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1
Introduction

Scoliosis is defined as an irregular curvature of the spine that can cause pain and severe complications [12].
Braces are prescribed for moderate deformations to prevent progression of the spine deformity [14, 19].
Research has shown that wearing a scoliosis brace can negatively influence the emotional and social well-
being of patients, leading to decreased user compliance [19]. Reduced compliance towards the brace has
been shown to be the most common cause of failure in treatment [16]. The main contributing factor to the
reduced user compliance is the restricted in-brace allowable range of motion [15].

The main research objective of this thesis is to enhance the design process of an effective compliant
scoliosis. This brace should provide correctional loads while allowing in-brace range of motion. This work
utilizes compliant mechanisms to transmit these correctional loads through constraint directions while al-
lowing motion in freedom directions. Compliant shell mechanisms, in particular, are highly suitable for the
application of human-assistive devices, such as the compliant scoliosis brace. Their monolithic lightweight
thin-walled nature makes them ideal to clean, wear and conceal under clothes. Furthermore, the human
body does not have clear distinctive constraint and free motion directions, similar to compliant shell mech-
anisms. Additional general benefits of compliant mechanisms, as described by Howell [5], are no wear, no
backlash, low friction, easy assembly and no need for lubrication.

Designing a compliant scoliosis brace that utilizes compliant shell mechanisms motivates the devel-
opment of spatial compliant shell mechanism design method. Various approaches and methods are avail-
able to design compliant mechanisms, as presented by Gallego [3]. However, these approaches are often not
suitable for spatial compliant shell mechanisms. This is emphasized by the extensive use of lumbed com-
pliance, flexures and planar mechanisms. Available design methods for compliant mechanisms include
the Psuedo-Rigid-Body Model, which requires an initial pseudo-rigid design [5]. Topology optimization
based approaches, which provide limited insight into the design process as stated by Kim [8] and Gallego
[3]. The Freedom and Constraint Topology (FACT) method, introduced by Hopkins [4], which is based on
strict freedom and constraint directions, therefore only suitable for spatial flexure mechanisms. Type syn-
thesis approaches utilize characterized building blocks to synthesize complex planar [10] and spatial [6]
mechanisms. Nijssen [7] first introduced a promising type synthesis approach to design with spatial compli-
ant shell mechanisms.

Nijssen’s type synthesis approach was introduced to design a compliant scoliosis brace that allows in-
brace motion and facilitate a force based correction, utilizing compliant shell mechanisms. By introducing
a new type synthesis approach along with an unconventional force based correction strategy the final result
of Nijssen was difficult to validate [1], as the complex brace-tissue interaction was not taken into account.
The ability to validate the compliant scoliosis brace design process, presented in this work, is increased by
utilizing the conventional displacement-based correction strategy while adding the desired compliance.
The conventional displacement-based control strategy improves the ability to validate a possible brace de-
sign, since the correction efficiency can be determined using BraceSim [2]. BraceSim is a validated software
tool to simulate the effectiveness of a scoliosis brace prior to manufacture. The displacement correction
strategy is based on a displacement controlled reduction of the spinal curvature.

A strategy is presented to reduce the complexity of a bio-mechanical compliant brace design problem
into an isolated mechanical problem. Utilizing BraceSim, the main functional requirements of a compli-
ant scoliosis brace are quantified into validatable kinematic design specifications. The kinematic design
specifications include desired non-linear behaviour of compliant shell mechanisms, since the motion of the
patient is facilitated by large deformations of compliant shell mechanisms.

A building block synthesis approach has proven useful by Nijssen to match compliant shell mecha-
nisms and kinematic design specifications. However, the introduced building block type synthesis approach
by Nijssen is based on linear compliance ellipsoids [9]. By taking into account non-linear behaviour of spa-
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4 1. Introduction

tial compliant shell mechanisms in concept design, the discrepancy is reduced between the non-linear
analysis and the desired non-linear design specifications in a later design stage. However, a compliant shell
building block type synthesis approach that takes into account non-linear behaviour is not available in lit-
erature. This is explained by limited non-linear characterization and classification methods available for
compliant shell mechanisms. One of the principle challenges in designing compliant shell mechanism char-
acterization lies in the intertwined kinematics and kinetics coupled with geometrically non-linear deforma-
tions.

The key contribution of this master thesis is a comprehensive characterization method for any non-
linear compliant mechanisms, this includes both flexure and shell mechanisms. This method enable the
development of a non-linear spatial synthesis approach. This work presents a unified stiffness method to
compare and visualize all six kinematic degrees of freedom directions and magnitudes of non-linear mech-
anisms in a non-arbitrary physically meaningful manner. The presented theory is demonstrated and vali-
dated through an experiment.

A library of promising building blocks is introduced which are characterized using the unified stiffness
characterization method. The non-linear behaviour of the building blocks is consistently described and
generalized. The building block library and the generalization potentially form the basis for a compliant
shell building block synthesis method.

The body of this master thesis consists of three independent papers and an experiment. The overall
strategy to contribute to the design process of a scoliosis brace is shown in Figure 1.1. Chapter 2 contains
the quantification of main functional requirements of a compliant scoliosis brace into validatable kinematic
design specifications. Chapter 2 does not contain a key scientific contribution at this stage, but it does sup-
port the necessity of the subsequent Chapters. Chapter 3 contains the key contribution of this master thesis.
A scientific paper introduces the concept of the unified stiffness, a comprehensive non-linear characteri-
zation and classification method. Chapter 4 presents an experiment to demonstrate the introduced theory.
Chapter 5 contains a scientific paper that introduces a library of promising building blocks which are char-
acterized using the unified stiffness method. The behaviour of the building blocks is consistently described
and generalized.

Figure 1.1: Research objective strategy diagram
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Design Strategy

Paper: Functional Requirement Quantification Strategy of a Compliant Sco-
liosis Brace
While this chapter is written in paper form it does not contain publishable contribution in this stage of the
design process, however it does support the demand for the subsequent scientific papers in Chapters 3, 5
and Appendix A.
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ABSTRACT
3% of adolescents suffer from Scoliosis, a spinal deforma-

tion of which 10% needs to be treated. Bracing is a common
treatment to prevent curve progression. Current scoliosis brace
designs are usually rigid or flexible, which either score high in
terms of success rate of treatment or in comfort and patient com-
pliance. Attempts have been made to overcome these problems
using a compliant brace design. Previous work has shown the
ability of spatial mechanisms to combine correction with flexibil-
ity. In this work, the functional requirements that lead to correct
treatment and allow motion are quantified by deducing validated
brace characteristics using BraceSim and combining this with
patient motion data. A strategy is proposed, reducing the com-
plexity of the bio-mechanical problem into an isolated mechan-
ical problem. This strategy provides a structure and serves as a
structural process-tree to enhance the design of a new, compliant
scoliosis brace.

INTRODUCTION
Adolescent Idiopathic Scoliosis (AIS) can be defined as a

three-dimensional deformity of the spine, which is characterized
by a lateral curvature with a Cobb angle of more than 10 degrees
and rotated vertebrae. [1] [2] AIS develops in around 3% of all
adolescents, of which approximately 10% has progressive curves
that require treatment of some sort. [3]

Treatment possibilities for AIS include surgery, muscle
stimulation and training and bracing, depending on the severity
of the deformation. Severity of the deformation is measured by
the Cobb angle, which is the angle between the two most tilted
vertebrae of the spine. [4] When the Cobb angle exceeds 25 de-
grees, braces are prescribed to prevent further progression of the
scoliotic deformation. [5] If the Cobb angle exceeds 40 degrees,
usually surgery is performed in order to reduce the deformity by
fusing vertebrae together using metal rods and bolts.

Among current state of bracing there are both rigid and flex-
ible solutions. The rigid braces generally have a higher success

rate, but limit the user in their Range of Motion (RoM), thus
obstructing the wearer to perform their Activities of Daily Liv-
ing (ADL). Flexible braces, on the other hand, generally perform
better on these criteria but have been shown to generally have a
lower success rate in terms of treatment. [6]

In the current project, the research objective is to design a
scoliosis brace that corrects the spinal deformation, while allow-
ing for motion during daily activities. Such a brace should be
able to provide the high correction rates of rigid braces, while si-
multaneously using the non-rigidness of flexible braces to allow
the patient to move and bend their torso.

Attempts have been made to develop semi-rigid or compli-
ant braces. These promising brace designs show the unique abil-
ities of shell mechanisms being compliant while simultaneously
transmitting forces [6] [7].

Nijssen [6] first introduced a spatial mechanism approach
to design scoliosis braces which allow motion and facilitate a
force based correction utilizing compliant shell mechanisms. By
introducing a new type synthesis approach along with an uncon-
ventional force based correction strategy the final result of Ni-
jssen was difficult to validate [8], since the complex brace-tissue
interaction was not taken into account [6]. Furthermore, no gen-
eralized motion data was available, which is why these proof-of-
concept braces were focused on specific subjects.

The design strategy presented in this work, is based on the
conventional displacement based control strategy while adding
compliance using compliant shell elements. Compliant shell
mechanisms are highly suitable for the application of human-
assistive devices, such as the compliant scoliosis brace. Their
monolithic lightweight thin-walled nature makes them ideal to
clean, wear and conceal under clothes. Furthermore, the human
spine does not have clear distinctive constraint and free motion
directions, similar to compliant shell mechanisms.

The conventional displacement based control strategy im-
proves the ability to validate a possible brace design, since the
correction efficiency can be determined using BraceSim [9].
BraceSim is a validated software tool to simulate the effective-
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ness of a scoliosis brace prior to manufacture, and is developed
by our collaborators from the École Polytechnique de Montréal.

The presented strategy reduces the complexity of a bio-
mechanical compliant brace design problem into an isolated me-
chanical problem. Utilizing BraceSim, the main functional re-
quirements of a compliant scoliosis brace are quantified into val-
idatable kinematic design specifications. The kinematic design
specifications include desired non-linear behaviour of compliant
shell mechanisms. The proposed strategy contributes to the over-
all design process of designing a compliant scoliosis brace.

Case selection
The strategy presented in this paper, is explained on the ba-

sis of patient data provided by our collaborators from the École
Polytechnique de Montréal. In this paper this analyzed patient
is referred to as the correction study patient. The proposed strat-
egy requires motion data of this patient, however the motion data
of the correction study patient was not available. Therefore a
motion study was performed on a different patient with similar
scoliotic characteristics. This patient was selected by an experi-
enced orthopaedic by comparing the X-rays of the braced patient
(correction study patient) with the X-rays of all patients partic-
ipating in a spinal motion characterization study performed by
Dries [10]. From here on this patient is referred to as the mo-
tion study patient. Table 1 provides a comparison of the relevant
data between the correction study patient and the motion study
patient, this includes the spinal length and the Cobb angle.

TABLE 1. COMPARISON BETWEEN CORRECTION STUDY PA-
TIENT AND THE MOTION STUDY PATIENT

Length T4-S1 Cobb angle

Correction study patient 259.7 mm 25◦

Motion study patient 302.5 mm 20◦

Since the motion study patient and correction study patient
have different body lengths, likely the motion characteristics
differ between these subjects.

In this work, it is assumed that both patients have similar
bend characteristics and that the captured spatial axes of
rotation can be scaled by 0.86 to match the correction study
patient’s body length.

Since the Cobb angle differs by 20%, further research
should be pursued to investigate motion characteristics for
patients with different Scoliotic curvatures and Cobb angles, as
discussed by Dries [10].

FIGURE 1. PATIENTS SPINE POSTERIOR VIEW

The correction study patient has the minimum Cobb angle
for which braces are prescribed. [5] The spinal deformation of
this patient is a so-called C-shaped curvature, having just one
apex and consequently one focus area for correction. Patient in-
formation containing a finite element model (FEM) of the cor-
rection study patient’s torso and spine was gathered using sur-
face topography and bi-planar radio-graphs as described in [9].
A visualization of the spine, including the deformation angles, of
the correction study patient is depicted in Figure 1.

QUANTIFICATION OUTLINE
This section presents the outline of the proposed strategy

to quantify main functional requirements into validatable design
specifications of a compliant scoliosis brace. The strategy steps
are briefly introduced in this section and shown in Figure 2. Each
strategy step will be explained in detail in a separate section and
illustrated on the basis of the correction study patient.

Step I - Functional requirements: From the design objec-
tive follow the main qualitative functional requirements, which
include the facilitation of correction and motion. The key com-
ponent of the approach is to reduce the complex bio-mechanical
functional requirements into isolated mechanical design specifi-
cations, by utilizing BraceSim.

Step IIA - Correction analysis: The correction strategy is
based on the modification of a validated conventional scoliosis
brace, designed by a certified orthotist using BraceSim. This
validated conventional scoliosis brace is referred to as the bench-
mark brace. The analysis of the benchmark brace determines the
correctional strategy.

Step IIB - Motion analysis: The motion characteristics de-
termine the desired compliance of the to be designed brace.

Step III - Segment division: Based on correction and mo-
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tion analysis, we determine which segment of the brace can be
compliant and which segments need to be stiff.

Step IV - Isolated segment analysis: A modified benchmark
brace is introduced that results in a similar correction as the orig-
inal benchmark brace, obtained in BraseSim. In the modified
benchmark brace the, to be designed, compliant segment is tem-
porarily modelled as a stiff segment. The temporary stiff segment
connects the permanent stiff segments. The temporary stiff seg-
ment is isolated to determine the required transmitted loads and
deformation using BraceSim.

Step V - Design specifications: The design specifications
follow from the temporary stiff segment and the motion char-
acteristics. The stiff segment can be substituted by a compliant
segment that can transmit the required loads but is compliant in
desired directions.

FIGURE 2. QUANTIFICATION STRATEGY DIAGRAM

I - FUNCTIONAL REQUIREMENTS
The main objective is to design a scoliosis brace that corrects

the spinal deformations and allows for motion during activities of
daily living.

From the design objective two seemingly contradicting
main functional requirements can be extracted, given as:

- Facilitate correction to reduce the deformation of the spine.
- Facilitate motion necessary for activities of daily living.

Additional functional requirements are less crucial to
present the introduced strategy and are therefore not addressed

FIGURE 3. VALIDATED BRACE INCLUDING PRESSURES

in this paper. The main functional requirements are qualitative
and should be translated into quantitative design specifications.
The key contribution of this paper is the strategy that enables this
quantification using the steps illustrated in Figure 2.

IIA - CORRECTION ANALYSIS
The correction strategy should accomplish the functional

requirement ”facilitate correction”. The correction strategy is
based on a brace designed by a certified orthotist and validated
using BraceSim, which is defined as the benchmark brace. The
correction of the spinal deformation and the pressures result-
ing from the benchmark in-brace model serve as correction ef-
ficiency benchmark for the design specifications of a new com-
pliant brace design.

The validated brace model and the in-brace results of the
correction study patient are shown in Figures 3 and 4.

As can be observed by comparing Figures 1 and 4 the Cobb
angle is reduced by 11 degrees under influence of the benchmark
brace. We consider this as successful treatment, since usually
brace treatment is regarded as being successful when curve pro-
gression is less than 5◦. [11]

The pressure maps in Figures 3 and 4 show highest pressures
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FIGURE 4. SIMULATED CORRECTION AND PRESSURE RE-
SULTS OF BENCHMARK BRACE

of ±25 Kpa near the apex of the spinal curve, this is the region
where most correction is needed. Other higher-pressure regions
occur at the opposite side of this apex, on the left and right bot-
tom part of the brace, and in the frontal region on the abdomen.
The latter of which is regarded unnecessary and should be min-
imized as it provides a load orthogonal to the desired correction
direction. The pressure maps show that transmitting correctional
loads to the spine is done through predominantly hard-tissue re-
gions in the torso. Loads applied on the primarily soft-tissue
region are distributed via organs over larger regions of the spine.
These larger load distributions result in less correction control of
the spine. Furthermore the pressure on the soft-tissue region and
inferior organs can be very uncomfortable and should therefore
be minimized.

The primarily soft-tissue region is situated between verte-
brae L5-T10 as shown in Figure 1.

IIB - MOTION ANALYSIS
The motion characteristics define the desired compliance

that should accomplish the functional requirement ”facilitate mo-
tion”.

In previous work by Dries [10], the contribution of differ-
ent spinal regions to primary bends and the different loci about
which particular vertebrae are rotating, were researched for both
healthy subjects and scoliosis patients.

Dries showed that for both investigated groups (N=15), the
largest portion of spinal deformation during basic motions (sagit-
tal bending and lateral bending) is contributed by the region
from vertebrae S1 to T10 (Scoliosis group 81.2%, Control group
87.3% for sagittal bends, Scoliosis group 55.7%, Control group
55.7% for lateral bends).

Contribution to bend tasks

Using the methods described by Dries [10], we are able to
calculate the rotation angles and relative contribution of differ-
ent spinal segments during primary bends, being sagittal bend
tasks (flexion), lateral bend tasks and axial twists. Using these
measurements, we identify the spinal segments where most mo-
tion is present during the primary bend tasks. The motion results
of the Motion study patient have been scaled to the correction
study patient and shown in table 2. During the sagittal bend,
the lower regions of the spine (S1-T10) contribute to 82.4% of
the total bend, while the higher regions (T10-T4) contribute for
only 17.6%. For the lateral bend, these relative contributions are
73.4% for S1-T10 and 26.6% for T10-T4. For the axial twist
motion, the lower region (S1-T10) provides 67.9% and the upper
spinal region (T10-T4) contributes 32.1%.

TABLE 2. CONTRIBUTION TO PRIMARY BENDS FOR DIFFER-
ENT SECTIONS OF THE SPINAL COLUMN. CONTRIBUTION IS
GIVEN AS PERCENTAGE WITH STANDARD ERROR OF TOTAL
BENDING TASK ANGLES.

Vertebra Sagittal Bend Lateral Bend Axial Twist

T7-T4 4.6% ± 4.6% 9.1% ± 4.3% 30.8% ± 16.1%

T10-T7 13.0% ± 5.3% 17.5% ± 4.3% 1.3% ± 12.3%

L1-T10 30.1% ± 1.7% 42.4% ± 2.4% 44.5% ± 15.9%

L3-L1 19.6% ± 4.0% 22.3% ± 3.5% -2.7% ± 7.1%

S1-L3 32.7% ± 5.7% 8.7% ± 1.0% 26.1% ± 2.3%

Location of screws for lower spinal region

For the spinal region where most motion occurs during pri-
mary bends (S1-T10), a spatial motion analysis is performed us-
ing a custom made Matlab program to indicate the relative loca-
tions about which the vertebrae are rotating. Screws are calcu-
lated in the absolute normal planes, neglecting the out-of-plane
motion caused by natural motion and imaging errors. [10] The
screws of the lower lumbar region (L5-T10) have been averaged
and normalized to the pelvis. The screw locations of the T10
vertebra are depicted in Figure 5 for the three primary bending
tasks. Since no pitch is involved, the visualized screws are rota-
tion axes. This means the three bending motions in can be sim-
plified to pure rotations about the depicted axes for this patient.

The exact locations including confidence intervals of the av-
erage screw origins in the pelvis frame are depicted in Table 3.
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FIGURE 5. LOCATIONS OF GENERALIZED SCREW ROTA-
TIONAL AXES DURING PRIMARY BEND TASKS FOR LOWER
LUMBAR REGION (T10, RELATIVE TO PELVIS.)

TABLE 3. LOCATIONS OF AVERAGE SCREW ROTATIONAL
AXES BETWEEN T10-S1 WITH RESPECT TO S1

Sagittal Bend Lateral Bend Twist

x 0 mm -0.05 ± 9.8 mm 10.5 ± 30.0 mm

y -14.2 ± 0 mm 0 mm -81.4 ± 32.8 mm

z 63.6 ± 9.1 mm 97.6 ± 11.0 mm 0 mm

III - SEGMENT DIVISION
With the knowledge obtained by both the correction and the

motion analysis the opportunity rises to reduce the complex bio-
mechanical problem to an isolated spatial mechanism problem
with quantified load and kinetic requirements. Both the ineffec-
tive correctional loads and the desired motion are situated in the
soft-tissue region between vertebrae L5-T10. The regions that
allow for effective correctional load transfer are the upper and
lower hard-tissue regions (T10-T4 and region around Pelvis).

We propose a brace that applies loads in the hard-tissue re-
gions and is compliant in the segment that spans the soft-tissue
region.

The loads will be applied by an upper and lower correctional
segment which are in contact with the predominantly hard-tissue

FIGURE 6. SIMULATED CORRECTION RESULTS OF POTEN-
TIALLY COMPLIANT BRACE

regions. The two correctional segments are connected by a mid-
dle compliant segment that spans the predominantly soft-tissue
regions without skin-contact. In the final design, the compliant
segment will transmit the required loads while allowing motion
during daily activities.

IV - ISOLATED SEGMENT ANALYSIS
The desired kinematic design specifications of the compli-

ant segment are derived from a isolated segment of a modified
benchmark brace. The in-brace correction profile and pressure
results of the modified benchmark static brace are shown in Fig-
ures 6 and 7.

The modified static brace obtains similar correction as the
original brace. Validation in BraceSim shows that the modified
benchmark brace reduces the Cobb angle by ± 11 degrees. Fig-
ures 6 and 7 compared with Figures 3 and 4 show that the mod-
ified benchmark brace results in a similar reduction of the Cobb
angle (± 1 degree) and lower peak pressures are apparent on the
skin of the patient.

The modified benchmark brace spans the compliance region
with a temporary stiff segment, which is isolated as can be seen
in Figure 8. The transmitted loads and the resulting deforma-
tion of the temporary stiff segment define the kinematic design
specifications of the to be designed compliant segment.

Isolated Segment Simulation
A finite element model of the isolated temporary stiff seg-

ment is analyzed in ANSYS and post-processed in Matlab. We
determine the loads transmitted by the temporary stiff segment
spanning the compliance region. Any compliant mechanism that
transmits these loads, while resulting in the same in-brace rela-
tive location of the upper and lower correction segment is a suit-
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FIGURE 7. POTENTIALLY COMPLIANT BRACE INCLUDING
PRESSURES

FIGURE 8. FINITE ELEMENT MODEL ISOLATED TEMPO-
RARY STIFF SEGMENT

able substitution compliant mechanism. This includes a compli-
ant mechanism with added desired compliance directions based
on the motion study. The relative location is determined by sub-
tracting the average node location of the lower edge from the
upper edge in the in-brace configuration. The moments are de-
termined around the average node location of the lower edge.

The transmitted loads and relative locations are given in ta-
ble 4.

TABLE 4. KINETIC REQUIREMENTS

Axis F M δUE−LE

x 3.44 N 0.02 Nm 3.04 ·10−02 m

y 0.51 N 0.55 Nm 4.86 ·10−04 m

z 3.31 N 0.12 Nm 1.27 ·10−01 m

V - DESIGN SPECIFICATION
The design specifications are based on the motion study and

the temporary stiff segment FEM analysis results. The quanti-
tative design specifications apply to the compliant segment that
will substitute the temporary stiff segment of the modified bench-
mark brace. The temporary stiff segment FEM analysis deter-
mines the required loads and deformations. The motion study
determined the desired compliance axes of the compliant seg-
ment. The complex bio-mechanical problem is reduced to an
isolated mechanical problem with clear kinematic design specifi-
cations, which consists of average screw locations and kinematic
requirements. These quantified results are shown in Tables 3, 4.

DISCUSSION
The goal of this research was to quantify the functional re-

quirements for the design of a compliant scoliosis brace and
translate them into design specifications. The strategy presented
uses motion analysis of a scoliosis patient and correction analy-
sis of an original non-compliant scoliosis brace to form these de-
sign specifications. A brace design based on the presented design
specifications can be validated in terms of correction efficiency
using BraceSim and compared with the original non-compliant
brace design as presented in Figure 4.

The strategy presented in this paper is a new approach to
convert qualitative functional requirements into quantitative de-
sign specification.

Previous research into compliant scoliosis bracesv utilizing
compliant shell mechanisms did not account for brace-tissue in-
teraction [6], where this strategy does using BraceSim results.
We have analyzed the spinal motions of a scoliosis patient and
shown what different vertebra contribute to the total motion, and
about which twist axes these motions occur. This analysis was
performed for the absolute body planes, eliminating out-of-plane
motions which can be caused by natural motions or imaging er-
rors.
Ideally the braced correction study patient should have been stud-
ied to allow for an exact design of a compliant brace, which
can be validated using BraceSim and this patients X-rays and
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bodyscan. We reduce these differences by analyzing a patient
with a similar Cobb angle and scoliotic progression as the cor-
rection study patient, without taking into account the angle of
kyphosis or lordosis, and scaling the results to match the body
length of the correction study patient. More research is needed
to analyze possible differences in motion characteristics between
scoliosis patients with similar Cobb angles and scoliotic progres-
sion.
The correctional loads needed for correcting the braced correc-
tion study patient have been analyzed using FEM analysis of a
brace designed by an certified orthotist, and provide clear speci-
fications for the design of compliant elements together with the
compliance axes found in the motion studies. In future work it
will be beneficial to model the edges of the temporary stiff seg-
ment as rigid, to ensure similar boundary conditions for the iso-
lated temporary stiff element edges.
With the presented approach the required correctional loads are
found in the patients non-deformed position. As a compliant
brace design allows for motion, the required correctional loads
in bent positions should be researched.
Currently, not many synthesis methodology are available in lit-
erature to generate concepts for compliant mechanism design.
Using such a synthesis method one should be able to use the
presented quantitative design specifications and translate them
into spatial mechanisms allowing for compliant brace designs,
which can be validated in terms of correction efficiency using
BraceSim.

CONCLUSION
This paper introduced a strategy to reduce the complexity of

a bio-mechanical problem into an isolated mechanical problem.
The main qualitative functional requirements have been con-
verted into quantitative design specifications for a spatial com-
pliant mechanism. The explained strategy was proven feasible
on the basis of an example patient. Using this method, gener-
ated concepts can be validated on correctional efficiency using
BraceSim software. Further work should be focused on explor-
ing and testing actual brace designs and the generalization of pa-
tient motion data.
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Compliant shell mechanisms utilize spatially curved
thin-walled structures to transfer or transmit force, mo-
tion or energy through elastic deformation. To de-
sign with spatial mechanisms designers need comprehen-
sive non-linear characterization methods, while existing
methods fall short of meaningful comparisons between
rotational and translational degrees of freedom. This pa-
per presents two approaches, both of which are based
on the principle of virtual loads and potential energy,
utilizing properties of screw theory, Plücker coordinates
and an eigen-decomposition, leading to two unification
lengths that can be used to compare and visualize all six
degrees of freedom directions and magnitudes of non-
linear behaving mechanisms in a non-arbitrary physi-
cally meaningful manner.

1 Introduction
The spatial geometry of compliant shell elements makes

them useful as building blocks for spatial mechanism de-
sign. Researching the behaviour of compliant shell elements
is done both analytically, as can be seen in the work of Sef-
fen [1] Pellegrino [2] and computationally as can be seen in
work of Radaelli & Herder [3] [4]. The difficulty of charac-
terizing compliant shell mechanisms lies in the intertwined
kinematics and kinetics. Furthermore, the freedom and con-
straint directions change in a non-linear fashion while sub-
jected to large deformations.

To design mechanisms designers need insight into their
kinematics. In the field of rigid body mechanisms this is of-
ten characterised by the exact degrees of freedom describing
the constraint and free motion directions. Compliant shell
mechanisms do not have clear distinctive constraint and free
motion directions, since motion tendencies are determined
by the relative compliance of the mechanisms.

In order to characterize compliant shell mechanisms
we shall discuss the relative compliances of the kinematic
degrees of freedom, for spatial compliant mechanisms
defined by Nijssen [5] as,

”The motion tendency of a mechanism in 3D space, defined
by the relationship between the three rotational and three
translational compliances”

Relative compliances refer to the compliance ratios between
the relative kinematic degrees of freedom. From here on re-
ferred to as the degrees of freedom. Determining and utiliz-

ing these degrees of freedom has proven useful in the char-
acterization and synthesis of spatial mechanisms [4] [5] [6].

In related work, different methods are used to character-
ize the degrees of freedom of compliant mechanisms. Exist-
ing methods do not address the coupling between translations
and rotations and thus discuss the rotations and translation
separately, for example, by using compliance ellipsoids [4].
Methods to characterize principal compliance axes while in-
cluding coupling were first introduced by Lipkin & Patter-
son [7], utilizing Plücker coordinates. Lin [8] introduced an
independent derivation of principal compliance axes using
hybrid coordinates. Two incomparable principle rotational
and translational compliance directions and corresponding
magnitude multiplier groups, containing all six degrees of
freedom result from Lin and Lipkin’s derivation. A full com-
parison and order of the six degrees of freedom would give
deeper insight into kinematic characteristics, such as the de-
termination of whether a mechanism is predominantly rota-
tional or translational compliant. Methods to convert these
multiplier groups into compatible units, introduce arbitrarily
defined characteristic lengths [9], lacking a physical consis-
tent meaning. This leads to non-robust solutions, since this
arbitrarily chosen length represents a different physical dis-
tance per analysis. Consequently the resulting unified com-
pliances are not comparable between mechanisms.

A method with comparable results to a section of this
paper is introduced by Lin [8]. Lin’s derivation is based on
a geometrical interpretation of hybrid coordinates to derive
principal stiffness axes. The corresponding stiffnesses are
converted to similar units based on the principle of poten-
tial energy. By introducing the principle of potential energy
all directional information is lost, since energy is a scalar
quantity. Lin’s method is used to optimize the gripping force
of graspers, instead of characterizing non-linear compliant
mechanisms.

This paper presents two approaches that utilize proper-
ties of screw theory, Plücker coordinates and Lipkin’s eigen-
decomposition which lead to unified compliances. The uni-
fied compliances, consisting of two multiplier groups with
identical units, facilitates a comparison between all six de-
grees of freedom compliance magnitudes in a non-arbitrarily
insightful manner while including coupling. The unification
is utilized in a spatial characterization of non-linear behaving
compliant mechanisms.

After the introduction the paper continues, in Section
2, with background theory on Plücker coordinates, stiffness
matrices and Lipkin’s eigen-decomposition. Section 3 visu-



alises Lipkin’s eigen-decomposition. The background the-
ory and visualisation are used to determine two approaches
that lead to the unification of the compliances in Section 4.
The unification is used to present a visual characterization of
the kinematic behaviour of two well-known compliant flex-
ure mechanisms as illustrated in Section 5. After that, in
Section 6, the characterisation is used to analyse the non-
linear behaviour of compliant shell mechanisms. Section 7
discusses the contribution made by this paper. A brief sum-
mary is given and a general conclusion is drawn in Section
8.

2 Background
According to Chasles’ theorem [10] a displacement in three-
dimensional space can be expressed in Plücker coordinates
vector form as a twist T containing linear ~δ and angular~γ
displacements defined as,

T =

[
~δi
~γi

]
=

[
(~ri×~γi)+hi~γi

~γi

]
, i = 1,2,3 (1)

This form expresses the translation in terms of a combination
of angular displacement~γ and the 3×1 location vector~ri and
h the pitch scalar. The Plücker coordinates in vector form are
visualised in Figure 1

Fig. 1: Visual representation of the Plücker coordinates in
vector form

The magnitude of the twist is defined as,

|T|=
{√

~δ ·~δ if γ = 0√
~γ ·~γ otherwise

(2)

and the direction of the twist is defined as the direction of
the angular deformation. The dual of Chasles’ theorem is
Poinsot’s theorem. It states that any wrench can be con-
structed by a force and torque along the same axis [11]. In
Plücker coordinate vector form the wrench ~w contains the
linear forces ~f and the moment couples~τ defined as,

w =

[
~fi
~τi

]
=

[
~fi

(~bi×~fi)+di~fi

]
, i = 1,2,3 (3)

where~bi is the 3× 1 location vector pitch di is the ratio of
angular torque to linear force. The magnitude of the wrench
is defined as,

|w|=
{√

~τ ·~τ if f = 0√
~f ·~f otherwise

(4)

and the direction of the wrench is seen as the direction of the
force.

The relationship between the displacement and load of a
specific point of interest can be described by the secant stiff-
ness matrix Ks or its inverse, the secant compliance matrix
Cs respectively, expressed as

~w = Ks∆~T , ∆~T = Cs~w (5)

where Ks and Cs are the 6x6 secant stiffness and secant com-
pliance matrix and ∆~T is an incremental displacement step.
A secant matrix describing an infinitesimal incremental step
is known as the tangent matrix, and it is defined as

Kt = lim
∆~T→0

Ks, Ct = lim
∆~T→0

Cs (6)

The tangent matrices describe a linearised configuration-
dependant relation between the displacement and the load.
The tangent stiffness and compliance matrices are composed
of a physical and geometrical stiffness and compliance ma-
trix. Non-linear behaviour can be analysed by using either
the secant stiffness matrix or by making an incremental lin-
earised analysis of each quasi-static-equilibrium based on the
tangent stiffness matrix.
Any symmetric positive definite non-singular tangent stiff-
ness Kt and tangent compliance matrix Ct can be decom-
posed into an eigen-system as described by Lipkin & Pat-
terson [7]. The eigen-decomposition describes three transla-
tional and three rotational principal axes, with corresponding
stationary multiplier values of the translational and rotational
stiffness. Lipkin’s eigen-decomposition of the tangent stiff-
ness matrix Kt is defined as,

Kt =
[
ŵ f ŵγ

][k f 0
0 kγ

][
ŵ f
ŵγ

]
(7)

and the resulting tangent compliance matrix eigen-
decomposition is defined as,

Ct =
[
T̂ f T̂γ

][a f 0
0 aγ

][
T̂ f
T̂γ

]
(8)

where for i = 1,2,3 multipliers kγi > 0 are the angular stiff-
nesses in the directions of the γi, multipliers k f i > 0 are the



translational stiffnesses in the directions of the fi. The in-
verse of a translational stiffness gives the translational com-
pliance,

a f i =
1

k f i
(9)

and the inverse of a rotational stiffness gives the rotational
compliance,

aγi =
1

kγi
(10)

w f are the eigen-wrenches, these directions are also known
as the wrench axes, defined as

w f i =

[
~fi
~τi

]
, i = 1,2,3 (11)

Applying an eigen-wrench w f i leads to an induced twist
T f i a pure translational displacement parallel to the force
direction ~fi, the induced twists T f are defined as

T f i =

[
a f i~fi

0

]
, i = 1,2,3 (12)

Tγ are the eigen-twists, these directions are also known as
the twist axes, defined as

Tγi =

[
~δi
~γi

]
, i = 1,2,3 (13)

Applying an eigen-twist Tγi leads to an induced wrench wγi
a pure moment parallel to the rotational direction ~γi, the
induced wrenches wγ are defined as

wγi =

[
0

kγi~γi

]
, i = 1,2,3 (14)

The above wrenches and twists are normalized with re-
spect to the defined magnitudes to be used in the eigen-
decompositions of Equations 7 and 8.

T̂ =
T
|T| (15)

and

ŵ =
w
|w| (16)

After the normalization of the twist and wrench eigen-
decomposition described in Equations 2 and 4, the direct
magnitude relation is lost. In terms of magnitude, the in-
duced twists and wrenches are no longer a direct result of the
eigen-wrenches and eigen-twists. After normalization, only
the directional relations remain valid.

3 Visualisation of the Eigen-Decomposition
To increase the understanding of the wrench and twist

axes the eigen-decompositions is visualised. Nijssen [6] al-
ready plotted the three eigen-twist directions. In this section
we introduce the visualisation of the eigen-wrench directions
and include the corresponding stationary compliance multi-
pliers. A compliant shell mechanism example is introduced
which is fully constrained along the bottom edge and the
point of interest at which Ct is determined is indicated by
a black dot, as can be seen in Figure 2.

The acrylic-plastic shell mechanism is analysed as an
IGA shell, with the following material properties; the Young
Modulus is 3.2 GPa, the Poisson ratio is 0.35. The 2mm thick
geometry is defined by NURBS [12], a third polynomial fol-
lows a 3×5 grid. Five coordinates are placed on three planes
in y = -0.05, y = 0 and y = 0.05. The x and z coordinates are
defined in Table 8.

Table 1: NURB coordinates corrugated shell

Point 1 2 3 4 5

x 0.00 0.00 0.04 0.00 0.00

z 0.00 0.04 0.08 0.11 0.15

The three piniciple eigen-twist directions are shown in
Figure 2a. A rotation of the point of interest around a twist
axis plus a translation along this axis leads to pure parallel
moments around this twist axes.

The three principle eigen-wrench directions can be seen
in Figure 2b. A force along a wrench axis plus a moment
around this axis leads to a pure translation along the wrench
axis.

Figures 2a and 2b both provide information on the twist
and wrench spatial directions, while excluding the compli-
ance and stiffness multipliers. Thus these figures do not show
the magnitude of compliance corresponding to these direc-
tions. By plotting vectors along the directions of the wrench
and twist axes with the length of their corresponding station-
ary compliance multipliers, both the direction and magnitude
of compliance are visualised in an intuitive manner.

Figure 2c shows the vectors along the twist axes with the
magnitude of the corresponding rotational compliance mul-
tipliers aγ. The longer the vector the larger the rotational
compliance around the twist axis that the vector represents.

Figure 2d shows the vectors along the wrench axes with
the magnitude of the corresponding translational compliance



(a) Twist axes (b) Wrench axes

(c) Twist compliance vector (d) Wrench compliance vectors

Fig. 2: Visual representation eigen-decomposition

multipliers a f . The longer the vector the larger the transla-
tional compliance along the wrench axis that the vector rep-
resents.

Figures 2d and 2c both provide the directional infor-
mation of the twist and wrench axes and the corresponding
compliance magnitude. In itself these are useful characteri-
zations, however, the magnitudes of these vectors cannot be
compared between the two Figures, as further discussed in
Section 4.

4 Unification methods
The diagonal matrices of the decompositions in Equa-

tions 7 and 8 consist of the compliance and stiffness sta-
tionary multipliers corresponding to the wrench and twist
axes. Considering the decomposition in Equation 8, the up-
per three stationary multipliers a f are the translational com-
pliances given as length per force, corresponding to a trans-
lation parallel to the wrench axis. The lower three stationary
multipliers aγ are the rotational compliances given as angle
divided by force multiplied by length, corresponding to the
rotation around the twist axis. The rotational and transla-
tional multipliers are not directly comparable due to their
different units. To enable this comparison, we utilize uni-
fication variables, which will be defined based on equivalent
compliance by virtual load or potential energy.

We will discuss two unification approaches, by convert-

ing the units of a f i into aγi and the units of aγi into a f i. The
conversion of the units of aγi into a fi can by done by ex-
pressing rotational compliance as an equivalent translational
compliance at the point of interest using a unification length
χi. The conversion of the units of a fi into aγi can by done
by expressing translational compliance at the point of inter-
est as an equivalent rotational compliance using a unification
length Ψi. In Equation form the unification approaches are
given as,

ã fi = χ2
i aγi (17)

and,

ãγi =
a f i

ψ2
i

(18)

We introduce two methods to obtain the unification lengths.
The first method utilizes virtual load and displacements and
the second method is based on the principle of potential en-
ergy. The strengths and weaknesses of both methods are dis-
cussed in Section 4.3.

4.1 RasT: Rotational as equivalent Translational com-
pliance

The first approach expresses rotational compliance as an
equivalent translational compliance at the point of interest.
We call this the RasT approach. Both the virtual loads and
potential energy are used separately to determine unification
length χi.

4.1.1 Virtual load method
Converting the rotational compliance into an equivalent
translational compliance at the point of interest using the vir-
tual load method can be done in three consecutive steps.

I Express δeqi , an equivalent translation at the point of in-
terest in terms of rotation around the twist axis.

II Express Feqi , an equivalent virtual force at the point of
interest in terms of the induced counteracting pure par-
allel moment couple corresponding to a rotation around
the twist axis.

III Express an equivalent translational compliance ã fi , by
dividing the expressions above to obtain the equivalent
translational compliance. That is,

ã fi =
δeqi

Feqi

(19)

Figures 3 and 4 both show the point of interest of a spatial
compliant mechanism as indicated by the black dot and one
of the three principal twist axes Tγi indicated by the blue
line, used to explain the three steps.



Step I: Express δeqi , equivalent translation. The equiva-
lent translation at the point of interest is expressed in terms
of a screw around the twist axis. The total translation cor-
responding to a rotation θi is a combination of displacement
along the arc length around the twist axis δri and a translation
along the twist axis δhi. The resulting equivalent translation
δeqi , a path along a cylinder, is illustrated in Figure 3.

Fig. 3: Equivalent translation geometry

The displacement along the arc at a radius can be ex-
pressed as the rotation multiplied by the radius, the arc-
length. The radius that defines the displacement along the
arc is the shortest distance between the point of interest and
the twist axis. This length is defined in Plücker coordinates
as the location vector ri as shown in Figure 1. The displace-
ment along the arc-length is thus given as,

δri = |ri|θi (20)

The point of interest translates along the twist axis, due to
the pitch hi, given by the pitch times the rotation,

δhi = hiθi (21)

The resulting displacement due to the two perpendicular dis-
placements on a cylinder is calculated using the Pythagorean
theorem. The equivalent translation expressed in terms of the
corresponding rotation is thus given as,

δeqi =
√

(h2
i + |ri|2)θi (22)

Step II: Express Feqi , equivalent virtual force. The equiva-
lent virtual force at the point of interest in the opposite direc-
tion of the equivalent displacement is expressed in terms of
the induced moment corresponding to a rotation around the
twist axis.

This is done by defining a virtual force Fm at distance
ri with a magnitude and direction which results in the same
moment magnitude as the pure moment parallel correspond-
ing to a rotation. By decomposing this virtual moment force
vector, with one of the components in the direction of the

equivalent translation determined in step I, the equivalent vir-
tual force Feq can be defined. The introduced virtual moment
force vector Fm is given as,

Fmi =
Mi

|ri|
(23)

The geometry required to decompose the virtual moment
force Fm to the equivalent virtual force Feq in the opposite
direction of the point of interest displacement is shown in
Figure 4.

Fig. 4: Equivalent virtual force geometry

where β is the angle between δeqi and δγri, since the al-
ternate interior angles between two parallel lines are equal, βi
also defines the angle between Fmi and Feqi , which is defined
as,

βi =
Fmi

Feqi

=
δeqi

δγri

=

√
(h2

i + |ri|2)θi

|ri|θi
(24)

By combining Equation 23 and 24, the equivalent virtual
force expressed in terms of the corresponding moment can
be given as,

Feqi =
Mi√

(h2
i + |ri|2)

(25)

Step III: Express ã fi , the equivalent translational compli-
ance. The third step is to substitute 22 and 25 with 19,

a f γi =
δeqi

Feqi

= (h2
i + |ri|2)

θi

Mi
(26)

The unification length χi follows from Equation 17 and 26,

χi =
√

h2
i + |ri|2 (27)



4.1.2 Potential energy method
To unify the rotational compliance multipliers aγi into

equivalent translational compliance multipliers ã fi the prin-
ciple of potential energy can be used as well. The rotational
energy is compared with the corresponding virtual equivalent
translational energy due to the rotation.

The eigentwist induces a pure moment around the twist
axis, therefore the corresponding potential energy is solely
dependent on the rotational stiffness and rotation. The po-
tential energy of the eigentwist is defined as,

Uγi =
1
2

kγiθ2
i (28)

By introducing an equivalent translational stiffness k̃ fi and
the equivalent translation δeqi corresponding to the rotation
given in Equation 22, we can express the stored energy as,

1
2

kγiθ2
i =

1
2

k̃ fiδ
2
eqi

(29)

By substituting Equation 22 with 29 the equivalent transla-
tional stiffness can be defined as,

k̃ fi =
kγi

(h2
i + |ri|2)

(30)

The inverse of the translational and rotational stiffness results
in the translational and rotational compliance, as stated in
Equation 9 and 10. The equivalent translational compliance
of the rotational compliance is thus given as,

ã fi = (h2
i + |ri|2)aγi (31)

From 17 and 31 follows the unification length.

χi =
√

h2
i + |ri|2 (32)

which exactly matches Equation 27.

4.2 TasR: Translational as equivalent Rotational com-
pliance

The second approach expresses the translational compliance
as an equivalent rotational compliance, which we call the
TasR approach. Converting the translational compliance into
an equivalent rotational compliance at the point of interest
can be done using both the TasR equivalent of the virtual
load and the potential energy RasT approach. The virtual
load method TasR equivalent steps are:

I Express θeqi , an equivalent rotation at the point of inter-
est in terms of a translation parallel to the wrench axis.

II Express Meqi , an equivalent virtual moment at the point
of interest in terms of the counteracting force corre-
sponding to a translation parallel to the wrench axis.

III Express an equivalent rotational compliance ãγi , by di-
viding the expressions above to obtain the equivalent
translational compliance.

The potential energy method TasR equivalent is done by in-
troducing an equivalent rotational stiffness. This stiffness is
defined in terms of the translational stiffness corresponding
to the wrenches.

Both the virtual load and the potential energy TasR
equivalent of the RasT methods result into the unification
length,

ψi =
√
|d2

i |+b2
i (33)

which has the same form as the unification length expressed
in Equation 32.

4.3 Approach and method comparison
Both the virtual load method and the potential energy method
result into the same unification lengths. The potential energy
method is more straightforward, however, it gives less in-
sight into the actual kinematics compared to the virtual load
method. While the end results of both methods yield simi-
lar conclusions, the virtual load method includes interesting
sub-steps with physical relevance. The sub-step results in
themselves can form the basis for specific designs. Knowl-
edge of the composition of the sub-steps provides the oppor-
tunity to vary parameters in an intelligent manner to achieve
specific objectives. In addition, energy in any form is a scalar
quantity. Using the introduced potential energy method all
directional information is excluded.

The RasT unification approach characterizes a mecha-
nism as if a point of interest will be displaced using solely
forces. The RasT approach is physically comparable as if the
point of interest is displaced, along the wrench and around
the twist axis, using a ball-and-socket-joint while evaluating
the travelled path and the reaction force. Consequently using
the RasT approach pure decoupled rotations around the point
of interest are impossible to excite, therefore the RasT ap-
proach cannot evaluate the corresponding compliance mul-
tipliers. The TasR approach characterizes a mechanism as
if the less intuitive opposite is the case, when a point of in-
terest will be displaced solely using torques. Consequently
using the TasR approach the unified compliance values corre-
sponding to eigen-wrenches that are pure forces in line with
the point of interest cannot be evaluated.

In order to bypass degrees of freedom that are non-
evaluable one could use either the TasR or RasT approach. If
both approaches result in non-evaluable degrees of freedom
magnitudes the combination of the two will give the best
characterization. The RasT approach is more intuitive and
accounts for the coupling of the rotations and translations by
including twist pitch, hence Sections 5 and 6 will focus on
this approach. However, both approaches in their context,
separately or combined, are a powerful characterization for
comparing all six degrees of freedom.



5 Characterization
This Section shows the effectiveness and strength of the abil-
ity to characterize and compare all six degrees of freedom
using the unification lengths.

5.1 Unified compliance matrix
The unification lengths χi and Ψi result in unified sta-

tionary compliance multipliers, which can be represented in
matrix form. In the case of the RasT approach, the unifi-
cation length of Equation 27 is substituted with Equation
8. The rotational compliance multipliers are multiplied by
the unification length squared (h2

i + |ri|2), which results in
the equivalent translational compliance. In matrix form this
produces the diagonal unified stationary translational com-
pliance multiplier matrix ã f given as,

ã f =

[
a f i 0
0 (|ri|2 +h2

i )aγi

]
(34)

In the case of the TasR approach, the unification length of
Equation 33 substituted with Equation 8 the unified rota-
tional compliance multiplier matrix ãγ is given as,

ãγ =

[ a f i

|bi|2+d2
i

0

0 aγi

]
(35)

To put it in the original context, the complete eigen-
decomposition of the tangent compliance matrix, including
the new unified compliance matrix for the RasT approach
becomes,

Ct =
[
T̂ f T̂γ

]
[

I 0
0 1√

|ri|2+h2
i

]
ã f

[
I 0
0 1√

|ri|2+h2
i

][
T̂ f
T̂γ

]
(36)

and for the TasR approach the complete decomposition is
given as,

Ct =
[
T̂ f T̂γ

][|bi|2 +d2
i 0

0 I

]
ãγ

[
|bi|2 +d2

i 0
0 I

][
T̂ f
T̂γ

]
(37)

5.1.1 Direction and unified compliance magnitude visu-
alised

Vectors in the direction of the eigen-twists T̂i and the
eigen-wrenches ŵi with the length of their corresponding
values in the unified compliance matrix ã f or ãγ visualise the
comparable compliance directions. Using this visualisation
the dominant compliance directions become evident.

The power of this method is shown through two well-
described compliant flexure mechanisms. The first is
designed to be predominately rotationally compliant, a
cross pivot flexure mechanism. The second designed is
to be predominately translationally compliant, a double

parallel flexure mechanism with an intermediate body. The
visualisation using the unified compliance matrix confirms
the expected behaviour of these well-described mechanisms.

Both mechanisms are analysed in SPACAR, which is a
program for dynamic analysis of flexible spatial mechanisms
and manipulators [13]. The mechanisms contain blue spring
steel flexures with the following properties; the Young
Modulus is 500 MPa, the Poisson ratio is 0.3 and the
geometry is 75×15×0.5 mm.

Cross pivot flexure mechanism
The cross pivot flexure mechanism consists of two perpen-
dicular flexures and two parallel rigid bodies. The lower
rigid body is fully constrained and the centre of the upper
rigid body is considered to be the point of interest. Us-
ing SPACAR the 6x6 tangent compliance matrix Ct is de-
termined. The introduced, in Section 3, visualisation of Lip-
kin’s eigen-decomposition is applied. Figure 5 shows the
twist and wrench compliant axes of the mechanism.

Fig. 5: Principal compliance directions of the cross pivot
flexure mechanism

The stationary translational compliance multipliers cor-
responding to the wrench axes are given in Table 2.

Table 2: Compliance magnitudes and corresponding wrench
axes of the cross pivot flexure

Corresp. wrench Translational compliance [a f i]

w f 1 2.50 ·10−07 m/N

w f 2 2.00 ·10−08 m/N

w f 3 2.00 ·10−08 m/N



The largest translational compliance multiplier is under-
lined and corresponds to wrench w f 1. The stationary rota-
tional compliance multipliers and the pitches corresponding
to the twist axes are given in Table 3.

Table 3: Compliance magnitudes and corresponding twist
axes of the cross pivot flexure

Corresp. twist Rotational comp. [aγi] Pitch [hi]

Tγ1 1.06 ·10−03 rad/Nm 7.50 ·10−03 m

Tγ2 1.06 ·10−03 rad/Nm 7.50 ·10−03 m

Tγ3 4.80 ·10−01 rad/Nm 0.00 ·10−00 m

The largest rotational compliance multiplier is under-
lined and corresponds to twist axis Tγ3. As discussed the
compliance multipliers in Tables 2 and 3 cannot be compared
directly, therefore the unified compliance matrices are intro-
duced. Figure 6 shows compliance vectors along the twist
and wrench axes with unified compliance magnitudes ã f re-
sulting from the RasT approach.

Fig. 6: Unified compliance vectors of the cross pivot flexure
mechanism

As can be seen in Figure 6, the largest vector by orders
of magnitude is in the direction of twist axis Tγ3 as is ex-
pected, originating from the crossing of the flexures in the
y-direction parallel to these flexures. The other compliance
vectors are too small to visualise using linear magnitude rep-
resentation. The corresponding comparable unified compli-
ance magnitudes are given in Table 4.

Table 4: Twist and wrench axes with corresponding unified
compliance magnitudes of the cross pivot flexure mechanism

Corresp. axes Unified compliance [ã f i]

w f 1 2.50 ·10−07 m/N

w f 2 2.00 ·10−08 m/N

w f 3 2.00 ·10−08 m/N

Tγ1 8.08 ·10−07 m/N

Tγ2 5.99 ·10−08 m/N

Tγ3 3.38 ·10−04 m/N

As can be seen in Table 4, the multipliers are at least
three orders smaller than the most underlined multiplier cor-
responding to the most dominant rotational degree of free-
dom. The cross flexure mechanism is thus dominantly rota-
tional compliant which is consistent with the objective of the
design. The total relative degree of freedom order based on
the unified compliance multipliers following from the RasT
approach is given as,

Tγ3 >> Tγ1 > w f 1 > Tγ2 > w f 3/w f 2 (38)

Double parallel flexure mechanism
The second mechanism is designed to be predominately
translationally compliant, a double parallel flexure mecha-
nism with an intermediate body. Figure 7 shows the twist
and wrench compliant axes of the mechanism.

Fig. 7: Principal compliance directions of the double parallel
flexure mechanism



The translational compliance multipliers corresponding
to the wrench axes are given in Table 5 and the rotational
compliance multipliers and the pitches corresponding to the
twist axes are given in Table 6.

Table 5: Compliance magnitudes and corresponding wrench
axes of the double parallel flexure mechanism

Corresp. wrench Translational Compliance [a f i]

w f 1 4.50 ·10−04 m/N

w f 2 5.00 ·10−07 m/N

w f 3 2.00 ·10−08 m/N

Table 6: Compliance magnitudes and corresponding twist
axes of the double parallel flexure mechanism

Corresp. twist Rotational Compliance [aγi] Pitch [hi]

Tγ1 3.12 ·10−05 rad/Nm 0.00 m

Tγ2 7.80 ·10−04 rad/Nm 0.00 m

Tγ3 1.07 ·10−03 rad/Nm 0.00 m

The largest translational and rotational compliance mul-
tipliers are underlined and correspond to wrench w f 1 and
twist Tγ3. The compliance multipliers in Tables 5 and 6
can only be compared directly using the unified compliances
ãγ and ã f . Figure 8 shows the unified compliance vectors
along the twist and wrench axes with the corresponding uni-
fied compliances as magnitudes.

Fig. 8: Unified compliance vectors of the double parallel
flexure mechanism

As can be seen in Figure 8, the largest compliance vector is in
the direction of wrench axis w f 1 as is expected. It originates
from the point of interest in the x-direction perpendicular to
the face of the flexures. The other compliance vectors are
too small to visualise using linear magnitude representation.
The corresponding unified compliance magnitudes resulting
from both approaches are given in Table 7.

Table 7: Twist and wrench axes with corresponding unified
compliances of the double parallel flexure mechanism

Corresp. axis Unified compl. [ã f i] Unified compl. [ãγi]

w f 1 4.50 ·10−4 m/N 3.20×101 rad/Nm

w f 2 5.00 ·10−7 m/N 3.56 ·10−4 rad/Nm

w f 3 2.00 ·10−8 m/N -

Tγ1 4.40 ·10−8 m/N 3.12 ·10−5 rad/Nm

Tγ2 - 7.80 ·10−4 rad/Nm

Tγ3 1.50 ·10−6 m/N 1.07 ·10−3 rad/Nm

As can be seen in Table 4, resulting from both ap-
proaches, the largest unified compliance magnitude, corre-
sponding to the most dominant degree of freedom, is at least
two orders larger than the other magnitudes. The double flex-
ure mechanism is thus dominantly translational compliant
consistent with the objective of the design. The total degree
of freedom order based on the unified compliance multipliers
ã f i following from the RasT approach is,

w f 1 >> Tγ3 > w f 2 > Tγ1 > w f 3 (39)

As discussed in Section 4.3, the fully decoupled rotational
degree of freedom Tγ2 is a non-evaluable value using the
RasT approach. More insight is accumulated using the TasR
approach. The total degree of freedom order based on the
unified compliance multipliers ãγi following from the TasR
approach is,

w f 1 >> Tγ3 > Tγ2 > w f 2 > Tγ1 (40)

where the multiplier corresponding to wrench w f 3 cannot be
evaluated. Apart from the unevaluated degrees of freedom
both approaches show the same order of compliance. The
order based on both the RasT and the TasR approach can be
interpreted as,

w f 1 >> Tγ3 > Tγ2 > w f 2 > Tγ1 > w f 3 (41)

6 Non-linear characterization
The visualisation using the unified compliance matrices

ã f and ãγ, introduced in Section 5.1.1, can be used to char-
acterize the non-linear behaviour of compliant mechanisms.



A displacement of the point of interest can be analysed
incrementally. For each quasi-static-equilibrium the wrench
and twist axes with the corresponding unified compliance
multiplier matrices can be determined. This section shows
the non-linear analysis of the introduced cross pivot flexure
mechanism and two shell mechanisms using the unified
compliances ã f following from the RasT approach.

Cross pivot flexure mechanism non-linear
The point of interest of the cross pivot flexure mechanism in-
troduced in Section 5.1.1 is subjected to a counter-clockwise
π/3 radian rotation around the y-direction. Figure 9 shows
the unified stiffness visualisation applied to the cross pivot
flexure mechanism. The initial mechanism and compliance
vectors are more transparent.

Fig. 9: Unified compliance vectors along a rotation of the
point of interest around the y-axis range of motion

Only the unified compliance vector corresponding to
twist Tγ3 appears in Figure 9, since the other compliance
magnitudes corresponding to the degrees of freedom are
too small to visualise using linear magnitude representation.
The vector magnitude corresponding to twist Tγ3 is constant
at 3.38 · 104 m/N during the rotation, but shows axis drift.
The power of the characterization becomes more apparent
in compliant shell mechanisms, as they have even less
predictable and distinguishable degrees of freedom.

Single corrugated compliant shell
The first shell mechanism was introduced in Section 3, a
moderately single corrugated shell mechanism. The mech-
anism is fully constrained at the bottom and the point of in-
terest is in the centre of the opposing side, indicated by a
black dot. Figure 10 shows the unified compliance visualisa-
tion applied to the single corrugated compliant shell mecha-
nism. It shows the largest compliance vector corresponding

Fig. 10: Unified compliance vectors cross pivot

to twist Tγ3, which means that the largest compliance direc-
tion is a screw around the direction of twist Tγ3. The sec-
ond largest compliance vector corresponds to wrench w f 1
which is a pure translation parallel to the direction of wrench
w f 1. The other unified compliance magnitudes are relatively
small, intuitively explainable by the larger moment of inertia
of the corresponding cross section. The total initial relative
degree order based on the unified compliance multipliers ã f
following from the RasT approach is given as,

Tγ3 > w f 1 > Tγ2 > Tγ1 > w f 2 > w f 3 (42)

What is of specific interest is how these unified compliance
vectors change over a large range of motion. Figure 11 shows
the initial mechanism configuration from Figure 10 being
deformed. The point of interest is subjected to a displace-
ment along the positive x-axis direction. All other degrees
of freedom are unconstrained. The compliance vectors are
shown per quasi-static-equilibrium state during the displace-
ment of the point of interest, as shown in Figure 11. The path
of the point of interest is indicated with a black line. The
initial configuration and compliance vectors are represented
more transparently. Additionally, for visibility, only the four
largest vectors are shown. Excluding the directional infor-
mation of the vectors the magnitudes can be represented in
a two-dimensional plot. The unified compliances ã f against
the absolute displacement of the point of interest are shown
in Figure 12.



Fig. 11: Unified compliance vectors during displacement

Fig. 12: Magnitude plot unified compliance over range of
motion of the single corrugated shell

The initial values on the left of the graph represent the initial
compliances shown in Figure 10. As shown, the mechanism
is predominantly rotational compliant. Figure 12 shows that
these statements remain valid along the displacement of the
point of interest. As discussed in Section 2, the unified com-
pliances are derived from the tangent stiffness matrix. The
tangent stiffness matrix is composed of a physical stiffness
and a geometrical stiffness matrix.

The change of vector directions and magnitude ratios
are relatively constant. The directions of both wrench w f 1
and twist Tγ3 relative to the point of interest remain similar
along the deformation. w f 1 stays perpendicular to the
flexure mechanism and Tγ3 stays parallel to the face of the
shell. The compliance magnitudes related to the twist and
wrench axes in the direction of displacement are decreasing
along the motion, which is explained by, build up, internal
stress. Despite the assumed linear material behaviour,
described by Hookes Law in the the physical stiffness

matrix, the mechanism exhibits non-linear behaviour. This
behaviour is induced by the non-linear geometry stiffness
matrix. However, the physical stiffness matrix is dominant
since the overall shape of the mechanism does not undergo
significant changes. The behaviour of the mechanism
described in Figure 12 is relatively linear compared to
the following extruded spiral shell mechanisms, where
the unified compliance magnitude order switches during a
translation along the x-axis.

Extruded spiral compliant shell
The second mechanism is an extruded spiral compliant shell
mechanism. The material properties are identical to the sin-
gle corrugated shell mechanism. The 2mm thick geometry is
defined by NURBS [12], a third polynomial follows a 3×5
grid. Five coordinates are placed on three planes in y = -0.05,
y = 0 and y = 0.05. The x and z coordinates are defined in
Table 8.

Table 8: NURB coordinates extruded spiral shell

Point 1 2 3 4 5

x 0.00 -0.03 0.00 0.03 0.00

z 0.00 0.04 0.08 0.06 0.04

The mechanism is fully constrained at the bottom and
the point of interest is in the centre of the opposing side,
indicated by a black dot. The initial configuration is shown
in Figure 13.

Fig. 13: Unified compliance vectors of the spiral shell mech-
anism

The total initial degree of freedom order based on the
unified compliance multipliers ã f following from the RasT



approach is,

Tγ3 > w f 1 > Tγ2 > Tγ1 > w f 2 > w f 3 (43)

Although the mechanism is still a developable surface,
predicting the locations and magnitudes of the compliance
vectors is already more challenging compared to the previous
shell mechanism. The two largest vectors are twist Tγ3 and
wrench w f 1. As in the previous example these vectors are
visualised during a displacement of the point of interest. The
initial configuration of the mechanism is depicted in Figure
13. The point of interest is translated along the x-axis, while
motion in the other directions is unconstrained, as can be
seen in Figure 14.

Fig. 14: Unified compliance vectors of the spiral shell mech-
anism during motion

The most significant difference with the previous shell
mechanism is the non-linear behaviour of the compliance
magnitudes, which results in a changing compliance mag-
nitude order during the displacement. This behaviour is rep-
resented in Figure 15 which shows the unified compliance
against absolute displacement of the point of interest.
The magnitude of the compliance directions behaves highly
non-linear along the translational trajectory of the point of
interest. The direction of twist Tγ3 stays the same along the
deformation, while the direction of wrench w f 1 changes sub-
stantially relative to the face of the mechanism. As discussed
in the previous shell example, the non-linearity cannot be
due to the stress building up, since this is defined by Hookes
linear law. The non-linearity is due to the geometric stiff-
ness matrix. The change in magnitudes is significant, result-
ing in a changing order of the unified compliances along the
motion. In this example half of the compliance magnitudes
increase initially, as the mechanism unfolds and undergoes
significant geometrical changes. The decreasing geometry
stiffness matrix change is more significant than the linearly
increasing physical stiffness matrix halfway trough the mo-
tion, when the mechanism is unfolded. From then on the ge-
ometry stays relatively similar, thus less non-linearity is in-

duced by the geometry change. The increased physical stiff-
ness becomes the most predominant factor and the unified
compliance start to decrease at the end of the motion.

Fig. 15: Magnitude graph unified compliance over range of
motion of the spiral shell mechanism

7 Discussion
The characterization presented in this paper has bene-

fits compared to existing methods. Most characterizations
do not address the coupling between rotations and transla-
tions [4] and are only able to separately compare rotational
degrees of freedom and translational degrees of freedom,
within one mechanism [6]. To compare rotational and trans-
lational compliances with each other it is necessary to intro-
duce a unification variable. Where existing methods intro-
duce arbitrarily chosen unification variables [9], this paper
introduces two consistently derived physically meaningful
unification lengths which include coupling, thus allowing the
fair comparison of rotational and translational compliances
within and between mechanisms.

We derived two unification lengths based on two ap-
proaches. The unification length resulting from the RasT
approach, based on Plücker coordinates, is derived inde-
pendently and yielded similar results as Lin’s [8] research,
based on hybrid coordinates, used to optimize graspers. Lin
does not recognize the limitations of the results that became
apparent when used to characterize the behaviour of non-
linear compliant shell elements. We eliminate these limita-
tions by introducing both the RasT and the TasR approach.
Both Lin’s derivation and the introduced potential energy
method are more straightforward than the introduced virtual
load method, however they give less insight into the actual
kinematics. The virtual load method includes sub-steps with
physical relevance, these sub-steps themselves can form the
basis for designs. Thorough knowledge of the composition
of these sub-steps provides the opportunity to vary param-
eters in an intelligent manner to reach specific objectives.



Additionally, energy, in any form, is a scalar quantity. By
introducing the principle of potential energy all valuable di-
rectional information is lost.

8 Conclusion
This paper introduces a method for the characteriza-

tion of non-linear behaviour for large deflections in complex
compliant mechanisms that considers coupling and allows
the comparison of stiffness between all six degrees of free-
dom. The characterization is based on consistently derived
non-arbitrary unification variables based on equivalent com-
pliance by virtual load and potential energy, therefore allows
the comparison of compliance between degrees of freedom
of different mechanisms. With this introduced comprehen-
sive comparison the opportunity rises to order all degrees of
freedom, within and between mechanisms in terms of com-
pliance. The most predominant degrees of freedom can now
be identified along the trajectory of large deflections of com-
pliant mechanisms. The characterization, presented in this
paper, can be done for any mechanism which has a symmet-
ric positive definite non-singular compliance matrix. This
includes both compliant flexure and shell mechanisms.
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4
Characterization Experiment

Experimental Determination and Validation of Critical Components of the
Unified Stiffness
This chapter supports the theory presented in Chapter 3, therefore creating a stronger basis for the subse-
quent Chapter 5.
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1 Introduction
The goal of the experiment, presented in this Chapter, is

to physically demonstrate and validate critical components
of the theory presented in Chapter 3. The experiment vali-
dates relevant components of Lipkin’s eigen-decomposition
[1], with the objective to experimentally determine the uni-
fied stiffness of one eigen-wrench w f i and one eigen-twist Tγi
based on the TasR approach.

2 Experimental Design
The experiment was conducted on a physical compli-

ant shell mechanism and was compared with a computational
model based on an isogeometric analysis framework [2]. The
eigen-twist and eigen-wrench of the physical model were
analysed in a universal tester with two separate experiments.
Both the eigen-twist and eigen-wrench were identified by ap-
plying various twists on the top edge of the clamped-free
physical model.

To determine both the RasT and TasR unified stiffness
the components of one eigen-twist and eigen-wrench of Lip-
kin’s eigen-decomposition were determined both computa-
tionally and experimentally. The eigen-twist components to
be determined were:

- Direction vector[γi/|γi|]
- Location vector [ri]
- Pitch [hi]
- Rotational stiffness [kγi]

The eigen-wrench components to be determined were:

- Direction vector [τi/|τi|]
- Location vector [bi]
- Pitch equivalent [di]
- Translational stiffness [k f i]

2.1 Experiment I: Eigen-twist analysis
To find the eigen-twist we varied the location vector

magnitude variable of a gradually applied twist, while keep-
ing the angular displacement γ and pitch h constant. For each
applied twist we measured the loads in all 6 directions and
determined:

α The angle between the induced moment τi and the ap-
plied rotation γi

krot The rotational stiffness in the direction of the applied
rotation γi.

When the conditions α = 0 and krot = kγi are met this indi-
cate:

- The applied twist direction vector γi/|γi|, location vec-
tor ri and pitch hi correspond to an eigen-twist, since
the induced wrench contains a moment τi parallel to the
applied rotation γi.

- The calculated stiffness krot in the direction of the ap-
plied rotation γi equals the stationary rotational stiffness
multiplier kγi corresponding to an the eigen-twist.

2.2 Experiment II: Eigen-wrench analysis
To find the eigen-wrench we applied a pure translational

twist. We measured the loads in all 6 directions and deter-
mined:

β The angle between the induced force fi and the applied
translation δi

ktran The translational stiffness in the direction of the applied
translation δi.

When the conditions β = 0 and ktran = k f i are met these re-
sults indicate:

- The induced wrench direction vector γi/|γi|, location
vector bi and equivalent pitch di correspond to an eigen-
wrench, since the wrench contains a force τi parallel to
the applied translation δi.

- The calculated stiffness in the direction of the applied
translation δi equals the stationary rotational stiffness
multiplier k f i corresponding to an the eigen-wrench.

3 Methods and Materials
This section presents the physical and computational

model, the introduced variables and the measurement set-up.

3.1 Physical model
A shell mechanism was fabricated from a Polyethylene

terephthalate glycol-modified (PETG) 3mm thick sheet using
vacuum thermoforming. PETG is a clear amorphous ther-
moplastic, with a Young Modulus of 2.1 GPa and a Poisson
ratio is 0.4. The mold for vacuum forming was 3D printed
from ABS. The sheet was trimmed manually after vacuum
thermoforming. The designed compliant shell mechanism
was extended 20mm at the top and bottom edge to provide
a surface to clamp the model to the ground and universal
tester. The model is clamped with 3mm thick metal plates
which are fastened using two M3 bolts. The metal plates also
ensure the same boundary conditions along the edges. The
Youngs Modulus of Steel is 200GPa, this ensured that the
clamps stiffness is much greater than the shell mechanism.
The thickness of the physical model turned out lower than
the original sheet, due to stretching during vacuum thermo-
forming. The resulting average thickness of multiple sam-
pling points was 2.6mm. The physical model and extensions
are shown in Figure 1.

Fig. 1: Fabricated shell



3.2 Pre-Analysis Computational Model
The fabricated shell was computationally modelled

based on an isogeometric analysis framework [2], with an as-
sumed uniform thickness. The computational model is fully
constrained along the bottom edge. The point of interest is
located on the stiff modelled top edge at which Ct is deter-
mined is indicated by a black dot, as can be seen in Figure
2. Figure 2 includes one eigen-wrench w f 3 and one eigen-
twist Tγ3 plotted with their corresponding RasT unified stiff-
ness magnitude based on Chapter 3. Due to the symmetry of
the model in the y=0 and z = 0.75 surfaces, both the eigen-
wrench and the eigen-twist are parallel to the z-axis and lo-
cated along y=0.

Fig. 2: Modelled eigen-wrench and eigen-twist axes with
unified stiffness magnitude

The components of the modelled eigen-twist are given
in Table 2.

Table 1: Eigen-twist Tγ3 components

Direction [0,0,1]

Location vector [1.05 ·10−2,0,0] m

Pitch 2.53 ·10−12 ≈ 0

Rotational stiffness 4.32 Nm/rad

RasT Unified stiffness 3.91 ·104 N/m

TasR Unified stiffness 4.33 Nm/rad

The components of the modelled eigen-wrench are
given in Table 2.

Table 2: Eigen-wrench w f 3 components

Direction [0,0,1]

Location vector [4.20 ·10−3,0,0] m

Equivalent pitch 0

Translational stiffness 8.26 ·104 N/m

RasT Unified stiffness 8.26 ·104 N/m

TasR Unified stiffness 1.47 Nm/rad

3.3 Variables
The applied twists are varied based on the pre-analysis,

with the objective to meet the conditions defined in section
2.1. The applied twist are varied by varying the location vec-
tor for different trails, while keeping the rotational direction
and pitch constant. The pre-analysis indicated that the eigen-
twist is parallel to the z-axis and the location vector is paral-
lel to the x-axis, due to symmetry in the x- and y-direction.
The pre-analysis also indicated an eigen-twist pitch of zero.
We assumed that the vacuum thermoforming process did not
introduce asymmetry and that therefore these indications re-
main valid in the physical model. To find the location vec-
tor corresponding to the eigen-twist only the location vector
magnitude |ri| was varied while keeping the vector direction
parallel to the x-axis. Figure 3 shows the influence of two
different location vector magnitudes on the point of inter-
est’s arc-trajectory. The assumptions made in this section are
validated as incorrect assumptions will not lead to the local-
isation of the eigen-twist.

Fig. 3: Top view arc-trajectory point of interest, based on
different twist location vector magnitudes

For each twist with different location vector magnitude,
three trails were executed with an increasing small angular
displacement up to 0.053 rad and zero pitch. To locate the
eigen-wrench, based on the pre-analysis, the location inde-
pendent pure translation along the z-axis was applied. Three
trials were executed with an increasing small translation up
to 1.1 mm. The deformations were small and gradually ap-



Fig. 4: Measurement setup

plied over the course of 60 seconds, since we were research-
ing instantaneous properties of the undeformed shell mecha-
nism.

3.4 Measurement Set-up
The universal tester Zwick Z005 forms the basis for the

measurement set-up, which can be seen in Figure 4. From
top to bottom the set-up consists of:

1. Zwick Z005 Universal tester displacement inducer
2. Top Bench vice
3. ATI Mini40-2 6-DoF load cell
4. Top offset bracket
5. Physical model
6. Bottom offset bracket
7. Bottom Bench vice
8. Zwick HBM-T20WM/KAF-TC 1-DoF load cell
9. Zwick Z005 Universal tester ground

The Zwick Z005 Universal tester is able to apply a displace-
ment or a rotation (1) on the top bench vice (2). The top
bench vice is connected through the ATI Mini40-2 6-DoF
load cell (3) to the top bracket (4). The clamped extensions
of the physical model (5) are connected to the 3mm thick
steel brackets (4,6). The bottom bracket (6) is connected to
the bottom bench vice (7). The bottom bench vice is con-

Fig. 5: Top bracket with offset spacers for eigen-twist analy-
sis

nected through a 1-DoF load cell (8) to the ground (9). For
the eigen-twist analysis, the 1-DoF load cell is the Zwick
HBM-T20WM. For the eigen-wrench analysis, the 1-DoF
load cell is the Zwick KAF-TC. The z-axes of all load cells
are in line with the rotational axis of the universal tester dis-
placement inducer. The ATI40 load cell is connected to a
LabVIEW® program. The Zwick load cells are connected to
testXpert®.

The brackets have a variable offset for the eigen-twist
analysis, which can be seen with different offsets in Figure
5. The offsets vary the location vector magnitude |ri| of the
applied twists. The offset in the brackets is varied by varying
the amount and thickness of the used steel plates. During the
trails, there was no difference in offset between the top and
bottom bracket.

3.5 Resolution and Calibration
The ATI Mini40-2 has the lowest resolution of the used

load cells, given in Table 3.

Table 3: Resolution ATI Mini40

Axis Resolution

Fx,Fy 1.00 ·10−2 N

Fz 2.00 ·10−2 N

Tx,Ty,Tz 2.50 ·10−4 Nm

The ATI Mini 40 load cell was calibrated in the uni-
versal tester using the redundant measurement direction of
the Zwick load cells. Both 1-DoF Zwick load cells mea-
sured values are within the permissible tolerances according
to DIN EN ISO 7500-1. The redundant measurement direc-
tions were also used to synchronise the measured Zwick data
and ATI load cell data during the trials.

4 Results and Discussion
This section provides the results of the experiment trails.

The results are compared to the original model, as can be



seen in Tables 4 and 5. The results are listed below and will
be discussed in the subsequent sections.

Table 4: Eigen-twist Tγ3 components

Model Experiment

Location vec. length 1.05 ·10−2 m 1.0 ·10−2 m

Pitch ≈ 0 m 0 m

Rotational stiffness 4.33 Nm/rad 4.29 Nm/rad

RasT Unif. stiffness 3.91 ·104 N/m 4.3 ·104 N/m

TasR Unif. stiffness 4.33 Nm/rad 4.3 Nm/rad

The RasT and TasR unified stiffness of the correspond-
ing eigen-twist respectively differ +9.21% and −0.93%.

Table 5: Eigen-wrench w f 3 components

Model Experiment

Location vec. length 4.20 ·10−3 m 3.90 ·10−2 m

Equivalent Pitch ≈ 0 m 5.00 ·10−4 m

Translational stiffness 8.26 ·104 N/m 7.95 ·104 N/m

RasT Unif. stiffness 8.26 ·104 N/m 7.95 ·104 N/m

TasR Unif. stiffness 1.47 Nm/rad 1.23 Nm/rad

The RasT and TasR unified stiffness of the correspond-
ing eigen-wrench respectively differ +3.90% and −13.90%.

4.1 Discrepancy factors
The potential factors influencing the discrepancy be-

tween the modelled and experimentally determined eigen-
twist and eigen-wrench components are explained in the fol-
lowing sections and listed below.

- The production process: Uneven stretching during vac-
uum thermoforming introduces thickness variation and
anisotropic material behaviour of the physical model.
The option for a varying thickness and anisotropic ma-
terial behaviour is not incorporated in the computational
model.

- Unwanted introduced compliance and slack in the mea-
surement set-up: The universal tester is mainly designed
to test force and torque parallel to the z-axis. It is
likely that the universal testers translational and rota-
tional compliance is greater in the x- and y-direction
compared to the z-direction. To illustrate the sensitivity
of the strict constraints an adjusted model is introduced
which allows small rotations < 0.01 rad in the x- and
y-direction. The allowed small rotations are arbitrary

chosen, the adjusted model is therefore unreliable and
not used to determine the quantitative data presented in
Tables 4 and 5. The option to actually add compliance,
friction or slack in the constraint directions is not incor-
porated in the computational model.

- Unaccounted pre-loading: Pre-bending and resulting
pre-loading is known to increase compliance [3]. The
measurement set-up potentially introduces pre-bending.

- Material behaviour: The Youngs modulus of the mate-
rial used for the physical model is based on literature,
while the actual material properties are potentially dif-
ferent. The Youngs modulus can be adjusted for in
the computational model. However, because multiple
potentially opposing effects are present, as described
above, and the actual material behaviour is unknown ad-
justing for material properties does not give a more reli-
able model.

4.2 Eigentwist: Moment angle for various location vec-
tor magnitudes

The angle α between the induced moment and the ap-
plied rotation for varying location vector magnitudes is given
in Figure 6. A zero α angle indicates a location vector magni-
tude corresponding to an eigentwist, since this indicates that
the applied rotation is parallel to the induced moment. The
angle α of the computational model is zero at a magnitude
of 10.50mm, in accordance with Table 2. The angle α of the
average measurement fit of the three trails is zero at a magni-
tude of 10mm. This shows that the computational and mea-
sured eigen-twist location vector magnitude differs 0.5mm.
This discrepancy is potentially introduced by the production
process, as a non-uniform thickness and anisotropic mate-
rial behaviour influence the local compliance of the physical
model. The measurement fit moment angles are smaller than
the modelled moment angles, this is potentially explained
by unwanted introduced compliance and slack in the mea-
surement set-up. Greater introduced compliance and slack
in the x- and y-direction compared to the z-direction will re-
sult in lower calculated moment angles α. The more accurate
adjusted model that illustrates the sensitivity of the strictly
modelled constraints supports this assumption. Furthermore
unaccounted pre-loading potentially reduces the stiffness of
the physical model.

4.3 Eigentwist: Rotational stiffness for various location
vector magnitudes

The rotational stiffness in the direction of the applied
rotation is determined by evaluating the slope of the induced
parallel moment. The rotational stiffness for varying location
vector magnitudes is given in Figure 7, which shows that the
rotational stiffness Kzz of the model has a minimum at a mag-
nitude of 10.5mm. The average measurement fit of the three
trails shows that rotational stiffness Kzz of the measurements
has a minimum at a magnitude of 10mm. The lowest rota-
tional stiffness indicates the location vector magnitude corre-
sponding to the eigen-twist. The location vector magnitudes
are in accordance with the results of Figure 6 and Table 2.
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Fig. 6: Moment angle with varying x-axis offset

The computationally modelled and physical model stiff-
ness curve diverge when deviating from the location vector
magnitude corresponding to the eigen-twist. Similar to the
observations in Figure 6, this could be explained by intro-
duced compliance in the measurement set-up. Measurement
deviating from the location vector magnitude rely more on
the constraints in x- and y-direction of the measurement set-
up, since introduced compliance and slack in the x- and y-
direction would be most apparent for larger moments in their
corresponding directions. This would also explain why the
effect is the smallest at the location vector magnitude corre-
sponding to the eigen-twist, as the induced moment is par-
allel to the z-axis for this magnitude. The more accurate
adjusted model that illustrates the sensitivity of the strictly
modelled constraints supports this assumption. The small ro-
tational stiffness difference at the eigen-twist location vector
magnitude could be explained by the constraints, production
process or the assumed material properties. This material
properties are not adjusted in the model, since multiple po-
tentially opposing factors are present influencing the accu-
racy of the rotational stiffness.

Figures 6 and 7 both indicate independently that the
eigen-twist location vector magnitude of the model is
10.5mm and the of the measurements is 10mm.

4.4 Eigentwist: Induced moments against angle of ap-
plied twist

The moments along the increasing rotation as a result of
the, modelled and experimentally determined, eigen-twists
can be seen in Figure 8. The measured data shown is the
interpolated average data of the trails at the offsets 9.5mm
and 10.5mm, since no measurement trails were executed at
a 10mm offset. The angle between the measured induced
moment and the z-axis is 0.034 ≈ 0 rad.

The initial slopes of the induced moments Tz deter-

Fig. 7: Stiffness Kzz with varying x-axis offset

Fig. 8: Moments along angular deformation at 10 mm mea-
surement and 10.5 mm model offset

mine the stiffnesses corresponding to the modelled and ex-
perimentally determined eigen-twists. The unified stiffness
can be determined based on eigen-twist the location vector
magnitude and the corresponding rotational stiffness. The
measured and modelled rotational stiffness and unified stiff-
nesses are given in Table ??. The modelled and experimen-
tally determined unified stiffnesses differ as a result of dif-
ferent location vector magnitudes and corresponding stiff-
nesses, which are, in their turn explained in the interpreta-
tions of Figures 6 and 7.



Fig. 9: Forces along the translational deformation

4.5 Eigenwrench: Induced load against translation
The forces along the translation as a result of the ap-

plied twist can be seen in Figure 9. The angle β between
the induced force and the applied translation is 0.01 ≈ 0 rad.
The initial slopes of the induced forces Fz determine the stiff-
nesses corresponding to the modelled and experimentally de-
termined eigen-wrenches. The equivalent pitch and the lo-
cation vector of the eigen-wrench can be determined from
Figures 9 and 10. The location vector is defined by the ra-
tio between Ty and Fz. The experimentally determined loca-
tion vector bi = 3.9mm. The ratio between Tx and Fz deter-
mines the equivalent pitch di = 3.9mm. The experimentally
determined equivalent pitch di = 0.5mm. The angle β ≈ 0
indicates that the induced wrench is an eigen-wrench. The
stiffness resulting from the measurements is lower than the
modelled stiffness, which could be explained by introduced
compliance in the measurement set-up.

4.6 General
The experiment showed that the unified stiffness of an

eigen-wrench and eigen-twist can be determined experimen-
tally. However this is done by calculations based on mea-
sured twists and induced wrenches. To truly validate the the-
ory presented in Chapter 3 an additional experiment is neces-
sary. This additional experiment should measure the unified
stiffnesses in a more direction manner, independent of Lip-
kin’s eigen-decomposition. Subsequently the results of this
additional experiment can be compared with the experiment
presented in this Chapter. This comparison would be the fi-
nal step in the validation of the unified stiffness.

The modelled and measured results differ, explained
by introduced compliance, slack and pre-loading due to the
measurement set-up. As well as thickness variation and
anisotropic material behaviour of the physical model as a re-
sult of uneven stretching during vacuum thermoforming.

Fig. 10: Moments along the translational deformation

Both introduced compliance and slack in the measure-
ment set-up and thickness variation and anisotropic material
behaviour are not integrated into the computational model
used. The arbitrary adjusted model illustrated the substantial
sensitivity of the strict constraints. It is recommended to do a
thorough sensitivity analysis on the presented phenomena in-
fluencing the discrepancy between the computationally and
experimentally determined unified stiffnesses. It would also
be recommended to validate the assumed material properties
using a tensile test. It is also recommended to increase the
quantitative reliability of the experiment by prioritizing the
stiffness in the x and y rotational and translational direction
of the measurement set-up.

The presented strategy to experimentally determine and
validate all components of the unified stiffness can be used
to construct one eigen-twist and one eigen-wrench. The ex-
periment has the potential to fully determine Lipkin’s eigen-
decomposition. The complete eigen-decomposition can be
used to construct the 6x6 tangent stiffness matrix of a spa-
tial compliant mechanism. To determine all eigen-twists
and eigen-wrenches the measurement set-up displacement
inducer must be extended with four additional DoF’s.

5 Conclusion
The experiment has shown that the unified stiffness, cor-

responding to an eigen-twist and eigen-wrench of a physical
model can be determined experimentally within the same or-
der of magnitude as the computational model. The measured
qualitative behaviour of the physical model is similar to the
computational model but the quantitative data indicates di-
vergence at measurements deviating from the eigentwist lo-
cation. However, the discrepancies between the measured
and computationally modelled data are substantial. The dis-
crepancies can be partially explained by the measurement
set-up design and the production process of the physical



model.
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Compliant shell mechanisms are valuable building
blocks for spatial mechanisms design, due to their unique
kinematics and geometry. To match building blocks and
design specifications this paper introduces a library of
promising building blocks which are characterized using
a unified stiffness method and in this paper introduced
definitions, which allows for a full compliance compar-
ison between all translational and rotational kinematic
degrees of freedom within and between building blocks,
while accounting for coupling and geometric non-linear
behaviour.

1 Introduction
Compliant shell mechanisms are spatially curved thin-

walled structures used to transmit or transfer loads, motion
or energy through elastic deformation [1]. The main benefits
of compliant shell mechanisms, as stated by Howell [2] and
Radaelli [3], are easy assembly, no wear, no backlash, low
friction, easy assembly and no need for lubrication. Addi-
tional benefits are easy cleaning and possibly appealing aes-
thetics.

In related research shell elements are described and
characterized both computationally as can be seen in work
of Kim [4] and Radaelli & Herder [5] and analytically, as
can be seen in the work of Seffen [6], Pellegrino [7]. Lipkin
& Patterson [8] first introduced an eigen-decomposition to
characterize principal kinematic rotational en transnational
degrees of freedom axes and corresponding stiffness while
including coupling, utilizing Plücker coordinates [9]. Based
on this eigen-decomposition, Leemans [10] introduced the
unified stiffness characterization method.

Libraries of building blocks provide the opportunity
to match building blocks with design specifications [11].
While libraries are presented in previous work [1], no library
of building blocks is available that captures non-linear
behaviour, coupling and unified stiffness. Such a library
would be valuable since a thorough description of non-linear
behaviour is necessary for designs subjected to large defor-
mations. Furthermore, including the unified stiffness allows
for a physically meaningful and consistent comparison
between all degrees of freedom within and between mech-
anisms. The comparison provides the possibility to order
all relative kinematic degrees of freedom of the building
blocks in terms of compliance. With the introduction of a
systematic degree of compliance order rises the opportunity

to consistently classify different types of degrees of freedom
as either constraints or freedom directions.

In this paper, we introduce definitions utilizing the
unified stiffness, on which a characterization framework
is based. This characterization framework is applied on
promising building blocks introduced by Nijssen [1].

The paper is organized as follows, section 2 contains
background theory on the eigen-decompositions and the uni-
fied stiffness characterization. Section 3 introduces defini-
tions, utilizing the unified stiffness. Section 4 present the
characterization framework and the characterized building
blocks with interpretation and generalization. Section 5 dis-
cusses the contributions made by this paper. A brief sum-
mary is given and a general conclusion is drawn in Section
6.

2 Background
This section provides background information on eigen-

decompositions and the unified stiffness characterization
method as described in the work of Lipkin & Patterson [8]
and Leemans [10].

2.1 Eigen-decomposition
Any symmetric positive definite non-singular tangent

stiffness Kt and tangent compliance matrix Ct can be decom-
posed into an eigen-system as described by Lipkin & Pat-
terson [8]. The eigen-decomposition describes three transla-
tional and three rotational principal axes, with corresponding
stationary multiplier values of the translational and rotational
stiffness. Lipkin’s eigen-decomposition of the tangent stiff-
ness matrix Kt is defined as,

Kt =
[
ŵ f ŵγ

][k f 0
0 kγ

][
ŵ f
ŵγ

]
(1)

and the resulting tangent compliance matrix eigen-
decomposition is defined as,

Ct =
[
T̂ f T̂γ

][a f 0
0 aγ

][
T̂ f
T̂γ

]
(2)

where for i = 1,2,3 multipliers kγi > 0 and aγi > 0 are the
angular stiffnesses and compliances in the directions of the



γi, multipliers k f i > 0 and a f i > 0 are the translational stiff-
nesses and compliances in the directions of the fi. w f are
the eigen-wrenches, these directions are also known as the
wrench or principal translational kinematic degrees of free-
dom axes, defined as

w f i =

[
~fi
~τi

]
, i = 1,2,3 (3)

Applying an eigen-wrench w f i leads to an induced twist
T f i a pure translational displacement parallel to the force
direction ~fi. Tγ are the eigen-twists, these directions are also
known as the twist or principal rotational kinematic degrees
of freedom axes, defined as

Tγi =

[
~δi
~γi

]
, i = 1,2,3 (4)

Applying an eigen-twist Tγi leads to an induced wrench wγi
a pure moment parallel to the rotational direction ~γi

2.2 Unified stiffness
Leemans [10] introduced a characterization based on

unified stiffness which takes into account coupling and al-
lows comparison of compliance between all six degrees of
freedom of mechanisms. With this comprehensive compar-
ison the opportunity rises to order all degrees of freedom,
within and between mechanisms in terms of compliance.

The diagonal matrices of the decompositions in Equa-
tions 1 and 2 consist of the compliance and stiffness station-
ary multipliers corresponding to the eigen-wrench and eigen-
twist axes. Considering the decomposition in Equation 2,
the upper three stationary multipliers a f are the translational
compliances and the lower three stationary multipliers aγ are
the rotational compliances. To enable a meaningful compar-
ison between rotational and translational stationary multipli-
ers two approaches are introduced. The most intuitive and
widely applicable is the RasT approach which expresses the
rotational compliance as an equivalent translational compli-
ance at the point of interest resulting in the RasT unification
equation,

ã fi = χ2
i aγi (5)

where χi is the unification variable,

χi =
√

h2
i + |ri|2 (6)

3 Quantification definitions
To quantify the relations of the degrees of freedom we

introduce new definitions utilizing the unified stiffness.

With the availability of the comprehensive comparison
between the degrees of freedom the opportunity rises to or-
der all the compliances corresponding to these degrees of
freedom. The degrees of compliance (DC) correspond to the
de degrees of freedom of a mechanism in decreasing order
given as,

DC1 > DC2 > DC3 > DC4 > DC5 > DC6. (7)

In addition to the degree of compliance order we can com-
pare the ordered degrees of compliance, by defining the de-
gree of compliance ratio’s. All compliances are normalized
with respect to the primary compliance DCI of the mecha-
nism. The degree of compliance ratio’s ηDCi are given as,

ηDCi =
DCi

DC1
i = 1,2, ..,6 (8)

To determine the amount of freedom and constraint direc-
tions of a mechanism in a consistent manner we introduce
the degree of freedom threshold t. Which counts the amount
of degrees of freedom of which the degree of compliance ra-
tio is larger than a specified threshold. Based on the degree
of freedom threshold t we introduce the number of threshold
freedom directions FDt defined as,

FDt =COUNT IF(ηDCi >
1
t
) i = 1,2, ..,6 (9)

and the number of threshold constraint directions in 3-
dimensional space IR3 is defined as,

CDt = 6−FDt (10)

A threshold of t = 10 would find the amount of degrees of
freedom whose corresponding unified compliances are larger
then one-tenth of the primary compliance, thus the same or-
der of magnitude. Defining the amount of threshold freedom
and constraint directions is solely possible due to the unified
stiffness characterization.

To compare the compliances of mechanisms in a group
of building blocks we introduce the normalized primary
compliance. Which is the primary compliance of a speci-
fied mechanism normalized with respect to the primary com-
pliance of the most compliant building block in the, to be
compared, building block group. The normalized primary
degrees of compliance are given as,

|ηDC1 |=
DC1

MAX(DC1)
(11)



Fig. 1: Overview of the initial state unified compliances and directions

4 Characterization
This section introduces a characterization framework, based
on the unified stiffness and the introduced quantification def-
initions. The characterization is applied to promising build-
ing blocks introduced by Nijssen [1]. The dimension of the
building blocks are in the same order of magnitude as they fit
in the same box. The physically feasible building blocks are
illustrated in Figure 1. The surface equations and the affect
of the corresponding parameters are described in Appendix
6. This section provides an interpretation and generalization
of the characterization results.

4.1 Linear characterization
The shell mechanisms are evaluated using an iso-

geometric analysis, all with the same linear material prop-
erties; the Young Modulus is 2.9 GPa and the Poisson ra-
tio is 0.38. The 2mm thick geometries are translated into
NURBS [12]. All mechanisms are fully constraint along one
edge, indicated in Figure 1 by black lines. The opposing
edges are modelled infinite stiff along the edge and the point
of interests connected to these edges are indicated with black
dots. The tangent stiffness matrices are determined with re-
spect to these points of interest.

Figure 1 shows all building blocks characterized using
the RasT unified stiffness characterization. The direction of
a blue unified compliance vector represents an eigen-twist
direction. The direction of a red unified compliance vec-

tor represents an eigen-wrench direction. The magnitudes of
the vectors represent the corresponding unified compliances.
Larger compliance vectors represent greater compliance of
the corresponding degrees of freedom.

Due to the different order of magnitudes of the unified
compliances, the vector magnitudes are not represented on
the same scale. To gain insight into the relation of the com-
pliances between the building blocks we compare and order
the primary compliances of all building blocks. By using, the
in section 3 introduced, normalized primary compliances, as
can be seen in Table 1. The normalized primary degrees of
compliance ratios are ordered in increasing compliance or-
der.



Table 1: Normalized primary compliances

B. block |ηDC1 |
A) Hyperbolic parabolic 5.63 ·10−03

B) Double parabolic 6.02 ·10−03

D) Shoe surface 1.27 ·10−02

C) Parabolic canoid 1.36 ·10−02

E) Double corrugated 1.51 ·10−02

F) Single corrugated 7.00 ·10−02

H) Sinusoidal helix 2.65 ·10−01

G) Helix 3.99 ·10−01

I) Evolvent helicoid 1.00

Large differences in primary compliance are observed.
Although mechanism A to F and G to I are of similar size it
shows that the primary compliance differs at least one order
of magnitude. Explained by the larger arc-length of the helix
based mechanisms, defined by the shortest distance from the
point of interest to the base, through the surface.

Table 2 shows the compliance type order per building
block and the in section 3 introduced amount threshold free-
dom directions FDt with t = 10 in the undeformed configu-
ration.
Where Table 1 provides the comparison between building
blocks, Table 2 provides the comparison of degrees of free-
dom within the building blocks. All building blocks ex-
cept for the Sinusoidal Helix have an eigentwist direction
as primary compliance. All building blocks except for the
Parabolic Canoid have more than one FD10.

4.2 Non-linear characterization
In this section we describe the non-linear behaviour of

the shell building blocks in terms of the unified stiffness and
the introduced definitions. The building blocks are actuated
under influence of wrenches that initially result in the dis-
placement in the direction of the initial three primary com-
pliance axes, while being held fixed along a boundary. The
three primary actuations are refered to as Act. wDC1 , wDC2

and wDC3 .
The results of all building blocks, introduced in section

4, are captured graphically in an library shown Appendix
B of which one is presented in Figure 2 and discussed in
detail. The behaviour of all building blocks is described
by discussing unique behaviour. The three actuations are
listed, followed by a colon and a short description of the be-
haviour of the threshold 10 freedom directions (FD10). Sub-
sequently, the behaviour of the building blocks is general-
ized.

Table 2: Normalized primary compliances

B. Block Compliance type order FD10

A) T1 > w1 > T2 > T3 > w2 > w3 2

B) T1 > T2 > w1 > T3 > w2 > w3 3

D) T1 > w1 > T2 > T3 > w2 > w3 2

C) T1 > w1 > w2 > T2 > T3 > w3 1

E) T1 > w1 > T2 > T3 > w2 > w3 3

F) T1 > w1 > T2 > w2 > T3 > w3 2

H) w1 > T1 > T2 > T3 > w2 > w3 6

G) T1 > w1 > T2 > T3 > w2 > w3 6

I) T1 > w1 > w2 > w3 > T2 > T3 4

The full characterization framework is based on
the RasT unified stiffness approach and the introduced
definitions, which shows; The describing equation with
parameters description. The initial degree of compliance
type order. The six degrees of freedom directions with
unified compliances in the initial undeformed configuration.
The three most dominant compliance vectors are shown
during the three primary actuations. Three graphs showing
the stationary unified compliances corresponding to the six
degree of freedom directions against the travelled path of the
point of interest along three primary actuations.

A) Hyperbolic parabolic: This building block charac-
terization is shown in Figure 2. The Hyperbolic parabolic
initially has one distinctive freedom direction, parallel to the
y-axis, since ηDC2 is 0.15. Interestingly the eigentwist T1
has limited axis drift along actuation wDC1 , while the stiff-
ness is not increasing. Actuation wDC2 initially results in the
translation in the direction of w1, however due to parasitic
movement the resulting point of interest path is similar to ac-
tuation wDC1 . The threshold 10 freedom direction behaviour
during three primary actuations are given as,

Act. wDC1 : FD10 of two and type order remains the same.
The compliance of T1 and w1 increases at a rate so that
ηDC2 remains 0.15.

Act. wDC2 : FD10 of two and type order remains the same.
While the compliance of T2 increases it is insufficient to
become a FD10.

Act. wDC3 : FD10 becomes three, due to an increasing com-
pliance of T2 and T3 and stiffening of T1.

B) Double parabolic: Interestingly the double
parabolic shows similar initial behaviour to the Hyperbolic
parabolic except for the fact that the double parabolic has an
extra FD10 along the z-axis with an ηDC2 of 0.76 in the initial
state.

wDC1 : FD10 changes from three to two, due to an increasing
T1 compliance.



Fig. 2: Characterized Hyperbolic parabolic building block

wDC2 : FD10 remains three, however due to a stiffening of T1
the type order switches to T1, T2, w1.

wDC3 : FD10 and type order remains the same.

C) Parabolic canoid: This building block which has the
clearest distinction between freedom and constrained direc-
tions. As stated in Table 2 the building block has one FD10.
With a threshold t = 100 only has two FD100. The tertiary
compliance w2 is thus at least 100 times less compliant than
the primary compliance T1.

wDC1 : FD10 of two and type order remains the same.
wDC2 : FD10 changes from one to two, due to an increasing

w1 compliance.
wDC3 : FD10 changes from one to two, due to an increasing

T1 compliance.

D) Shoe surface: Unique for this surface is that defor-
mation in all three degrees of freedom results in a significant
increasing secondary compliance, as it results in a type order
rearrangement.

wDC1 : FD10 changes from two to three, due to an increasing
T2 compliance, the type order switches to T1, T2, w1.

wDC2 : FD10 changes from two to three, due to an increasing
T2 compliance, the type order switches to T2, T1, w1.

wDC3 : FD10 remains two, however T1 stiffens significantly,
while T2 and T3 become more compliant, the resulting
type order becomes T2, T3.

E) Double corrugated: This building blocks shows the
following behaviour.

wDC1 : FD10 changes from three to two, due to an exponen-
tially increasing T2 compliance, while the other stay rel-
atively constant. The type order switches to T2, T1.

wDC2 : FD10 changes from three to four, due to an increas-
ing T2 compliance and stiffening of T3 the type order
switches to T2, T1, w1, T3.

wDC3 : FD10 changes from three to four, as the compliance
of T3 slightly increases.

F) Single corrugated: This building block is the most
compliant building block which is not based on the Helix.

wDC1 : FD10 remains two, all value stay relatively constant.
wDC2 : FD10 remains two, all value stay relatively constant.
wDC3 : FD10 remains two, however the T2 compliance in-

creases exponentially while T1 stiffens.

G) Helix: This building blocks shows minimal axis
drift of the the primary and secondary compliance vectors
T1 and w2, while deforming in their directions, due to the
circular symmetry.

wDC1 : FD10 of six becomes four, since the T1 compliance
increases.

wDC2 : FD10 remains six, since T1 stiffens.
wDC3 : FD10 remains six, since T1 stiffens.

H) Sinusoidal helix: This building block shows similar
behaviour as the regular helix, except for a smaller rotational
compliance in the z-direction due to the single corrugation.
Resulting in the only translational primary compliant build-
ing block.



wDC1 : FD10 remains six, all value stay relatively constant,
except for a switch in order of T3 and T2.

wDC2 : FD10 remains six, but T1 and w1 switch due to an
increasement of w1 compliance.

wDC3 : FD10 of six becomes four, since both T1 and T3 in-
crease in compliance, the type order becomes T1, w2, T3,
w2.

I) Evolvent helicoid: This building blocks has a dis-
tinctive primary compliance T1 as ηDC2 is 0.37, with minimal
axis-drift during the corresponding deformation.

wDC1 : FD10 remains four, all value stay relatively constant.
wDC2 : FD10 of four becomes 6, since T1 stiffens.
wDC3 : FD10 of four becomes 6, since T1 stiffens.

4.3 Generalization
The eigen-decomposition directions and corresponding

stationary multipliers are derived from the compliance and
stiffness matrix. Both the stiffness and compliance matrices
are comprised of two matrices, considering the compliance
matrix this is given as,

Ct =Cp +Cg (12)

where Cp is the physical compliance matrix describing the
initial compliance in undeformed configuration, which is de-
scribed in Section 4.1. Cg is the geometrical stiffness matrix
describing the compliance as a result of deformation, which
described in Section 4.2. The physical compliance matrix is
based on, assumed linear, material behaviour. While the geo-
metric compliance matrix is based on the changing geometry,
which behaves non-linearly. Similar statements can be made
regarding the stiffness matrix. Non-linear behaviour of the
compliance multipliers is therefore solely the result from the
changing geometry.

Two important geometric phenomena are observed that
cause change in compliance as a result of deformation at the
point of interest. This includes change in:

- Second moment of area
- Mechanism length

These two phenomena are described in the next two subsec-
tions.

4.4 Second moment of area
Compared to compression, tension and shear, bending

dominates the determination of primary compliance direc-
tions and magnitudes in compliant shell mechanisms [3].
The second moment of area contributes significantly to the
corresponding bending compliance.

The second moment of inertia is a local geometrical
property of cross-section with respect to an axis defined
by the cross-sectional area and shape. The cross-sectional
area stays relatively constant in shell deformations, while the
cross sectional shape can vary significantly under deforma-
tion.

(a) Undeformed (b) Deformed

Fig. 3: Reduced second moment of area Imin cross section
xy-plane at height T1 of the double parabolic illustrated

The global bending compliance is defined by the inte-
gral of the local bending compliances along the length of the
mechanism. More compliant segments of the mechanisms
will therefore take account for more deformation [3].

Actuation in the primary compliance direction of the
double parabolic, as shown in Figure 2, illustrates the lo-
cally reduced minimum second moment of area at height T1.
The Hyperbolic Parabolic deforms to the most favourable
deformation state under the applied load. As the mecha-
nism deform the surface curvature parallel to T1 decreases.
This decreasing second surface curvature results in a locally
decreasing second moment of area. The locally decreasing
minimum second moment of area contributes to a globally
decreasing primary compliance magnitude.

This is evidenced by the change in cross sectional shape
of the double parabolic shown in Figure 3 but also numeri-
cally shown in Figure 2.

4.5 Mechanisms length
A changing mechanisms length also contributes signif-

icantly to bending compliance. The mechanisms length is
defined as the shortest distance between the point of inter-
est and the point of constraint. Longer mechanisms enable
greater strain energy absorption and facilitate larger displace-
ments and rotations with lower stresses and are more compli-
ant [13].

The global bending compliance is defined by the inte-
gral of the local bending compliances along the length of the
mechanism. Therefore, not considering the varying second
moment of area, elongation of a mechanism contributes to
the bending compliance.

The deformation in the primary compliance direction of
the two corrugated shells, presented in Figure 1, illustrates
the effect of the mechanism length on the compliance. The
corrugations along the z-axis between the single and the dou-
ble corrugated shell are mirrored. Actuation in the same di-
rection around T1 for both corrugated shells has different ef-
fects on the mechanism length. Where actuation in the same
direction around T1 for the single corrugated shell increases
the average corrugation curvature, the opposite behaviour is
observed in the double corrugated shell. The change in cur-
vature of both mechanism influences the mechanism length.

The increased mechanism length of the single corru-
gated shell, presented in Figure 1, actuated in the primary
compliance direction is illustrated in Figure 3.



(a) Undeformed (b) Deformed

Fig. 4: Increased mechanism length illustrated at the zx-
plane cross section of the single corrugated shell

5 Discussion
While compliance ellipsoids capture and illustrate be-

haviour intuitively [1], they do not address the coupling be-
tween translations and rotations. Additionally, due to differ-
ent units, the rotational and translational ellipsoids are not
comparable.

The unified stiffness characterization method, used in
this paper, addresses coupling and is able to compare all de-
grees of freedom within and between mechanism [10].

In this paper, we introduced degree of compliance ra-
tios which are able to quantify the relation between all six
degrees of freedom in terms of compliance. The threshold
freedom direction allows for a consistent freedom and con-
straint direction assessment of multiple building blocks. The
normalized primary compliance ratio is used to quantify the
relationship between all building blocks in terms of primary
compliance. These definitions could not be defined without
the introduction of the unified stiffness method.

To create a more meaningful comparison between build-
ing blocks, for further research, we would recommend nor-
malizing the shell size with respect to their shortest internal
length, defined by the shortest distance through the mecha-
nism from the point of interest to the constraint edge. This
would make the research variable, the geometrical shape, a
larger differentiator in terms of compliance.

Presenting the behaviour of six degrees of freedom un-
der large deformations on paper is limited due to space. More
information can be accumulated in Appendix B. The princi-
ples of the characterization framework can be used include
behaviour along the deformation in both directions of all the
degrees of freedom.

Applying the eigen-decomposition, the unified stiffness,
the degree of compliance ratio’s and the threshold freedom
directions on the promising building blocks results in a valu-
able library, containing uniquely described behaviour, such
as zero axis drift, parasitic movement, increasing compli-

ances during deformation and distinctive single degrees of
freedom shells.

6 Conclusion
This paper introduces definitions which give deeper in-

sight in spatial compliant shell mechanism behaviour in an
intuitively manner. A characterization framework is intro-
duced, based on new definitions, able to capture the be-
haviour of all six kinematic degrees of freedom during the
deformation in the three primary compliance directions. The
characterization framework is applied to promising build-
ing blocks and results in interesting and unique described
behaviour useful for spatial mechanism design subjected to
large deformations. The observed behaviour is generalized
based on the characterization by identifying important fac-
tors influencing the compliance.
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déplacement fini ou infiniment petit d’un corps solide
libre”. Bulletin des Sciences Mathématiques, Férussac,
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Appendix A: Building block surface equations
A) Hyperbolic parabolic: The surface equation is given as,

x(y,z) = az2−by2 (13)

This negative Gaussian curvature surface has parameters a
and b, which affect the magnitude of the two curvatures.

B) Double parabolic: The surface equation is given as,

x(y,z) = az2 +by2 (14)

This positive Gaussian curvature surface has paramters a
and b, which affect the magnitude of the two curvatures.

C) Parabolic Conoid: The surface equation as described in
[14] is defined as,

x(y,z) = z

√
a2− y2

2
(15)

The a parameter affects the slope of the centreline.

D) Shoe surface: The surface equation as described in [15]
is given as,

x(y,z) = a
z3

2
+b

y2

2
(16)

The a parameter affects the cubic curvature and b parameter
affects the parabolic curvature.

E) Double corrugated shell: The surface equation as de-
scribed in [16] is given as,

x(y,z) =−a(y−b)2− ccos(
nπz
d

)+ab2 (17)

Where a is the height of the second curve, b is half the
width, c is half of the amplitude of the corrugation and n
effects the number of corrugations.

F) Single corrugated shell: The surface equation as described
in [14] is given as,

x(y,z) =−ccos(
nπz
d

) (18)

The n parameter effects the number of corrugations, the c
parameter effects the amplitude of the corrugation and d
effects the width of a corrugation.

G) The Helix: The surface equation given in [14] is described
by the following system of equations,

x(u,v) = acos(v) (19)
y(u,v) = asin(v) (20)
z(u,v) = cv+u (21)

Where u and v effect the width and length of the helix. The
a parameter defines the radius of the helix and c the distance
between the revolutions.

H) Sinusoidal helix: The surface equation described by the
following system of equations,

x(u,v) = (a+ ccos
(nπv

d

)
cos(u)) (22)

y(u,v) = (a+ ccos
(nπv

d

)
sin(u)) (23)

z(u,v) = bu− v (24)

The a parameter defines the radius, c the corrugation
height, d the corrugations amplitude and n the amount of
corrugations.

I) Evolvent helicoid: The surface equation given in [17] is
described by the following system of equations,

x(u,v) = acos(v)−ausin
( v

m

)
(25)

y(u,v) = acos(v)−aucos
( v

m

)
(26)

z(u,v) = bv+
bu
m

(27)

Where u and v effect the width and length of the helix. The
a parameter defines the radius of the mechanism and m the
the height and angle of the spiral.





6
Discussion

This discussion is subdivided into categories discussing the design strategy, characterization theory, experi-
ment and library and finally the potential for generalization of this work. Each sections discussing a chapter
starts with a paragraph stating general and thesis specific contributions, followed by a paragraph recom-
mending future work.

Design strategy
Previous research into compliant scoliosis braces utilizing compliant mechanisms, did not account for
brace-tissue interaction, resulting in difficult to validate braces [6, 15]. To increase the ability to validate the
brace, the in Chapter 2 proposed strategy does take into account brace-tissue interaction. This allows po-
tential designs that follow from the proposed strategy to be validated in terms of correction efficiency using
BraceSim [2].

In the current work, we take brace-tissue interaction into account at the cost of omitting the promis-
ing force-controlled correction strategy [1]. After validation of a displacement-based compliant scoliosis
brace, it is recommended to research the potential of including a force-controlled correction strategy. Chap-
ter 2 introduces a case study to illustrate the presented strategy. However, the case study patients motion
characteristics were unavailable, therefore completed by the scaled motion characteristics of a patient with
a similar spinal curvature. This is based on the assumption that both patients have similar bend character-
istics and that the captured motion characteristics can be scaled. Ideally both the correction and motion
analysis is done on the same patient to avoid the necessity of this assumption. The load design specifica-
tions are based on BraceSim, which analyses the efficiency of the brace in neutral posture. However, since
the compliant scoliosis allows the patient to bent, the correctional loads in bent positions should also be
researched. This can be done experimentally or by modifying the finite element model of our collabora-
tors from the École Polytechnique de Montréal [2]. To translate the design specifications into a final design,
Chapter 2 recommends research into characterization theory and synthesis methods of non-linear compli-
ant shell mechanisms. The development and utilization of characterization theory is presented in Chapters
3, 4 and 5.

Characterization Framework & Theory
Systematic design methods to design shell mechanisms that satisfy the presented design specifications are
not available in the literature. Therefore chapter 3 introduced a non-linear characterization method for
compliant shell mechanisms that potentially leads to a design method for these mechanisms. The charac-
terization method formulated in this work has benefits compared to existing methods. Previously available
characterization methods did not address the coupling between rotations and translations [8]. Furthermore
available methods were only able to separately compare rotational kinematic degrees of freedom and trans-
lational kinematic degrees of freedom, within one mechanism [6]. This work has enabled the comparison
of rotational and translational compliances with each other by introducing a unification variable. Existing
methods introduced arbitrarily chosen unification variables [17], while this work introduced two consis-
tently derived physically meaningful unification lengths which include coupling. The presented character-
ization theory has the potential to be used to develop a synthesis method to design compliant shell mecha-
nisms which could match the design specifications presented in 2.

Since the presented characterization can be applied on mechanisms subjected to large deformations
it is recommended to research the influence of material non-linearities in addition to the described geo-
metrical non-linearities. Chapter 3 recommends to experimentally validate the characterization theory and
utilize the characterization theory to develop a library of systematically characterized mechanisms. This is
addressed in Chapters 4 and 5.
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46 6. Discussion

Characterization Experiment
The demonstrates the feasibility of producing compliant shell mechanisms with modelled unified stiff-
ness characteristics. However, there is a difference observed in the modelled and measured quantitative
results, explained by unwanted pre-loading and introduced compliance in the measurement set-up. As well
as anisotropy and thickness variation of the physical model as a result of the production process.

It is recommended to do a sensitivity analysis on the presented effects influencing the discrepancy be-
tween the computationally and experimentally determined unified stiffness. It is therefore recommended
to integrate these effects into the computational model. Furthermore, it is recommended to validate the
assumed material properties using a tensile test. To reduce the result discrepancy between the physical
and computational model, the measurement set-up should be designed with more focus on stiffness in
the x and y rotational and translational direction. The presented strategy to experimentally determine the
unified stiffness has the potential to fully determine Lipkin’s eigen-decomposition. [11]. A complete eigen-
decomposition can be used to construct the 6x6 tangent stiffness and compliance matrix of a spatial com-
pliant mechanism. The determination of all eigen-twists and eigen-wrenches could be achieved by extend-
ing the displacement inducer with four additional degrees of freedom.

Characterization Framework & Library
The consistent comparison between all six kinematic degrees of freedom leads to the, in chapter 5, intro-
duced definitions. These definitions define relationships of complaint mechanism properties not described
in the literature. This includes compliance ratios, which are able to quantify the relation in terms of com-
pliance between all six degrees of freedom. The threshold freedom direction, which allows for a consistent
freedom and constraint direction assessment of multiple building blocks. The normalized primary compli-
ance ratio, which is used to quantify the relationship between different building blocks in terms of primary
compliance. The non-linear characterization theory presented in Chapter 3 and the introduced definition
resulted in a characterization framework. Where previous libraries did not take into account coupling and
non-linearity this library does [6]. However, the comprehensive library is associated with an increase in in-
terpretation difficulty. The library contains compliant shell mechanism which potentially can be used to
match the design specifications presented in Chapter 2.

In this work, the sizes of the shell mechanisms are normalized to allow for a fair comparison by fitting
them into the same box. In future work, we would recommend normalizing the size with respect to their
shortest internal length, defined by the shortest distance through the mechanism from the point of interest
to the constraint edge. This would make the research variable, the geometrical shape, a larger differentia-
tor in terms of compliance. It is also recommended to research the influence of material non-linearities in
addition to the described geometrical non-linearities. Further research is necessary to develop a synthesis
method to design with the presented compliant shell mechanisms. Such a synthesis method could be uti-
lized to match compliant shell mechanisms with the design specifications presented in Chapter 2.

Generalization
Non-linearity is often avoided in engineering and treated as failure mode, while it can provide interest-
ing and desired behaviour. Embracing non-linearity enlarges the design-space and enables cutting-edge
designs. This work is focused on non-linear shell mechanisms, however, the characterization theory and
framework potentially leads to systematic synthesis method for any non-linear static spatial compliant
mechanism. This potential is briefly discussed in preliminary work shown in Appendix F. Further research
is necessary for series, parallel and hybrid conjunctions of building blocks. A systematic synthesis method
for non-linear spatial compliant mechanisms could be used to create conceptual designs. Using shape and
size optimization algorithms conceptual designs could be optimized to reduce the last discrepancy between
actual and desired behaviour. The potential of the work presented can be used, but is not limited, to the de-
sign a compliant scoliosis brace.



7
Conclusion

This work has presented a strategy to reduce the complexity of a bio-mechanical compliant brace design
problem into an isolated mechanical engineering problem. The main kinematic qualitative functional re-
quirements are converted into quantitative design specifications for a spatial compliant mechanism, as
shown through an example patient. In future work generated concepts, based on the design specifications,
can validated using proven BraceSim software.

A comprehensive characterization method is introduced that takes non-linear behaviour into ac-
count, considers coupling and allows the comparison of stiffness between all six degrees of freedom. The
characterization allows the comparison of compliance between degrees of freedom of within and between
mechanisms. With this introduced comprehensive comparison the opportunity rises to order all degrees of
freedom, within and between mechanisms in terms of compliance. The most predominant degrees of free-
dom can now be identified along the trajectory of large deflections of compliant mechanisms. The charac-
terization, presented in this paper, can be done for any mechanism which has a symmetric positive definite
non-singular compliance matrix. This includes both compliant flexure and shell mechanisms. An experi-
ment has shown that the unified stiffness corresponding to an eigen-twist and eigen-wrench of physical and
computational model can be determined experimentally within the same order of magnitude.

Furthermore, this work introduces definitions which give a deeper insight into spatial compliant shell
mechanism behaviour in an intuitive manner. A characterization framework, based on the introduced char-
acterization method and the introduced definitions, able to capture the behaviour of all six kinematic de-
grees of freedom along the trajectory of deformation in the three primary compliance directions. The char-
acterization framework is applied to promising building blocks and results in interesting and unique de-
scribed behaviour useful for spatial mechanism design subjected to large deformations. The observed be-
haviour is generalized based on the characterization by identifying important phenomena influencing the
compliance.

In conclusion, by translating the main functional requirements of a compliant scoliosis brace into de-
sign specifications of a compliant shell mechanism. Together with the introduction of characterization the-
ory, an experiment and a characterized library of compliant shell mechanisms, which potentially leads to a
synthesis method. This therefore work enhances the design process of a compliant scoliosis brace.
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Paper: Unified Rotational and Translational Stiffness Characterization of Com-
pliant Mechanisms
This paper is accepted and will be published at the ASME 2018 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference IDETC/CIE 2018.
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ABSTRACT

Compliant shell mechanisms utilize spatially curved thin-
walled structures to transfer or transmit force, motion or energy
through elastic deformation. To design with spatial mechanisms
designers need comprehensive characterization methods, while
existing methods fall short of meaningful comparisons between
rotational and translational degrees of freedom. This paper
presents two approaches, both of which are based on the prin-
ciple of virtual loads and potential energy, utilizing properties of
screw theory, Plücker coordinates and an eigen-decomposition,
leading to two unification lengths that can be used to compare
and visualize all six degrees of freedom directions and mag-
nitudes of compliant mechanisms in a non-arbitrary physically
meaningful manner.

∗Address all correspondence to this author.

INTRODUCTION
The spatial geometry of compliant shell elements makes

them useful as building blocks for spatial mechanism design.
Researching the behaviour of compliant shell elements is done
both analytically, as can be seen in the work of Seffen [1], Pelle-
grino [2] and computationally as can be seen in work of Radaelli
& Herder [3, 4]. The difficulty of characterizing compliant shell
mechanisms lies in the intertwined kinematics and kinetics.

To design mechanisms designers need insight into their kine-
matics. In the field of rigid body mechanisms this is often charac-
terised by the exact degrees of freedom describing the constraint
and free motion directions. Compliant shell mechanisms do not
have clear distinctive constraint and free motion directions, since
motion tendencies are determined by the relative compliance of
the mechanisms.

In order to characterize compliant shell mechanisms we
shall discuss the relative compliances of the kinematic degrees
of freedom, for spatial compliant mechanisms defined by
Nijssen [5] as,

1 Copyright c© 2018 by ASME



”The motion tendency of a mechanism in 3D space, defined
by the relationship between the three rotational and three
translational compliances”

Relative compliances refer to the compliance ratios between the
relative kinematic degrees of freedom. From here on referred
to as the degrees of freedom. Determining and utilizing these
degrees of freedom has proven useful in the characterization and
synthesis of spatial mechanisms [4–6].

In related work, different methods are used to characterize
the degrees of freedom of compliant mechanisms. Existing meth-
ods do not address the coupling between translations and rota-
tions and thus discuss the rotations and translation separately, for
example, by using compliance ellipsoids [4]. Methods to charac-
terize principal compliance axes while including coupling were
first introduced by Lipkin & Patterson [7], utilizing Plücker co-
ordinates. Lin [8] introduced an independent derivation of prin-
cipal compliance axes using hybrid coordinates. Two incompa-
rable principle rotational and translational compliance directions
and corresponding magnitude multiplier groups, containing all
six degrees of freedom result from Lin and Lipkin’s derivation.
A full comparison and order of the six degrees of freedom would
give deeper insight into kinematic characteristics, such as the
determination of whether a mechanism is predominantly rota-
tional or translational compliant. Methods to convert these mul-
tiplier groups into compatible units, introduce arbitrarily defined
characteristic lengths [9], lacking a physical consistent meaning.
This leads to non-robust solutions, since this arbitrarily chosen
length represents a different physical distance per analysis. Con-
sequently the resulting unified compliances are not comparable
between mechanisms.

A method with comparable results to a section of this paper
is introduced by Lin [8]. Lin’s derivation is based on a geometri-
cal interpretation of hybrid coordinates to derive principal stiff-
ness axes. The corresponding stiffnesses are converted to similar
units based on the principle of potential energy. By introduc-
ing the principle of potential energy all directional information
is lost, since energy is a scalar quantity. Lin’s method is used to
optimize the gripping force of graspers, instead of characterizing
compliant mechanisms.

This paper presents two approaches that utilize proper-
ties of screw theory, Plücker coordinates and Lipkin’s eigen-
decomposition which lead to unified compliances. The unified
compliances, consisting of two multiplier groups with identical
units, facilitates a comparison between all six degrees of free-
dom compliance magnitudes in a non-arbitrarily insightful man-
ner while including coupling. The unification is utilized in a spa-
tial characterization compliant mechanisms.

After the introduction the paper continues, in Section , with
background theory on Plücker coordinates, stiffness matrices
and Lipkin’s eigen-decomposition. Section visualises Lipkin’s

eigen-decomposition. The background theory and visualisation
are used to determine two approaches that lead to the unification
of the compliances in Section . The unification is used to present
a visual characterization of the kinematic behaviour of two well-
known compliant flexure mechanisms as illustrated in Section .
Section discusses the contribution made by this paper. A brief
summary is given and a general conclusion is drawn in Section .

BACKGROUND
According to Chasles’ theorem [10] a displacement in three-
dimensional space can be expressed in Plücker coordinates vec-
tor form as a twist T containing linear ~δ and angular ~γ displace-
ments defined as,

T =

[
~δi
~γi

]
=

[
(~ri×~γi)+hi~γi

~γi

]
, i = 1,2,3 (1)

This form expresses the translation in terms of a combination
of angular displacement ~γ and the 3× 1 location vector ~ri and
h the pitch scalar. The Plücker coordinates in vector form are
visualised in Figure 1

FIGURE 1: VISUAL REPRESENTATION OF THE PLÜCKER
COORDINATES IN VECTOR FORM

The magnitude of the twist is defined as,

|T|=
{√

~δ ·~δ if γ = 0√
~γ ·~γ otherwise

(2)

and the direction of the twist is defined as the direction of the
angular deformation. The dual of Chasles’ theorem is Poinsot’s
theorem. It states that any wrench can be constructed by a force
and torque along the same axis [11]. In Plücker coordinate vector
form the wrench ~w contains the linear forces ~f and the moment
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couples~τ defined as,

w =

[
~fi
~τi

]
=

[
~fi

(~bi×~fi)+di~fi

]
, i = 1,2,3 (3)

where~bi is the 3×1 location vector pitch di is the ratio of angular
torque to linear force. The magnitude of the wrench is defined
as,

|w|=
{√

~τ ·~τ if f = 0√
~f ·~f otherwise

(4)

and the direction of the wrench is seen as the direction of the
force.

The relationship between the displacement and load of a spe-
cific point of interest can be described by the secant stiffness
matrix Ks or its inverse, the secant compliance matrix Cs respec-
tively, expressed as

~w = Ks∆~T , ∆~T = Cs~w (5)

where Ks and Cs are the 6x6 secant stiffness and secant compli-
ance matrix and ∆~T is an incremental displacement step. A se-
cant matrix describing an infinitesimal incremental step is known
as the tangent matrix, and it is defined as

Kt = lim
∆~T→0

Ks, Ct = lim
∆~T→0

Cs (6)

The tangent matrices describe a linearised configuration-
dependant relation between the displacement and the load. The
tangent stiffness and compliance matrices are composed of a
physical and geometrical stiffness and compliance matrix. Non-
linear behaviour can be analysed by using either the secant stiff-
ness matrix or by making an incremental linearised analysis of
each quasi-static-equilibrium based on the tangent stiffness ma-
trix.
Any symmetric positive definite non-singular tangent stiffness
Kt and tangent compliance matrix Ct can be decomposed into
an eigen-system as described by Lipkin & Patterson [7]. The
eigen-decomposition describes three translational and three ro-
tational principal axes, with corresponding stationary multiplier
values of the translational and rotational stiffness. Lipkin’s
eigen-decomposition of the tangent stiffness matrix Kt is defined
as,

Kt =
[
ŵ f ŵγ

][k f 0
0 kγ

][
ŵ f
ŵγ

]
(7)

and the resulting tangent compliance matrix eigen-
decomposition is defined as,

Ct =
[
T̂ f T̂γ

][a f 0
0 aγ

][
T̂ f
T̂γ

]
(8)

where for i = 1,2,3 multipliers kγi > 0 are the angular stiffnesses
in the directions of the γi, multipliers k f i > 0 are the translational
stiffnesses in the directions of the fi. The inverse of a transla-
tional stiffness gives the translational compliance,

a f i =
1

k f i
(9)

and the inverse of a rotational stiffness gives the rotational com-
pliance,

aγi =
1

kγi
(10)

w f are the eigen-wrenches, these directions are also known as
the wrench axes, defined as

w f i =

[
~fi
~τi

]
, i = 1,2,3 (11)

Applying an eigen-wrench w f i leads to an induced twist T f i a
pure translational displacement parallel to the force direction ~fi,
the induced twists T f are defined as

T f i =

[
a f i~fi

0

]
, i = 1,2,3 (12)

Tγ are the eigen-twists, these directions are also known as the
twist axes, defined as

Tγi =

[
~δi
~γi

]
, i = 1,2,3 (13)

Applying an eigen-twist Tγi leads to an induced wrench wγi a
pure moment parallel to the rotational direction ~γi, the induced
wrenches wγ are defined as

wγi =

[
0

kγi~γi

]
, i = 1,2,3 (14)
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The above wrenches and twists are normalized with respect to
the defined magnitudes to be used in the eigen-decompositions
of Eqns. 7 and 8.

T̂ =
T
|T| (15)

and

ŵ =
w
|w| (16)

After the normalization of the twist and wrench eigen-
decomposition described in Eqns. 2 and 4, the direct magnitude
relation is lost. In terms of magnitude, the induced twists and
wrenches are no longer a direct result of the eigen-wrenches and
eigen-twists. After normalization, only the directional relations
remain valid.

VISUALISATION OF THE EIGEN-DECOMPOSITION
To increase the understanding of the wrench and twist axes

the eigen-decompositions is visualised. Nijssen [6] already plot-
ted the three eigen-twist directions. In this section we intro-
duce the visualisation of the eigen-wrench directions and include
the corresponding stationary compliance multipliers. A compli-
ant shell mechanism example is introduced which is fully con-
strained along the bottom edge and the point of interest at which
Ct is determined is indicated by a black dot, as can be seen in
Figure 2.

The acrylic-plastic shell mechanism is analysed as an IGA
shell, with the following material properties; the Young Modulus
is 3.2 GPa, the Poisson ratio is 0.35. The 2mm thick geometry is
defined by NURBS [12], a third polynomial follows a 3×5 grid.
Five coordinates are placed on three planes in y = -0.05, y = 0
and y = 0.05. The x and z coordinates are defined in Table 8.

TABLE 1: NURB COORDINATES CORRUGATED SHELL

Point 1 2 3 4 5

x 0.00 0.00 0.04 0.00 0.00

z 0.00 0.04 0.08 0.11 0.15

The three piniciple eigen-twist directions are shown in Fig-
ure 2a. A rotation of the point of interest around a twist axis
plus a translation along this axis leads to pure parallel moments
around this twist axes.

(a) Twist axes (b) Wrench axes

(c) Twist compliance vector (d) Wrench compliance vectors

FIGURE 2: VISUAL REPRESENTATION EIGEN-
DECOMPOSITION

The three principle eigen-wrench directions can be seen in
Figure 2b. A force along a wrench axis plus a moment around
this axis leads to a pure translation along the wrench axis.

Figures 2a and 2b both provide information on the twist and
wrench spatial directions, while excluding the compliance and
stiffness multipliers. Thus these figures do not show the magni-
tude of compliance corresponding to these directions. By plot-
ting vectors along the directions of the wrench and twist axes
with the length of their corresponding stationary compliance
multipliers, both the direction and magnitude of compliance are
visualised in an intuitive manner.

Figure 2c shows the vectors along the twist axes with the
magnitude of the corresponding rotational compliance multipli-
ers aγ . The longer the vector the larger the rotational compliance
around the twist axis that the vector represents.

Figure 2d shows the vectors along the wrench axes with the
magnitude of the corresponding translational compliance multi-
pliers a f . The longer the vector the larger the translational com-

4 Copyright c© 2018 by ASME



pliance along the wrench axis that the vector represents.
Figures 2d and 2c both provide the directional information

of the twist and wrench axes and the corresponding compliance
magnitude. In itself these are useful characterizations, however,
the magnitudes of these vectors cannot be compared between the
two Figures, as further discussed in Section .

UNIFICATION METHODS
The diagonal matrices of the decompositions in Eqns. 7 and

8 consist of the compliance and stiffness stationary multipliers
corresponding to the wrench and twist axes. Considering the
decomposition in Eqn. 8, the upper three stationary multipliers
a f are the translational compliances given as length per force,
corresponding to a translation parallel to the wrench axis. The
lower three stationary multipliers aγ are the rotational compli-
ances given as angle divided by force multiplied by length, corre-
sponding to the rotation around the twist axis. The rotational and
translational multipliers are not directly comparable due to their
different units. To enable this comparison, we utilize unification
variables, which will be defined based on equivalent compliance
by virtual load or potential energy.

We will discuss two unification approaches, by converting
the units of a f i into aγi and the units of aγi into a f i. The con-
version of the units of aγi into a fi can by done by expressing
rotational compliance as an equivalent translational compliance
at the point of interest using a unification length χi. The con-
version of the units of a fi into aγi can by done by expressing
translational compliance at the point of interest as an equivalent
rotational compliance using a unification length Ψi. In Equation
form the unification approaches are given as,

ã fi = χ2
i aγi (17)

and,

ãγi =
a f i

ψ2
i

(18)

We introduce two methods to obtain the unification lengths. The
first method utilizes virtual load and displacements and the sec-
ond method is based on the principle of potential energy. The
strengths and weaknesses of both methods are discussed in Sec-
tion .

RasT: Rotational as equivalent Translational compli-
ance

The first approach expresses rotational compliance as an
equivalent translational compliance at the point of interest. We
call this the RasT approach. Both the virtual loads and potential
energy are used separately to determine unification length χi.

The RasT approach using the virtual load method.
Converting the rotational compliance into an equivalent transla-
tional compliance at the point of interest using the virtual load
method can be done in three consecutive steps.

I Express δeqi , an equivalent translation at the point of interest
in terms of rotation around the twist axis.

II Express Feqi , an equivalent virtual force at the point of inter-
est in terms of the induced counteracting pure parallel mo-
ment couple corresponding to a rotation around the twist
axis.

III Express an equivalent translational compliance ã fi , by di-
viding the expressions above to obtain the equivalent trans-
lational compliance. That is,

ã fi =
δeqi

Feqi

(19)

Figures 3 and 4 both show the point of interest of a spatial
compliant mechanism as indicated by the black dot and one of
the three principal twist axes Tγi indicated by the blue line, used
to explain the three steps.

Step I: Express δeqi , equivalent translation. The equivalent
translation at the point of interest is expressed in terms of a screw
around the twist axis. The total translation corresponding to a
rotation θi is a combination of displacement along the arc length
around the twist axis δri and a translation along the twist axis δhi.
The resulting equivalent translation δeqi , a path along a cylinder,
is illustrated in Figure 3.

FIGURE 3: EQUIVALENT TRANSLATION GEOMETRY

The displacement along the arc at a radius can be expressed
as the rotation multiplied by the radius, the arc-length. The radius
that defines the displacement along the arc is the shortest distance
between the point of interest and the twist axis. This length is
defined in Plücker coordinates as the location vector ri as shown
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in Figure 1. The displacement along the arc-length is thus given
as,

δri = |ri|θi (20)

The point of interest translates along the twist axis, due to the
pitch hi, given by the pitch times the rotation,

δhi = hiθi (21)

The resulting displacement due to the two perpendicular dis-
placements on a cylinder is calculated using the Pythagorean
theorem. The equivalent translation expressed in terms of the
corresponding rotation is thus given as,

δeqi =
√

(h2
i + |ri|2)θi (22)

Step II: Express Feqi , equivalent virtual force. The equivalent
virtual force at the point of interest in the opposite direction of
the equivalent displacement is expressed in terms of the induced
moment corresponding to a rotation around the twist axis.

This is done by defining a virtual force Fm at distance ri
with a magnitude and direction which results in the same mo-
ment magnitude as the pure moment parallel corresponding to a
rotation. By decomposing this virtual moment force vector, with
one of the components in the direction of the equivalent transla-
tion determined in step I, the equivalent virtual force Feq can be
defined. The introduced virtual moment force vector Fm is given
as,

Fmi =
Mi

|ri|
(23)

The geometry required to decompose the virtual moment force
Fm to the equivalent virtual force Feq in the opposite direction of
the point of interest displacement is shown in Figure 4.

FIGURE 4: Equivalent virtual force geometry

where β is the angle between δeqi and δγri, since the alter-
nate interior angles between two parallel lines are equal, βi also
defines the angle between Fmi and Feqi , which is defined as,

βi =
Fmi

Feqi

=
δeqi

δγri

=

√
(h2

i + |ri|2)θi

|ri|θi
(24)

By combining Eqn. 23 and 24, the equivalent virtual force ex-
pressed in terms of the corresponding moment can be given as,

Feqi =
Mi√

(h2
i + |ri|2)

(25)

Step III: Express ã fi , the equivalent translational compliance.
The third step is to substitute 22 and 25 with 19,

a f γi =
δeqi

Feqi

= (h2
i + |ri|2)

θi

Mi
(26)

The unification length χi follows from Eqn. 17 and 26,

χi =
√

h2
i + |ri|2 (27)

The RasT approach using the potential energy
method. To unify the rotational compliance multipliers aγi

into equivalent translational compliance multipliers ã fi the prin-
ciple of potential energy can be used as well. The rotational en-
ergy is compared with the corresponding virtual equivalent trans-
lational energy due to the rotation.

The eigentwist induces a pure moment around the twist axis,
therefore the corresponding potential energy is solely dependent
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on the rotational stiffness and rotation. The potential energy of
the eigentwist is defined as,

Uγi =
1
2

kγiθ 2
i (28)

By introducing an equivalent translational stiffness k̃ fi and the
equivalent translation δeqi corresponding to the rotation given in
Eqn. 22, we can express the stored energy as,

1
2

kγiθ 2
i =

1
2

k̃ fiδ
2
eqi

(29)

By substituting Eqn. 22 with 29 the equivalent translational stiff-
ness can be defined as,

k̃ fi =
kγi

(h2
i + |ri|2)

(30)

The inverse of the translational and rotational stiffness results in
the translational and rotational compliance, as stated in Eqn. 9
and 10. The equivalent translational compliance of the rotational
compliance is thus given as,

ã fi = (h2
i + |ri|2)aγi (31)

From 17 and 31 follows the unification length,

χi =
√

h2
i + |ri|2 (32)

which exactly matches Eqn. 27.

TasR: Translational as equivalent Rotational compli-
ance
The second approach expresses the translational compliance as
an equivalent rotational compliance, which we call the TasR ap-
proach. Converting the translational compliance into an equiva-
lent rotational compliance at the point of interest can be done us-
ing both the TasR equivalent of the virtual load and the potential
energy RasT approach. The virtual load method TasR equivalent
steps are:

I Express θeqi , an equivalent rotation at the point of interest in
terms of a translation parallel to the wrench axis.

II Express Meqi , an equivalent virtual moment at the point of
interest in terms of the counteracting force corresponding to
a translation parallel to the wrench axis.

III Express an equivalent rotational compliance ãγi , by dividing
the expressions above to obtain the equivalent translational
compliance.

The potential energy method TasR equivalent is done by intro-
ducing an equivalent rotational stiffness. This stiffness is de-
fined in terms of the translational stiffness corresponding to the
wrenches.

Both the virtual load and the potential energy TasR equiva-
lent of the RasT methods result into the unification length,

ψi =
√
|d2

i |+b2
i (33)

which has the same form as the unification length expressed in
Eqn. 32.

Approach and method comparison
Both the virtual load method and the potential energy method
result into the same unification lengths. The potential energy
method is more straightforward, however, it gives less insight
into the actual kinematics compared to the virtual load method.
While the end results of both methods yield similar conclusions,
the virtual load method includes interesting sub-steps with phys-
ical relevance. The sub-step results in themselves can form the
basis for specific designs. Knowledge of the composition of the
sub-steps provides the opportunity to vary parameters in an intel-
ligent manner to achieve specific objectives. In addition, energy
in any form is a scalar quantity. Using the introduced potential
energy method all directional information is excluded.

The RasT unification approach characterizes a mechanism
as if a point of interest will be displaced using solely forces. The
RasT approach is physically comparable as if the point of in-
terest is displaced, along the wrench and around the twist axis,
using a ball-and-socket-joint while evaluating the travelled path
and the reaction force. Consequently using the RasT approach
pure decoupled rotations around the point of interest are impos-
sible to excite, therefore the RasT approach cannot evaluate the
corresponding compliance multipliers. The TasR approach char-
acterizes a mechanism as if the less intuitive opposite is the case,
when a point of interest will be displaced solely using torques.
Consequently using the TasR approach the unified compliance
values corresponding to eigen-wrenches that are pure forces in
line with the point of interest cannot be evaluated.

In order to bypass degrees of freedom that are non-evaluable
one could use either the TasR or RasT approach. If both ap-
proaches result in non-evaluable degrees of freedom magnitudes
the combination of the two will give the best characterization.
The RasT approach is more intuitive and accounts for the
coupling of the rotations and translations by including twist
pitch, hence Section will focus on this approach. However,
both approaches in their context, separately or combined, are
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a powerful characterization for comparing all six degrees of
freedom.

CHARACTERIZATION
This Section shows the effectiveness and strength of the ability
to characterize and compare all six degrees of freedom using the
introduced unification lengths.

Unified compliance matrix
The unification lengths χi and Ψi result in unified station-

ary compliance multipliers, which can be represented in matrix
form. In the case of the RasT approach, the unification length
of Eqn. 27 is substituted with Eqn. 8. The rotational compli-
ance multipliers are multiplied by the unification length squared
(h2

i + |ri|2), which results in the equivalent translational compli-
ance. In matrix form this produces the diagonal unified stationary
translational compliance multiplier matrix ã f given as,

ã f =

[
a f i 0
0 (|ri|2 +h2

i )aγi

]
(34)

In the case of the TasR approach, the unification length of Eqn.
33 substituted with Eqn. 8 the unified rotational compliance mul-
tiplier matrix ãγ is given as,

ãγ =

[ a f i

|bi|2+d2
i

0

0 aγi

]
(35)

To put it in the original context, the complete eigen-
decomposition of the tangent compliance matrix, including the
new unified compliance matrix for the RasT approach becomes,

Ct =
[
T̂ f T̂γ

]
[

I 0
0 1√

|ri|2+h2
i

]
ã f

[
I 0
0 1√

|ri|2+h2
i

][
T̂ f
T̂γ

]
(36)

and for the TasR approach the complete decomposition is given
as,

Ct =
[
T̂ f T̂γ

][|bi|2 +d2
i 0

0 I

]
ãγ

[
|bi|2 +d2

i 0
0 I

][
T̂ f
T̂γ

]
(37)

The Direction and unified compliance magnitude
visualised. Vectors in the direction of the eigen-twists T̂i and
the eigen-wrenches ŵi with the length of their corresponding
values in the unified compliance matrix ã f or ãγ visualise the

comparable compliance directions. Using this visualisation the
dominant compliance directions become evident.

The power of this method is shown through two well-described
compliant flexure mechanisms. The first is designed to be
predominately rotationally compliant, a cross pivot flexure
mechanism. The second designed is to be predominately
translationally compliant, a double parallel flexure mechanism
with an intermediate body. The visualisation using the unified
compliance matrix confirms the expected behaviour of these
well-described mechanisms.

Both mechanisms are analysed in SPACAR, which is a
program for dynamic analysis of flexible spatial mechanisms and
manipulators [13]. The mechanisms contain blue spring steel
flexures with the following properties; the Young Modulus is 500
MPa, the Poisson ratio is 0.3 and the geometry is 75× 15× 0.5
mm.

Cross pivot flexure mechanism
The cross pivot flexure mechanism consists of two perpendicu-
lar flexures and two parallel rigid bodies. The lower rigid body is
fully constrained and the centre of the upper rigid body is consid-
ered to be the point of interest. Using SPACAR the 6x6 tangent
compliance matrix Ct is determined. The introduced, in Section ,
visualisation of Lipkin’s eigen-decomposition is applied. Figure
5 shows the twist and wrench compliant axes of the mechanism.

FIGURE 5: PRINCIPAL COMPLIANCE DIRECTIONS OF
THE CROSS PIVOT FLEXURE MECHANISM
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The stationary translational compliance multipliers corre-
sponding to the wrench axes are given in Table 2.

TABLE 2: COMPLIANCE MAGNITUDES AND CORRE-
SPONDING WRENCH AXES OF THE CROSS PIVOT FLEX-
URE

Corresp. wrench Translational compliance [a f i]

w f 1 2.50 ·10−07 m/N

w f 2 2.00 ·10−08 m/N

w f 3 2.00 ·10−08 m/N

The largest translational compliance multiplier is underlined
and corresponds to wrench w f 1. The stationary rotational com-
pliance multipliers and the pitches corresponding to the twist
axes are given in Table 3.

TABLE 3: COMPLIANCE MAGNITUDES AND CORRE-
SPONDING TWIST AXES OF THE CROSS PIVOT FLEX-
URE

Corresp. twist Rotational comp. [aγi] Pitch [hi]

Tγ1 1.06 ·10−03 rad/Nm 7.50 ·10−03 m

Tγ2 1.06 ·10−03 rad/Nm 7.50 ·10−03 m

Tγ3 4.80 ·10−01 rad/Nm 0.00 ·10−00 m

The largest rotational compliance multiplier is underlined
and corresponds to twist axis Tγ3. As discussed, the compli-
ance multipliers in Tables 2 and 3 cannot be compared directly,
therefore the unified compliance matrices are introduced. Fig-
ure 6 shows compliance vectors along the twist and wrench axes
with unified compliance magnitudes ã f resulting from the RasT
approach.

FIGURE 6: UNIFIED COMPLIANCE VECTORS OF THE
CROSS PIVOT FLEXURE MECHANISM

As can be seen in Figure 6, the largest vector by orders of magni-
tude is in the direction of twist axis Tγ3 as is expected, originat-
ing from the crossing of the flexures in the y-direction parallel
to these flexures. The other compliance vectors are too small
to visualise using linear magnitude representation. The corre-
sponding comparable unified compliance magnitudes are given
in Table 4.

TABLE 4: TWIST AND WRENCH AXES WITH CORRE-
SPONDING UNIFIED COMPLIANCE MAGNITUDES OF
THE CROSS PIVOT FLEXURE MECHANISM

Corresp. axes Unified compliance [ã f i]

w f 1 2.50 ·10−07 m/N

w f 2 2.00 ·10−08 m/N

w f 3 2.00 ·10−08 m/N

Tγ1 8.08 ·10−07 m/N

Tγ2 5.99 ·10−08 m/N

Tγ3 3.38 ·10−04 m/N
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As can be seen in Table 4, the multipliers are at least three or-
ders smaller than the most underlined multiplier corresponding to
the most dominant rotational degree of freedom. The cross flex-
ure mechanism is thus dominantly rotational compliant which
is consistent with the objective of the design. The total relative
degree of freedom order based on the unified compliance multi-
pliers following from the RasT approach is given as,

Tγ3 >> Tγ1 > w f 1 > Tγ2 > w f 3/w f 2 (38)

Double parallel flexure mechanism
The second mechanism is designed to be predominately trans-
lationally compliant, a double parallel flexure mechanism with
an intermediate body. Figure 7 shows the twist and wrench
compliant axes of the mechanism.

FIGURE 7: PRINCIPAL COMPLIANCE DIRECTIONS OF
THE DOUBLE PARALLEL FLEXURE MECHANISM

The translational compliance multipliers corresponding to
the wrench axes are given in Table 5 and the rotational compli-
ance multipliers and the pitches corresponding to the twist axes
are given in Table 6.

TABLE 5: COMPLIANCE MAGNITUDES AND CORRE-
SPONDING WRENCH AXES OF THE DOUBLE PARALLEL
FLEXURE MECHANISM

Corresp. wrench Translational Compliance [a f i]

w f 1 4.50 ·10−04 m/N

w f 2 5.00 ·10−07 m/N

w f 3 2.00 ·10−08 m/N

TABLE 6: COMPLIANCE MAGNITUDES AND CORRE-
SPONDING TWIST AXES OF THE DOUBLE PARALLEL
FLEXURE MECHANISM

Corresp. twist Rotational Compliance [aγi] Pitch [hi]

Tγ1 3.12 ·10−05 rad/Nm 0.00 m

Tγ2 7.80 ·10−04 rad/Nm 0.00 m

Tγ3 1.07 ·10−03 rad/Nm 0.00 m

The largest translational and rotational compliance multipli-
ers are underlined and correspond to wrench w f 1 and twist Tγ3.
The compliance multipliers in Tables 5 and 6 can only be com-
pared directly using the unified compliances ãγ and ã f . Figure 8
shows the unified compliance vectors along the twist and wrench
axes with the corresponding unified compliances as magnitudes.
As can be seen in Figure 8, the largest compliance vector is in the
direction of wrench axis w f 1 as is expected. It originates from
the point of interest in the x-direction perpendicular to the face of
the flexures. The other compliance vectors are too small to visu-
alise using linear magnitude representation. The corresponding
unified compliance magnitudes resulting from both approaches
are given in Table 7. As can be seen in Table 4, resulting from
both approaches, the largest unified compliance magnitude, cor-
responding to the most dominant degree of freedom, is at least
two orders larger than the other magnitudes. The double flexure
mechanism is thus dominantly translational compliant consistent
with the objective of the design. The total degree of freedom
order based on the unified compliance multipliers ã f i following
from the RasT approach is,

w f 1 >> Tγ3 > w f 2 > Tγ1 > w f 3 (39)

As discussed in Section , the fully decoupled rotational degree of
freedom Tγ2 is a non-evaluable value using the RasT approach.
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FIGURE 8: UNIFIED COMPLIANCE VECTORS OF THE
DOUBLE PARALLEL FLEXURE MECHANISM

TABLE 7: TWIST AND WRENCH AXES WITH CORRE-
SPONDING UNIFIED COMPLIANCES OF THE DOUBLE
PARALLEL FLEXURE MECHANISM

Corresp. axis Unified compl. [ã f i] Unified compl. [ãγi]

w f 1 4.50 ·10−4 m/N 3.20×101 rad/Nm

w f 2 5.00 ·10−7 m/N 3.56 ·10−4 rad/Nm

w f 3 2.00 ·10−8 m/N -

Tγ1 4.40 ·10−8 m/N 3.12 ·10−5 rad/Nm

Tγ2 - 7.80 ·10−4 rad/Nm

Tγ3 1.50 ·10−6 m/N 1.07 ·10−3 rad/Nm

More insight is accumulated using the TasR approach. The total
degree of freedom order based on the unified compliance multi-
pliers ãγi following from the TasR approach is,

w f 1 >> Tγ3 > Tγ2 > w f 2 > Tγ1 (40)

where the multiplier corresponding to wrench w f 3 cannot be
evaluated. Apart from the unevaluated degrees of freedom both
approaches show the same order of compliance. The order based
on both the RasT and the TasR approach can be interpreted as,

w f 1 >> Tγ3 > Tγ2 > w f 2 > Tγ1 > w f 3 (41)

Single corrugated compliant shell
The first shell mechanism was introduced in Section , a moder-
ately single corrugated shell mechanism. The mechanism is fully
constrained at the bottom and the point of interest is in the centre
of the opposing side, indicated by a black dot. Figure 9 shows the
unified compliance visualisation applied to the single corrugated
compliant shell mechanism.

FIGURE 9: UNIFIED COMPLIANCE VECTORS CROSS
PIVOT

It shows the largest compliance vector corresponding to
twist Tγ3, which means that the largest compliance direction is
a screw around the direction of twist Tγ3. The second largest
compliance vector corresponds to wrench w f 1 which is a pure
translation parallel to the direction of wrench w f 1. The other
unified compliance magnitudes are relatively small, intuitively
explainable by the larger moment of inertia of the correspond-
ing cross section. The total initial relative degree order based on
the unified compliance multipliers ã f following from the RasT
approach is given as,

Tγ3 > w f 1 > Tγ2 > Tγ1 > w f 2 > w f 3 (42)

Extruded spiral compliant shell
The second mechanism is an extruded spiral compliant shell
mechanism. The material properties are identical to the single
corrugated shell mechanism. The 2mm thick geometry is de-
fined by NURBS [12], a third polynomial follows a 3×5 grid.
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Five coordinates are placed on three planes in y = -0.05, y = 0
and y = 0.05. The x and z coordinates are defined in Table 8.

TABLE 8: NURB COORDINATES EXTRUDED SPIRAL
SHELL

Point 1 2 3 4 5

x 0.00 -0.03 0.00 0.03 0.00

z 0.00 0.04 0.08 0.06 0.04

The mechanism is fully constrained at the bottom and the
point of interest is in the centre of the opposing side, indicated
by a black dot. The initial configuration is shown in Figure 10.

FIGURE 10: UNIFIED COMPLIANCE VECTORS OF THE
SPIRAL SHELL MECHANISM

The total initial degree of freedom order based on the unified
compliance multipliers ã f following from the RasT approach is,

Tγ3 > w f 1 > Tγ2 > Tγ1 > w f 2 > w f 3 (43)

Although the mechanism is still a developable surface, pre-
dicting the locations and magnitudes of the compliance vectors is
already more challenging compared to the previous shell mecha-
nism.

DISCUSSION

The characterization presented in this paper has benefits
compared to existing methods. Most characterizations do not
address the coupling between rotations and translations [4] and
are only able to separately compare rotational degrees of freedom
and translational degrees of freedom, within one mechanism [6].
To compare rotational and translational compliances with each
other it is necessary to introduce a unification variable. Where
existing methods introduce arbitrarily chosen unification vari-
ables [9], this paper introduces two consistently derived phys-
ically meaningful unification lengths which include coupling,
thus allowing the fair comparison of rotational and translational
compliances within and between mechanisms.

We derived two unification lengths based on two ap-
proaches. The unification length resulting from the RasT ap-
proach, based on Plücker coordinates, is derived independently
and yielded similar results as Lin’s [8] research, based on hybrid
coordinates, used to optimize graspers. Lin does not recognize
the limitations of the results that became apparent when used to
characterize compliant shell elements. We eliminate these limita-
tions by introducing both the RasT and the TasR approach. Both
Lin’s derivation and the introduced potential energy method are
more straightforward than the introduced virtual load method,
however they give less insight into the actual kinematics. The
virtual load method includes sub-steps with physical relevance,
these sub-steps themselves can form the basis for designs. Thor-
ough knowledge of the composition of these sub-steps provides
the opportunity to vary parameters in an intelligent manner to
reach specific objectives. Additionally, energy, in any form, is a
scalar quantity. By introducing the principle of potential energy
all valuable directional information is lost.

CONCLUSION

This paper introduces a method for the characterization of
complex compliant mechanisms that considers coupling and al-
lows the comparison of stiffness between all six degrees of free-
dom. The characterization is based on consistently derived non-
arbitrary unification variables based on equivalent compliance
by virtual load and potential energy, therefore allows the com-
parison of compliance between degrees of freedom of different
mechanisms. With this introduced comprehensive comparison
the opportunity rises to order all degrees of freedom, within and
between mechanisms in terms of compliance. Although this pa-
per is focussed on compliant shell elements, the characterization
presented can be done for any mechanism which has a symmetric
positive definite non-singular compliance matrix. This includes
both compliant flexure and shell mechanisms.
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B
Non-linear characterization library of

promising building blocks

This appendix provides the fully characterized building blocks.

Figure B.1: Characterised Double parabolic building block
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Figure B.2: Characterized Parabolic Canoid building block

Figure B.3: Characterized Hyperbolic parabolic building block
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Figure B.4: Characterized Shoe surface building block

Figure B.5: Characterized Single Corrugated building block
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Figure B.6: Characterized Double Corrugated building block

Figure B.7: Characterized Helix building block
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Figure B.8: Characterized Sinusoidal Helix building block

Figure B.9: Characterized Evolvent Helicoid building block





C
Experiment Data

This chapter provides additional information on the measurement set-up. Including the measurement set-
up and raw data.

Figure C.1: Full Measurement Set-up
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D
Background Theory

D.1. Structural analysis
The difficulty of designing compliant mechanisms are the intertwined kinematics and kinetics. Further-
more, the freedom and constraint directions change while subjected to large deformations. This chapter
provides basic background theory relevant to describe kinematics and kinetics of compliant shell mecha-
nisms. The background theory starts with a structural analysis of plates, a brief introduction of potential
energy in plate theory and the derivation of tangent and secant matrix are discussed.

This section start by describing linear equations and then extending them to continuous and discrete
non-linear equations and plate theory.

The linear relation between loads f and displacement u of a mechanism can be described as,

f = K u (D.1)

where K is the constant stiffness matrix, when the determinant of the stiffness matrix in not equal to zero
the stiffness matrix in invertible. The inverse of the stiffness matrix K is the compliance matrix C , therefore
the linear relation can also be described as,

u =C f (D.2)

These linear relations cannot be applied when the system exhibits non-linear behaviour, this includes phe-
nomena such as buckling, plasticity and large deformations. These phenomena can be divided into two
categories, geometric and physical non-linearity. Since compliant shell mechanisms are often subjected to
large deformations while plastic deformation is avoided, this document focuses on the effects of geomet-
ric non-linearity, while assuming linear-physical behaviour. Van Keulen [18] describes the general relation
between loads and displacements. The relation between loads and displacements can divided into three
sub-relations based on three principles:

1. Continuity: Displacements ↔ Deformations

2. Constitutive Equations: Deformations ↔ Stresses

3. Equilibrium: Stresses ↔ External Loads

Deformation can be described by both the Lagrangian and the Eulerian description. If the undeformed con-
figuration is starting point of the approach the Lagrangian description is used, which describes the relation
between an original dr and deformed d̂r line element on a body, defined as

2dr·Edr = d̂r
2 − d̂r

2
(D.3)

where E is the Green-Lagrange strain tensor. The relation between the original and the deformed material
line element can also be written as,

d̂r = Fdr (D.4)

where F is the geometric dependent deformation gradient, which can be decomposed in a deformation U
and a rotation R matrix. The Green-Lagrange strain tensor for finite elements, respectively in normal and
multi-index notation, becomes

Ei j = 1

2

(δui

δx j
+ δu j

δxi
+∑

k

δuk

δxi

δuk

δx j
)
)
= 1

2
(ui , j +u j ,i +

∑
k

uk,i uk, j ) (D.5)

A system is in a static equilibrium if the following equation holds for all virtual displacements δu,

δWi = δWu (D.6)

where δWi is the internal virtual work and δWu the external virtual work.
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Continuous non-linear mechanics
Further on a repeated index automatically means a summation. In continuum mechanics the internal work
is described by the integration over the undeformed body V0 defined as,

δWi =
∫

V0

S : δEdV0 (D.7)

where E is the Green-Lagrange strain tensor and S is the symmetric 2nd Piola-Kirchhoff stress tensor. The
external work is described by the integration over the outer surface A0 and is given by,

δWu =
∫

A0

δu·qd A0 +
∫

V0

δu· (ρ0f)dV0 (D.8)

where δu is a infinitesimal displacement, q the force and f is the body load. By substituting the Green-Lagrange
deformation tensor of equation D.5 into equation D.12 and by applying the divergence theorem, the internal
work can be reorganized as,

δWi =
∫

A0

δu· (FSn0)d A0 −
∫

V0

δu· (Di vFS)dV0 (D.9)

where n0 is the outward normal vector in the undeformed configuration. Both the internal and the external
work must be equal in order to have static equilibrium, consequently the following equations must hold for
every point in a body,

Di v(FS+ρ0f = 0) (D.10)

as well as the boundary condition,
FSn0 = q. (D.11)

Discrete non-linear mechanics
The internal en external work can also be described for discrete systems, which can be used for finite ele-
ment modelling, where complex structures can be combined by simple elements. Each element will have a
generalized deformation, for the arbitrary chosen element k this is ξ(k), depending on the number of nodal
degrees of freedom d(k). The internal work for a discrete system on element level is described by,

δWi =
∑
ζ(k)·δξ(k) (D.12)

where ζ(k) are the generalized stresses and δξ(k) the generalized deformations. The deformation depends on
the degrees of freedom in a non-linear manner, however this relation can be linearised. The tangent of the
non-linear function is given as,

δξ(k) = Dk [d k ]δdk (D.13)

where Dk is the configuration dependent differentiation matrix, which results from differentiating the de-
formations with respect to the degrees of freedom; therefore,

Dk
i j =

∂

∂d k
j

ξk
i (D.14)

Hookes law assumes a linear relation between the deformations and stresses given by,

ζk = Sξk (D.15)

Where S is a constant matrix which depends on the material, size and type of the element. The internal vir-
tual work of an element is describes as,

δWi =
∑
ζK ·Dk [d k ]δd k . (D.16)

Substitution of the generalized stresses on system level results in the following equations respectively for the
internal and external energy,

δWi = Sξ·D[d ]δd (D.17)

and
δWu = f ·δd . (D.18)
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Thus in equilibrium the nodal loads are equal to the transposed of the differentiation matrix times the gen-
eralized stresses.

f = DT ξS (D.19)

In conclusion, an element has deformations [Dk ] which can be specified in a non-linear manner as a func-
tion of the degrees of freedom [d k ]. By applying hookes law on the specified deformation the corresponding
stresses [ζk ] can be calculated. Using these values the virtual internal [δWi ] and external [δWu] work can be
described, resulting in the equilibrium equation. Where the transposed of the differentiation of the defor-
mations with respect to the degrees of freedom times the stresses is equal to the nodal loads [ f k ] in equilib-
rium. At system level all these elements are summed.

Kirchoff-Love Plate theory
Van Keulen [18] describes shell and plate theory. In order to design plate and shell type constructions nu-
merical tools are necessary in order to describe linear and non-linear phenomena, such as deflection, strain,
buckling and vibrations. Developed tools are the boundary element method, finite difference method and
the finite element method. [explain boundary element method, finite difference method] Using finite shell
elements there are two approaches. First, the degenerate approach, where 3D solid problem can be reduced
to a 2D shell problem. Second, the approach directly based on shell theory. Due to the complexity of shell
theory simplifications and assumptions are often made, however this can induce problems such as incor-
rect rigid body motion responses and excessively stiff responses. Kirchhoff-Love plate theory applies for
thin plates and the Mindlin-Reissner plate theory for thick plates, as earlier defined this document will fo-
cus on classical thin plate theory. Kirchoff-Love theory is an extension to plates of the Euler-Bernoulli beam
theory. Van Keulen [18] describes the Kirchhoff-Love theory, Love developed the theory using the following
assumptions imposed by Kirchhoff regarding the straight line perpendicular to the mid-surface, also called
transverse normals [13].

1. Transverse normals remain straight before and after deformation

2. Transverse normals are inextensible

3. Transverse normals remain perpendicular to the mid-surface after deformation.

In order to describe the theory Cartesian Coordinates (ex ,ez ,ez ) are used, the xy plane coincides with the
mid-plane of the plate and the z axis with the thickness perpinducal from the mid-plane. The displacements
along the Cartesian coordinates are given by (u,v,w), as can be seen in Figure D.1

Figure D.1: Undeformed and deformed gemoetries of a plate, using Kirchoff assumptions,
reproduced from [13]

With a constant thinkness the upper surface is at z = 1/2h and the lower surface z = −1/2h. The dis-
placement vector, for small displacements can be written as,

ux =−zφx (x; y), (D.20)

uy =−zφy (x; y), (D.21)

uz = w(x; y), (D.22)

where

φx = δw

δx
= wx , (D.23)
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φy = δw

δy
= wy , (D.24)

The displacement is thus independent of the transverse coordinate z and only dependant on the displace-
ment of the mid-surface w , since w only depends on the coordinates x en y the the 3D problem is reduced
to a 2D problem. Substitution of the displacement vectors D.20 into the Green Lagrange strain tensor D.5
results in,

εxx =− zφx,x , (D.25)

εy y =− zφy,y , (D.26)

εz =0, (D.27)

εx y = εy x =− z
1

2
z(φx,y +φy,x ) (D.28)

εy z = εz y =z
1

2
z(w,y +φy ) = 0 (D.29)

εxz = εzx =z
1

2
z(w,x +φx ) = 0 (D.30)

Three parameters are introduced κxx ,κy y ,κx y , the change in curve in the mid-plane, defined as

κxx =−φx,x =−wx,x (D.31)

κy y =−φy,y =−wy,y (D.32)

κx y =−(φx,y +φy,x ) =− (w,x y +w,y x ) =−2w,x y (D.33)

and he physical representation of the principal curvatures are shown in Figure D.2

Figure D.2: Principal curvatures

By substituting the new parameters into the resulting strain equation D.25 and using the kirchoff as-
sumption of zero strain in the transverse normals it results in,

εxx =zκxx (D.34)

εy y =zκy y (D.35)

εx y =1

2
zκx y (D.36)

εzz =0 (D.37)

(D.38)

The surface of a plate is denoted by an A and the boundary, assumed line, by an S. Using the internal work
equation D.12 and the equations D.25 D.34 the result is,

δWi =
∫

A
(Mxxδκxx +My yδκy y +Mx yδκx y )d A, (D.39)

where the ,

Mxx =
∫ + 1

2 h

− 1
2 h

zωxx d z (D.40)

My y =
∫ + 1

2 h

− 1
2 h

zωy y d z (D.41)

Mx y =
∫ + 1

2 h

− 1
2 h

zτx y d z (D.42)
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The external work based on D.8 is expressed as,

δWu =
∫

A
(P++P−)δwd A+

∫
S

∫ + 1
2 h

− 1
2 h

(qx (−zδφx )+qy (−zδφy )+qz (−zδw))d zd s (D.43)

where p+ is the distributed load on the upper surface and p− the distributed load on the lower surface. A
system is in a static equilibrium if the internal virtual work is equal to the external virtual work for all virtual
displacements δu, as stated in equation D.6.

D.2. Potential Energy
Van Keulen [18] describes the principal of potential energy in plate bending with conservative systems and
loads. The total potential energy φ is given by the summation of the elastic potential ξ and the external load
potential β and depends on the displacement field uo thus,

φ[uo] = ξ[uo]+β[uo] (D.44)

The elastic potential is described by classical laminate theory, expressed as

ξ[uo] =
∫

1

2
εT [uo]Sε[uo]dV (D.45)

where ε is a displacement vector composed of the translations and rotations, V is the total volume and S is
6x6 matrix with material properties.

ξ[uo] = 1

2

∫
V

[
γ κ

]
S

[
γ

κ

]
dV (D.46)

where γ represents in plane strain, κ the curvature change. When we ignore the coupling matrices [explain
why this could be done] SB to reduce the complexity the total elastic potential is given by,

φ=
∫ ∫

{
1

2
κT SDκ+ 1

2
γT SAγ+MTκ+NTγ}d A (D.47)

where M is and N [extend]
The term equation is build from respectively the bending strain energy, the membrane, strain, the

bending moment and the external load.

Tangent stiffness Matrix
The stiffness matrix is able to describe the relation between the load vector and the displacement vector. If
it is assumed that the external load vector is not configuration dependent it can be written as function of a
scalar, defined as

fext [λ] =λP (D.48)

Where fext is the applied external load vector, P is a load parameter and λ is the load intensity. In order to
analyse the system the load intensity can be increased with increments from the unloaded situation, which
gives a step by step linear approximation of the resulting deformations, also known as an incremental anal-
ysis. For every step the tangent stiffness matrix must be found. The equilibrium equation differentiated to
the load intensity gives

Kt [d ]
dd

dλ
= df

dλ
(D.49)

Where Kt [d ] is the symmetric positive definite tangent stiffness matrix, a one-dimensional representation of
an incremental analysis using the tangent operator is visualised in Figure D.3
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Figure D.3: Incremental analysis

The differentiation D.49 of equilibrium D.19 defines Kt [d ], which gives the local stiffness of the system
and is composed by two parts

Kt = DT SD+G (D.50)

The first part is the physical stiffness matrix and the second part the geometrical stiffness matrix. Where G
on element level in multi-index notation is given by

Gk
i j =

∑
r
ζk

r ξ
k
r,i j (D.51)

For a one-dimensional representation the tangent stiffness can be defined as

Kt∆u =∆f (D.52)

Where ∆u is an incremental displacement step

D.3. Twist and wrench location vector and pitch
A twist T contains a translational rotational part, utilizing this the location vector and pitch can be calcu-
lated. According to Chasles theorem the twist is defined as,

T =
[
~δi

~γi

]
=

[
(~ri ×~γi )+hi~γi

~γi

]
, i = 1,2,3 (D.53)

The twist pitch is defined as the ratio between translation and rotation, given a twist defined as,

hi =
~γi
~δi

~δi
~δi

(D.54)

Since the twist location vector and the rotational direction are orthogonal, the twist location vector can be
determined as,

~ri =
~γi × (~δi −hi ~γi )

~γi ~γi
(D.55)

A wrench w contains a moment and force part, utilizing this the wrench’s location vector and pitch can be
calculated. According to Poisson theorem the wrench is defined as,

w =
[
~fi

~τi

]
=

[ ~fi

(~bi ×~fi )+di
~fi

]
, i = 1,2,3 (D.56)

The wrench pitch is defined as the ratio between moment couple and force, given a wrench defined as,

di =
~τi
~fi

~fi
~fi

(D.57)

Since the wrench location vector and the force direction are orthogonal, the wrench location vector can be
determined as,

~bi =
~fi × (~τi −di

~fi )
~fi
~fi

(D.58)



E
Derivations and Algorithms

E.1. Derivation Translation as Rotation method
Similar to the RasT approach derivation, the translational compliance can be expressed as an equivalent
rotational compliance, given as,

ãγi =
a f i

ψ2
i

(E.1)

Converting the translational compliance into an equivalent rotational compliance at the point of interest
using the virtual load method can be done in three consecutive steps.

I Express θeqi , an equivalent rotation at the point of interest in terms of a translation parallel to the wrench
axis.

II Express Meqi , an equivalent virtual moment at the point of interest in terms of the counteracting force
corresponding to a translation parallel to the wrench axis.

III Express an equivalent rotational compliance ãγi , by dividing the expressions above to obtain the equiv-
alent translational compliance. That is,

ãγi =
θeqi

Meqi

(E.2)

Step I: Express θeqi an equivalent rotation at the point of interest in terms of a translation parallel to the
wrench axis.

θeqi =
δi√

|d 2
i |+b2

i

(E.3)

Step II: Express Meqi an equivalent virtual moment at the point of interest in terms of the counteracting
force corresponding to a translation parallel to the wrench axis.

Meqi =
√
|d 2

i |+b2
i Fi (E.4)

Step III: Express an equivalent rotational compliance ãγi , by dividing the expressions above to obtain the
equivalent translational compliance. That is,

ãγi =
θeqi

Meqi

= 1

|d 2
i |+b2

i

δi

Fi
(E.5)

The unification length ψi follows from Equation E.1 and E.5,

ψi =
√
|d 2

i |+b2
i (E.6)

E.2. Derivation moment arm
The shortest distance between a point and a line is described by the surface area of the parallelogram con-
structed by two vectors. The The direction vector of the line and a vector from the point to any point on the
line, divided by the magnitude of the direction vector. In the case of a compliant mechanism, the point is
defined as the point of constraint and the line is defined as the force direction originating from the point of
interest. The vector to any point on the line, is the vector from the point of constraint Pcon(x0, y0, z0) to the
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point of interest Pi nt (x, y, z), given by Pi nt −Pcon = ~C I . The direction vector is the direction of the wrench
axis given by ~fi . The visualisation of the moment arm can be seen in Figure E.1.

Figure E.1: Visualisation of moment arm magnitude ||di ||

In Equation form the moment arms are gives as,

di = || ~C I ×~fi ||
||~fi ||

(E.7)

E.3. Quantitative example
We have the following single corrugated shell mechanism

Figure E.2: Single corrugated shell mechanism

The tangent stiffness matrix of the single corrugated shell is given as,

Kt = 1.0×105



0.0150 0 0 0 −0.0011 0
0 2.2079 0 0.1651 0 0.0570
0 0 0.3034 0 −0.0017 0
0 0.1651 0 0.0130 0 0.0043

−0.0011 0 −0.0017 0 0.0003 0
0 0.0570 0 0.0043 0 0.0017

 (E.8)

The tangent stiffness matrix eigen-decomposition for the single corrugated shell becomes,

Kt =
[
ŵ f ŵγ

][
k f 0
0 kγ

][
ŵ f

ŵγ

]
(E.9)
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where

[
ŵ f ŵγ

]=


1.0000 0 0 0 0 0
0 −1.0000 0 0 0 0
0 0 1.0000 0 0 0
0 −0.0748 0 1.0000 0.0001 0

−0.0739 −0 −0.0055 0 0 1.0000
0 −0.0258 0 −0.0001 1.0000 0

 (E.10)

and where

[
k f 0
0 kγ

]
= 1.0×105



0.0150 0 0 0 0 0
0 2.2079 0 0 0 0
0 0 0.3034 0 0 0
0 0 0 0.0006 0 0
0 0 0 0 0.0002 0
0 0 0 0 0 0.0002

 (E.11)

The tangent compliance matrix of the single corrugated shell is given as,

Ct =



0.0009 0 0 0 0.0035 0
0 0.0001 0 −0.0012 0 −0.0011
0 0 0 0 0.0003 0
0 −0.0012 0 0.0163 0 0

0.0035 0 0.0003 0 0.0472 0
0 −0.0011 0 0 0 0.0432

 (E.12)

The tangent compliance matrix eigen-decomposition is defined as,

Ct =
[
T̂ f T̂γ

][
a f 0
0 aγ

][
T̂ f

T̂γ

]
(E.13)

where

[
T̂ f T̂γ

]=


1.0000 0 0 0 0 0.0739
0 −1.0000 0 −0.0748 −0.0258 0
0 0 1.0000 0 0 0.0055
0 0 0 1.0000 0.0001 0
0 0 0 0 0 1.0000
0 0 0 −0.0001 1.0000 −0

 (E.14)

and where

[
a f 0
0 aγ

]
=



0.0007 0 0 0 0 0
0 0.0000 0 0 0 0
0 0 0.0000 0 0 0
0 0 0 0.0163 0 0
0 0 0 0 0.0432 0
0 0 0 0 0 0.0472

 (E.15)

The unified compliance vector representation becomes,
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Figure E.3: Unified compliance vector of a single corrugated shell mechanism



F
Preliminary work synthesis

This master thesis introduces comprehensive non-linear characterization and classification methods, which
are partially utilized in this chapter to introduce synthesis proposals for mechanism conjunctions and re-
search directions.

F.1. Parallel and series conjunctions spatial mechanisms
Multiple mechanisms are connected in parallel when their corresponding end-effectors are joined which
each other. The equivalent deflection of the combined point of interset is described as,

xeq = x1 = x2 = ... = xn (F.1)

The equivalent force is given as,
Feq = F1 +x2 + ...+xn (F.2)

The stored energy is described as,
Eeq = E1 = E2 = ... = En (F.3)

If a system contains n spring mechanisms in parallel, the following statements are true. The equivalent stiff-
ness constant is given as,

keq = k1 +k2 + ...+kn (F.4)

The equivalent compliance of a system containing n mechanisms in parallel is given as,

1

ceq
= 1

c1
+ 1

c2
+ ...+ 1

cn
(F.5)

If a system contains n spatial mechanisms in parallel with the same point of interest, the following state-
ments are true. The equivalent stiffness matrix is given as,

Keq = K1 +K2 + ...+Kn (F.6)

The equivalent compliance of a system containing n mechanisms in parallel is given as,

1

Ceq
= 1

C1
+ 1

C2
+ ...+ 1

Cn
(F.7)

Multiple mechanisms are connected in series when joined end-to-end. The equivalent deflection of
the combined point of interest is given as,

xeq = x1 +x2 + ...+xn (F.8)

The equivalent force is given as,
Feq = F1 = x2 = ... = xn (F.9)

The stored energy is described as,
Eeq = E1 +E2 + ...+En (F.10)

If a system contains n spring mechanisms in series, the following statements are true. The equivalent
stiffness constant is given as,

1

keq
= 1

k1
+ 1

k2
+ ...+ 1

kn
(F.11)

85



86 F. Preliminary work synthesis

The equivalent compliance of a system containing n mechanisms in parallel is given as,

ceq = c1 + c2 + ...+ cn (F.12)

If a system contains n mechanisms in series, the following statements are true. The equivalent stiffness ma-
trix is given as,

1

Keq
= 1

K1
+ 1

K2
+ ...+ 1

Kn
(F.13)

where all K matrices are given with respect to the same point of interest using super-positioning. The equiv-
alent compliance of a system containing n mechanisms in parallel is given as,

Ceq =C1 +C2 + ...+Cn (F.14)

We evaluate the compliant mechanisms A and B in series given in Figure F.1.

Figure F.1: Compliant mechanisms in series

The loads are transmitted to an imaginary rigid bar from the original point of interest Pa to the collec-
tive point of interest P . The vector that determines the length r of the rigid bar is the length of the remaining
building block, from the base to point of interest, thus given as,

~r = P −Pa =
rz

ry

rz

 (F.15)

The applied load on P is defined in Plücker coordinate vector form as the linear forces ~f and the moment
couples~τ defined as,

~fP =



fx

fy

fz

τx

τy

τz

 (F.16)

The geometry necessary to calculate the reaction load on point Pa is given in figure F.2 and F.3.
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Figure F.2: Geometry super-positioning

Figure F.3: Geometry moments

The reaction load on Pa can be expressed as,

~Rp1 =−



fx

fy

fz

τx − rz fy + ry fz

τy − rz fx + rx fz

τz − ry fx + rx fy

 (F.17)

The load on building building block 1 is the opposite of the reaction load ~Rp1

~fPa =−~Rp1 =



fx

fy

fz

τx − rz fy + ry fz

τy − rz fx + rx fz

τz − ry fx + rx fy

 (F.18)

We can rewrite ~fPa in terms of ~fP as,



88 F. Preliminary work synthesis

~fPa =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −rz ry 1 0 0

−rz 0 rx 0 1 0
−ry rx 0 0 0 1





fx

fy

fz

τx

τy

τz

=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −rz ry 1 0 0

−rz 0 rx 0 1 0
−ry rx 0 0 0 1


~fP = H~fP (F.19)

The matrix H transforms the load ~fP to ~fPa accounting for the moment arm due to r . A similar analysis can
be performed to determine the appropriate displacement at PA from the displacement at P. Resulting in the
compliance matrix of mechanism A in point P given as,

Cp = H T CPa H (F.20)

The total compliance due to mechanism A and B in series at point P is given as,

C =Cb +Cp (F.21)

As discussed in section F.1 and F.1, parallel en serial conjunctions of spatial mechanisms can be made.
Assuming no negative stiffness the following statements are potentially valid:

• Rotational and translational stiffness increases with parallel conjugations.

• Rotational and translational compliance increases with serial conjugations.

Influence of super-positioning:

• Sub-matrix Cd does not change.

• Stationary rotational compliance and stiffness multipliers do not change.

Influence of super-positioning without taking into account the coupling:

• Sub-matrix Cd does not change.

• Eigen-twist direction, location and stationary compliance and stiffness multipliers do not change.

Multiple identical mechanism parallel:

• There is a linear relationship between the number of mechanisms and stationary stiffness multipliers.

• The direction and location of the eigen-twist and eigen-wrenches stays the same.

Two mechanisms sharing the same eigen-twist direction in series

• The resulting stationary rotational compliance is the sum of the two separate stationary rotational
compliances, the direction stays the same and the location lies in between the two. (Pseudo-Rigid-
Body)
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F.2. Rigid-body replacement utilizing Lipkin’s eigen-decomposition
If two mechanisms A en B are connected in series and share an eigen-twist direction, given as

T A
γi

|T A
γi |

=
T B
γi

|T B
γi |

i = 1,2,3 (F.22)

The resulting combined eigentwist magnitude of T AB
γi is given as,

a AB
γi = a A

γi +aB
γi (F.23)

Which is proven by the following five statements: The resulting compliance matrix of a series concatenation
is the results of the separate compliance matrices added with respect to the point of interested, achieved by
the superposition matrix. The superposition matrix multiplication multiplied by the tangent compliance
matrix as shown above has no influence on the sub-matrix Cd , due to the definition of the superposition
matrix H , stated in F.19. The addition of matrices is done by adding corresponding elements assuming both
are with respect to the same point of interest, given as,

C I +C I I =
[

CaI +CaI I CbI +CbI I

CbI +CbI I Cd I +Cd I I

]
(F.24)

The eigentwists are defined by sub-matrix Cd of the resulting tangent compliance matrix C , the eigen-directions
are defined by the eigen-vectors and the compliance multipliers by the eigen-values of Cd . The eigenvalue
of the addition of two matrices with eigenvectors in the same direction is the result of the addition of the
two corresponding eigenvalues. This section applicable to spatial mechanism however it is illustrated for a
planar example in Figure ??. Equation F.22 is always valid for splanar mechanisms.

Figure F.4: Rotational stationary multiplier summation

It is recommended to perform research to find the location of the resulting combined twist axis cor-
responding to the equivalent compliance. This could potentially form the basis for a synthesis method in
combination with the subsequent section.

F.3. Systematic linearisation utilizing Lipkin’s eigen-decomposition
This section proposes a theory to approximate non-linear behaviour of compliant mechanisms utilizing
Lipkins eigen-decompositon [11]. This theory has the objective to find the equivalent linear principle twist
axis with corresponding equivalent rotational stiffness multiplier of a non-linear compliant mechanism.
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Subsequently the non-linear mechanism can be modelled as a peudo rigid body model to simplify the non-
linear behaviour.

This theory is based on the fact that an infinitesimal rotation of point I around a point II is similar to
a rotation around any point on the line crossing point I & II. This is illustrated in Figure F.5. Point PI can be
moved along the dotted line, however the resulting infinitesimal displacement will remain perpendicular to
the dotted line.

Figure F.5: Linear approximation non-linear mechanism

The described phenomena is applied on flexure mechanism shown in Figure F.6. Based on the defi-
nition of an eigen-wrench presetend by Lipkin. If a moment is applied on the point of interest it will rotate
around the its corresponding eigen-twist axis.

We plot the point of interest and eigen-twist locations along a deformation for a 2d flexure. An applied
clockwise moment results in a clockwise rotational displacement, which is plotted various steps. The blue
lines cross the point of interests and twists locations. The point of interests are plotted as red dots and the
twist locations as crosses. The point of interest represents PI I and the twist location PI . As described, the
point of rotation indicating the infinitesimal displacement as result of the rotation can be anywhere on the
corresponding blue lines. If we plot the blue line for every step in a stepwise analyis of an applied moment,
we see that the blue lines cross. This point is a linear approximate twist axes that represents the the point of
rotation of the point of interest along the deformation, plotted as a green dot. If we give linear approximate
twist axes the average stiffness of the corresponding stiffness multipliers of each step, we can model the flex-
ure as a linear approximated pseudo rigid body model, given as

kl i near i zed = 1

n

n∑
i=1

kγi (F.25)

Figure F.6: Linear approximation non-linear mechanism

The equivalent pseudo-rigid-body model can be constructed using the linearised equivalent eigen-
twist location.
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The proposed preliminary theory is applied on the flexure since it is a striking well-described exam-
ple mechanism. However the proposed preliminary theory can be applied on any mechanism that can be
decomposed using Lipkin’s eigen- decomposition. This includes spatial mechanisms. However, the in Fig-
ure F.6 not always cross. Further research is necessary to expand this proposed theory by including eigen-
wrenches and mechanisms which do not have a clear linearisation point.
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