. Po-

tential theory describes a large group of phenomena, among which magnetic fields and Bayesian

interpretation of probability, both of which will be addressed in this project.

In geophysical applications, the aim is to understand processes and find properties within me-

dia that cannot be accessed through direct observation. Therefore, indirect methods are used

to infer these unknown properties. Inverse theory provides the mathematical background and

the practical methods needed to solve such problems. The solution to the inverse problem exists

by linking the unknown properties to data through physical or mathematical relations. How-

ever, solely data-driven inversions are likely to result in geologically unrealistic results. In such an

approach, the subsurface is divided into grid cells with assigned physical properties. These cell

boundaries bear no relation to geological contacts or structures, but rather are artifacts of the grid.

To avoid geologically unrealistic outcomes, geophysical inversion can be naturally constrained by

surface-based modelling, where a rock property is assigned to a surface. This results in an inver-

sion that integrates rock property as well as subsurface geometry. Going a step further, the model

can be improved by integrating different types of data into the inference. Data integration is of-

ten not straightforward, yet becomes increasingly relevant as the acquisition of geophysical data

is getting cheaper and faster, and often large amounts of different types of data are available for

interpretation. This urges for the development of methods that objectively integrate geophysical

data sets and geologic knowledge in one single framework in a consistent manner.

A Bayesian framework provides a solution for this. A Bayesian approach is a probabilistic con-

struction that allows new information to be combined with existing information, hence updating

our knowledge. All information is expressed in probabilities, representing a state of information.

New information on any type of data can be incorporated into the inversion through the use of

likelihood functions. Likelihood functions provide a quantification of the likelihood that the ob-

served data would be observed given the current model. Bayesian inference inherently provides

an uncertainty quantification as the solution of the inverse problem is an ensemble of models

1



2 1. INTRODUCTION

that all fit the data to a certain degree.

This probabilistic approach to geophysical inversion is fundamentally different from commonly

used deterministic approaches. Deterministic inversion provides a "best fit" of the data, i.e. the

optimised solution. Yet, finding a global optimum for a complex problem is not so trivial and a

model that minimises the data misfit does not necessarily reflect the true subsurface conditions.

Geophysical data is often noisy and incomplete, putting an unwanted constraint on obtaining

the quantities of interest. Additional constraints on the solution are due to the inability of deter-

ministic methods to solve non-linear problems and hence, regularisation is required. Probabilis-

tic inversion can be applied to both linear and non-linear problems and relies on Markov chain

Monte Carlo (MCMC) algorithms to approximate the solution numerically. In complex problems,

this process can become computationally costly. Fortunately, it is an active field of research and

recent developments of gradient-based algorithms (Betancourt et al., 2014; Homan and Gelman,

2014) provide solutions for efficient computation.

Hence, within the current development, probabilistic inversion in a Bayesian framework is deemed

to provide a consistent and objective way of data integration, while providing a quantitative anal-

ysis of the result. Though Bayesian methods are embraced in different scientific communities,

it remains relatively unexplored in Earth sciences. Previous studies by de la Varga and Wellmann

(2016) and Wellmann et al. (2018) have tested its application in structural geological modelling, by

considering it as an inference problem. Wellmann et al. (2018) applied the methodology to a min-

eral exploration setting and used geophysical likelihood based on gravity data as well as geological

likelihoods. In this project, we perform a similar study by using magnetic data as geophysical like-

lihood. The difference is mainly in the initial geological model, which in this study is completely

based on geological interpretations. The question remains to what extent uncertainties in such a

conceptual model can be reduced by additional data through likelihood functions.

We will evaluate this research objective by a case study on the Kevitsa deposit in Finnish Lapland.

This Ni-Cu-PGE deposit, located in a highly deformed geological setting in the Central Lapland

greenstone belt, has a large economic significance with a proven 160 million tons of Nickel. This

has led to the acquisition of extensive geophysical and geological data sets spanning several de-

cennia. However, the geometry of the intrusive body is still not well recovered. This makes it an

excellent showcase for our methodology. We start with a completely geology-based, interpretive

initial model, unbiased by geophysical data. Such a model, of course, contains large uncertain-

ties, and we will aim to reduce these through probabilistic inversion using magnetic and geo-

logical data. The reason for using magnetics is twofold. Firstly, magnetics is a commonly used

method in mineral exploration, and testing the validity of the approach can provide relevant in-

sights for practical implementations. Secondly, though useful due to the cost and time efficiency,

the magnetic method suffers from non-uniqueness, meaning a wide distribution of equivalent

sources can produce the same result (Hinze et al., 2013; Telford et al., 1990). Hence, the results of

the magnetic method have inherent ambiguities of interpretation and should be considered with

a probabilistic approach.
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The objective of this study is to investigate to what extent we can reduce the uncertainty in a

preliminary geological model in a Bayesian inverse framework using magnetic data combined

with geological knowledge.

In the following chapters, we will try to answer this question. We start with the geological setting

of our case study, the Kevitsa intrusion, in Chapter 2. Chapter 3 covers the underlying theory of

the magnetic method and inverse theory. Chapter 4 explains the methodology of the research

and covers the processing of the data, the geological model building, the implementation of the

forward magnetic simulations and the probabilistic model building. Additionally, it includes a

synthetic test to validate the proposed methodology in a simple case. Having presented all the

required data and tools, the results are presented in Chapter 5. These findings are discussed in

Chapter 6, and lastly, the conclusions and recommendations are presented in Chapter 7.





2
GEOLOGICAL SETTING

The Kevitsa deposit is a Nickel (Ni), Copper (Cu) and Platinum-group elements (PGE) minerali-

sation containing deposit located approximately 140 kilometers North of the Arctic circle in the

Municipality of Sodankylä, Finnish Lapland. After being discovered in 1987 by the Geological Sur-

vey of Finland, extensive exploration campaigns followed. The first comprehensive study of the

Kevitsa intrusion was published by Mutanen (1997). Since then, numerous studies have been fo-

cussing on different aspects of Kevitsa, ranging from mineralisation, chemistry and origin of the

ore, to geometry assessment of the deposit. Used methods were geochemical modelling (Le Vail-

lant et al., 2017), geometry assessment of the intrusion using seismics (Koivisto et al., 2015), and

remanent magnetisation assessment (Montonen, 2012). In this chapter, the findings that are par-

ticularly interesting for this project will be summarised.

2.1. REGIONAL GEOLOGY
The Kevitsa igneous complex is located within the Central Lapland greenstone belt (CLGB). The

Paleoproterozoic CLGB in Northern Finland is one of the largest greenstone belts in the Precam-

brian Fennoscandian Shield, covering roughly 400 kilometers from the Russian border in the

East to Sweden and Norway in the North-West (Luolavirta et al., 2018). The CLGB consists of

several volcano-sedimentary stratigraphic groups with ultramafic intrusives (Gregory and Lap-

palainen, 2016). These stratigraphic groups in the CLGB have undergone multiple episodes of

folding and thrusting, resulting in structural repetition of the stratigraphic sequences (Gregory

and Lappalainen, 2016). In general, the evolutionary history of the CLGB started approximately

2.5 Gya by rifting of the Archean basement, followed by eruption of komatiitic and rhyolitic vol-

canic rocks and the development of large mafic layered intrusions. After this magmatism, a period

of sedimentation followed, after which felsic to ultramafic volcanism occurred with emplacement

of intrusive bodies dating from 2.2 to 2.05 Gya. This extensional stage ended with compressional

tectonics like collisions and over-thrusting. The supracrustal evolution of the CLGB was then

completed with deposition of clastic sediments into basins (Hanski et al., 2001). A more detailed

description of the regional geology is provided by Hölttä et al. (2007).

5



6 2. GEOLOGICAL SETTING

2.2. KEVITSA INTRUSION
The Kevitsa Ni-Cu-PGE deposit is the centre of the layered intrusive body comprising ultramafic

to mafic igneous rocks dated to 2058± 4 Mya (Mutanen, 1997). The known economic mineral-

isation predominantly occurs as disseminated Cu and Ni sulphides (Gregory and Lappalainen,

2016).The ore body consists of several irregular zones cut by faults and shear zones locally offset-

ting the mineralisation (Gregory and Lappalainen, 2016). The ore body is hosted in the centre of

the main ultramafic unit of the Kevitsa layered intrusion. This unit consists of olivine pyroxenite

and its derivatives (olivine websterite, olivine wehrlite and metaperidotite) grouped as ultramafic

pyroxenite (UPX), and has an arcuate shape at the surface with a Southwest dip. Figure 2.1 shows

the geological map of the intrusion. At the Southwest surface boundary, the lower part of the UPX

unit is overlain by gabbroic rocks (IGB), thinning towards the flanks of the body at the current

erosional level. The thickest drill core intersection of the gabbroic rocks gives a thickness of circa

800 meters. The grouped IGB unit includes magnetite gabbro, which may contain fairly abun-

dant equant magnetite Mutanen (1997). The distribution of the different gabbroic rock types and

hence the internal structure of the gabbroic zone is not well understood. A dunite body (UDU), in

literature referred to as "central dunite", crops out in the central part of the intrusion. However, it

is expected that the central dunite is not to be spatially associated with the ore deposit.

Koivisto et al. (2015) analysed the 2D and 3D seismic data that had been acquired over the in-

trusion. The study concluded that the base of the Kevitsa intrusion is clear in the Northern and

Western parts of the intrusion, with continuous reflections originating from the contact to the

intrusion. Towards the East, in the vicinity of the Satovaara Fault Zone, interpretation becomes

more ambiguous. The NNE-SSW trending Satovaara fault has deformed the Eastern margin of

the Kevitsa intrusion and within the deposit there are smaller scale structures in similar trend

(Kokko, 2018). The base of the intrusion is mostly defined by disruption of reflections internal

to the intrusion. Towards the South, prominent reflections in seismic line E5 suggested a deeper

continuation of the Kevitsa main intrusion toward the South–Southwest as shown in Figure 2.2.

These findings have been confirmed by borehole data, suggesting the ultramafic UPX unit extends

to over 1.5 kilometers in depth. At this depth the shape becomes increasingly complex. The com-

plex geometry at depth reflects both regional tectonic deformation events as well as the original

magmatic emplacement relationships (Luolavirta et al., 2018). The intrusion was emplaced into a

volcano-sedimentary sequence belonging to the Savukoski Group, characterised by mica schists

and black shales overlain by komatiitic (UKO) and picritic volcanic rocks (Luolavirta et al., 2018).
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Figure 2.1: Geological surface map of the Kevitsa intrusive complex with the described intrusion units UPX, IGB, and
UDU. The country rocks comprise a mostly layered sequence of intermediate and felsic volcanic rocks (VIO), mafic vol-
canic rocks (VMO), phyllites (MPH) and carboneceaous phyllites(MPHB), overlain by komatiite (UKO). Within this lay-
ered sequence, discontinuous layers of arkose (ARK) and felsic volcanics (FVS) are interbedded. In the West, there is a
hydrothermal breccia (BXH). The black frame corresponds to the airborne magnetic survey shape. The right bottom map
shows the location of Kevitsa in Finland, where the light green colour represents the CLGB. (After Fournier (2019))

Figure 2.2: Seismic section from line E5 (location is shown on Figure 2.1), with interpretations from Koivisto et al. (2015)
included in the section by Fournier (2019). MVS is defined as mafic volcanics and comprises VMI and VIO. (After Fournier
(2019))

Lithological and compositional variations in drill cores from different parts of the Kevitsa intru-

sion show differences, which possibly could reflect different magmatic histories for the ore do-

main and the surrounding intrusion. The ore-bearing domain is characterized by lithological vari-

ability with fluctuations in rock and mineral compositions and presence of numerous ultramafic

inclusions. This is interpreted by Luolavirta et al. (2018) to reflect dynamic magma emplacement

conditions. Drill core profiles around the ore domain, in contrast, show compositional homo-



8 2. GEOLOGICAL SETTING

geneity. Any observed evolutionary trends are smooth and predictable, suggesting a less vigor-

ous emplacement history (Luolavirta et al., 2018). To explain these observations, Luolavirta et al.

(2018) suggested the following multi-stage magmatic model for the origin of the Kevitsa intrusion:

Stage 1: Early intrusion of picritic magma forming the Central Dunite.

Stage 2: Emplacement of basaltic magma as a steady continuous flow into the Kevitsa magma

chamber and crystallisation of compositionally uniform olivine-clinopyroxene cumulates fol-

lowed by differentiation in at least nearly closed system.

Stage 3: Multiple vigorous magma emplacements into the hot interior of the Kevitsa intrusion

forming the ore-bearing domain of the intrusion.



3
THEORETICAL FRAMEWORK

This Chapter covers the theory of the methods that are used in this study. The first part of the

this Chapter is dedicated to the magnetic method. The underlying theory as well as its applica-

tion in exploration geophysics will be discussed. The second part of this Chapter is dedicated to

probabilistic programming, where inverse theory and methods for inference will be discussed.

3.1. MAGNETIC METHOD
The magnetic method is the oldest geophysical method. Additionally, it is also the most versa-

tile one of the geophysical methods (Telford et al., 1990; Hinze et al., 2013). Magnetic surveys

are relatively cheap and easy compared to other measurements and processing is practically not

needed (Telford et al., 1990). Although the magnetic method has a lot in common with gravity

methods, magnetics is generally more complex. Where the gravity field is monopolar and always

in the vertical direction, the magnetic field is dipolar and has variable directions. The magnetic

field is time-dependent and shows externally derived variations on different timescales ranging

from fractions of seconds, caused by micropulsations, to several days, caused by magnetic storms.

Magnitude generally increases with the period of the fluctuation (Hinze et al., 2013). These vari-

ations are called diurnal variations and for most exploration purposes their effect must be mon-

itored and removed from the measured signal. Additionally, like all potential field methods, the

magnetic method suffers from a lack of uniqueness in its interpretation (Telford et al., 1990; Hinze

et al., 2013).

3.1.1. GOVERNING EQUATIONS

The Maxwell equations describe electromagnetic phenomena. The following two are the govern-

ing equations for magnetism:

∇·~B = 0, (3.1a)

∇×~B =µ~J e +µε∂E

∂t
. (3.1b)

Equation 3.1a states that the field lines of the magnetic induction ~B always form closed loops,

implying that magnetic monopoles do not excist (Blakely, 1995; Lowrie, 2007). Since any diver-

9
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genceless field can be expressed in terms of the curl of another field, the magnetic field always has

a magnetic vector potential. Equation 3.1b describes that electric current, with electric current

density ~J e , gives rise to a magnetic field and temporal variations in the electric field ~E contribute

to this. Here, ε and µ are medium parameters, being the electric permittivity and magnetic per-

meability respectively. By assuming that currents are absent at the location of observation and

the dielectric properties of the medium can be ignored, a valid approximation in most geophysi-

cal applications, Equation 3.1b reduces to

∇×~B = 0, (3.2)

meaning field ~B is irrotational. Irrotational fields can be expressed in terms of a scalar potential,

hence the magnetic field can be described as the gradient of scalar potential ϕ

~B =−∇ϕ, (3.3)

where the negative sign is due to convention as adapted from Kellogg (1953) meaning that par-

ticles of the same sign repel each other, and the potential equals the work done by the particle

against the field (Blakely, 1995). In contrast to the magnetic field, the scalar potential is indepen-

dent of direction. This allows for simplifications in mathematical operations, as will be seen in

Section 4.2.3.

3.1.2. MAGNETIC QUANTITIES

Before discussing the magnetic quantities, it is worth noting that in magnetic prospecting two

different unit systems, the CGS and SI systems, are commonly used and some confusion might

arise around the conversions and the related quantities. For this study different literature has

been used, where different unit systems are applied. Here the SI units will be applied.

A volume of a magnetic medium can be considered as a collection of magnetic dipole moments

from elementary particles. In the absence of an external magnetic field the dipole moments may

or may not be aligned in a certain direction, depending on the medium and its magnetic history.

However, in the presence of an external field ~B0, like the geomagnetic field, it will exhibit to at

least some extent alignment in the direction of the external field due to induction (Telford et al.,

1990). This alignment creates magnetisation currents in the medium, and the medium is said to

be magnetised. A secondary field ~Bs , separate from ~B0, but caused by ~B0, is generated and the

total field is given by

~B = ~B0 + ~Bs . (3.4)

If ~Bs is much smaller than ~B0, and in the absence of remanent magnetisation, ~Bs and ~B0 are ap-

proximated to be in the same direction within the body (Telford et al., 1990). The dipole moment

of an elementary atom is represented by ~m. The magnetic dipole moment per unit volume is

given by the magnetisation vector ~M , quantified in Amperes per meter [A/m]:

~M = 1

V

∑
i
~mi . (3.5)

In literature the magnetic field is generally expressed by either ~H , the magnetic field intensity in

[A/m], or by ~B , the magnetic induction in [nT]. Where ~M is related to the magnetic field intensity
~H , there is a magnetic polarisation vector~J in [nT] that, in a similar way, is related to the magnetic
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induction ~B (Hinze et al., 2013). The magnetic polarisation vector ~J , often called magnetisation

too, is linearly related to ~M by the magnetic permeability in vacuum µ0 = 4π10−7:

~J =µ0 ~M . (3.6)

The quantity measured with magnetic surveys is the magnetic induction ~B , hence it is more con-

venient to continue with representations in ~J , from now on called magnetisation, and ~B where

possible. ~J is a sum of two vectors:

~J = ~Ji +~Jr . (3.7)

~Ji is the magnetisation that is caused by induction due to an external field. This magnetisation is

due to the reorientation of internal dipoles in order to align their spins along the current external

field. ~Jr is the remanent (or residual) magnetisation vector. Although remanent magnetisation

may have different causes (e.g. thermal, chemical, depositional) it is always related to the mag-

netic history of the material and the retainment of those effects after the magnetic field vanishes

(Hinze et al., 2013). Remanent magnetisation can be absent, but if present can have a substantial

effect on~J . Within the body, the field produced by~J is added to the magnetic induction ~B .

The magnetic induction ~B represents the total field, including the magnetisation effects. In the

general case where ~B and~J are in the same direction the relation between ~B and ~H is given by:

~B =µ0~H +~J . (3.8)

Field ~H can be understood as the quantity that describes how ~B is modified by the magnetisation

of the material in magnetic materials (Lowrie, 2007). The fundamental difference between both

fields is that, where field lines of ~B always form closed loops (Equation 3.1a), field lines of ~H are

discontinuous at surfaces where the magnetisation changes (Lowrie, 2007). In the absence of

remanent magnetisation,~J = ~Ji and Equation 3.8 reduces to:

~B =µ0(1+k)~H

=µ~H ,
(3.9)

where the magnetic permeability of a medium µ=µ0(1+k) in [H/m] is a measure of the ease with

which the magnetic field is passed through the material (Hinze et al., 2013). By empirical stud-

ies, the relation between the magnetisation vector and magnetic field has been found as a func-

tion depending on the magnetic field strength and the history of the magnetic material (Kaufman

et al., 2008). For low magnetic fields, however, this can be approximated by a linear relationship

(Telford et al., 1990):

~J ≈ k~B +~Jr , (3.10)

where k is the magnetic susceptibility, the fundamental rock property in magnetic prospecting.

This dimensionless parameter indicates the ease with which a material can be magnetised in the

current magnetic field (Hinze et al., 2013). It can be seen from Equation 3.7 and 3.10 that the

inductive magnetisation is then approximated by (Hinze et al., 2013):

~Ji = k~B . (3.11)
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3.1.3. MAGNETIC MEDIA

There is a wide range of magnetic susceptibility values that result in different behavior in the pres-

ence of an external magnetic field. Based on this behavior, materials can be categorised in four

main groups: diagmagnetic, paramagnetic, ferromagnetic and ferrimagnetic.

Diagmagnetic materials are characterised by a negative susceptibility value. Paramagnetic mate-

rials have a positive but small susceptibility value, with typically 0 < k < 10−6 (Hinze et al., 2013).

The majority of the minerals that make up rocks are diamagnetic or paramagnetic, and show weak

responses to a magnetic field (Hinze et al., 2013).

Ferromagnetic materials on the other hand are characterised by positive and large susceptibili-

ties with 1 < k < 106 (Hinze et al., 2013). Due to their strong magnetic interaction, these materials

show internal alignment of the magnetic moments within large regions, called domains. Iron,

cobalt and nickel are examples of ferromagnetic materials. Ferromagnetic materials are charac-

terized by their Curie temperature. Above this critical temperature, the particles can no longer

align due to their high energy state, resulting in loss of magnetic properties. Decreasing the tem-

perature below the Curie point restores the ferromagnetic properties again. The dipoles then align

according to the external magnetic field. In case of no movement of the magnetic material or the

external geomagnetic field, the ferromagnetic minerals will be still aligned to the external field.

But as they keep the orientation of passed geomagnetic fields, they can be used to date samples

and deduce processes which happened at the subsurface (Hinze et al., 2013).

The domains in some materials are again divided in subdomains. These subdomains can align

in opposite direction, without resulting in zero net moment. These materials are labelled as

ferrimagnetic. Practically all magnetic minerals are ferrimagnetic and although paramagnetism

and ferromagnetism contribute to magnetism in rocks, the susceptibility of rocks is predomi-

nantly defined by the presence of ferrimagnetic minerals like magnetite and pyrrhotite (Langel

and Hinze, 1998; Hinze et al., 2013). Ferrimagnetic materials are also able to sustain magneti-

sation after the external magnetic field vanishes, and thus show remanent magnetisation (Hinze

et al., 2013). Due to the positive temperature gradient with depth, below a certain depth thresh-

old called the Curie isotherm depth (≈ 40 km) all materials reach their Curie temperature and the

lithosphere becomes virtually nonmagnetic (Langel and Hinze, 1998; Telford et al., 1990). Hence,

local anomalies are always caused by features in the upper crust.

3.1.4. EARTH’S MAGNETIC FIELD

Evidence regarding the origin of the geomagnetic field strongly support that the main field is

caused by convective currents associated with conducting materials in the liquid outer core of

the Earth (Telford et al., 1990; Hinze et al., 2013). This field resembles that of a dipole and is un-

stable causing it to reverse polarity in regular intervals. A small field associated with the ionised

layers of the upper atmosphere contributes to the main field (Telford et al., 1990). Unlike the

main field, this field shows rapid variations referred to as diurnal variations, with periods ranging

from seconds to several days or more (Telford et al., 1990; Hinze et al., 2013). These effects have

to be monitored during surveys and afterwards removed from the signal. There are also spatial

variations to be taken into consideration. On average the geomagnetic field has a magnitude of

approximately 50,000 nT, but it varies from roughly 25,000 nT at the magnetic equator to about

70,0000 nT at the magnetic poles. These latitude variation are ∼ 4 nT/km and should be corrected

for on high-latitude, large scale projects.



3.1. MAGNETIC METHOD 13

Since the magnetic field is a vector field,

it is characterized by both direction and

magnitude. The magnetic field represented

in Cartesian coordinates is given by ~B =
~Bx + ~By + ~Bz . The magnetic elements as

illustrated in Figure 3.1 show the compo-

nents of field ~B . Since the Earth’s mag-

netic North does not coincide with the ge-

ographic North and the field is not on the

horizontal plane, declination D (the angle

of the magnetic North with the geographic

North) and inclination I (the dip of the field

from the horizontal) are needed to define

field ~B .

Figure 3.1: Earth’s magnetic field and it’s components
in Cartesian coordinates. The x-component ~Bx is
along the geographic North, which deviates an angle
D (declination) from the magnetic North of the Earth.
~B dips an angle I (inclination) from the horizontal.

The magnetic method is a passive exploration method as it measures the natural magnetic field of

the Earth and the anomalous changes in the field due to local subsurface conditions (Hinze et al.,

2013). In exploration often an unoriented magnetometer is used to measure the scalar magnitude,

or total field intensity of the total flux ~BT (Hinze et al., 2013):

~BT =
√
~B0

2 + ~Bs
2

. (3.12)

Generally it is assumed that ~B0 and ~Bs are co-linear, which is valid as long as the magnetic

anomaly does not perturb the magnetic field in any other direction than the principle direction.

This assumption breaks down for anomaly amplitudes of approximately 10,000 nT and larger,

since at these high susceptibilities the magnetisation direction can become dependent on the

shape of the body and have a significantly different direction than the inducting field (Lelièvre

and Oldenburg, 2006). In this work it will be assumed that the assumption holds and the linear

approach is valid.
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3.2. INVERSE PROBLEM
Where direct observations of media properties and subsurface processes of interest are not possi-

ble, indirect methods have to be used to infer them. The mathematical background and methods

to solve such inference problems are provided by inverse theory. This section will be dedicated to

the mathematical background of inverse theory, followed by the used methods to solve the inverse

problem.

3.2.1. INVERSE THEORY

Inversion is a tool to estimate certain parameters governing a physical process based on mea-

surements of the outcome of this process. The procedure consists of three main steps (Tarantola,

2005):

1. Parameterisation of the system: Develop a set of model parameters that completely describe

the system under study.

2. Forward modelling: Using physical laws that, given the model parameters, allow us to make

prediction on the measurement results of the observable parameters.

3. Inverse modelling: Using measured values of the observable parameters to infer the actual

values of the model parameters.

Where forward modelling gives an unique solution based on the specific choice of model param-

eters, inverse modelling will result in multiple solutions that describe the observed data equally

well. There are two approaches to solve an inverse problem: a deterministic approach and a

probabilistic one. Deterministic inversion provides one possible solution of the inverse problem,

generally given by the maximum likelihood point as solution of the least-squares problem. Prob-

abilistic inversion provides an ensemble of plausible models that describe the observed data. Un-

like in deterministic inversion, computing the solution to the probabilistic inverse problem does

not require any regularisation. Furthermore, in probabilistic inversion there are no constraints on

the nature of the forward problem: it is allowed to be highly non-linear and non-differentiable.

Despite these fundamental differences, both inference approaches rely on observations, i.e.

measurements of some observable parameters. Using the observed data, collected in a finite-

dimensional vector that spans the data space, we want to infer unknown physical model param-

eters where the set of all model parameters spans the model space. The number of model pa-

rameters needed to describe a system can in reality be infinite, e.g. when we are interested in a

property that depends on the position inside a volume (Tarantola, 2005). In practical cases a finite

number of model parameters is considered in a discretised model space, though it is important to

remember that discretision of a continuous model space always adds some subjectivity (Fichtner,

2018).

Linking the model space and data space is done through forward modelling based on a physical

theory. Assuming some model parameters, like a geological model and known susceptibility val-

ues, and using some control parameters, the forward modelling operator can produce synthetic

or predicted data. Often in geophysical problems, the governing physics cannot be given explic-

itly but is in the form of a differential equation that has to be solved numerically (Tarantola, 2005;

Fichtner, 2018).

Inverse modelling is then described as estimating model parameters using observation. Often

more than one model explains the data equally well, thus, the inverse problem is said to be non-
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unique. Non-uniqueness can have several origins. For this project there is an inherent or physical

non-uniqueness coming from potential-field measurements where different anomaly shapes at

different depths give the exact same signal. Hence, assessing the whole set of plausible models

should be preferred over inverting for a single model.

3.2.2. BAYESIAN INFERENCE FOR PARAMETER ESTIMATION

The fundamental idea of probabilistic inverse theory is to express all components of the inverse

problem in terms of probability density functions (p.d.f.) (Fichtner, 2018). If p(θ ∈ M) is the

probability that model parameter θ is inside subvolume M of model space M, then the Radon-

Nikodym theorem states that this probability can always be expressed in terms of a probability

density p, expressing degrees of believe (Tarantola, 2005):

p(θ ∈ M) =
∫

M∈M
p(θ)dθ. (3.13)

Bayesian inference, named after Bayes (1763), provides a method to update our prior knowledge

represented by p(θ) about given parameters θ that describe a model by including observed data

y . This parameter estimation is formulated by Bayes’ theorem for probability densities:

p(θ|y) = p(y |θ)p(θ)

p(y)
. (3.14)

The aim of Bayesian inference is to obtain the posterior probability distribution p(θ|y). This ex-

presses how probable our model parameters θ are, given the observed data y . To quantify this, we

use the prior p(θ), which is independent from any observations, and constrain this by means of a

likelihood functions p(y |θ): the probability or likelihood to simulate the observations y through

model M , given parameters θ. p(y) is the evidence or marginal likelihood and acts as a normali-

sation factor. It contains the probability of the observed data independently from any parameter

value. The prior and the likelihood can be expressed easily as they are assumed to be part of the

model. The evidence, however, needs to be computed by the following integral:

p(y) =
∫
θ

p(y |θ)p(θ)dθ. (3.15)

Virtually all practical problems contain multiple unknown parameter and quickly become higher

dimensional problems (Gelman et al., 2013). In these cases, the evaluation of Equation 3.15 be-

comes intractable. When we do not compute the evidence, Bayes’ theorem can be written as a

proportionality:

p(θ|y) ∝ p(y |θ)p(θ). (3.16)

Approximation techniques can then be used to estimate the posterior distribution. The Markov

chain Monte Carlo (MCMC), among other methods, provides a solution to this problem.

3.2.3. MARKOV CHAIN MONTE CARLO

When setting up a Bayesian inference problem with N unknowns, we implicitly create an N -

dimensional model spaceM for the prior distribution to exist in (Davidson-Pilon, 2015). On top of

this space sits a parameter space, represented by a surface or curve, that reflects the prior distribu-

tion on the unknown parameters (Davidson-Pilon, 2015). Adding observed data does not change

the parameter space, but does affect the shape of the prior distribution surface in order to reflect
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where the true parameters are likely located. In two dimensions these changes result in a land-

scape with "mountains and valleys". Essentially, the data push up the original surface to a peak

that reflects the posterior probability where the true parameters likely live. The global maximum

(hence highest peak) then represents the most likely model. This "pushing up" by the observed

data is hampered by the prior probability distribution, where an area of lower prior probability is

more resistant and forms valleys. Hence, the weights that are put on the values by the posterior

are dependent on the weight that the prior put there. If the prior has assigned a probability of 0,

no posterior probability will be assigned (Davidson-Pilon, 2015).

Monte Carlo methods use random sampling to estimate statistical properties of a given process.

To find the posterior distribution of the model space, the sampling process should not affect the

distribution. MCMC aims to search the model space, while preserving the target distribution

(Betancourt, 2018). A Markov chain is a sequence of points in the model space generated by a

proposal probability distribution, the Markov transition density. The acceptance or rejection of

the proposal depends on the likelihoods of the current and proposed states. Sampling from the

proposal distribution results in a new state in the Markov chain. The progression of the Markov

chain is shown in Figure 3.2. Following this algorithm, it can be seen that the development of

the Markov chain is at most determined by the current state, but never on the predecessor states

(Sambridge and Mosegaard, 2002).

Figure 3.2: A graphic representation of the progression of a Markov chain. (a) A point in the model space with a Markov
transition density (in green) that determines proposals to a new state. (b) Sampling results in a new state with a new
Markov transition density. (c) Repeating these steps results in a sequence of points that meander through the model
space. (Betancourt, 2018)

Monte Carlo methods were developed to numerically approximate integrals that are not tractable

analytically but for which evaluation of the function being integrated is tractable (Metropolis and

Ulam, 1949). MCMC can be used in Bayesian inference in order to generate samples from the

unnormalised part of the posterior instead of dealing with intractable computation involved in

normalising. Hence, MCMC returns samples from the posterior distribution defined up to its nor-

malisation factor, not the posterior distribution itself. By going through a large number of sam-

ples, the hope is to reconstruct the posterior "mountain top" from our two-dimensional example.

As the number of unknowns in the model grows and by searching in large-dimensional spaces,

the problem becomes more complex. This phenomenon was introduced by Bellman (1957) as

the curse of dimensionality. Large-dimensional spaces tend to be mostly empty and regions with

relatively high probability occupy small volumes.

After a large number of iterations, all accepted positions are returned as samples or traces, the

target distribution. The chain is considered to have reached steady state. The period before this
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is called the burn-in period and during inference, the sampled points from this period should

be discarded as they are unrelated to the final distribution. Mathematically, by performing a

large number of iterations, the algorithm would give results independent of its initial position.

In practice starting with poorly chosen starting values can slow down or prevent any convergence

(Davidson-Pilon, 2015; Betancourt, 2018). Ideally we would like to start the chain at or close to

the peak of our landscape, where the posterior distribution is thought to exist. This peak is the

maximum a posterior (MAP), mathematically the most likely value for the unknowns.

3.2.4. SAMPLING METHOD

HAMILTONIAN MONTE CARLO

With increasing complexity of the models, simple random-walk sampling methods become in-

efficient due to their random exploration of the large, high-dimensional model space. In high-

dimensional models the posterior distribution only comprises a thin, donut-shaped surface. In

these cases, considering the geometry of probability distributions provides a solution. By con-

sidering both the density and the volume of the posterior distribution, expectation values can be

found by accumulating the integrand over model space. The neighborhood immediately around

the mode consists of models that fit the proposed conditions best, thus contains high densities.

In high-dimensional problems, however, there is little volume in this high-density region since

there is a little number of models that fit all conditions. Away from the mode, in the tails of the

distribution, there are low densities that cover large volumes. Consequently, the large volume be-

tween these two extremes can have a strong contribution to the posterior distribution despite the

lower densities here (Betancourt, 2018). With increasing dimensions of the model space, the ten-

sion between high-density low-volume and low-density high-volume regions grows and the only

significant contribution to any expectation comes from a neighbourhood called the typical set

(Betancourt, 2018). The typical set is a concept from information theory and refers to the region

encapsulating most of the volume of the posterior model space. In order to make accurate esti-

mates of our parameters, we have to be able to identify the location of the typical set within the

model space. This allows to focus computational resources towards where they are most effective.

When model parameters are continuous, Hamiltonian Monte Carlo (HMC) provides a solution

for this. HMC abolishes random walk behavior and sensitivity to correlated input parameters by

applying analogies from Hamiltonian dynamics to the problem of sampling (Neal, 2012). It takes

advantages of the geometry of the typical set, by taking a series of steps informed by first-order

gradient information of the input parameters (Homan and Gelman, 2014). The Markov chain,

as mentioned before, preserves the target distribution, and thus is directed and confined to the

typical set no matter where in the model space it is applied (Betancourt, 2018). In analogy to

Hamiltonian dynamics, a scalar Hamiltonian function H(q, p) is introduced. The Hamiltonian is

a measure of energy, with q being the position variable, corresponding to the unknown model

parameter θ that is being sampled, and p the new auxiliary variable representing momentum.

The momentum variable gives an additional degree of freedom to calculate the trajectories that

explore the model space. Both q and p typically have independent Gaussian distributions, and

together form the phase space. Thus, by adding a momentum variable to all initial model vari-

ables we double our space and go from a N -dimensional model space to a 2N -dimensional phase

space.

Positional vector q is distributed with a probability density function p(q), which represents the

target distribution. The distribution for the momentum p given parameter q is given by p(p|q).

The probabilistic system can then be expanded to find the joint probability distribution in phase
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space:

p(q, p) = p(p|q)p(q). (3.17)

This expanded system defines the Hamiltonian scalar function H(q, p), which itself can be de-

composed into kinetic and potential energy:

H(q, p) =− log p(p|q)− log p(q)

= K (p, q)+V (q).
(3.18)

The potential energy V (q) is completely determined by the posterior distribution whereas the

kinetic energy K (p, q) controls the momenta p and hence can be chosen freely. Because the

Hamiltonian encapsulates geometry, any choice of K can generate a vector field oriented with

the typical set. This can be done using the Hamilton’s Equations (Betancourt, 2018):

d q

d t
= ∂H

∂p
= ∂K

∂p

d p

d t
=−∂H

∂q
=−∂K

∂q
− ∂V

∂q
.

(3.19)

It can be seen here that gradient ∂V
∂q affects the introduced momenta, but not directly the initial

parameters themselves. Using this gradient information, HMC creates trajectories by updating

for the momentum p. Each trajectory contains a pre-defined number of leapfrog steps, with a

defined step size. The algorithm for these trajectories can be summarised in the following steps:

• Sampling from the conditional distribution p(p|q) in order to lift the starting point in model

space to phase space.

• Generating trajectories in the phase space by following the Hamiltonian vector field for a

defined step size ε and number of leapfrog steps L (or updates). The integration time is

then a function of the number of steps given by Lε.

• Projecting the trajectories back down onto the model space, where the target distribution

is.

At the end of each trajectory, the proposed state is accepted based on the probability:

mi n[1,exp(−H(q∗, p∗)+H(q, p))], (3.20)

where the proposed state is (q∗, p∗) and the current state is (q, p). HMC thus alternates trajec-

tories generated using gradient information, with random walk updates. New states proposed in

this way can be distant from the current state but nevertheless have a high probability of accep-

tance.
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Figure 3.3: Graphical representation of how HMC and NUTS explore. (a) Random walks in parameter space (red) are
combined with Hamiltonian trajectories in phase space (blue). Once the typical set (a thin surface with fuzzy boundaries)
is reached, the Hamiltonian trajectory follows the gradient and stays close to the typical set. The trajectory ends when
a new random state is proposed (not represented here). (b) Once the chain converges to the typical set, exploration is
continued by taking samples (red) throughout the surface. (After Betancourt (2018))

NO-U-TURN SAMPLER

The Hamiltonian Monte Carlo algorithm has three parameters that must be set by the user: the

step size ε, the desired number of leapfrog steps L and the mass matrix Σ (Homan and Gelman,

2014). The performance of the algorithm in terms of sampling efficiency is highly sensitive to

these tuning parameters, since every choice results in a different Markov transition (Betancourt,

2018). A small ε allows to stay in the desired trajectory, but can waste computation time if the

steps are too small. A too large ε will result in low acceptance rates as too many proposals will be

rejected. If L is chosen too small, the algorithm will show inefficient random walk behavior while

a too large L again wastes computation time as the algorithm will do too much work on each iter-

ation. Lastly, if Σ is poorly suited to the covariance of the posterior, ε will have to be decreased to

maintain precision while at the same time L is increased to maintain computation time in order

to ensure statistical efficiency. To this purpose, the No-U-Turn Sampler (NUTS) is an extension

to HMC that requires no hand-tuning (Homan and Gelman, 2014). NUTS selects an appropriate

number of leapfrog steps by optimising ε to match the acceptance-rate target, estimates Σ dur-

ing the tuning phase, where warm-up sample iterations are run and adapts L dynamically while

sampling.

NUTS generates a proposal by starting at an initial position determined by the drawn parameters

of the last iteration. It then creates an independent standard normal random momentum vector

and evolves the initial system both forwards and backwards in time to form a balanced binary

tree. At each iteration, the tree is then increased by one level, doubling the number of leapfrog

steps. This process is terminated by either satisfying the NUTS criterion for a new subtree, or the

depth of the tree hits the maximum depth. Then, rather than using a standard Metropolis step,

the next parameter values are selected via multinomial sampling with a bias towards the latter

half of the taken steps in the trajectory (Betancourt, 2018).

For a precise definition of the NUTS algorithm and a proof of detailed balance, see Homan and

Gelman (2014). NUTS’ value as sampling method is widely acknowledged, proven from its default

use for continuous variables in different probabilistic programming tools like Stan and PyMC.





4
METHODS AND MATERIALS

In this chapter, we present the available materials and the proposed methodolody that led up to

the results. First the used field data is presented, followed by the methodology to solve the forward

and inverse problem.

4.1. FIELD DATA
Since the discovery of the Kevitsa deposit in 1987, extensive exploration campaigns followed, lead-

ing to a large collection of data sets. In this project, we focus on magnetic and petrophysical bore-

hole data. In this section, the provided data and the processing steps will be discussed.

4.1.1. MAGNETIC DATA

Both airborne and ground magnetic data are available from the study site. Airborne data is pre-

ferred in this case, as it contains less effects from temporal variations and near-surface geologic

sources (Hinze et al., 2013). Mainly the latter feature is of importance, due to the lithological and

compositional variations between the ore domain and the surrounding intrusion as mentioned

in section 2.2. Since the interest is about the main intrusion scale, these smaller scale variations

in measured values within the UPX are considered irrelevant. Hence, for this purpose ground

magnetic data contains too many details which cannot be resolved by the airborne data.

The used dataset was acquired in July 2009 with a scalar magnetometer with a sensitivity of 0.02

nT. The flight path as recorded by the acquisition program in WGS 84 latitude/longitude has been

converted into the Finland uniform coordinate system (KKJ) lateron. The dataset as received was

already corrected for diurnal variations by using magnetic values recorded by the ground base

station. The correction was done by subtracting the observed magnetic base-station deviations.

The data had also been micro-levelled in order to remove persistent low-amplitude components

of flight-line noise. Lastly, the recorded survey altitude had been corrected for the acquisition

configuration since the cable on which the magnetometer had been attached had had an angle

with the vertical. The total magnetic field as received is shown in Figure 4.1. To obtain this image,

the data is interpolated on a regularly spaced grid. This is done using a curvature-minimizing in-

terpolation algorithm, as the potential field is considered to be smooth (Smith and Wessel, 1990).

21
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Figure 4.1: The provided airborne magnetic data.

By relating Figure 4.1 to the geological map shown in Figure 2.1, five main observation can be

made:

1. A strong magnetic anomaly is visible over the main intrusion (UPX).

2. Directly North of the intrusion, much lower values are measured.

3. Responses similar to that of the Kevitsa main intrusion are observed from the elongated

Saatovaara intrusion East of Kevitsa.

4. Strong magnetic responses are observed from the hydrothermal BXH unit in the West.

5. A strong magnetic anomaly is located at the center of the central dunite (UDU).

From points 1 and 2, it can be estimated that the Northern margin of the UPX unit has a shallow

dip. Since the UPX unit gives a strong positive anomaly, and the geomagnetic declination in this

region is known to be directing North, hence the inducing field too, the shallow dip results in a

strong dipolar effect of the field caused by the intrusion. This results in a negative signal to the

North of the intrusion. The Saatovaara intrusion and the BXH unit are both deemed to be too far

away from the UPX intrusion to have a significant effect on the magnetic response measured over

the UPX intrusion. Since the focus of the modelling will be on the UPX intrusion, these obser-

vations can thus be disregarded. The central dunite, however, is close to the intrusive body and

has to be considered. Point 5 is explained by a study on cores sampled from this zone by Mon-

tonen (2012). He reported large Keonigsberger ratios, indicating strong remanent magnetisation

with a direction that opposes the induced magnetisation. This kind of remanent magnetisation

is expected to have formed during a reversed polarity period of the geomagnetic field. Montonen

(2012) found the average inclination of remanent magnetisation to be -42.4 degrees; however, the

declination remains unknown, since none of the analysed samples were directional.

Additionally, borehole data is used in this project. The available data comprises 899 boreholes
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with a number of 187 different geological codes for the lithological interpretation. In section 2.2,

the grouping of differently defined rocks into one unit was already briefly touched upon. For

analysis of the borehole data, the grouping defined by Fournier (2019) is used. Additionally, 84 of

these boreholes have downhole susceptibility measurements.

PROCESSING OF AIRBORNE MAGNETIC DATA

Before the airborne magnetic data could be used in the inversion, several processing steps had

to be performed. First, the regional field had to be correctly estimated and removed from the

total-field measurements, in order to obtain the anomalous field produced by the target sources.

Interpretation and numerical modelling are carried out on the anomalous-field data, and relia-

bility of the results depends partly on the success of the regional-field removal (Li and Oldenburg,

1998). Different methods exists for this, as reviewed extensively by Hinze (2012). After visual anal-

ysis of different profiles, a general regional trend could not be found throughout the survey area.

Hence, a DC offset is removed from the measured data by selecting a zone where the anomalous

field was expected to be zero based on geologic knowledge (Figure 4.2).

Figure 4.2: The profile corresponds to the drawn profile on the magnetic data map. The selected section, represented in
red is expected to have zero magneitc response. Hence, the average value from this section is taken as DC offset in order
to remove the regional field.
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After obtaining the anomalous field, the data required filtering in order to obtain a smoother field

over the intrusive body that shows less variation within the body itself. This is achieved by upward

continuing the field data. Upward continuation transforms the potential field measured on one

surface to the field that would be measured on a surface at a larger distance from the source. This

transformation attenuates anomalies with respect to wavelength (Blakely, 1995): the shorter the

wavelength, the greater the attenuation. Shorter wavelengths (high frequencies) oscillate many

times over a given extent and hence reflect shallow, near-surface magnetic field variations. Long-

wavelength components (low frequencies) oscillate only a few times over the same extent and

catch deeper laying, more profound sources. These deeper laying sources can be emphasised by

attenuating shorter wavelengths from the data. Upward continuation is a linear relationship in

the Fourier domain, where the upward-continued data huc can be obtained by (Blakely, 1995):

F (huc ) =F (h)e−∆z|k|. (4.1)

Here, F denotes the Fourier transform, h is the original data, |k| is the wavenumber modulus and

∆z is the increased elevation from the measurement level to the level we want to extrapolate the

data to. Equation 4.1 is a real function. The absence of an imaginary or phase component means

that no phase changes are imposed on the upward-continued field (Blakely, 1995).

To use the discrete Fourier transform, a rectangular grid with regular spacing is required. There-

fore, the irregular shape of the survey had to be first reshaped into a rectangular form with the

grid dimensions being a power of two - a condition imposed by simple Fast Fourier Transform

(FFT) algorithms. Then, in order to minimize edge effects, the grid had to be extended. The edges

on each side are padded with edge values from the original grid, in order to produce a smooth

transition. The data is then transformed to Fourier domain, used Equation 4.1 to find F (huc ). By

applying an inverse Fourier transform and removing the added grid points from the output file,

the upward continued data is obtained. The implementation of this transformation can be found

in appendix B. The results of the processing step are shown in Figure 4.3.
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(a) (b)

(c) (d)

Figure 4.3: Processing results of the obtained airborne magnetic field data. (a) The provided data, cropped to the intrusion
scale. (b) The obtained anomalous field after removing the regional field. (c) Data that is removed by upward continuation.
(d) The smoothed data that will be used in further steps.

4.2. FORWARD MODELLING
The inversion is founded on the solution of the forward problem, which in our case is a simula-

tion of the magnetic response of the initial subsurface model. Prior to the forward calculation,

the initial geological model needs to be set up. After this, the forward calculation simulates the

magnetic field this geology would produce: the forward magnetics.

4.2.1. IMPLICIT GEOLOGIC MODELLING TOOL: GEMPY

GemPy (de la Varga et al., 2019) is an open-source 3-dimensional geological modelling tool im-

plemented in the programming language Python. It is based on an implicit potential-field inter-

polation approach developed by Lajaunie et al. (1997), making use of a CoKriging interpolation.

The 3-dimensional continuous space in x, y, z is characterized by a dimensionless scalar field.

Isosurfaces of this scalar field connect the interface points and hence represents synchronously

deposition of the layer. The gradient of the scalar field is directed perpendicular to the isovalue

surfaces, following the change in physical properties through the subsurface. By interpolating

the whole space globally instead of each lithological unit independently, geological continuity is

ensured as the location of one unit affects the location of the others in the same depositional envi-

ronment (de la Varga et al., 2019). Another advantage of the global interpolator is the availability

of the interpolated data between the layers of interest for further analysis. GemPy is a surface-

based interpolator, meaning that all the added input data has to refer to a surface. The surfaces

always mark the bottom of a unit.



26 4. METHODS AND MATERIALS

GemPy accommodates an automatic modelling step in order to incorporation geological mod-

elling in a Bayesian inference framework. The architecture is built on top of Python library

Theano, which provides automatic differentation (AD) (de la Varga et al., 2019). AD allows for

numerical evaluation of the derivative of a function - a necessity for algorithms that rely on gradi-

ent information. Transitions between different formations, and thus their assigned (petrophysi-

cal) properties, are modelled as sharp transitions. In order to guarantee continuity of the gradient,

these transitions are smoothed out slightly. By providing non-zero gradients, geological modelling

can be integrated into a Bayesian inverse framework by linking it to a probabilistic programming

tool. The inversion requires calls to the forward model. Different gridding options are incorpo-

rated in GemPy, to reduce the load of these forward calculations. Relevant for this project, are the

custom grid that allows for computation of the geological model at specific point in space, and the

centered grid, which will be discussed in greater detail in Section 4.2.3. GemPy already included

built-in functionality to compute forward gravity fields conserving the AD of the package. In this

project, a similar functionality is provided to compute the forward magnetic field. The process of

this implementation is described in Section 4.2.2.

4.2.2. GEOLOGICAL MODELLING

A 3-dimensional geological model represents a simplified version of the true geology, designed to

give a visual summary of the geometry and distribution of major geological elements. In order

to fit the scope of this project, we simplify the geological model to the intrusion scale. We aim to

represent the geology by modelling the overburden, the main intrusive body and the host rock.

The reasons for this choice are twofold: Firstly, it is uncertain which lithologies would have to be

grouped without extensive petrophysical analysis of the units. The petrophysical analysis done

by Fournier (2019) provides a good guide, but does not include all defined geological names. Sec-

ondly, it is expected that all units but the intrusive have little to no significant magnetic prop-

erties, with exception of the areas showing remanent magnetisation. However, since there is no

clear consensus about the direction of the remanent magnetisation in these areas, the remanence

cannot be included in the forward modelling. Hence, measurement values close to the remanent

areas will not fit the forward model and these regions will have to be discarded to decrease its in-

fluence on the inversion as much as possible. Hence, for a simplified initial model, it is assumed

to be sufficient to model the overburden, the intrusive body and the host rock.

GemPy constructs 3D models based on a defined extent of the model, the desired resolution and

geological input data. As input data, it requires three things: Firstly, a minimum of two surface

contact points containing 3D coordinates that define the bottom of each modelled lithological

unit, secondly at least one orientation for each defined lithological unit, and thirdly a defined

topological relationship (stratigraphic sequences). Considering the available geological informa-

tion, two methods have been tested to build the geological model.

First, existing cross sections of the area (Figure A.2) are used to select interface points of the intru-

sive body. The overburden is not included in the cross section, thus we rely on borehole data for

modelling it. It should be mentioned that these cross sections are expected to be outdated by now.

We focus mostly on cross sections 11750N and 12750N as points from titan E5 and E6 lines do not

show coherency in 3-dimensional space with cross sections 11750N and 12750N. Since there is no

data regarding orientation measurements available, we are limited to rough estimate of dips and

azimuths from the cross sections.
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For the second method, available borehole data is used. After grouping the initially defined ge-

ological units, the base of the overburden and intrusive body are selected by visual inspection.

We focus on boreholes that show consistency with neighboring boreholes regarding the base of

the intrusion. Additionally, during selection we pay attention to the extent of the borehole after

it pierces the base of the intrusion. The original borehole data shows significant layering in the

intrusive body. In boreholes that do not pierce much further than the intrusion, it is not conclu-

sive whether the last points of the UPX lithology was the end of a layering sequence or the actual

base of the intrusive body. Eventually, the selected points are converted to the true vertical depth,

Easting and Northing coordinates by taking the dips and azimuths of the selected boreholes into

account. Using an azimuth α that is defined as the angle from North, positive towards the East,

and the dip ω as negative downwards from the horizontal, the following coordinate transform is

used:

X = X0 + r cos(ω)sin(α)

Y = Y0 + r cos(ω)cos(α)

Z = Z0 + r sin(ω),

(4.2)

where X0, Y0, Z0 are the coordinates of the top of the borehole, and r is the downhole depth to

the selected point. For this model, we estimate the orientations by fitting a plane to the selected

data points and finding a pole vector.

4.2.3. MAGNETIC FORWARD MODELLING

For the computation of the magnetic forward simulation, previous work by Talwani (1965) has

been closely followed. The theory behind it and the different steps undertaken will be briefly

discussed. We start off with the potential ϕi of a dipole which is given by (Blakely, 1995; Talwani,

1965):

ϕi = µ0

4π

~m ·~r
R3 , (4.3)

where ~m is again the dipole moment,~r = xî+y ĵ+zk̂ is the displacement vector from the center of

the dipole to the observation point and R = ‖~r‖. The constant µ0
4π , with µ0 being the permeability

in free space, is due to the use of the SI unit system. The magnetisation vector ~M of the whole

body is then given by the sum of the magnetic moments per unit volume (Equation 3.5). Writing

this in terms of vector~J in SI units by using Equation 3.6 gives

~J = lim
∆V →0

µ0

∆V

∑
i
~mi . (4.4)

The magnetic moment of element volume ∆x∆y∆z is then given by ~m = 1
µ0
~J∆x∆y∆z, which can

be substituted in Equation 4.3

ϕi = 1

4π

~J ·~r
R3 ∆x∆y∆z

= 1

4π

~Jx · x + ~Jy · y +~Jz · z

R3 ∆x∆y∆z.

(4.5)

The magnetic scalar potential generated by the whole body is then the sum of these ϕi . When

considering an infinitesimal volume, ∆x∆y∆z → 0, the summation transforms into an integral
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ϕ= 1

4π

Ñ
V

~Jx · x + ~Jy · y +~Jz · z

R3 d xd yd z. (4.6)

Considering that ~B is the negative of the gradient of the potential (Equation 3.3), the expression

for field is given by ~B = −∇ϕ and the three orthogonal components of the magnetic field of an

anomalous body are (Talwani, 1965):

∆X =−
z2∫

z1

b2∫
b1

a2∫
a1

∂ϕ

∂x
d xd yd z

∆Y =−
z2∫

z1

b2∫
b1

a2∫
a1

∂ϕ

∂y
d xd yd z

∆Z =−
z2∫

z1

b2∫
b1

a2∫
a1

∂ϕ

∂z
d xd yd z.

(4.7)

The variables ai , b j and zk give the distance from the corners of the voxel to the observation point

p, as represented in Figure 4.4.

Figure 4.4: Schematic representation of the magnetic response calculation from a voxel. The observation point is repre-
sented in purple, the distance R111 is the distance to vertex (a1,b1, z1).

Since the derivative of a sum is the summation of the derivatives, the substitution of Equation 4.6

into Equation 4.7 yields

∆X = 1

4π
(~JxV1 + ~Jy V2 +~JzV3)

∆Y = 1

4π
(~JxV2 + ~Jy V4 +~JzV5)

∆Z = 1

4π
(~JxV3 + ~Jy V5 +~JzV6),

(4.8)

where variables V1 to V6 represent the volume integrals (Talwani, 1965). The solutions of the vol-
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ume integrals for the case of a prism are given by Plouff (1976). By taking one edge of the prism

parallel as shown in Figure 4.4, Plouff (1976) obtained the following solutions:

V1 =−
2∑

i=1

2∑
j=1

2∑
k=1

s tan−1 b j zk

ai Ri j k

V2 =
2∑

i=1

2∑
j=1

2∑
k=1

s ln(Ri j k + zk )

V3 =
2∑

i=1

2∑
j=1

2∑
k=1

s ln(Ri j k +b j )

V4 =−
2∑

i=1

2∑
j=1

2∑
k=1

s tan−1 ai zk

b j Ri j k

V5 =
2∑

i=1

2∑
j=1

2∑
k=1

s ln(Ri j k +ai )

V6 =−
2∑

i=1

2∑
j=1

2∑
k=1

s tan−1 ai b j

zk Ri j k
,

(4.9)

where Ri j k =p
(a2

i +b2
j +z2

k ) is the distance from the observation point to each voxel corner. As an

example, R111 in Figure 4.4 gives the distance from the observation point in purple, to the voxel

corner annotated as (a1,b1, z1). s = si s j sk in Equation 4.9 gives the sign by s1 =−1 and s2 = 1.

At this point, several assumption have to be made in order to continue:

1. The susceptibility values k of each lithological unit in the geological model are assumed to

be homogeneous and anisotropic throughout the unit and have to be known. Equation 3.11

is then used to find the magnetisation of each unit.

2. Magnetisation is only due to induction so that ~Jr = 0 and following Equation 3.7,~J = ~Ji .

3. The anomalous field is small compared to the undisturbed-field intensity so that the direc-

tion of the total field is said to be in the same direction as the undisturbed field, as discussed

before, a general assumption in magnetic prospecting.

Assuming these conditions are met, the components of the magnetisation are given by (Talwani,

1965; Hinze et al., 2013):

~Jx =~J cosD cos I

~Jy =~J sinD cos I

~Jz =~J sin I .

(4.10)

Now all variables are known in order to find the components of the field as given by Equation

4.8. The intensity of the magnetic anomaly can be approximated by the sum of the projections

of components ∆X ,∆Y and ∆Z along the direction of the Earth’s field Be (Talwani, 1965; Blakely,

1995; Hinze et al., 2013):

∆T =∆X cosD cos I +∆Y sinD cos I +∆Z sin I . (4.11)

IMPLEMENTATION INTO GEMPY

In order to implement the described forward magnetics calculations into GemPy, the code had to

be consistent with the GemPy architecture. Mainly the gridding of GemPy had to be taken into
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account, in order to perform forward calculations in an efficient way.

GemPy supports different gridtypes. The already implemented gravity add-on was built on the

centered grid. The gravity field decreases with 1/r 2 where r is the distance from the source to

the point of measurement (the observation point). GemPy takes this decrease of field strength

into account and in this way saves unnecessary computational costs. The used centered grid

is an irregular grid where the majority of voxels are centered around a defined value (or several

values) which represents the observation point(s). This means that every observation point has its

own grid. From the observation point, the grid spacing increases with r 2 where r is the distance

to the observation point. While gravity fields are monopolar, magnetic field are dipolar, so the

magnetic field strength decreases with a inverse cubed (1/r 3) relationship with distance. Hence,

in magnetics, there is even less need to have a high resolution at these distant regions. Therefore,

the forward magnetics is also built on this centered gridding structure provided by GemPy.

Figure 4.5: A 2D representation of the centered grid in GemPy where the forward magnetics is built on. The observation
point (purple) is at the center of the grid. From here, the grid spacing increases with a distance squared relationship. The
magnetic field decreases cubically with distance as shown by the blue hemispheres.

As shown in Equation 4.9, in order to compute the forward magnetics, the distances Ri j k from

the observation point to each voxel corner need to be calculated (see Figure 4.4). By keeping the

resolution of the centered grid for each observation point constant, the centered grid is constant,

independent of how many observation points are added. This means that the distances Ri j k to

the voxel corners are the same for each observation point. What changes per observation point,

is the surrounding spatial distribution of susceptibility values: the susceptibility values assigned

to the voxels. Hence, the forward calculation can be decomposed into a constant and variable

part for each selected observation point. The solutions to the volume calculations [V1, ..,V6] from

Equation 4.9 are kept constant since the input values Ri j k are constant. The variable parts are

captured by Equations 4.7, 4.10 and 4.11, where the constant volume solutions for each observa-

tion point and the varying susceptibility values for each observation point are used to calculate

the physically expected magnetic intensity at each observation point. The code is presented in

Appendix B. The gridding is shown in Figure 4.5.
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The computation of the forward magnetic is a required step for a coupled inversion. By embed-

ding this step into a Bayesian inference, the initial input data for the model will be conditioned to

the final magnetic response (de la Varga et al., 2019).

COMPUTING THE FORWARD MODEL

There are several factors to consider before computing the forward magnetics. First, in order to

avoid boundary effects, the geological model has to be extended further than the area of interest.

In this case, since the magnetic field strength decreases quickly, and no strong anomalies are ex-

pected in the forward model outside of the intrusive body, there is no need to extend the model

very far outside of the intrusive body. Next, a 2D grid for the observation points where the mag-

netic response will be simulated have to be picked. For presenting the forward magnetics, a grid

of 25×25 was used. The resolution of the centered grid was set to [15,15,20].

In order to compute to forward magnetics, several study-specific parameters have to be set too:

amplitude (intensity), declination and inclination of the inducing magnetic field, as well as a

scalar susceptibility value for each modelled unit in the geological model. Applying this to the

Kevitsa case study, the values for the inducing field are defined as B0 = [A : 53 349.7 nT, D :

10.1407◦, I : 77.4063◦] (NOA, nd). These are IGRF values corresponding to the month of the sur-

vey.

To simulate the magnetic response, we have to assign magnetic properties to the modelled units.

We obtain susceptibility values per lithology by using downhole borehole measurements, and

couple them to the defined lithologies at the depth intervals of the measurements. For this we

use all available downhole measurements in order to capture all variability. Outliers are removed

by visual analysis. Additionally all values smaller than 10−5 in SI are removed, assuming they are

erroneous value.

4.2.4. SYNTHETIC STUDY ON A BURIED SPHERE

To validate the proposed methodology, a test model is used. First the forward calculator has been

tested against an analytical solution. The test model is a sphere with a constant susceptibility, in

a constant external field with only induced magnetisation. Due to the constant external field, the

sphere will be uniformly magnetised. The magnetic potential due to an uniformly magnetised

sphere is identical to the magnetic potential of a dipole located at the center of the sphere with a

dipole moment equal to the magnetisation times the volume of the sphere (Blakely, 1995). Going

back to the potential of a dipole, as given by Equation 4.3, and extending it to an observation

location P outside of the sphere yields (Blakely, 1995; Hinze et al., 2013):

ϕ(P ) = µ0

4π

~m ·~r
r 3

=−µ0

4π
~m ·∇P

1

r
.

(4.12)

Combining this with Equation 3.3 to find the magnetic induction of the dipole outside of the

sphere gives (Blakely, 1995):

~B(P ) = µ0

4π

m

r 3 [3(m · r )r −m], (4.13)

where r = ~r
|r | and r 6= 0, and m = ~m

|m| is the unit vector of the magnetic dipole moment ~m which is
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given by:

~m = 4

3
πa3~J , (4.14)

with a being the radius of the sphere. The components of~J are again given by Equation 4.10.

The test model is a buried sphere, with its center at [0,0,−300]m, a radius of a = 100m and a

magnetic susceptibility of k = 1000, located in a non-magnetic medium (k = 0). The inducing

magnetic field is B0 = [A : 50000 nT, I : 63.0◦, D : 0◦]. The model is represented in Figure 4.6a.

The result of this test is shown in Figure 4.6b. For the forward calculations, a grid resolution of

[100,100,100] is taken for the centered grids of the 51 observation points. It can be seen from

figure 4.6b that the forward model fits the analytical solution well, with the calculated value at

observation [0,0,0] being only 0.14% off from the analytical value of the total field BT .

(a)

(b)

Figure 4.6: Validating the forward magnetic calculations with the analytical solution for a buried sphere. (a) Test model of
the buried sphere. The triangles represent the 51 observation points along the x-profile that have been used for forward
modelling. (b) Magnetic response of the test model. The lines represent the analytical solution and the dots are the
calculated forward magnetics at the 51 observation points. Both the total field BT and its components Bx ,By ,Bz are
plotted.
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4.3. INVERSE MODELLING
In reality, it is hard to encapsulate the complexity of the real situation by a model as there might

be an infinite number of unknown, or at least not exactly known, parameters that describe the

mathematical model. Each parameter that is defined as stochastic adds a dimension to the model

space, and the curse of dimensionality starts to pose a problem. Effectively, this means that it is

important that we choose our unknown parameters wisely and set up the probabilistic model with

care. In this chapter, we present the tool and methodology for the implementation of Bayesian

inference to our use-case. The process of Bayesian data analysis is divided by Gelman et al. (2013)

in three steps. We will go through these steps one by one.

4.3.1. BAYESIAN ANALYSIS TOOL: PYMC3
PyMC3 is a Python library for Bayesian modelling and probabilistic machine learning, focussing

on advanced MCMC algorithms (Salvatier et al., 2015). Similar to GemPy, PyMC3 also relies on

Theano for automatic differentiation. This allows for the integration of both packages. The de-

fault sampling algorithm for continuous variables in PyMC3 is NUTS. All variables included in

the probabilistic model have to be defined in PyMC3. The relation between variables is defined

by parent-child relationships, where the parent affects the child variable and a variable can be

both a parent as well as a child. PyMC allows for the inclusion of two types of variables in the

probabilistic model: deterministic and stochastic variables. Deterministic variables are ones that

are not random, meaning that if the hyperparameters of the variable are known, the value of the

variable itself could be determined. Stochastic variables, on the other hand, would still be random

if the variables’ parameters were known. Stochastic variables are assigned a statistical distribu-

tion that is expected to describe the variable. PyMC3 includes a comprehensive set of pre-defined

statistical distributions, which can be used as model building blocks. Additionally, the package

provides default settings for both sampling algorithms and its parameters, a useful feature when

the user has no algorithm fitting experience.

4.3.2. PROBABILISTIC MODEL BUILDING

Ideally, the probabilistic model should be consistent with our knowledge regarding the problem

we try to solve. The elements that make up the probabilistic model have already been discussed

in Chapter 3.2: unknown parameters θ, a mathematical model M that links the parameters with

the observed data, and the observed data y . This can be any type of data, measurement or ob-

servation, that can be compared to the model outcomes. The model parameters do not have to

capture all necessary knowledge that describes the data but should be rich enough to resemble

the measurement process. The model parameter is defined as either deterministic or stochastic.

Meaningful probability distributions have to be assigned to stochastic model parameters. In case

there is no reasonable estimate for a parameter, a normal distribution can be used to capture its

uncertainty (Davidson-Pilon, 2015).

As explained in Section 4.2.2, the starting geological model is completely based on geological

knowledge, either cross-sections or borehole logs. These geological interpretations are highly

subjective, hence the input parameters based on geological knowledge are expected to be highly

uncertain. As observed data y , both airborne magnetic measurements, as well as geological in-

terpretations from borehole cores, are used. To get a good understanding of the field data, it is

analysed and processed as described in Section 4.1. The mathematical models relating the mag-

netic data and the geological observations to the parameters are the interpolator functions that

form the basis of GemPy, and the implemented forward magnetic calculator described in Section
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4.2.3.

Defining the observed and unobservable parameters results in a joint prior probability distribu-

tion. The definition of this prior distribution is a delicate issue in any Bayesian data analysis

(Betancourt, 2018). The data, the parameters and the mathematical model all have to be under-

stood well. The standard deviation should be chosen so that it contains all epistemic errors. A

prior distribution encapsulating high uncertainty is preferred above a tightly defined prior. In the

latter case, the prior may not contain the true parameter and will assign a probability of zero to

the unknown parameter. Consequently the posterior will assign zero probability to it as well, and

the MCMC will not converge.

This step aims to set our model up and define our parameters in such a way that the MCMC al-

gorithm starts near the posterior distribution, to take little time to start sampling correctly. To

analyse the joint ensemble, the prior predictive distribution can be analysed: the distribution for

the observations over all possible values of parameters. The prior predictive distribution gives

insights by quantifying the range of observations that are deemed to be in line with our modelling

assumptions. This is done by taking random samples from the joint prior distribution, and pass-

ing these samples through the forward model, to quantify how likely it is that we can simulate the

measured data given our prior parameters. If the measured data is not within the scope of the

prior predictive distribution, the model should be adjusted to capture the relevant structure of

the true data generating process.

4.3.3. CONDITIONING OBSERVED DATA

By conditioning of the data through a likelihood function p(y |θ) we can obtain the result of

Bayesian inference: the posterior distribution p(θ|y). To embrace the Bayesian approach and

update the prior knowledge in the light of observed data, well-defined likelihood functions p(y |θ)

are needed. A well-chosen likelihood function concentrates in a small neighborhood of the model

space and makes the structure of the prior parameter distributions less important, since the pos-

terior distribution will be mainly dominated by the observations. In the case of a weakly- or non-

identified likelihood function, however, the likelihood spans large volumes of the model space

and has a small effect, the form of the posterior is then strongly influenced by the form of the

prior. Without proper constraints, a poorly defined prior then propagates to a poor posterior.

Hence, in case of a poor likelihood function, the prior distribution should contain just enough

domain expertise to suppress extreme, unrealistic models.

In this project, likelihood functions based on both geophysical measurements and geological

knowledge are used. The geophysical likelihood function is defined on basis of the measured

airborne magnetic data. Since the spatial distribution of the petrophysical properties is related

to the spatial distribution of the defined lithological units in the structural geological model, the

observed data can be compared to the simulated response of the geological model by using the

implemented forward magnetic calculator (Section 4.2.3). The susceptibilities that need to be as-

signed for this, can be either fixed estimated values, or could be considered to be uncertain by

defining them as stochastic parameters.

It is expected that at greater depths, the magnetic field becomes too weak to provide a meaningful

and informative likelihood function. To estimate the geometry at these depths, other constrains

are needed. For this purpose, borehole data is used. Since GemPy computes the whole scalar

field, the lithology can be defined at any point in space. GemPy assigns lithological IDs (integers)

to each modelled lithological unit in sequential order. As explained, smoothing between lithology
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transitions is applied to guarantee continuity of the gradient. In practice, this means that we can

treat these lithology IDs as continuous variables and assign a probability distribution function

to them. In this way, the probability of observing the intrusive unit at the logged location from

borehole data is expressed as a likelihood function.

After including the observations in the form of likelihoods, the non-normalised posterior distribu-

tion can be approximated (Equation 3.16) by sampling using the NUTS algorithm as incorporated

in PyMC3. For the necessary gradient information, Theano provides the derivative of the model

parameters with respect to the likelihood functions. Since the model parameters themselves are

functions of other input parameters, by using the chain rule for derivatives, the derivatives end

up being summations and multiplication of all input parameters.

It is worth mentioning that both likelihood functions employ different parameters and require

different levels of model construction during sampling. The geophysical likelihood requires the

forward calculation of the magnetic field. All the input parameters needed for the forward cal-

culation are combined to calculate a gradient. Once the forward modelling process is complete,

the results of the gradient are collapsed back to the size of the vector of model parameters. Per-

forming forward calculations for each sample, can quickly become a computationally expensive

practice. The centered grid (Figure 4.9) used for the forward calculation eases the computation by

employing high accuracy in the vicinity of the observation point, as the effect on the magnetic re-

sponse is high here. Further away from the observation point, its influence decreases rapidly and

the resolution can be decreased. Though this cuts the computational costs, densely covering the

geological model extent with regularly gridded observation points would, if possible, still be very

expensive. Hence, the observation points are chosen with care, based on the measured magnetic

data and the objective of the inversion. The geological likelihood requires to know the lithology at

the evaluated borehole location. For this, the construction of the geological model is necessary.

Rather then computing the whole model extent, the geological model can be computed only at

the given location in space by defining a custom grid at this location.

4.3.4. EVALUATION OF THE POSTERIOR MODEL

Once the model is built and the likelihood functions are defined, the sampling process can start.

The chain will start moving from the prior distribution towards the typical set. PyMC3 automati-

cally stores statistical parameters that capture the behaviour of the chain. Analysis of parameters

like the moving means and the number of leapfrog steps per sample provides insights on whether

the typical set in reached. Once in the typical set, moving means should show little variations,

and the number of leapfrog steps taken should be low.

Analysis of the corresponding posterior estimates also provides an impression of the sampling

adequacy. Similar to the construction of the prior predictive distribution, the posterior predictive

distribution can be obtained from the joint posterior parameter distributions. This is called a

posterior predictive check. The distribution produced in this way represents the data we would

expect to measure if the proposed model was true and the sampler converged properly.

If there are indications that MCMC has converged, samples can be stored and used to charac-

terise the posterior distribution. The analysis of the obtained posterior depends on the intended

use. Here, we consider the analysis of the posterior distribution with a Gaussian kernel density

estimation and an analysis of the ensemble of generated models from the posterior. The ensem-

ble of models can be visualised in different ways. Wellmann and Regenauer-Lieb (2012) proposed

the use of information entropy as an objective measure to evaluate model results. Information
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entropy or Shannon entropy, after Shannon (1948), defines a scalar value at every location in

the model representing its uncertainty. In analogy to entropy in thermodynamics, larger entropy

means larger uncertainties. Additionally, if we want to produce a single estimate of the geological

model, we can produce a model based on the maximum a posteriori (MAP) solution. This pro-

vides the model that statistically fits the observed data best. It should be mentioned that the MAP

is not considered to be representative in high dimensional models, because it is usually not in the

typical set (Betancourt, 2018). Additionally, it should be considered that a statistical fit does not

guarantee representation of the geological structures.

Lastly, it is worth mentioning that in reality, a Bayesian workflow for practical applications is an

iterative process (Betancourt, 2018). Both employed likelihood functions (y |θ) and prior distribu-

tions p(θ), are based on domain expertise. By evaluation of the posterior models, more knowl-

edge about the interaction of the observations and priors is obtained. This creates new insights

and might require re-definition of parameter distributions, or expansion of the model, without

biasing our model by overfitting to the observed data. Hence, a correct response to a failing poste-

rior predictive check would, in general, be expanding the model within the scope of our, possibly

improved, understanding of the model (Betancourt, 2018). Once we have a new model we then

restart the workflow and should iterate over the previous steps.

4.3.5. SYNTHETIC STUDY ON A BURIED SPHERE

To test the proposed probabilistic methodology, the buried sphere model from Section 4.2.4 is

used again. We generate synthetic data by adding approximately 10% noise to the forward cal-

culated magnetic response of the sphere (Figure 4.6). To show the iterative process of building a

robust probabilistic model, several inversions are performed. First, we assume that we have no

knowledge regarding the depth z (set at z = 300m) of the center of the sphere and we assign a

uniform prior distribution p(z) to it. A likelihood function based on magnetic observations at 7

points is added, using normal distributions. The effect of our likelihood p(y1, ..., y7|z) on our pos-

terior distribution p(z|y1, ..., y7) is shown by comparison of two simulations. First, we define the

standard deviation σ of the distribution as deterministic and assign this to all observations and

take 500 samples. In the second test, we make σ stochastic, by assigning a half-normal distribu-

tion to it. For this test, we only take 200 samples. The results are plotted in Figure 4.7.

The distributions are represented using Gaussian kernel density estimation (KDE). The histogram

of the posterior in Figure 4.7a is additionally plotted, to show that the sampled values are not in

regions where we assigned zero prior probability, but rather result from the way the KDE is com-

puted. KDE assigns a normal (Gaussian) curve to each sampled value, centered at that value.

These curves are summed to compute the value of the density at each point and normalising the

resulting curve. Since our prior distribution is non-informative, a well-defined likelihood func-

tion is needed. Defining a meaningful distribution is not trivial, and doing this for multiple ob-

servation locations even less so since the magnetic field changes rapidly with the position. This

effect can be seen by looking at Figures 4.7b and 4.7c, which represent two different observation

locations as highlighted in Figure 4.7d. The likelihood is well defined for observation (b) and con-

verges to the true value already in the first test, but the second observation (c) does not do so well.

Using a stochasticσ helps us define the likelihood better. The result is evident: where 500 samples

for the first inversion still result in a poor posterior distribution for the depth location in the first

test, 200 samples are already sufficient for the second inversion to get a good estimate.
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(a)

(b)

(c)

(d)

Figure 4.7: Testing the probabilistic model on a buried sphere with an uncertain depth. Two tests are conducted and
presented per column. In test 1 (left) σ of the observation is deterministic, in test 2 (right) it’s stochastic. (a) Prior and
posterior distribution of the depth location. (b), (c) Posterior predictive checks of two different observation locations. (d)
Estimates of the sphere location from the inversion (blue), and the real position of the sphere (black). The blue rectangles
show the observation locations, where the highlighted two correspond to the observation points from (b) and (c).
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After testing the sensitivity of the

posterior to the likelihood, the

complexity of the model is in-

creased by adding the susceptibil-

ity k as a stochastic parameter. We

assign a normal distribution to it,

with µk = 900 and σk = 50, while

the real value is known to be k =
1000. We incorporate the newly

gained knowledge about the dis-

tribution of z, by using the poste-

rior from the first test. A normal

distribution with µz = 320m and

σz = 103m is assigned as updated

prior for z. The joint distribution

is shown in Figure 4.8. Figure 4.8: Joint plot for the prior and posterior of z and k.

The results show that a well-defined prior p(z) provides a good estimate of the posterior p(z|y1, ..., y7),

whereas the poorly defined prior p(k), combined with normally distributed likelihoods, results in

a similarly shaped posterior. The joint posterior distribution is a thin surface, mostly due to the

narrow posterior of z. Looking at the model realisations, we observe that adding a weakly infor-

mative stochastic parameter increases the total uncertainty. Lastly, it can be seen from Figure 4.9

that the MAP does not represent the posterior distribution.

Figure 4.9: Model realisations (blue) for inversion with uncertain depth and susceptibility, with the true sphere location
(black), and MAP (red).

These tests validate the set-up of our probabilistic model, while also showcasing the complexity

of the probabilistic model building and the interactions of the parameters. The initial model has

to be carefully chosen. It is better to start with a very simple model (few parameters and high

uncertainties) and through iterations find better parameterisation, and increase the complexity
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from there. Adding more likelihood functions to constrain the model, without understanding the

model nor the observations that are being added, is likely to end up in unwanted interaction be-

tween the prior and the likelihood (Figure 4.7c). We can obtain precise estimates of the posterior

distribution using small sample sizes when we use informative priors, but similar precision re-

quires more sample size when we use weaker informative priors. In general, the observations can

be summarised as follows:

• If the prior is non-informative, the posterior distribution will be equivalent to the likelihood

functions.

• If the prior is informative, the posterior generally resembles the prior. The extent to which

it resembles depends on the sampling size.

• For a given prior, large sample size will give the likelihood function more influence on the

posterior.





5
RESULTS

In this Chapter, the results of this project are presented. First, the used field data is presented. This

is followed by the built geological models and the results from the forward magnetic calculations.

Lastly, the inversion results are presented.

5.1. FIELD DATA

The processed airborne magnetic data,

cropped to the area of interest, is

shown in Figure 5.1. The data is up-

ward continued to 200 meters above

the survey altitude. This upward con-

tinuation level is decided by testing dif-

ferent options. The result still shows

the large-scale structural variations we

are interested in while removing the

small-scale variation related to varia-

tions in magnetic properties within the

intrusive body (UPX).
Figure 5.1: Processed airborne magnetic data showing the
anomalous field.

The susceptibility k distributions of the modelled units, the intrusion (UPX) and the host rock,

obtained from downhole borehole measurements are shown in Figure 5.2. Both distributions are

plotted on a logarithmic x-axis to present the variations better. On the left, we see the separate k

distribution of the lithologies that are grouped in the UPX unit, and the histogram representing

the grouped distribution. The distribution for the host rock consists of all other lithologies, with

the exception of the remanent dunite. This distribution is broader than the UPX distribution,

which is expected considering the variety of lithologies that have been included here. However,

the k values are at least one magnitude smaller than the kU P X values, hence one would expect

that the effect is not significant.

41
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Figure 5.2: Histogram and distributions of susceptibility from downhole measurements for the intrusion (left) and the
host rock (right). The histogram (left) represents the grouped intrusion (UPX unit), the individual distributions represent
the units that make up the UPX unit. The other geological units, with the exception of the dunite (UDU), are grouped to
obtain a distribution for the host rock.

5.2. FORWARD MODELLING
The extent of both geological models is from 3494800 to 3501100 Easting and 7509000 to 7513500

Northing in Finland KKJ coordinate system. The 3D presentation of both models is shown in

Figure 5.3a and 5.3b for the cross-section based model and the borehole based model respec-

tively. The surface representing the base of the intrusion UPX is in grey, the opaque surface

represents the bottom of the overburden. The topography is not included in the 3D represen-

tation. To present the results also in a depth section, a cross-section at 7511750 Northing will

be used as an example throughout this Chapter. Figure 5.3c and 5.3d show the cross-section of

the initial models, where circles represent the input surface points and arrows the input orien-

tations for the geological model construction. Figure 5.3e and 5.3f show the forward calculated

magnetic response from the corresponding geological models. The forward calculations simulate

the response as it would be measured at 200 meters above the survey level, to allow compari-

son to Figure 5.1. For both forward simulations, the same external and petrophysical parame-

ters are used. For the external field we use IGRF values from the month of the data acquisition:

B0 = [A = 53349.7nT, D = 10.14◦, I = 77.41◦] (NOA, nd). The susceptibility values that we assign

to the modelled units are the means of the presented distributions in Figure 5.8: kU P X = 0.014125

and khost = 0.003846 for the susceptibility of the intrusion and host rock. Additionally, we assign

kOV B = 0 for the overburden, since field geophysicists know the overburden to be non-magnetic in

this region. By assigning a single susceptibility value per unit, we assume that k is homogeneous

throughout the lithological unit. The forward calculations are performed on a regular grid over

the extent of the geological models and interpolated using a minimum curvature interpolator.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Created geological models and their forward simulated magnetic responses. On the left, we have the results
from the geological model built from cross-sections, on the right based on borehole data. (a), (b) 3D representation of
the models with the overburden in opaque and the intrusion in grey. (c), (d) Cross-sections at 7511750 Northing, taken as
example cross-section. The circles represent the input points for the surfaces and the triangles are the orientations. (e),
(f) The predictive forward magnetics, based on the models.

First, we compare the geological models. Where the cross-section based model (Figure 5.3a) esti-

mates the geometry of the intrusive body to have a mostly bounded shape with the exception of

the Southwest extent, the borehole based model (Figure 5.3b) suggests that the body extends to

an unknown depth towards the South and Southwest. Both the provided cross-sections (in partic-

ular cross-section E5, Figure A.2) as well as the borehole data define the deepest point of the UPX

unit at approximately 1500 meters depth. Yet, as mentioned in Section 4.2.2, cross-section E5 was

not showing consistency in 3D with the selected points from the other cross-sections, hence this

depth extent is not captured in the geological model based on these sections. As a result, we see

that the base of the intrusive body in the cross-section based model is at a shallower depth. The

base of the intrusion logged at greater depths is captured in the borehole based model, however,

we can see in Figure 5.3b that this resulted in some artifacts. First, we see a small isolated point in

the middle of the intrusion. Furthermore, based on geological knowledge, the steep dip towards

the South is interpreted as a modelling artifact as well. This is likely due to scarce input param-

eters at greater depths since there were only two points that pierce the bottom of the intrusion



44 5. RESULTS

completely.

When we compare the resulting forward calculated magnetic responses presented in Figure 5.3e

and 5.3f, they show consistency with the corresponding geological models. Comparing Figure 5.1

to the forward predictive models in Figures 5.3e and 5.3f, the most important observation are the

values on the colour bar. The forward predictions have intensities that are approximately one

order of magnitude lower. Both forward simulations cannot explain the measured data with the

given parameters. An additional observation is that Figure 5.3f does not resemble the measured

data at all. This is due to the simplicity of the geological models. It is known that in the South,

a thick layer of gabbroic rock overlays the downward dipping intrusive body. Since we did not

model this layer, the simulations are far off from the measured map. Therefore we expect that this

geological model in the current state is too simplistic to be able to use magnetic likelihoods in the

inversion. One would need to adjust the model by adding lithologies and possibly more surface

points to get reasonable results. Hence, due to the scope of this project, it is decided to continue

with the cross-section based geological model. Since we continue with one geological model,

from here on the cross-section based model will simply be referred to as a geological model.

5.3. INVERSE MODELLING
The inversion is done iteratively, by starting with a simple probabilistic model and using newly

gained knowledge in each step to improve the efficiency and results of the subsequent probabilis-

tic model. In this Section, we will go through the different probabilistic models and the corre-

sponding results of each inversion.

5.3.1. INVERSION USING GEOPHYSICAL LIKELIHOODS

I: DEPTH UNCERTAINY

The first inversion aims to observe the behavior of the prior distributions and the likelihood func-

tions based on the measured magnetic data. To keep the probabilistic model simple, we only

consider uncertainty at the depths z of the modelled surfaces. The geological model contains

22 surface points in total, each with a z-coordinate which is defined as stochastic, hence we end

up with 22 stochastic model parameters in the probabilistic model. A normal distribution is as-

signed to these parameters to represent their uncertainty, with µz being the initial depth point

that is used for building the model, and σz = 100m. Next, the observations for our geophysical

likelihood function are defined. 12 measurement locations throughout the extent of our geologi-

cal model are selected based on the map of the measured magnetic data and are shown in Figure

5.4. The used measurement values are from the 200 meters upward continued data. For the like-

lihood function, we use a normal distribution with µmag being the forward calculated magnetic

response of the initial geological model, σmag = 100nT, and the measured magnetic intensity as

observations. As mentioned before, the magnetic observations could not be simulated with the

susceptibility values from downhole measurements. An attempt was made to run the inversion

with the mean of the distributions presented in Figure 5.2. However, due to the large data misfit,

the sampling process was extremely slow and it was concluded that either the geological or prob-

abilistic model should be adjusted. For the next attempt, the susceptibility values have thus been

scaled to simulate magnetic responses in the same order of magnitude as the measured data. As-

signing deterministic kU P X = 0.14125 and khost = 0.03846, a total of 800 samples are taken. 300

samples are used as tuning samples and are discarded for posterior evaluations.
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Figure 5.4: Selected observation points based on the measured data (left), with the corresponding points also shown on
the forward simulated map with scaled susceptibility values (right).

Figure 5.5a shows the example cross-section with a set of the realised models and the initial model

in the background and Figure 5.5b shows the uncertainty in the section based on all realised mod-

els and quantified by entropy. In Figure 5.5a we observe a decrease in volume of the UPX unit, by

thickening of the overburden (OVB) and partially by decreasing depth of the base of the intrusion

in some model realisations. The decrease of volume for UPX is an expected result: less volume

(of UPX) is required to produce the same magnetic response that a body with lower susceptibil-

ity and larger volume would produce. Therefore the intrusive body is decreased in volume by

decreasing the depth of the intrusion and thickening the overburden (OVB). Additionally, we see

that the uncertainty is lower at the surface points, but is very high between the surface points.

The surface points have a set range in which they can move in the z-direction, defined by the

prior distribution. The regions between them, however, are interpolated automatically, hence we

have less control there. Where Figure 5.5a visualises only a few (50) of the 500 considered samples,

5.5b quantifies the uncertainty by considering all 500 realised models. The entropy is calculated

per cell (or voxel in 3D) by computing the probability of each formation to occur in that cell. If

the probability of occurrence of one formation in a particular cell is one, then all others have zero

probability and we have zero entropy. In the most uncertain situation, all formations are equally

likely to occur, and their probabilities are equal: entropy is maximised. The maximum entropy is

log2(n) where n is the number of modelled formations. Our geological model has 3 formations

(OVB, UPX, and the host rock), hence the maximum entropy is 1.58.
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Figure 5.5: (a) Realised models of inversion, presented with the initial model on the background, shown on the example
cross-section at 75117500N. (b) Representation of the uncertainty by plotting the Shannon entropy on the example cross-
section. Higher entropy values mean more uncertainty or randomness, zero means that there is no uncertainty.

There are strong indications that this chain did not converge. A large number of samples reached

the maximum leapfrog steps (by default 10) in the Hamiltonian trajectory, see Appendix A, Figure

A.4. If the model is well defined, 10 steps would not, or at least not often, be required, as a better

state would be proposed and accepted within these 10 steps. Hence, we should redefine our prob-

abilistic model to ensure smoother exploration. Conducting posterior predictive checks gives in-

sight on how to adjust the probabilistic set-up to improve the performance of the algorithm. The

prior and posterior predictive distributions for all magnetic observations are presented in Figure

5.6, where the darker shades represent the prior and the lighter represent the posterior distribu-

tions. The dashed lines are the measured magnetic intensity values at these locations. It can be

seen that all posterior distributions, except for observation 0, have moved towards the measured

value (dashed line) relative to their priors. For most points, the measured value is not within the

posterior distribution, which is in accordance with our belief that the model is poorly defined.

It still performed unexpectedly well considering that most measured values are far in the tails of

the prior predictive distribution (observations 3, 4, 7, 8, 11), hence having very little probability of

being forward simulated, or are not in prior distribution at all (observations 1, 2, 9, 10), in which

case there is zero probability to simulate the measured data within the current parameterisation.
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Figure 5.6: Posterior predictive checks for all observation in the geophysical likelihood function p(z|y0, ..., y11). The dark
shades represent the prior predictive, the darker shades the posterior predictive and the dashed lines the measured mag-
netic intensity at the location. The coloured observations (0, 6, 8, 9) will be used for comparison to future results.

Some important realisations from this inversion are:

• A justified representative susceptibility distribution has to be found for the intrusion to de-

fine it as a stochastic parameter rather than assigning it a fixed value. This is expected to

highly impact the performance of NUTS.

• The model parameters need to be defined better so that the prior predictive distributions

include the value of the measured data at the observation locations, and do not assign zero

probability to it.

• The overburden should have a smaller distribution since core interpretations of the over-

burden are relatively certain compared to the more complex UPX unit. Additionally, we

want to reduce its effect on the other parameters.

• The shape of the intrusion cannot be captured by only considering uncertainty in the z-

direction.

II: PETROPHYSICAL UNCERTAINTY

To find susceptibilities k that explain the measured magnetic responses, we can invert for the

rock property. With the current set-up of a surface-based model that assigns geophysical proper-

ties per formation, rather than on a grid, inverting for rock properties still respects the (expected)

geology. The observation points are selected based on both the observed data and forward cal-

culations since the observation points have to represent the correct modelled formation. The

selected points are shown in Figure 5.7, where points 1, 8 and 12 are chosen as likelihoods for the

susceptibility of the intrusion kU P X , and point 9 is chosen as the likelihood for the susceptibility of

the host rock khost . We again assign normal distributions to represent the uncertainties, with the

mean being the forward calculated values and for points 1, 8 and 12 we use σmag = 100nT. After
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testing several configurations, it is decided to assign a stochastic σ with a half-normal distribu-

tion, to point 9. We assign uniform prior distributions to both susceptibilities: UkU P X : [0.001, 0.1]

and Ukhost
: [0.000001, 0.01]. These bounds are chosen based on geophysical knowledge of the

expected susceptibility values of magnetic and non-magnetic media.

Figure 5.7: Selected observation locations for inversion II on the observed magnetic map (left) and the resulting forward
calculated magnetic map (right). The magnetic response at points 1, 8 and 12 corresponds to UPX, and point 9 corre-
sponds to the host rock. The resulting forward simulated map is obtained by using mean susceptibility values found
through the inversion: kU P X = 0.12 and khost = 0.0030.

Figure 5.8 shows the resulting KDE plots. Figures 5.8a and 5.8b show the prior and posterior dis-

tributions for kU P X and khost respectively. Underneath them are the corresponding prior and

posterior predictive distribution plots for observation 1 (Figure 5.8c) and observation 9 (Figure

5.8d). It can be observed that the distributions of the susceptibility and the corresponding obser-

vation location resemble each other. The uniform distribution assigned to both susceptibilities

determines the shape of the prior predictive distributions: the data we would expect if the pro-

posed model was true is also uniformly distributed. The shape of the posterior distributions is

controlled by the likelihood functions: Observation 1 (Figure 5.8c) is located where UPX is mod-

elled and thus the posterior distribution of kU P X (Figure 5.8a) resembles (Figure 5.8c). The same

relation holds for the host rock (Figure 5.8b) and observation 9 (Figure 5.8d).
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Figure 5.8: Prior and posterior distribution of (a) kU P X , and (b) khost . Prior and posterior predictive distribution for (c)
observation 1, corresponding to the UPX unit, and (d) observation 9, corresponding to the host rock

Forward calculations with the inverted means of kU P X and khost are shown in Figure 5.7 (right).

Comparing it to the measured data, we can see that the intensities over the intrusive body are

in the same range. Therefore we can conclude that kU P X represents the UPX unit better than

the value that was obtained from the borehole data. The result for khost is less certain, as only

one observation was used and the obtained posterior distribution exactly resembles the posterior

predictive at observation 9 (Figure 5.8d). This posterior predictive in its turn gets its shape from

the half-normal σ that was assigned to the observation point (Figure 5.8d). Note that the other

observation points (1, 8, and 12) included in the likelihood functions have a deterministic σ. The

inversion was tried with a deterministic σ for point 9 too, which resulted in a uniform posterior

for khost . The result is plotted in Appendix A, Figure A.5. Adding additional observations in the

likelihood functions to represent the host rock (e.g. towards the East of the intrusion) has been

tested too, but resulted in either a non-informative uniform-like posterior distribution or even a

slightly larger mean value for khost . Hence, it is concluded that the inversion does not provide a

trustworthy result for khost . The result shown in Figure 5.8b is only obtained after adjusting the

assigned distribution to the observation point in such a way that we would get a result. Hence, the

resulting probabilistic model is highly biased to fit the data and the result is considered subjective.

Therefore it is decided to continue with the newly found kU P X , but we discard the result for khost

and continue using the downhole measured values. It is not expected to harm the inversion much

since the borehole value is close to the inverted value and both are significantly smaller than

the newly found kU P X . Therefore the susceptibility of the host rock is expected to have a minor

influence on the magnetic field intensities observed directly on or around the intrusion.

III: SPATIAL AND PETROPHYSICAL UNCERTAINTY

With our updated knowledge, we can extend our probabilistic model. The Kevitsa intrusion is

located in a highly structurally deformed geological setting, so it can be assumed that there is,
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at least to some extent, uncertainty in all spatial directions. Hence, for the next inversion, the

x, y, z-coordinates of all surface points are defined as stochastic with normal distributions and

the input values as the mean. The assigned σ is dependent on the unit: σOV Bx,y,z is set to 2 me-

ters,σU P X ,x,y,z = 300m. Additionally, we expand the likelihood function by adding more magnetic

measurement points, again with a normal distribution assigned to the observations. The large un-

certainty assigned to UPX is motivated by the selected points. Most points are chosen around the

magnetic anomaly, and we can observe from the shape of the measured anomaly (Figure 5.9, left)

that the initially modelled intrusion (Figure 5.9, right) should be moved a few hundred meters in

the horizontal plane to resemble the measured anomaly. We assign the posterior distribution of

kU P X from our previous inversion (Figure 5.8) as prior distribution for this inversion, and keep

khost = 0.003846 and kOV B = 0 deterministic. The prior for the observations (prior predictive)

shows that the magnetic data could, at most observation locations, be explained within the as-

signed parameter uncertainties. This is mainly due to the redefined susceptibility.

Figure 5.9: Selected observation points based on the measured data (left), with the corresponding points also shown on
the forward simulated map with susceptibility values found in inversion II (right).
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Figure 5.10: (a) Realised models of inversion III presented with the initial model in the background, shown on the example
cross-section at 7511750N. Again, only 50 of the 500 realised models are plotted to maintain visual clarity. (b) Represen-
tation of the uncertainty in terms of entropy shows that overall the entropy has decreased, yet uncertainties arise at new
locations, mainly at unexpected locations within the area highlighted by the blue box.

To have a fair comparison, we take the same amount of samples as in inversion I (800). The re-

alised models are shown on the example cross-section, shown in Figure 5.10. Compared to Figure

5.5, we observe that there is no strong ’bow-tie’ effect at the surface points. This is likely related

to the now stochastic x and y-coordinates, which allow for variations of the surface points in all

three directions, resulting in more coherent interpolations between them. From Figure 5.10b it

can be seen that overall the uncertainty has decreased, but some new effects occur at the bottom

of the section as highlighted by the blue box. It looks like these regions show individual bulbs, dis-

connected from the main intrusive body. This also occurs in the other sections (Figure A.9). Based

on geological interpretation (mainly from seismic data at this depth), it is not expected that these

features are representative of the subsurface structures. Therefore, these effects are interpreted as

artifacts. Note that the section in Figure 5.10a does not show these artifacts. This is because, for

visualisation reasons, only 50 of the 500 sampled models have been plotted. If all models would

have been plotted, these artifacts would indeed also be visible in the section in Figure 5.10a. The

high entropy at the interface between UPX and the overburden is interpreted as being the result

of the thinness of the overburden, in combination with the resolution of the grid on which the

entropy is calculated. Since the overburden is so thin (and stochastic), the occurring formation in

a cell in these zones interchanges quickly per sample and hence both OVB and UPX have a prob-

ability to occur in a particular cell and the resulting entropy is high. The prior predictive check

indicates that the target distribution is reached since our posterior predictive distributions are

either centered at or close to the observed value. The wide, non-smoothed, distributions indi-

cate that the typical set is not sufficiently sampled yet to fully converge. The prior and posterior

predictive distributions of all magnetic observations are plotted in Figure A.6, Appendix A.
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5.3.2. INVERSION USING GEOPHYSICAL AND GEOLOGICAL LIKELIHOODS

IV: SPATIAL AND PETROPHYSICAL UNCERTAINTY

In general, the results of the previous inversion are satisfying as the posterior check suggests that

the model can explain the data. However, from geological knowledge, it is expected that the

body extends deeper than it does in our geological model. By assigning more uncertainty to z

from inversion I to III, we still did not capture this, and additionally created structures that are

expected to be artificial. Hence, within the previous probabilistic model, the data could be fit,

but our mathematical functions could not simulate the expected geology. To add information

to the inverse model, a geological likelihood based on interpreted core logs is added at location

B H1 = ([X : 3498946, Y : 7511059, Z : −1468.448499m]), as shown in Figure 5.11.

Figure 5.11: Selected observation points based on the measured data (left), with the corresponding points also shown on
the forward simulated map with inverted kU P X (right). The location of the cross-section is shown by the line in order to
see it’s relative location to the added borehole data from borehole B H1.

As mentioned before, to guarantee a smooth gradient for the automatic differentiation, GemPy

smooths between sharp formation transitions: if kOV B = 0 and kU P X = 0.12, there will be a very

thin transition zone where the susceptibility varies between these two extremes. This goes for

each property assigned to the formations. We can exploit this functionality by considering the

formation ID (1 : OVB, 2 : UPX and 3 : host rock) to be a continuous variable. In practice, this

means that the ID at any point in our geological model space can range between ID 1 and ID 3. By

adding the x, y, z-coordinates of the borehole where the bottom of the intrusion (ID 2) is logged,

and assigning a probability distribution to encapsulate the uncertainty, a geological likelihood

can be added to the inference. Since this point is logged as the transition from the intrusion

to surrounding rocks the formation ID value at this point will be between 2 (intrusion) and 3

(host rock). Hence, we define the likelihood by using a normal distribution, with µ being the

forward computed ID at the grid point, σ= 0.4 so that the probability is zero after a unit step and

the observed value is ID 3 (host rock). The posterior predictive checks for the observations are

included in Appendix A, Figure A.7.
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Figure 5.12: (a) Realised models from inversion IV presented with the initial model on the background, shown on the
example cross-section at 7511750 Northing. (b) Representation of the uncertainty by plotting the Shannon entropy on
the example cross-section. The box represents the zone where uncertainty occurred as a result of the previous inversion
(Figure 5.10).

Figure 5.12b shows that the addition of the geological likelihood function removed the artifacts

from the previous inversion, even though the added borehole data is approximately 700 meters

South of this section. In general, the uncertainty in the section has increased, mostly on the East-

side. The geological likelihood increased the number of realised models that extend deeper into

the subsurface compared to the previous inversion(s), which it was exactly meant to do. To reduce

uncertainty, more geological observations can be included in this way. Note that Figure 5.12a still

shows a model realisation that shows some artifacts (the bulb we wanted to remove). The use of

information entropy, in this case, shows its power, as it takes all realised models into account. The

artifacts might still occur in a very small subset of realised models, yet the number of these model

realisations has been reduced so much that they do not pose uncertainty in the model posterior

anymore.

Additionally, inversion IV with the same geophysical and geological likelihoods has been per-

formed with slightly different parameterisation. To test whether the observed data could be in-

cluded in the prior predictive distribution, and hence obtaining a better probabilistic model set-

up, we increased the uncertainty in σkU P X from 0.20 to 0.26 and additionally increased the un-

certainty in the observations where the measured data was in the tails of the prior predictive.

Additionally, 3000 samples have been taken. The results of this test are shown in Figure A.8. We

observed that this set-up resulted in very different distributions. Ignoring the smoother and nar-

rower distributions due to the higher sampling number, the difference is mainly that at some

locations the observed data fit better (e.g. location 0, 1) but in general the fit was worse. The effect

is likely due to increased uncertainty in kU P X and its dominant influence on the likelihoods. Due

to the high dimensionality of the problem, there are endless possibilities of how changing uncer-
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tainty in the observations and the main controlling model parameter of these observations can

reshape the model space. The chain likely got stuck in a region of model space that, due to differ-

ent parameterisation, now gained a higher probability. Due to this, it did not manage to explore

the rest of the distribution within the given sample size. Due to the different setup compared to

inversion I, III and IV, which consistently took 800 samples, we do not further analyse the results

of this test.

5.3.3. JOINT ANALYSIS

In this Section, we evaluate the progress throughout the different inversions by analysing the

statistics and trying to link their interpretation to the geological realisations. 4 magnetic observa-

tions are selected to discuss in greater detail through the posterior predictive checks presented in

Figure 5.13. Inversion II is excluded in this comparison since the inversion had a different focus.

From I to III, it can be observed that there is a great improvement as the distributions get closer

to the observed value and most of the unwanted non-smooth behavior of the distribution (ob-

servation 8), and extended curved tails (observation 9) are removed. This is a direct result of the

introduction of the well-defined stochastic kU P X . In general, the data is well fitted in III. The re-

sults are almost the same for inversion IV. We can conclude that, in this case, the added geological

likelihood does not seem to affect the parameters that control the magnetic observations.

Figure 5.13: Comparison of posterior predictive checks of inversion I, III, IV, for selected magnetic observations. The
darker shades represent the prior and the lighter the posterior distributions. We can see that there is little change from
inversion III to IV since the parameters have not been adjusted.

A posterior predictive check for the geological likelihood (Figure 5.14) shows that the shape of

the predictive distribution has hardly changed. This is due to the low number of model realisa-

tions that showed the artifact in 5.10b, a conclusion we can draw from the relatively low entropy

compared to other parts of the section. Since the number of models that show these artifacts

are already low, the exclusion of these models (by assigning 0 probability to them through the

likelihood) does not change the posterior much. This conclusion can be directly related to the

unchanged posterior predictive from inversion III to IV. Additionally, we expect that structures

at these depths do not influence the magnetic data anyway. Hence, the effect of this particular
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geological observation on the likelihood of the magnetic observations would be expected to be

minimal in any case.

Since the smoothed transition

zone between formations is just

smooth enough to allow for a gra-

dient, but still considerably sharp,

this zone where the formation ID

can vary between two integers oc-

cupies a very small space in the

geological model. Any value be-

tween 2 and 3 would mean that

we are in the narrow transition

zone between UPX and the host

rock. Hence, this geological likeli-

hood has proven to be very effec-

tive.

Figure 5.14: Prior and posterior predictive distribution of the borehole
observation. The observation was the interface between UPX (ID:2) to
host rock (ID:3), hence a normal distribution with the µ= 3.0,σ= 0.4 is
added as likelihood function to constrain the ID number between 2.0
and 3.0

To obtain one single optimised model from the final results (inversion IV), the MAP is computed.

The obtained values for the unknown parameters x, y, z, and kU P X through MAP are used to cre-

ate a new geological model and simulate its magnetic response. The results are shown in Figure

5.15 (right) together with the initial model (left). It can be seen that our geological model has

not changed. This is due to the result of MAP for our spatial x, y, z-coordinates, which only dif-

fer −10−8 order of magnitude from our initial input values. The magnetic response is found as

kU P X = 0.11, a slight change from the prior mean kU P X = 0.12. The MAP is found by maximising

the joint posterior distribution. Since in this case the posterior is mainly dominated by k, this

effectively means that kU P X is maximised. Hence, we did not gain any knowledge regarding the

spatial parameters whereas, from the cross-sections presented in Figure 5.12 it is clear that these

vary in the posterior.
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Figure 5.15: Comparison of the initial model (left) to the model constructed from the MAP output (right). (a) The geological
map has not changed, since the MAP spatial variables x, y, z differed very little from the initial input parameters. (b) The
magnetic response of the geological model has changed in intensity as shown in the colour bar. Note that this is similar to
µkU P X

from inversion III and IV and hence we did not obtain any new information by computing MAP.



6
DISCUSSION

6.1. GEOLOGICAL MODELLING
In order to capture the geometry of the intrusive body using geophysical constraints on the inver-

sion, it was deemed sufficient to model the intrusion (UPX), the overburden (OVB) and the host

rock. This choice is justified by (1) the lack of an extensive petrophysical and geological analysis

that would allow justified upscaling of the formations considering all initially logged geological

units, and (2) the original magnetic data that, on intrusion scale, shows clear anomalies at only

the intrusion and the central dunite. Since the central dunite would be discarded during the in-

version due to its remanence, this left UPX as the only formation with strong magnetic properties.

Hence, the relevance of the other formations was considered minimal and grouping them under

the umbrella term "host rock" was deemed justified.

In retrospect, we can conclude that the geological model was too simplistic. It was not possible

to find a representative susceptibility value for the surrounding of the intrusion and a mismatch

was expected for observations outside the intrusion. To enhance the model, a minimum require-

ment would be the inclusion of the gabbroic unit in the geological model. Not only because the

gabbroic formation is assumed to be part of the intrusive history of UPX (Section 2.2), but also

because the intrusive body is overlain by a thick gabbroic layer in the Southwest. If we want to

capture the structures underneath this gabbroic layer using geophysical likelihoods, the gabbroic

rock has to be considered too, as it has significantly different rock properties.

Additionally, magnetite gabbro in the gabbroic unit could have added to the mismatch of ob-

served and simulated values, since magnetite gabbro has stronger magnetic properties than the

rest of the surrounding. The same holds for the host rock to the North of the intrusion, which

shows alternations of volcanic rocks and black shales, which have different petrophysical proper-

ties.

Another important addition to the geological model would be differentiation within the intru-

sive body itself and account for the different rock properties between the ore body and the non-

mineralised parts of the UPX unit. This would mean an extension to a heterogeneous inversion.

This is certainly relevant when inverting for rock properties, but also of importance for retrieving

structural knowledge through geophysical data since geophysical methods reflect rock property

contrasts.

57
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Apart from the upscaling in order to build the geological models, additional uncertainties are

added to the model by the limited knowledge of the obtained geological data. There is no

knowledge regarding the core logging, on which the borehole-based geological model was fully

based. Inconsistency in logging is assumed to impose significant uncertainty on the data. Un-

certainty in the cross-section based geological model was already evident when the selected

points on all 4 cross-sections could not be interpolated into a 3D model that resembles the cross-

sections. Whether this was due to inconsistency of the 2-dimensionally drawn cross-sections in

3-dimensional space, or whether it was an artifact of the software, remains unclear.

6.2. FORWARD MODELLING
Considering the assumptions made in the implementation of the forward magnetic calculation

function (Section 4.2.3), and adapting it to our study case, we can state the following:

1. We assign homogeneous susceptibility values per lithological unit, which is not assumed

to be a valid approximation of the reality in this case. By defining it later on as a stochas-

tic variable, we try to correct for the effectively inhomogeneous spatial distribution of the

magnetic properties.

2. As mentioned in Section 4.1.1, it is known that there is remanent magnetisation. However,

there is no clear consensus on the orientation of the remanence. Therefore it cannot be

included in the forward model. Note that, if there were orientation measurements, it could

be included in the forward model using Equation 3.7.

3. As shown in Figure 4.3, the intensity of the anomalous field is indeed small compared to the

regional field (the DC offset).

Assumptions (1) and (2) in the forward modelling do not hold in this case study. In order to take

(1) into account by allowing for random sampling within a known susceptibility distribution, a

reasonable distribution has to be known. Considering the mismatch in magnetic field intensities

between our initial forward calculated fields (Figure 5.3e, d) and the observed data (Figure 5.1),

we can conclude that our initial (measured) estimate of kU P X could not describe the data.

An appropriate distribution could be assigned to it. Scaling the susceptibility values by fitting

the forward predictive model to the data was, of course, a very rough estimate. After obtaining

more knowledge about the probabilistic system, it is decided that a more accurate, less biased

and hence better justifiable result would be obtained by inverting for the susceptibilities. This

is done through a completely uninformative prior distribution and very informative likelihoods,

rather than directly combining it within a more complex probabilistic model.

The obtained value of kU P X = 0.12 is verified with commercial software by forward modelling,

where a value of 0.11 was obtained for the intrusive anomaly. This has a mismatch of an order of

magnitude with the borehole measured data. A study by Adams and Dentith (2017) provides an

explanation for this. Their comparison of handheld magnetic susceptibility data and natural re-

manent magnetisation data, shows that rocks dominated by remanence may have magnetisation

values underreported by two orders of magnitude. Hence, exclusive use of measured suscepti-

bility data is questionable (Adams and Dentith, 2017) and using the susceptibility value found

through inversion is justified.

The inversion results for khost were rather inconclusive since we only obtained a changing pos-

terior distribution after adjusting the probabilistic set-up accordingly. The original probabilistic

set-up with normal distributions and a deterministic σ for the observations was very conclusive



6.3. INVERSE MODELLING 59

for kU P X , hence it is not expected that inversion was performed poorly. Different paramerisations

have been tested and the most conclusive result gave µkU P X = 0.0030 (from a wide, lognormal-

like distributed posterior (Figure 5.8b)), which is close to the values obtained from borehole data

µkhost
= 0.0038 (Figure 5.2). These values suggest paramagnetic properties and are likely caused

by the issues addressed in the previous section.

Ideally, we would want to define khost as a stochastic variable to the inference, but considering

our poor understanding of its distribution it was decided not to do so. Taking additionally into

account that every stochastic parameter adds computation time, it was decided to keep khost as

a deterministic variable. This is justified by considering (1) the small magnetic effect of the host

rock relative to UPX due to the two-order-of-magnitude larger kU P X , (2) the aim of our study to

focus on the UPX formation, and (3) the defined likelihood functions, with the selected magnetic

observation being mainly in the vicinity of in the intrusion.

Besides the discussed spatial variability of magnetic properties, the magnetic method is also sen-

sitive to temporal variations. On a short timescale, temporal uncertainty includes diurnal varia-

tions, which should be corrected for. On a longer timescale, the magnetic history combined with

the magnetic properties of a rock poses the issue of remanent magnetisation. Additionally, the

regional field poses uncertainty in the forward simulations. In the Kevitsa intrusive region, the

magnetic responses of the subsurface are overall strong and due to large anomalies, it is hard to

recognise a regional trend. A DC offset is considered reasonable in this case, but evidently, there

are better ways to approximate it. Li and Oldenburg (1998) summarised different methods and

provided an elegant inversion-based method. Lastly, the inducing field during surveying has to

be known in order to have a chance to generate the same data through forward calculations. In

this project, the IGRF value at the month of the survey, at the survey location, is used as this was

deemed to be the best option.

All in all, the magnetic method contains a lot of variables that are hard to capture with both the

geological model and the probabilistic model used in this project. The sensitivity of the method

results in an infinite number of parameters that control the magnetic response measured during

a given survey. Using less-sensitive geophysical methods in inversion could provide a solution to

some of these problems. When limited to potential fields, gravity data would already be easier to

implement as it contains less small-scale variations and is less sensitive to external factors (e.g.

solar storms).

6.3. INVERSE MODELLING
Bayesian inference requires a good understanding of the model parameters, the used data and

the mathematical functions that link the two (Betancourt, 2018). Due to the holistic approach

adopted in this project, we obtain a good understanding of these aspects:

• By building the initial geological model, both the geological setting is studied and intuition

is created for the automatic geological modelling creation step.

• An understanding of the used data is gained by processing it before including the data in

the inverse framework.

• By implementing the magnetic forward calculator based on a 3D voxelised space, the rela-

tion between the input parameters and the resulting forward simulations is known. This is

directly related to the likelihood functions that have a crucial role in the inference.

By first testing the methodology on synthetic data with a known solution, we conclude that the
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forward magnetic calculations fit the analytical solution within the desired range of accuracy. The

proposed inverse methodology by means of magnetic likelihood function, as tested on the sphere,

shows that the result of the inverse modelling is highly dependent on the definition of the prob-

abilistic model. The difference between assigning informative and non-informative prior distri-

butions is shown by the synthetic test, where the informative depth distribution p(z) provided a

much better estimate of the posterior distribution compared to the weakly informative p(k) of

the susceptibility (Figure 4.8). An additional expected, but important, observation was the strong

correlation between the spatial parameter z and the susceptibility k.

These observations from the synthetic test could directly be linked to the inversion results on the

real data, shown in Section 5.3. By starting with a simple probabilistic model (using a simple geo-

logical model), the complexity of the inference could be increased by expanding the probabilistic

model using gained knowledge from the previous results. Working in such an iterative manner

allows for easier localisation of problems or unwanted results, and eventually leads to a better

set-up of the final inversion together with an increased understanding of the results.

In the iterative inversion process, inverting for the susceptibilities was a crucial step. The obtained

posterior distribution for kU P X served as a highly informative prior distribution for the following

tests. From the synthetic data test, the importance of defining either good priors or proper like-

lihoods (though preferably both), was shown. Since our geological model is very simplified, the

likelihood functions are not very strictly defined. Because the inference was mostly constrained

by likelihoods based on magnetic measurements, which are directly controlled by the susceptibil-

ities, a uninformative prior distribution in a joint inversion would have a significant effect on the

sampling efficiency and the inversion result. Joint inversion for all x, y, z-coordinates as well as k,

is a high-dimensional problem and a weakly informative prior would span large volumes. Due to

the strong influence of k through the likelihood function, defining k well, already narrows down

the prior space and hopefully allows for a sampling starting point close to the target distribution.

This effect was already clear in the synthetic joint inversion for k and z (Figure 4.8). Though the

Bayesian inference is aimed to combine everything in one probabilistic model, it has been chosen

to invert for the petrophysical properties separate from the spatial uncertainties, in order to get a

good estimate of k before adding it to the joint inference.

The quality of the geological model obtained through the proposed methodology is dependent on

and limited to the decisions we make, such as the chosen stochastic variables and the data that

we use for inverting. It is not trivial to encapsulate unidentified uncertainties by means of dis-

tributions. Considering the earlier-mentioned uncertainties in the geological data for example,

without knowing the uncertainty of the data, we pose a large subjectivity to the result by estimat-

ing it.

Additionally, each type of data contains different information and has different information qual-

ity. Potential-field methods are, as mentioned before, inherently non-unique as a consequence

of the underlying physics. This cannot be avoided, regardless of data volume and quality. In the

general case, the majority of the inverse problems are already non-unique regardless of govern-

ing physical laws. This can result from having more model parameters than observation points, in

which case the model parameters might not be fully constrained since there might not be enough

equations in the mathematical model that link the parameters to the observations. This can be

caused by either a lack of data or a lack of computational sources. Our last probabilistic model

contained 67 stochastic model parameters and 15 observations. This set-up was not due to a

lack of data, but rather due to the computational cost of computing the forward solution for each

added observation through the likelihood function. With the current set-up of GemPy, geophys-
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ical likelihoods are heavier to evaluate than geological likelihoods as used in this project. There-

fore, adding more geological likelihoods could provide a solution to including more constraints

without increasing the computational time too much.

It is shown that adding more constraints, does not necessarily decrease the uncertainty in the

model (e.g. considering the overall uncertainty in Figure 5.12 compared to Figure 5.10). However,

it does help to remove unrealistic realisations that our weak prior model could not suppress. The

increase in uncertainty could be due to a lack of prior knowledge in combination with a poorly-

defined likelihood, incompatibility between priors and likelihoods or imposing observations with

poor data quality. We can overcome the latter by considering which data will add the most infor-

mation to the model. This, of course, is dependent of what we want to gain from the inversion.

Yet, adding non-unique potential field data to an already non-unique inverse problem is not con-

sidered to be the best option when other data is available. Certainly not when we are interested

in geological structures rather than petrophysical properties since the non-uniqueness of poten-

tial fields is exactly due to the physical inability to distinguish between different geometries at

different depths. More meaningful geophysical constraints could be imposed by using e.g. seis-

mic data. This would also be better for constraining the model parameters at larger depths since

acoustic waves in the subsurface generally suffer less dramatically from decreasing field strength

than magnetic fields.

Lastly, a balance has to be found between geological reality and fitting the data. The computed

MAP in the last inversion shows a good example of this. The MAP is the model that maximizes the

joint posterior probability density. Due to the high correlation between k and the spatial param-

eters, combined with the dominant contribution of k through the magnetic likelihood functions,

we obtain a solution that statistically fits best because the susceptibility fits the data well. The

MAP, in this case, does not tell us much about the weaker spatial parameters, which were the

main focus of our study. This could additionally be due to an already reasonable initial geological

model. However, the result of the MAP model, in general, shows that a statistical fit does not nec-

essarily give a result that represents the actual geology. Following Occam’s razor, we should aim

to keep the model as simple as possible while trying to fit the data as well as possible, rather than

adjusting the model to fit the data.
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CONCLUSION

The solution of the probabilistic inverse problem presents an ensemble of models that fit the

data, enabling us to consider both model uncertainty and knowledge integration in one frame-

work. Information entropy provides a quantitative analysis of the uncertainty in the results and

has proven its advantage over regular visual analysis of the realised models by capturing uncer-

tainties that visual analysis could not capture. Though powerful in uncertainty quantification,

the tested methodology does not provide a trivial way for validation of the result by means of

analysing one single optimised geological model. The result of probabilistic inversion is provided

in statistical distributions, and finding one representative model in a high-dimensional problem

is more complex than just taking the mode of the distribution (MAP).

However, we showcase here that the strength of Bayesian inference is mainly to combine obser-

vation from different sources and analyse uncertainties in the model. It can be concluded that

through the definition of meaningful likelihood functions, uncertainties in the geological model

can be reduced.

The general findings can be summarised as follows: (1) Building a probabilistic framework re-

quires a good understanding of the problem to solve, the available data and the mathematical

equations that can link the two. (2) The initial geological model should contain enough com-

plexity to be able to describe the data. (3) the used data ideally should be robust and chosen

depending on what we want to learn from the inversion. And (4) by adding different types of data

through likelihoods we can combine strengths from different sources.

The general conclusions can be specified towards the Kevitsa case study by stating that: (1) The

geological setting, as well as the acquisition and interpretation of the data, should be well un-

derstood. (2) The data needs to be processed to represent the scale of the geological model. (3)

Magnetic data is not the desired geophysical method to invert for structural properties of the sub-

surface. And (4) by using geological data where magnetic data cannot provide information, we

can reduce the uncertainty in our model.

The results are promising, and by implementing more likelihood functions, one could obtain a

good estimate of the geological structure of the Kevitsa intrusion, while quantifying the uncer-

tainty in this estimate.
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A.1. GEOLOGICAL DATA

Figure A.1: Original geological model that corresponds to the cross-section on which the geological model is based.
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Figure A.2: Original cross-sections on which the geological model is based. Points have been selected from these sections
using interactive plotting tool Bokeh Development Team (2019). The correctness of the obtained coordinates is verified
by looking up the coordinates of some of the boreholes that are included in the cross-sections.

Figure A.3: All available borehole data from the Kevitsa region,
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A.2. RESULTS

Figure A.4: The number of leapfrog steps taken sample throughout the sampling process in inversion I. In a converged
chain, one would expect large numbers before convergence, lower numbers later on. In this case, the maximum number
of steps (10) was obtained very often, especially later on in the chain. This can be interpreted as the chain getting stuck in
a region, and hence poor exploration of the model space.

Figure A.5: Inversion II: Intermediate result for the susceptibility of the host rock khost . The prior and posterior distri-
butions for khost (left) and the posterior check for the magnetic response at observation point 9 (Figure 5.9) (right) are
presented. Observation 9 is used as likelihood function by assigning a normal distribution to the observed value, the the
mean being the forward calculated model, and σ = 100nT . khost was assigned an uniform prior distribution. It can be
seen that posterior p(khost |y9) is very weakly informative and strongly resembles the prior p(khost ). The predictive dis-
tributions are not strong enough to have an influence, as both the prior and posterior predictive resemble p(khost ) and
p(khost |y9) respectively.
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Figure A.6: Inversion III: Posterior predictive checks for all observation locations in the geophysical likelihood function
p(z|y0, ..., y14). The dark shades represent the prior predictive, the lighter shades the posterior predictive and the dashed
lines the measured magnetic intensity at the location.
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Figure A.7: Inversion IV: Posterior predictive checks for all observation locations in the geophysical likelihood function.
The dark shades represent the prior predictive, the lighter shades the posterior predictive and the dashed lines the mea-
sured magnetic intensity at the location. The same parameterisation as inversion III is used. It can be seen that the same
result is obtained as inversion III and that the geological likelihood had no influence on the result.
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Figure A.8: Inversion IV with increased uncertainty assigned to selected observations and kU P X : Posterior predictive
checks for all observation locations in the geophysical likelihood function. The dark shades represent the prior predictive,
the lighter shades the posterior predictive and the dashed lines the measured magnetic intensity at the location. The
difference to the discussed set-up of inversion IV (and the posterior predictive check-in Figure A.7) is that this inversion
was performed with an increased σ for some observation location, where in the previous results the measured values
were either in the tails or outside of the prior predictive distribution. Additionally the uncertainty on kU X P was slightly
increased from σ= 0.2 to σ= 0.26 and 3000 samples were taken, against 800 in previous tests. The results are significantly
different (besides their smoothness due to increased sampling), most likely due to changes in parameterisation of the
strongly dominant kU P X and its interaction with the redefined uncertainty in the observations.



A.2. RESULTS 75

Figure A.9: Entropy plot on cross-section E5, which corresponds to seismic section 2.2. (a), (b) and (c) correspond to
inversion I, III and IV respectively. It shows the same trends as the example section: artifacts at the bottom of (b) are
removed after adding a geological constrain. The uncertainty in this part overall decreased considerably, compared to the
rest of the section, where the overall uncertainty increased. Additionally, we see that there is high uncertainty toward the
North-West (right side), where the which is likely due to the poorly defined khost in combination with the shallow dip of
the intrusion here.
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Figure B.1: Function to upward continue the magnetic data as explain in Section 4.1.1. (After Blakely (1995))
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The written codes for the forward magnetic calculation as explain in Section 4.2.3 are presented

here. I have written the code in NumPy and decomposed it into a constant part (corresponding

to Equation 4.9) and a variable part (corresponding to Equations 4.7, 4.10 and 4.11). The variable

part is later included in the Theano core of GemPy, allowing faster computation and inclusion

into the probabilistic framework.

Figure B.2: Function to compute the directional cosines needed for the magnetic forward calculations. (After Blakely
(1995))
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Figure B.3: Function to compute the volume integrals from Equation 4.9, as solved by Plouff (1976). This is the constant
part of the forward magnetic calculation.
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Figure B.4: Function to find the calculate the anomalous magnetic field intensity. This is the variable part of the forward
magnetic calculations, corresponding to Equations 4.7, 4.10 and 4.11. (After Talwani (1965)).
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