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The chromatin landscape of healthy and
injured cell types in the human kidney

A list of authors and their affiliations appears at the end of the paper

There is a need to define regions of gene activation or repression that control
human kidney cells in states of health, injury, and repair to understand the
molecular pathogenesis of kidney disease and design therapeutic strategies.
Comprehensive integration of gene expression with epigenetic features that
define regulatory elements remains a significant challenge. We measure dual
single nucleus RNA expression and chromatin accessibility, DNA methylation,
and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to
decipher the chromatin landscape and gene regulation of the kidney in
reference and adaptive injury states. We establish a spatially-anchored epige-
nomic atlas to define the kidney’s active, silent, and regulatory accessible
chromatin regions across the genome.Using this atlas, wenote distinct control
of adaptive injury in different epithelial cell types. A proximal tubule cell
transcription factor network of ELF3, KLF6, and KLF10 regulates the transition
between health and injury, while in thick ascending limb cells this transition is
regulated by NR2F1. Further, combined perturbation of ELF3, KLF6, and KLF10
distinguishes two adaptive proximal tubular cell subtypes, one of which
manifested a repair trajectory after knockout. This atlas will serve as a foun-
dation to facilitate targeted cell-specific therapeutics by reprogramming gene
regulatory networks.

The cellular response to kidney injury causes gene expression changes,
leading to successful repair with restored function or failed tubular
epithelial repair that can progress to chronic kidney disease (CKD)1,2.
Putative adaptive states with successful or maladaptive characteristics
were recently described3 inboth the proximal tubule (PT) and the thick
ascending limb (TAL) epithelial cells of the loop of Henle. Gene
expression profiles found in these adaptive states included epithelial
to mesenchymal transition, elevation of cytokine production, senes-
cence, and downregulation of ion and solute transporters required for
normal physiological function of these nephron segments. Expression
of key injury, repair, and progenitor markers were altered in these
states3–5. The proportion of adaptive cell state signature was increased
in individuals with CKD or acute kidney injury (AKI) and correlated
with faster progression to end-stage renal disease3. Although these
studies provide important insights into gene expression changes in
kidney injury and repair, a critical need persists to define the

epigenetic regulation of gene expression as kidney cells progress
through states of health, injury, regeneration, or failed repair.

Activation or repression of gene transcription is regulated by
changes in the epigenetic landscape, including the sliding of nucleo-
somes to create regions of open and closed chromatin, DNA methy-
lation, and histone modification6. Numerous investigations have
uncovered these epigenetic signals in kidney disease7–9. Different
patterns of DNAmethylation have been found in DKD with alterations
in tumor necrosis factor-alpha and other pro-fibrotic genes10–12. Puta-
tive regulatory regions have been identified in diabetic kidney disease
(DKD), renal cell carcinoma (RCC), and polycystic kidney disease
(PKD)11,13,14 using ATAC-seq to determine the accessibility of chromatin
across the genome. A broad set of ATAC-seq data is now available for a
variety of renal diseases, including RCC and DKD11,13,15, and has also
been leveraged to infer tissue-specific causal regulation of GWAS
findings16. The snATAC-seq of kidney tissue has augmented our
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understanding of the regulation of disease at the single-cell level. In
one study, reduced accessibility of glucocorticoid receptor binding
sites was observed in the proximal tubule of diabetic humans15.
Investigations have also examined chromatin accessibility in human
Papillary RCC (pRCC), kidney organoid differentiation5,17,18, and in
multiple murine models19,20. Each of these studies provides important
insights into epigenetic expression regulation in the kidney. However,
deeper insights would be gained by the integration of these technol-
ogies, particularly with single-cell sequencing, spatial transcriptomics,
and sequencing to delineate histone modifications.

To accurately identify regulatory regions that orchestrate the
coordinated activation and silencing of gene networks in injury and
repair, we interrogated an overlapping set of human kidney tissue
samples with multiple technologies to establish an atlas of genome-
wideDNAmethylation, histonemodifications associatedwith active or
repressed regions in promoters and enhancers, open chromatin, gene
expression, and protein expression. These methods have undergone
rigorous QA/QC review and standardization21, and have been opti-
mized for relatively low cell inputs suitable for interrogation of kidney
biopsy samples. Orthogonal validation was attained at single-cell
resolution and with spatial localization. We identified differential reg-
ulation of the adaptive cell state in the PT and TAL. The kidney epi-
genomic atlas established here will prove a valuable reference for
future studies analyzing diseased tissue obtained from biopsy
specimens.

Results
Samples and quality control
To comprehensively understand the contributions of epigenomic
features to transcript expression regulation, we generated, integrated,
and aligned data frommultiple orthogonal technologies performedon
apartially overlapping set of 25 unique specimens (including 23unique
epigenetic samples, Fig. 1, Supplementary Data 1). Multiple replicates
and multiple technologies were run for some samples, resulting in a
total of 84 datasets. Epigenetic assays used included: (1) WGBS from
lasermicrodissected glomeruli (GLOM) and tubulointerstitium (TI), (2)
single nucleus multiome (10x Genomics combined snATAC-seq and
snRNAseq), (3) bulk ATAC-seq, and (4) CUT&RUN for histone

modifications of active chromatin (H3K27ac, H3K4me3, H3K4me1) and
repressive chromatin (H3K27me3) derived from kidney cortex. A kid-
ney chromatin landscape browser application was developed to view
these aligned datasets across the genome (https://doi.org/10.48698/
HHE6-YV15). Spatial transcriptomic, regional transcriptomic, and
regional proteomic expression datasets complemented the epigenetic
technologies.

We established extensive quality control assessments for the
generated datasets to determine technical and biological reproduci-
bility, coverage, batch effect, and assay drift. For WGBS, samples
clustered as expected based on the region dissected (glomeruli and
the tubulointerstitium)with an average coverage of 25×, and ameanof
22,156,845 CpG sites (range: 19.9–25.7 million sites) mapped per
sample with calculated methylation, representing 81% of all CpG sites
and >99% of annotated CpG islands within the human genome hg38
(Supplementary Fig. 1). The CUT&RUN data was highly reproducible
and showed strong correlation across samples (Supplementary Fig. 2)
and overlap with the ENCODE ChIP-seq and DNAse-seq datasets, pro-
viding additional validation of our approach in human kidney (Sup-
plementary Fig. 3). The multiome dataset also showed robust
analytical and biological reproducibility with ~2400 average genes/cell
detected, expected cell type distribution, and 4.8mean transcriptional
start sites (TSS) enriched per cell (Supplementary Fig. 4).

Integrated whole epigenome alignment
After demonstrating satisfactory data quality, we examined the
genome-wide alignment of the open chromatin signatures of the
whole kidney by first using a publicly availableATAC-seq dataset22 with
histone marks and methylation patterns (Fig. 2). These mod-
alities aligned across the genome. For example, for PODXL, a gene
expressed inpodocytes, therewas a strongmethylation dip (reduction
or absence of DNAmethylation) that coincidedwith anATAC-seq open
chromatin peak, and the H3K4me3 promoter mark near the TSS
(Fig. 2a). Furthermore, two intronic ATAC-seq peaks and a peak in the
final exonic region aligned with H3K27ac active chromatin marks,
H3K4me1 enhancer marks, and glomerular methylation dips. This
multimodal approach allowedmoredetailed insights intomechanisms
and gene regulatory regions that define PODXL expression. We also
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Fig. 1 | Study workflow. In an overlapping set of kidney samples, tissue was
interrogated by laser microdissection-guided whole genome bisulfite sequencing
(WGBS), by multiome single nucleus Assay for Transposase-Accessible Chromatin
for sequencing (snATAC-seq) and single nucleus RNA sequencing (snRNAseq) after

cell disaggregation, and by Cleavage Under Targets & Release Using Nuclease
(CUT&RUN) of kidney cortex. Datasets were aligned in the human genome 38 to
create an integrated epigenomic atlas.
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confirmed this correspondence in epigenetic regulation for proximal
tubule and TAL-specific genes PDZK1 and CASR, respectively.

We next assessed regulation in key kidney structures by first
examining differential methylation patterns between glomeruli and
the tubulointerstitium (Supplementary Data 2). As expected, we
observed an inverse relationship between gene expression and
methylation in these structures; genes expressed in glomeruli (e.g.,

WT1) were methylated in tubules and tubule-expressed genes (MIOX)
were methylated in glomeruli (Fig. 2b). Similar trends were observed
for promoter methylation, summative intronic methylation, exonic
methylation, CpG island methylation, and methylation in the 5’ and 3’
untranslated regions (UTR); however, genes were not differentially
methylated to the same extent in these gene regions (Supplementary
Fig. 1n). Given the variability in differential gene region methylation,
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we sought to determine the key regulatory regions wheremethylation
contributes todifferential expressionwithin the kidney. To accomplish
this, we acquired mRNA and protein expression (by mass spectro-
metry) from the same microdissected samples as those interrogated
with WGBS (glomeruli and tubulointerstitium). Univariate compar-
isons of expression with summative gene region methylation were
performed for all differentially expressed genes (DEGs, n = 5408) and
proteins (DEPs, n = 1796) between the glomeruli and tubulointer-
stitium (Supplementary Fig. 5). We applied a best-fit model (overall
C =0.58) of expression and methylation across all DEGs including the
region with the highest c-statistic (a measure of model fit) for each
individual gene (Fig. 2c). Summative promoter region methylation
best-explained mRNA expression in 1867 of the 5408 DEGs, while CpG
island methylation best-explained expression in 1327 genes. Albeit
non-canonical, intronic (n = 1143) and exonic (n = 1071) methylation
best correlated with expression in a subset of DEGs, but these genes
had a lower overall correlation between methylation and expression.
Similar correlation patterns were observed inmethylation and protein
expression regressions (Supplementary Fig. 5). We hypothesized that
summative methylation from regions defined by CUT&RUN histone
mark peaksmight also correlate withmRNA expression. The strongest
correlation between methylation and mRNA was found for regions in
whichmethylationwasdefinedby enhancerH3K4me1peaks (C = 0.45),
but this did not outperform the best-fit model of Fig. 2c. Even in the
best-fit model, the correlation was 0.58, suggesting features beyond
methylation contribute significantly to expression regulation.

We assayed genome-wide DNA methylation coexistence with
CUT&RUN histone marks in the kidney cortex and bulk kidney ATAC-
seq peaks. Across the genome, open chromatin regionswere positively
associated with active chromatin marks (H3K27ac, H3K4me1,
H3K4me3), and TI methylation dips, whereas the silencing histone
mark (H3K27me3) displayed a negative association with these features
(Fig. 2d, e). These patterns suggest conserved features of epigenomic
regulation across the genome. Epigenomic features at gene promoters
were then compared with mRNA expression using laser
microdissection-guided tubulointerstitial expression23 or pseudobulk
snRNAseq expression of the PT (S1 and S2) and cortical TAL (C-TAL)3.
The active chromatin marks (H3K4me3, H3K4me1, and H3K27ac)
positively correlated with expression, while silencing marks were
negatively correlated (Fig. 2f). We justified these comparisons because
the most abundant cell types of bulk tissue were the PT and cortical
TAL cells and the tubulointerstitium accounts for the vast majority of
these cell types. We performed cell type deconvolution of the histone
modifications within promoters and identified major contributions
from the PT, TAL, and interstitial cell type signatures within the cortex
histone data (Fig. 2g). Similarly, bulk ATAC-seq peaks display the
strongest association with active promoters and predicted enhancers

associated with PT specific genes (Supplementary Fig. 6a). Approxi-
mately half of all TI DNAmethylation dips overlapped with bulk ATAC-
seq peaks, but very few ATAC-seq peaks overlapped in regions of
elevated DNAmethylation (Supplementary Fig. 6b, c). Further, TI DNA
methylation dips that overlapped ATAC-seq peaks showed stronger
histone modification patterns than those that lacked overlapping
ATAC-seq peaks (Supplementary Fig. 6d). We quantitatively examined
the overlap between TI DNA methylation dips with cortex histone
modifications at bulk ATAC peaks. We identified a strong overlap at
peaks associated with epigenetic patterns indicative of active pro-
moters (H3K4me3+, H3K27ac+, and H3K4me1+/−) but less overlap
with peaks displaying active enhancer (H3K4me1+ and H3K27ac+) and
repressed region (H3K27me3) histone marks (Fig. 2h). To enhance
specificity toTI, bulkATACpeakswerefiltered for thoseoverlappingTI
DNA methylation dips and we examined the binding patterns of pro-
moter H3K4me3, enhancer H3K4me1, active H3K27ac, and silencing
H3K27me3 histone modifications in distinct genomic regions (Fig. 2i).
As expected, H3K4me3 localized strongly to promoters which also
displayH3K27acbinding, indicating that themajority of the promoters
selected by the overlap of bulk ATAC-seq peaks and TI DNA methyla-
tion dips are in the active state. H3K4me1 is expectedly localized
outside of promoters (within predicted extragenic enhancers, exonic,
and intronic peaks) together with H3K27ac, indicating that the
majority of the remaining ATAC peaks with DNA methylation dips
display active enhancer features. This integrative analysis combining
bulk tissue ATAC and cortex CUT&RUN histone data with region-
specific DNA methylation demonstrates the ability to use bulk-level
data to augment region-specific data and gain additional insights into
region-specific epigenetic landscape information.

Cell-type specific open chromatin in the reference cell state
We leveraged the 10x multiome data to better understand the cell
type-specific open chromatin signature across the kidney’s diverse
range of cell types. The multiome dataset included 47,217 nuclei
derived from 12 samples, which partially overlappedwith those used in
WGBS and CUT&RUN (Fig. 3). The multiome atlas yielded 72 distinct
cell types based on a pre-existing human kidney atlas3. As a control, we
examined the alignment of expression and open chromatin in known
marker genes of the podocytes (POD), proximal tubules (PT), and
cortical thick ascending loop of Henle (C-TAL) in Fig. 3c. The area
under-the-curve (AUC) of the TSS was highest in the POD for PODXL
and NPHS1, while the TSS AUC was highest for LRP2 and SLC5A2 in the
PT. The regulatory patterns of PDZK1 (expressed in PT), ESRRG
(expressed in C-TAL), and PODXL (expressed in POD), align across
snATAC-seq, WGBS in the GLOM and TI, and the 4 histone modifica-
tions (Fig. 3d–f). For example, in PDZK1, open chromatin was differ-
entially accessible in the PT (combined S1 and S2) with the TSS peak

Fig. 2 | Alignment of epigenomic features in bulk and regional human kidney
samples. a Epigenomic features of marker genes for glomerulus (PODXL), prox-
imal tubule (PT-S12, PDZK1), and thick ascending loop of Henle (C-TAL, CASR),
displaying: (1) DNAmethylation (DNAm) in the tubulointerstitium (TI) (N = 15) and
glomerulus (GLOM) (N = 15), (2) bulk CUT&RUN for four histone modifications:
H3K27ac (N = 6), H3K27me3 (N = 10), H3K4me1 (N = 3), H3K4me3 (N = 3), and (3)
assay for transposase-accessible chromatin using sequencing (ATAC-seq) on bulk
tissue (Encode ENCSR297VGU) (N = 1). Gray stripes indicate active promoters
wherein ATAC-seq peaks at transcriptional start sites coincide with DNAm dips,
and H3K4me3 peaks. Variable H3K27ac peaks reflect compartments’ proportion
within bulk tissue. b Differential methylation between GLOM and TI kidney
compartments for summative methylation of 30,024 gene bodies P value < 0.05
by t test. c Best-fit regression model of methylation and mRNA expression in
identical samples (N = 22) for differentially expressed genes (N = 5408) between
the GLOM and TI. Each dot represents a gene. Y axis is the Log2 fold change of
mRNA between the GLOM and TI. X axis is the Log2 fold change of methylation
between the GLOM and TI. The best-fit annotated gene region (summative

promoter, exon, intron, of CpG island methylation) with the most negative cor-
relation was identified as the promoter for 1867 genes and CpG island for 1327
genes. The inset represents methylation fold change distribution in annotated
gene regions. d Genomic region annotation criteria based on epigenetic land-
scape. e Landscape correlation agreement between datasets (Fisher’s exact test
two sides). f Histone markers and spearman correlation with snRNAseq expres-
sion in the PT-S12 and C-TAL and in the regional mRNA expression of the
microdissected TI. g Cell type deconvolution of CUT&RUN for H3K27ac,
H3K4me1, H3K4me3 active histone modifications at promoters. The RNA sig-
nature was taken from the HuBMAP/KPMP atlas snRNAseq (N = 36), using the 10%
most DE marker genes. h Upset plot depicting overlap in peaks of H3K27ac,
H3K4me1, H3K4me3, and H3K27me3 with DNAm dips across the genome. Active
promoters, predicted enhancers, and repressed regions are annotated. iHeatmap
of CUT&RUN marks across the genome by annotated region after filtering for
open chromatin and DNA methylation dips. The figure uses a licensed stock
image adapted from Adobe Illustrator (Eadon et al. - stock.adobe.com).
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aligning with a TImethyl dip, and a peak in H3K27ac with an H3K4me3
promoter peak in close proximity. Two additional upstream (1–10Kb)
multiome peaks also aligned with methyl dips and H3K27ac peaks,
albeit with H3K4me1 enhancer peaks. In ESRRG, the first region high-
lighted in red denoted a CpG island at the TSS with a methyl dip that
aligned with open chromatin of only the C-TAL cell type as well as the

H3K4me3 promoter and H3K27ac activation marks. A small peak in
H3K27me3 also aligned, likely due to the bulk nature of the
CUT&RUN assay.

To confirm the alignment between the snATAC-seq peakswith the
other technologies, we selected 2194 DEGs from POD, PT, and C-TAL.
The regions of each gene were coded as “peak” and “absent peak”
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regions for the snATAC-seq and H3K4me3 datasets, and as “dip” or
“absent dip” for TIWGBS. A comparison across technologies using the
Cohen’s Kappa test was performed to quantitate alignment of peaks
across all chromatin of the DEGs (Fig. 3g, h, Supplementary Data 3).
Alignment ranged from −1 for perfect disagreement to 1 for total
agreement. The agreement was strong between technologies in the
DEGs with >99% of genes having a positive Cohen’s Kappa value and
the strongest agreement was seen in smaller genes. In Fig. 3i, the
correlation plot calculated by Fisher’s exact test showed agreement
between all technologies, with the exception of the H3K27me3 silen-
cing mark, which is expected. These results were in agreement with
those from publicly available snATAC-seq data generated by the
Humphreys lab5 (Supplementary Fig. 7b, d). Agreement was also seen
with differentially upregulated regions of DNA methylation in the
glomerulus and the corresponding expected TI gene expression
(Supplementary Fig. 7c), as well as with other technologies (Supple-
mentary Fig. 7e).

We explored the overlap of regulatory regions within the
snATAC-seq peaks of the combined PT-S1 and PT-S2 clusters (PT-
S12) (Fig. 3j). DNA methyl dips frequently coincided in regions of
active promoters, active enhancers, and repressed promoters.
Upon filtering the snATAC-seq peaks for regions with DNA methyl
dips, peaks of H3K4me3 marks were strongly associated and cen-
tered upon known promoter regions. In contrast, H3K4me1 peaks
were centered in regions outside of promoters. In both cases,
H3K4me3 and H3K4me1 peaks strongly correlated with H3K27ac
enrichment but not H3K27me3 (Fig. 3k). This integrative analysis
resulted in a PT-S12 specific snATAC-seq peak map with DNA-
methylation-and-histone-modification-landscape information for
each peak, thereby providing the ability to functionally define each
open chromatin region.

We sought to understand the specificity of multiome signals in
cell subtypes of the atlas, comparing expression and open chromatin
across the PT-S1, PT-S2, and PT-S3 cell clusters. The PT shared
expression of common genemarkers (LRP2, CUBN, SLC5A12) across all
three segments; however, unique gene markers specific to each
proximal subsegment were also identified (Supplementary Fig. 7f, g).
For example, PRODH2 was most highly expressed in the PT-S1 with
differential accessibility (DA) in its TSS and 3’ UTR. SLC34A1 (Sodium
phosphate co-transporter 2a) was highly expressed in the PT-S2, with
DA seen in most peaks. Finally, SLC7A13 (Aspartate/Glutamate Trans-
porter 1) was expressedmost highly in the PT-S3with DAof its TSS and
other intragenic regions (Supplementary Fig. 7h–j). Through these
analyses, we have demonstrated that the multiome dataset contains
the resolution to identify PT subtypes. Additionally, expected open
chromatin patterns were seen for the distal convoluted tubule
(SLC12A3), principal cells (AQP2), and endothelial cells (PECAM1) in
known marker genes (Supplementary Fig. 8).

Adaptive cell state in the proximal tubule
Recently, important and varied cell states associated with injury have
been annotated in a comprehensive atlas of the kidney3. One such cell
state is the adaptive state, found in multiple epithelial cells of the
kidney, including the PTandC-TAL. The adaptive cell state refers to the
balance of adaptive repair withmaladaptive epithelial tomesenchymal
transition. The state is defined by a loss of expression of canonical
markers (like PDZK1 or SLC5A12 in the PT) with upregulation of injury
markers such as ITGB3, PROM1, and TPM1.

We used the multiome data to identify a corresponding set of
4194 DEGs between PT-S12 and the aPT, in alignment with that of the
published kidney atlas3 (Fig. 4a, Supplementary Data 4). The diffusion
map (Fig. 4b) reveals the developmental trajectory of the PT, from PT-
S12 to the adaptive PT (aPT) cell state with feature plots indicating the
loss of canonical genes and upregulation of injury markers over the
pseudotime transition to the aPT phenotype (Fig. 4c).

We observed 137,993 peaks (labeled from 1 to 137,993 with gene
name and peak number) within the whole genome of the PT-S12 and
aPT clusters (Supplementary Data 5). Upon annotation, 21,790 peaks
were mapped to within 5 kb of 2 or more genes. From the annotated
peaks, 49,662 coincided with a TI DNA methylation dip (Fig. 4d). The
differential accessibility was queried between all peaks in the PT-S12
and aPT genes, revealing 10,506 as DA, with 3,112 occurring in pro-
moter regions. In Fig. 4e, 27,174 peaks coinciding with DNA methyl
dips were categorized as active promoters (Act-Pro), predicted
enhancers (Pred-Enh), and repressed promoters (Repr-Pro) based on
histone landscape information and proximity to the TSS. Of these,
6607 were DA peaks. PT peaks aligning with a DNA methyl dip were
more likely to be found in a CpG island (Supplementary Fig. 9). PT
peaks aligning with enhancer and repressed promoter marks, but not
active promoter marks, were more likely to occur in CpG islands. The
relationship was maintained after filtering for DNA methyl dips (Sup-
plementary Fig. 9a).

Transcription factors (TF) are proteins that bind to specific DNA
sequences and regulate gene transcription by activating or repressing
expression. We identified the transcriptional pathways that are asso-
ciated with differentially regulated regions in chromatin in aPT cells
using the TRIPOD package24. This permitted the identification of reg-
ulatory trios of TF expression, target gene expression, and target gene
DA in amultiomic dataset (Supplementary Data 6). If a TFDNAbinding
motif is enriched at a particular peak, this suggests that the TF is likely
regulating target gene expression. If a particular histone modification
is enriched, it suggests that the modification is involved in regulating
the accessibility of the target gene chromatin. We analyzed 96 DEGs
meeting all criteria (DA, DEGs, TF binding in TRIPOD, DNAmethyl dip,
histonemodification present), with 39DEGsupregulated in PT-S12 and
57 DEGs upregulated in the aPT. The analysis revealed 68 distinct
pathways, organized into 40 clusters (Supplementary Fig. 9e,

Fig. 3 | Single-cell epigenomics in health. The multiome reduction by uniform
manifold approximation and projection (UMAP) of 47,217 nuclei in 72 clusters and
12 samples aligning with the HuBMAP/KPMP atlas is depicted for a snRNA-seq and
b snATAC-seq assays. Highlighted clusters include podocytes (POD), proximal
tubule (PT) S1, S2, S3 and adaptive PT (aPT), cortical thick ascending loop of Henle
(C-TAL), and adaptive TAL (aTAL1 and aTAL2) cells. c Gene markers for POD, PT-S1
merged with S2 (PT-S12), and C-TAL reveal cell type specificity of expression and
chromatin accessibility. Dot plot (top) reveals transcript expression. Bar graph
(bottom) represents the area under the curve (AUC) for open chromatin coverage
summed across the entire gene. Genes d PDZK1, e ESRRG, and f PODXL align across
the snATAC-seq, WGBS, and CUT&RUN technologies. snATAC-seq peaks are dis-
played in tracks 1–3with respective RNA expression (N = 12) in adjacent violin plots.
DNAm levels (track 4) and differential DNAm (track 5) are depicted for the GLOM
(N = 15, blue) and TI (N = 15, red). Histone marks for CUT&RUN are found in track
6–9: H3K27ac (N = 10), H3K27me3 (N = 6), H3K4me1 (N = 3) and H3K4me3 (N = 3),

respectively. Aggregate open chromatin regions (track 10), and chromosome
coordinates are below. Differentially accessible open chromatin peaks are anno-
tated as red stripes (coincides with CpG island) or gray (no CpG island). Cohen’s
Kappa (CK) agreement between snATAC-seq peaks with DNAm dips (g) or
H3K4me3 peaks (h) in the 2194 differentially expressed genes of POD, PT-S12, and
C-TAL. Perfect agreement (disagreement) is 1 (−1), ranging from CK [0,0.2] for no
agreement to CK [0.8,1] for perfect agreement. Average CK across all genes: GT.
Most peaks positively correlated between technologies. Smaller genes have
stronger correlation. i Association of DNAm& histone marks with open chromatin.
The correlation of open chromatin peaks with DNAmdips, and histonemark peaks
is given for differentially expressed genes of the POD, PT-S12, and C-TAL (Fisher’s
Exact test two sides). j Upset plot shows the intersection of CUT&RUN peaks and
DNAmdips across snATAC-seqPT-S12/aPTpeaks, identifying regulatory regions for
PT. k Heatmap of CUT&RUN marks in PT-S12/aPT in each annotated region after
filtering for open chromatin and DNAm dips.
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Supplementary Data 7), with the top cluster being platelet-derived
growth factor binding, which is important in myofibroblast differ-
entiation. Other key pathways included stress fiber regulation and
integrin complex cell-matrix adhesion.

The multiome dataset defines cells by both expression and open
chromatin. Resultantly, we sought to exploit this opportunity to
identify the occurrence of unique “newpeaks” (NP) in the aPT cell state
and PT-S12 reference cell state, both in promoter and non-promoter
regions of DEGs. A new peak was defined by the absence of open
chromatin in the comparative cell state (i.e., a new peak in the aPT is a
DA peak defined by fewer than 2% of cells in the PT-S12 possessing
open chromatin). DA peaks occurred in 3095 regions of upregulated
DEGS in PT-S12 cells andwereassociatedwithTFs identifiedbyTRIPOD
(Fig. 4f) with 380 new peaks. New peaks were only found in the PT-S12
for DEGs upregulated in the PT-S12. The converse was true in the aPT
(Fig. 4g). Upregulated DEGs in the aPT contained 7535 DA peaks with
an associated TF, of which 455 were newpeaks not occurring in the PT-
S12. The distribution of peaks and new peaks was explored across DNA
methyl dip regions and histonemodifications (Supplementary Fig. 10).
New peak regions were more likely to occur in introns, regardless of
co-occurrence with DNA methyl dips or enhancer, active, or
repressed marks.

Twoexemplargenes demonstrate newpeak regulation (Fig. 5a, b).
The two genes have 7 NP that are associated with 98 transcription
factors (TFs), of which 9 are differentially expressed, as shown in
Fig. 5c. In the PT-S12, SLC5A12 (Fig. 5d) was upregulated with two new
DA peaks located at 83830 (promoter) and 83824 (neighboring ANO3

gene). The 83824 peak coincided with active enhancer marks
(H3K4me1 and H3K27ac) and was regulated by the TF / DEG RREB1 and
other TFs. PROM1 was upregulated in the aPT cell type (Fig. 5e) with 5
newpeaks spanning the promoter, exonic, and intronic regions. Its TFs
included PRDM1 which targeted 3 PROM1 new peaks. PRDM1 plays a
pivotal role in regulating stem cell differentiation and tissue mor-
phogenesis, including regulating injury signals in glomerular endo-
thelial cells25. Other TFs regulating PROM1 peaks included ZEB1, KLF5,
and EGR1.

Transcription factor networks in the proximal tubule
We sought to explore the regulatory landscape of the proximal tubule
in reference to adaptive states. Multiple TFs displayed increased
expression in the aPT (Fig. 6a), with concurrently increased open
chromatin within a subset of these genes, such as KLF6, ELF3, SOX4,
KLF10, and NFKB1. Open chromatin was calculated across each TF by
including the TSS and all other peaks within 5 kb of the TSS. We con-
ducted a TRIPOD analysis of DA peaks within the aPT. The analysis
revealed ELF3 as a candidate regulatory TF of the aPT state due to its
predicted regulation of multiple aPT-specific genes through key
functional regulatory regions defined by DNAm and the histone land-
scape. Through this exploration, we discovered a predicted TF reg-
ulatory network specific to the aPT involving ELF3, KLF6, and
KLF10 (Fig. 6b).

For context, ELF3 is known to regulate Smad3-induced fibrosis in
podocytes of diabetic kidneys26. Both ELF3 and KLF6were predicted to
regulate AQP2 expression in the collecting duct of mice27,28. KLF6 has

Fig. 4 | Adaptive cell state in the proximal tubule. a Differentially expressed
genes (DEGs) between the PT-S12 and aPT cell types within the multiome atlas
(N = 12), 4194 genes with Bonferroni-adjusted P value < 0.05 (Wilcox test).
b Diffusion map of PT-S1, PT-S2 and aPT with 13,241 nuclei. The inset shows the
pseudotime trajectory from PT to aPT. c Gene expression localization in aPT cells
(ITGB3, PROM1, TPM1) for aPT marker genes. Canonical PT markers (PDZK1,
SLC5A12, and RXRA) localize to the PT-S12. d Differentially accessible (DA) peaks
N = 10,506, Bonferroni-adjustedP value < 0.05 (LR test) between the PT-S12 and aPT
(from multiome TRIPOD-seurat-aPTxPT-S12 object that coincide with TI DNA
methylation (DNAm) dips (N = 15). Red = promoter dip, blue = dip outside

promoter. e DA multiome peaks with DNAm dips and a CUT&RUN histone mark
peak (N = 22). Active promoter (Actpro) = green, predicted enhancer
(Predenh) = blue, repressed promoter (Reppro) = red, N = 6607, Bonferroni-adjusted
P value < 0.05 (LR test). f DA peaks (N = 2557) in upregulated DEGs of the PT-S12,
targeted by a transcription factor (TF) in TRIPOD analyses. Orange dots represent
new peaks (NP) in the PT-S12, where fewer than 2% of aPT nuclei had open chro-
matin Bonferroni-adjusted P value < 0.05, LR test). Gray dots display DA peaks
present in both PT-S12 and aPT. All DA NP were found in PT-S12 cells for DEGs
upregulated in the PT-S12. g DA peaks (N = 4573) in upregulated DEGs of the aPT.
Green= aPT NP. Gray =DA peak present in both PT-S12 and aPT.
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Fig. 5 | New peaks in reference and adaptive cell states. a, b Gene alignment of
SLC5A12, a PT-S12 marker, and PROM1, an aPT marker, across snATAC-seq peaks
(N = 12), DNAm TI dips (N = 15), and CUT&RUN histone marks H3K27ac (N = 10),
H3K27me3 (N = 6),H3K4me1 (N = 3), andH3K4me3 (N = 3). Red stripe indicates new

peaks (NP) with transcription factor (TF) binding. c Differentially expressed TFs of
the aPT and PT-S12 which target NP of PROM1 and SLC5A12. d, e Chord diagram of
SLC5A12 and PROM1, respectively, with TFs (TRUE = positive binding or DNAm Dip
and FALSE= no binding or no DNAm Dip).
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been implicated in multiple murine models of AKI, by impairing
branched-chain amino acid (BCAA) catabolism in aristolochic acid I29,
by enabling pyroptosis in septic AKI30, and in mediating apoptosis and
inflammation in ischemia31. KLF10 has been shown to mediate epithe-
lial to mesenchymal transition in the kidney32 and its knockdown
reduces DKD-related fibrosis33.

ELF3 is predicted to bind ITGB3 at 2 snATAC-seq peaks and TPM1
at 1 promoter-associated snATAC-seq peak, implying direct regulation
of their expression. The regions ELF3 is predicted to bind in ITGB3were
specific active enhancer (H3K4me1+/H3K27ac+) peaks (116237 and
116240, Supplementary Fig. 10a), indicating regulation via enhancer
activity rather than direct promoter activity. For TPM1, a new peak
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(106234) was noted just upstream of the TSS which was also a DNA
methyl dip and CpG island, with histone modifications slightly offset
from the center of the snATAC-seq peak (Fig. 6c). An active promoter
signature aligned with the second TPM1 peak (106235); however, the
amount of open chromatin was not different between the PT-S12 and
the aPT, suggesting regulation in the aPT cell state is occurring within
the promoter peak 106234. Of note, the ELF3-regulated peaks also
display H3K27me3 modification in the kidney cortex. This could be
due to the bulk nature of the data or could indicate regions that are
bivalently regulated for rapid transcriptional regulation switches. ELF3
is also predicted to bind 5 snATAC peaks upstream of the KLF6 pro-
moter, all of which also display enhancer histone modifications
(Fig. 6d) and 3 peaks outside of KLF10 (Supplementary Fig. 10b).
Analysis using scMEGA (1.0.1) predicts that both KLF6 and KLF10 in
turn regulate ITGB3 (Supplementary Fig. 10d, Supplementary Data 8).
All 5 peaks in KLF6 corresponded to active enhancer regulatory
regions. One of the peaks in KLF10 (67206, upstream) was a DNAmdip
with repressed enhancer marks, while the others (downstream, 67188
and 67191) were active enhancers with corresponding H3K4me1 and
H3K27ac peaks. Together, the TFs ELF3, KLF6, and KLF10 were pre-
dicted to be involved in an aPT-specific regulatory network with cross-
regulatory relationships between themselves and evidence of direct
regulation of the aPT target genes TPM1 and ITGB3 through binding at
specific promoters and enhancers (Fig. 6b).

We further explored the pseudotime and localization features of
these TFs using the scMEGA package. Since it defines more permissive
relationships than TRIPOD (which requires a three-way association of
TF expression, target gene DE and target gene DA), we validated the
method by identifying the same relationships in scMEGA with addi-
tional aPT target genes (PROM1, VCAM1) regulated by ELF3, KLF6, and
KLF10 (Supplementary Fig. 10d). Chromatin accessibility, gene
expression, and TF activity are depicted in Supplementary Fig. 10d. TF
activity, target gene expression, and TF expression were visualized as
relationships to the pseudotime trajectory of Fig. 4b for KLF6, KLF10,
and ELF3 (Fig. 6e). These relationships showed strong alignment with
their aPT target genes for each associated TF motif. A comprehensive
TF activity matrix, filtered to retain interactions between TFs and tar-
get genes with a correlation of >90% is provided (Supplemen-
tary Data 9).

Spatial transcriptomics (ST) facilitated localization of target gene
expression, TF expression, and TF activity (Fig. 6f). TF activity refers to
a composite vector for a gene regulatory network (GRN) and all target
gene expression, chromatin accessibility, and TF expression. We
mapped these features for ELF3 in a reference nephrectomy with
cortex andmedulla, aswell as twodiseased biopsy samples, one cortex
and one medulla. Expression of SLC12A1, the sodium-potassium-2
chloride (NKCC) transporter in the TAL, demarcates the regions of
medulla or medullary rays within the nephrectomy and differentiates
the regions of the two biopsy samples. In the second row of Fig. 6f, we
show the expression of TPM1, which is upregulated in the injured
cortex, but less so in the medulla. ELF3 expression and activity were
both upregulated in the injured cortex, but not the medulla. In refer-
ence tissue, baseline ELF3 transcription factor activity is confined to

the cortex. Taken together, our results demonstrate that TF activity
matrices and spatial transcriptomics are powerful tools for identifying
transcriptional regulatory networks in spatially resolved tissues. ELF3
TF activitywas specifically localized to cortical regions of abundant PT-
S12. These findings have important implications for understanding the
molecular mechanisms underlying tissue injury and repair.

Perturbation analysis of the proximal tubule
To determine whether the TF network of ELF3, KLF6, and KLF10
is integral to or associativewith thePT adaptive cell state, Celloracle34

in silico knockout of these 3 TFs was performed individually and in
combination (Fig. 7). Nine subclusters of the PT-S1, PT-S2, and aPT
were identified and their connections were modeled (Fig. 7a–c).
Combination knockout of ELF3 (expression shown in Fig. 7d), KLF6,
and KLF10 significantly disrupted the trajectory path of both the PT-
S1 and PT-S2 transition to the aPT (Fig. 7e, f). Comparing the indivi-
dual knockouts of each gene, the KLF6 knockout perturbed the lar-
gest number of aPT target genes with a similar trajectory disruption
to the combined knockout (Supplementary Data 10, Supplementary
Fig. 11). ELF3 knockout also yielded a trajectory disruption between
the PT-S12 and aPT, with expression changes of additional aPT target
genes over the individual KLF6 knockout. ELF3 knockout is predicted
to reduce KLF6 expression. Thus, the combined effects are greater
than either individual knockout and consistent with the cross-
regulatory relationship we discovered for these TFs using TRIPOD
and scMEGA. Isolated KLF10 knockout affected the aPT trajectory to
a lesser extent than either KLF6 or ELF3, suggesting redundancy with
these genes.

The combined knockout had minimal effect on canonical marker
genes of the PT-S12, but did reduce expression of multiple aPT genes
(Fig. 7g, h) with accessible chromatin and predicted binding by ELF3
and KLF6 (top 50 genes shown). The two aPT subclusters (aPT-A and
aPT-B) demonstrated different behavior in response to the knockout.
The aPT-A sub-cluster maintained higher expression of PT-S12 genes
prior to knockout, but also showed less change in expression of injury
genes in response to the knockout when compared to the aPT-B sub-
cluster. In response to knockout, the aPT-B sub-cluster had increased
PT-S12 gene expression (e.g., SLC13A3, SLC34A1) and reduced aPT gene
expression. Both the aPT-A and aPT-B subclusters had reduction in aPT
marker gene expression or restoration of PT-S12 gene expression after
knockout; however, a greater proportion of the aPT-A cells manifest a
potential repair trajectory after combined knockout. Together, these
data suggest ELF3, KLF6, and KLF10 mediate progression to the aPT
cell state.

In a cell culture model, normal human proximal tubular kidney
(NHPTK) cells were transfected with siRNA targeting the three TFs
individually and in combination (Supplementary Fig. 11f). Target gene
expression of TPM1 and VCAM1 were reduced in the combined
knockout, supporting the disruption of the aPT trajectory observed in
the in silico analysis. Individually, ELF3 knockdown led to modest
reductions in KLF10, TPM1, and ITGB8 expression. KLF10 knockdown
led to reductions of ELF3, TPM1, and VCAM1. Individual KLF6 knock-
down led to increases in ELF3 and ITGB8 expression, which were not

Fig. 6 | Regulation of adaptation in the proximal tubule (PT) in the
multiome atlas. aMean expression and area under the curve (AUC) of summative
open chromatin for transcription factors (TF) of the adaptive proximal tubule (aPT)
and PT-S1 and S2 (PT-S12) in 12 samples. Bold font indicates expression upregula-
tion in the aPT (negative binomial exact test, p <0.05 after Bonferroni and average
Fold Change >0.25 Supplementary Data 4). b TF network defined by the TRIPOD1

method wherein ELF3, KLF6, and KLF10 cross-regulate each other, and two genes
upregulated in the aPT (ITGB3 and TPM1). Edge thickness represents the number of
peaks predicted in the interaction. c, d Alignment of epigenomic features in TPM1
and KLF6 for the aPT and PT-S12. Red stripe indicates a peak with predicted TF
binding by ELF3. Co-accessibility scoreswere correlatedwith gene expression, peak

accessibility by Signac, DNAm in the tubulointerstitium (TI), and histonemarks. TF
Peaks are numbered and correspond to (Supplementary Data 5). e Pseudotime
trajectories from PT-S12 to aPT for the expression and activity of TFs ELF3, KLF6,
and KLF10 with target gene expression. X axis: pseudotime, Y axis: z score of
transformed values based on the standard deviation of the mean. TF motifs are
provided to the right. f Representative spatial transcriptomic mapping (N = 3) in a
healthy reference, injured cortex, and injured medulla. SLC12A1 defines the corti-
comedullary distribution (including medullary rays). TPM1 and ELF3 expressions
are upregulated in the injured cortex. TF activity of ELF3 is present only in the
cortex (in PT dominant spots) and is upregulated in the injured cortex.
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Fig. 7 | In silico perturbation knockout in the proximal tubule (PT) (N = 12).
a Cell type distribution of PT-S1, PT-S2, and adaptive PT (aPT). b Partition-based
graph abstraction (PAGA) shows the connectivity of 9 subclusters in Louvain
annotation. cCell type annotationdistribution across the 9 subclusters.d ELF3, a TF
targeting multiple aPT marker genes, is expressed in PT clusters before combined
knockout of ELF3, KLF6, and KLF10, but is reduced in expression after knockout.
eCell velocity combinedwith the pseudotimeplot showing the cellflow fromPT-S1

and PT-S2 to the aPT cell state. f The cell flow after in silico knockout revealing
disruption of the trajectory. g Gene expression in nine subclusters of selected PT-
S12 marked genes (blue) and 50 top differential aPT markers before and after
combined knockout Benjamini-Hochberg adjusted P value < 0.05 (Wilcox test).
h Expression of selected aPT marker genes with predicted TF binding from ELF3,
KLF6, or KLF10 before and after combined knockout.
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seen in the combined knockdown, perhaps supporting the approach
to evaluate these genes as a TF network.

Dysregulation of the thick ascending loop of Henle in the
adaptive state
In addition to the adaptive state being present in proximal tubule
epithelial cells, it has also been identified in TAL epithelial cells of the
LoopofHenle3.We sought todetermine how the regulatory features of
the adaptive TAL (aTAL) cell corresponded or differed from the aPT.
Overall, there were fewer TAL cells than PT cells in the atlas. None-
theless, patterns of DEGs between the cortical TAL (C-TAL) and aTAL
were preserved between epithelial cells. aTAL signatures revealed loss
of canonical markers like SLC12A1, ESRRG, UMOD, and EGF (Fig. 8a–c,
Supplementary Data 11). We observed 3152 DEGs, with upregulation of
2485 for C-TAL and 667 for aTAL. ELF3 was differentially expressed in
the aTAL, but to a lesser extent than in the aPT. Pro-fibrotic genes were
upregulated in the aTAL including ZEB1, LAMC2, and SMAD3. FHL2 is
known to mediate podocyte dedifferentiation and glomerular base-
ment membrane thickening in diabetic kidney disease and is pro-
fibrotic in the TI through the beta-catenin pathway35–37, aligning with
extracellular matrix-associated pathways enriched in the aTAL
enrichment analysis for top 300 DEGs. Pathways showed significance
with Bonferroni-adjusted P values < 0.05 in enrichment tests (Fig. 8d,
Supplementary Data 12). TM4SF1 was a specific aTAL DEG, but little is
known of its function in the kidney. TM4SF1 functions as a tumor
suppressor38, promotes epithelial to mesenchymal transition39, and
serves as a marker of functional human alveolar epithelial progenitor
cells40.

We explored the regulation of FHL2 and TM4SF1, which shared a
common TF, NR2F1 (Fig. 8e). FHL2 did not possess open chromatin at
its TSS; instead, NR2F1 is predicted to bind FHL2 in an intronic region
(peak 14502) before the first coding exon with an active enhancer
mark. The TSS for TM4SF1 was targeted by multiple TFs that were not
differentially expressed, including ETV1 (Supplementary Data 13).
However, NR2F1 had predicted binding upstream at peak 25256
(numbered according to Supplementary Data 14), also corresponding
to an active enhancer mark. NR2F1 was not differentially expressed
(Fig. 8g), but had TF activity specific to the medulla (Fig. 8h, Supple-
mentary Data 15). The expression of NR2F1 in spatial transcriptomics
was present in relatively few spots, corresponding to the low expres-
sion in a few cells of scRNA-seq. However, its activity was robust and
localized to the medulla both in reference and injury. (Fig. 8i, lower
panels), potentially highlighting the value of these complementary
technologies. The aTAL phenotype included upregulation of SMAD3.
SMAD3 potentially interacted with ZEB1 (at peak 85995), and while not
statistically significant for DA, the peak was a DNA methyl dip and
active enhancer peak. In contrast, a SMAD3 peak targeted by ELF3
(86016) was DA, but without a DNA methyl dip or active enhancer,
suggesting alternative regulation in this region. TF expression and DA
were also assessed using scMega and revealed similar patterns (Sup-
plementary Fig. 12). Of note, HIF1A was associated with both the aPT
and aTAL cell phenotypes. In summary, the regulation of the aTAL
shares overlapping features with the aPT, but still has distinctly loca-
lized TFs that mediate the phenotype.

Discussion
While much progress has been made in transcriptomic and proteomic
interrogation of the kidney, integrating diverse epigenetic technolo-
gies is still a nascent endeavor. Multiple studies have examined single-
cell open chromatin in the context of mRNA expression15,41–44. Open
chromatin is necessary for gene transcription, but it may also be found
at promoters or enhancers of inactive or silent genes, indicating that
chromatin accessibility is insufficient alone to predict expression6.
There are multiple layers of epigenetic regulation that determine the
activity of regulatory regions, with DNA methylation and histone

modifications being among the most important45. Relevant studies by
the Susztak laboratory have examined WGBS with chromatin immu-
noprecipitation sequencing of histone modifications in diabetic and
healthy tissue samples10 as well as interpreted genome-wide associa-
tion study variants in the context of snATAC-seq and methylation. We
build upon this investigation by integrating CUT&RUN, WGBS, mul-
tiomic snATAC-seq, regional transcriptomics, spatial transcriptomics,
and regional proteomics, all at a biopsy scale of tissue. In this study, we
have generated a genome-wide dataset that integrates all these epi-
genomic layers of the gene regulatory program with mRNA and pro-
tein expression in overlapping human kidney samples.

A major goal of this work was to create a comprehensive atlas
that will serve as an essential reference for comparison to clinical
biopsy samples and diseased kidney tissue. Studies of this type are
needed to reveal howcell-type specific regulatory regions control the
transition between healthy and diseased states, and to guide efforts
to reprogram cells to promote repair after injury. Because our work
builds upon a transcriptomic atlas of healthy and diseased tissue3, we
were able to explore the regulatory network of the adaptive cell state
that is associated with the progression of CKD and AKI to CKD
transition. Although this epigenomic atlas includes a limited number
of diseased kidney biopsy samples, both the reference and adaptive
cell states are found in nephrectomy samples, which have varying
degrees of injury. Healthy tissue is heterogenous and often contains
abnormal pathology and altered cells with injury signatures. Most
samples selected in this study were provided by the KPMP and
HuBMAP, supplemented by local repositories, in order to assess the
technical reproducibility and potential biological insights of these
technologies to each consortium. Future studies in a larger KPMP
cohort of diseased tissue will better examine specific epigenomic
alterations in AKI, CKD, and those associated with histologic mani-
festations. For example, DNA methylation is known to correlate with
renal disease and outcomes, including those observed during
ischemia in kidney transplant allografts46.

Our bioinformatics analyses highlight the potential value of our
dataset to elucidate regulatory pathways involved in the adaptive cell
state. We uncovered differential regulation of the PT and aPT, speci-
fically identifying a TF network of ELF3, KLF6, and KLF10, responsible
for multiple downstream target genes within the adaptive cell state
and localizing specifically to the kidney cortex and PT. In silico
knockout of the TFs in this network supported cross-regulation among
these genes and revealed two distinct aPT trajectories. Interestingly,
target gene expression in one of these trajectories was significantly
more responsive to TF knockdown, underscoring a potential role in
transition between PT and aPT. Further, our studies revealed that
regulation of the adaptive cell state differs across epithelial cell types,
as the TF regulation of the aPTwas different than that of the aTAL. The
multiome defines cells based on mRNA signatures and TSS open
chromatin, unlike standard snATAC-seq, which uses the TSS alone to
define cell types. This added dimension allows for greater interpreta-
tion of peaks outside the TSS and improves resolution of injury cell
states inwhich open chromatin of canonicalmarker genesmay be lost.
The integration of WGBS and CUT&RUN facilitates the assessment of
DNA methylation and histone modifications as contributions to chro-
matin accessibility.

In order for the atlas to serve as a foundation for the scientific
community, we reasoned that it must meet specific benchmarks. Until
recently, epigenomic analysis of clinical tissues has been limited by the
relatively large amount of startingmaterial needed to perform someof
the assays. However, advances in epigenomic technologies have now
enabled these assays to be performed on a smaller scale. We per-
formed all methods described in this study using relatively low cell
inputs suitable for interrogation of clinical kidney biopsy samples. For
example, all nephrectomy tissue was cut to be biopsy-sized and in a
subset of samples, multiple technologies were performed on a single
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Optimal-Cutting-Temperature compound embedded block. A second
key feature of a reference dataset is that the methodology must meet
rigorous QA/QC criteria to account for assay drift and batch effects,
and be readily reproducible by other investigators. Each of the tech-
nologies used in this study has undergone careful expert review and
standardization based on published KPMP criteria21 and the resultant
quality data is included in the supplement. In this study, we

demonstrated a high degree of reproducibility among technical and
biological replicates collected over or stored for many months. Fur-
thermore, we demonstrated genome-wide orthogonal validation
between complementary epigenomic features. Investigators using our
opensource detailed protocols47–49 adapted to low cell numberswill be
able to validate our data in independent reference samples and use
these methods to interrogate additional diseased kidney tissue.
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This multimodal analysis of chromatin regulation aligned histone
modifications with DNA methylation patterns and open chromatin
across the genome of the kidney. There is not a one-to-one correlation
of these technologies and their integration provided a holistic view of
the contributors to chromatin accessibility. This comprehensive epi-
genetic map will complement the interpretation of signatures within
the merged Human Biomolecular Atlas project (HuBMAP) and Kidney
Precision Medicine Project (KPMP) transcriptomic atlas3. Future stu-
dies comparing healthy and diseased tissue have the potential for
significant clinical impact by uncovering epigenetic biomarkers of
disease progression and druggable cell-specific regulatory targets that
promote successful or failed repair.

Methods
Human subjects and samples
This study complies with all relevant ethical regulations and was
approved by the Institutional Review Boards of Indiana University and
Washington University in St. Louis and as part of sIRB protocols of the
HuBMAP and KPMP. Human samples and clinical data were derived
from the following sources: (1) The Biopsy Biobank Cohort of Indiana
(BBCI, IRB #1906572234)50 approved by Indiana University, (2) the
Kidney Translational Research Center (KTRC, (IRB #201102312) of
Washington University in St. Louis51, (3) the Kidney PrecisionMedicine
Project (KPMP)52, and (4) the Human Biomolecular Atlas Project53

(HuBMAP). For the BBCI, KTRC, and HuBMAP, samples were obtained
under a waiver of informed consent due to minimal risk to subjects
according to the United States Department of Health and Human
Services Common Rule 45 CFR 46.116(f). For KPMP, samples were
acquired with written informed consent. Samples included healthy
reference tissue from patients undergoing total nephrectomy,
deceased donor nephrectomy, percutaneous kidney biopsy in a heal-
thy transplant donor, or percutaneous kidney biopsy in an individual
with kidney disease (Supplementary Data 1). All nephrectomy samples
were dissected from tumor-free regions. Individuals with AKI or CKD
were included in the KPMP. The proportion of cortex andmedulla, the
demographic data, the clinical data, and the histopathologic findings
were recorded.

Multiome sample processing, library preparation, sequencing,
and analysis
For sample processing, in 12 total samples (8 distinct biologic sam-
ples), 47,217 nucleiwere isolated from tissue cryosections according to
a published protocol54, and with the following exceptions: (1) tissue
sections were cut then stored on dry ice until nuclei isolation; (2)
Protector RNase Inhibitor (Sigma-Aldrich, Catalog #3335402001) was
used at a concentration of 1.0U/μl; (3) Complete protease inhibitor
cocktail (Roche, cat #11836153001) was included for final 1× con-
centration; and (4) 4′,6-diamidino-2-phenylindole (DAPI) was excluded
from the extraction buffer. Furthermore, two nuclei samples were
further purified immediately following isolation using the LeviCell
system (Levitas Bio) using company protocols. This was performed to
assess for any data quality improvements for nuclei that had been

separated from cellular debris generated during the tissue
dissociation.

For library preparation, isolated nuclei were processed immedi-
ately using the Chromium Next GEM Single Cell Multiome ATAC +
Gene Expression (v.1.0) kit according to the step-by-step protocol
available online49.

For sequencing, the RNA and ATAC libraries were sequenced
separately on the NovaSeq 6000 (Illumina) system (NovaSeq Control
Software v.1.7.0 and v.1.7.5). Sample demultiplexing, barcode proces-
sing, gene expression and open chromatin peak quantifications were
performed using the Cell Ranger Arc software (v.2.0.0) using GRCh38
(hg38) reference genome.

For RNA Analysis, cell barcodes passing the following quality
control filters were used for downstream analyses: (1) passing 10X Cell
Ranger Arc (RNA/ATAC) filters; (2) considered singlets by the Dou-
bletDetection software (v.2.4.0); 3) showing greater than 400 and
<7500 non-mitochondrial genes detected; (4) passing a geneUMI ratio
filter (gene vs. molecule.cell.filter) from the Pagoda2 software (https://
github.com/hms-dbmi/pagoda2). Mitochondrial transcripts were
removed, and the query RNA counts were integrated with a previous
snRNA-seq reference atlas of healthy and injured cell types in the
human kidney3. This integrationwasperformedusing Seurat (v.4.0.0)3.
Briefly, RNA counts were normalized using sctransform, anchors
between datasets were identified based on the reference Pagoda2
principal components. Query data was then projected onto the refer-
ence principal component (PC) and UMAP space, with cell type labels
transferred using the MapQuery function. A k-nearest neighbor graph
(k = 100) was generated using Pagoda2 based on the integrated PCs,
and integrated clusters were identified using the infomap community
detection algorithm. The query portion of each cluster was then
annotated to the most overlapping, correlated and / or predicted
reference cell type label. This was performed to account for inaccurate
cell type labeling that is prevalent for altered cellular states. A further
step of manual assessment of cell type markers was performed to
confirm identities. Integrated clusters that showed markers or iden-
tities that overlapped across disparate cell types were labeled as
ambiguous or low-quality and removed.

For chromatin Analysis, snATAC data was processed using Signac
(v.1.6.0)55. Peaks called using Cell Ranger Arc were combined across
experiments using the reduce function. Fragment objects for each
experiment were prepared from Cell Ranger Arc fragment files using
theCreateFragmentObject function. The combined set of peak regions
was used to generate peak-by-cell matrices for each experiment using
the FeatureMatrix function. These peak matrices were then used to
create individual Seurat objects that were merged to form a single
combined object. Only cell barcodes that were retained from RNA
analyses were used for further analyses. Accessible peaks were then
called separately for multiple levels of cell type annotations (clusters,
subclass level 3 and subclass level 1) using the CallPeaks function and
MACS (v.3.0.0a6; https://github.com/macs3-project/MACS). All peaks,
including those called by Cell Ranger Arc, were combined using the
reduce function and filtered to remove: (1) regions >10000 and <20

Fig. 8 | Adaptation in the cortical thick ascending loop of Henle (C-TAL).
a Differentially expressed genes (DEGs) between the adaptive TAL (aTAL, blue)
and C-TAL (magenta), for N = 3152 genes at a Bonferroni adjusted P value < 0.05
(Wilcox test) within the multiome atlas (N = 12). b UMAP harmony of aTAL and
C-TAL. Inset shows pseudotime from C-TAL to aTAL. c Gene expression localizes
in aTAL cells for aTALmarker genes (LAMC2, FHL2, and TM4SF1). Canonical C-TAL
markers (UMOD and ESRRG) are expressed in the TAL. NR2F1 is a TF that is not
differentially expressed. d Top 15 clusters from GO-All pathway enrichment
analysis at a Bonferroni adjusted P value < 0.05 (enrichment tests). The genes are
based on DA regions in the aTAL. Key pathways of the adaptive process overlap
with those of the aPT, including mesodermal cell differentiation and adhesion.
e Alignment of epigenomic features in TM4SF1 and FHL2 for the aTAL and C-TAL.

The red stripe indicates a peak with TF binding by NR2F1. Co-accessibility scores
were correlated with gene expression, peak accessibility by Signac, DNAm in the
tubulointerstitium (TI), and histone marks. Additional TF peaks and target genes
are found in Supplementary Fig. 12. TF Peaks are numbered and correspond to
Supplementary Data 13. f Top 10most differentially expressed TF in the aTAL and
C-TAL (by TRIPOD1). The TF NR2F1 is not differentially expressed. The bar plot
conveys the AUC of summative gene open chromatin. g The expression of FHL2
and TM4SF1 is highest in the aTAL. The peak activity of the peaks targeted by
NR2F1 is also highest in the aTAL region. h Representative spatial transcriptomic
mapping (N = 3) in a healthy reference, injured cortex, and injuredmedulla.NR2F1
expression and activity occur in the medulla, and activity is present in injury.
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base pairs; (2) regions falling within nonstandard chromosomes; (3)
regions occurring in blacklist regions using the blacklist_hg38_unified
object from Signac. The final peak set was used to create a newpeak by
cell countmatrix and seurat object as detailed above. Gene annotation
of the peaks was performed using GetGRangesFromEnsDb(ensdb =
EnsDb.Hsapiens.v86). Nucleosome signal (NS) scores, transcription
start site (TSS) enrichment scores and fraction of reads in peaks (FRiP)
were calculated for each cell using the NuceosomeSignal, TSS Enrich-
ment and FRiP functions. Cell barcodes further passing the following
ATAC filters were kept for downstream analyses: (1) >1000 and
<100000 peak counts per cell; (2) a FRiP greater than 0.25; (3) an NS
score less than 4; (4) a TSS enrichment score >2. A combined Seurat
object was then generated with separate RNA and ATAC assays for the
same cell barcodes. The LinkPeaks function was used to link potential
regulatory peaks to each gene, taking into account GC content (com-
puted using the RegionStats function with the BSgenome.Hsa-
piens.UCSC.hg38 genome), overall accessibility and peak size.
Transcription factor motif information was added to the Seurat object
using the AddMotifs function in Signac and using Jaspar motifs (JAS-
PAR2020, all vertebrate). Motif activity scores were computed using
chromVar56 (v.1.12.0; https://greenleaflab.github.io/chromVAR)
through the RunChromVar function. For quality control assessment,
the multiome dataset was compared to a publicly available snATAC-
seq dataset (GSE151302) that was aligned and merged with the KPMP
snRNA-seq atlas3.

Cleavage under targets & release using nuclease (cut&run)
sample processing, library preparation, sequencing, and
analysis
For sample processing, liquid nitrogen or OCT-embedded frozen kid-
ney tissue was processed according to a modified protocol adapted
from Epicypher and available on protocols.io48. Antibodies used in this
study for CUT&RUN reactions: H3K27ac (Cell Signaling, 8173),
H3K27me3 (Cell Signaling, 9733), H3K4me1 (Cell Signaling, 5326),
H3K4me3 (Cell Signaling, 9751), and IgG (Cell Signaling, 2729) at a 1:50
dilution. The number of samples processed for each antibody are:
H3K27acN = 6 total and 4 distinct biologic, H3K27me3N = 10 total and
6 biologic, H3K4me1 N = 3 total and 1 biologic, H3K4me3 N = 3 total
and 1 biologic.

For library preparation, up to 3 ng of DNA from KPMP donor
samples was used to prepare sequencing libraries using the Ion Plus
Fragment Library Kit (Thermo Fisher Scientific, 4471252), following
manufacturer’s instructions, using 17 cycles to amplify the library. Up
to 0.5 ng of DNA from KTRC donor samples (3399, 3409, 3447) was
used to prepare sequencing libraries using NEBNext Ultra II Library Kit
(NEB, E7645), followingmanufacturer’s instructions, using 18 cycles to
amplify the library.

For sequencing, 100pMKPMP donor libraries were sequenced on
the Ion Torrent Proton to a sequencing depth of 30million reads (2–3×
genome coverage). 0.8pm KTRC donor libraries were sequenced on
the NovaSeq 6000 (Illumina) targeting 100 million paired-end reads.

For analysis, detailed bioinformatic analysis with command line
examples for Illumina sequences can be found on protocols.io48.
Briefly, trimmed fastq files were aligned to the hg38 reference genome
using Bowtie2 (for Illumina sequenced) or TMAP (for Ion Torrent
sequenced). Aligned reads were extracted and converted to a sorted
bam file using SAMtools. Scaled bigWig files were generated using
Deeptools, and peaks were called using Macs2.

Whole genome bisulfite sequencing (Wgbs) sample processing,
library preparation, sequencing, and analysis
For sample processing, thirty kidney glomerular and tubulointerstitial
(TI) samples from 14 distinct donors were processed along with posi-
tive and negative blood controls. Glomerular and TI samples from 1

donorwereprocessed twice to assessbatcheffect. Tissuewas stored at
−80 °C and sectioned from an OCT block at 12 µm thickness, and
mounted on Leica PPS-membrane Laser Microdissection (LMD) slides
(Leica, Cat# 11505268). A rapid stain protocol23 prepared slides for
LMD, briefly: slides were fixed in –20 °C Acetone (Sigma-Aldrich, Cat#
270725-1 L) for 1minute, washed with PBS (VWR, Cat# K812-500ML) 2
times for 30 seconds, stained with antibody mix [4μL OG-Phalloidin
(Oregon Green 488, ThermoFisher, Cat# O7466) + 1.5μL DAPI (Ther-
moFisher, Cat# 62248) in a total volume of 200 µl of PBS solution] for
5minutes, washed with PBS for 30 seconds twice and air dried for
5minutes. Glomerular (GLOM) and TI sections were dissected on a
Leica LMD6500 system and collected directly in the flat cap of an
autoclaved 0.5mL microcentrifuge tube (ThermoScientific, Cat# AB-
0350) tubes, then stored in −80 °C. DNA was isolated using the Pure-
LinkTM Pro 96 Genomic DNA Kit (Cat# K1821-04A) with minor mod-
ifications. Tissue lysates were prepared using the “Mammalian Cells
and Blood Lysate” protocol, briefly: 200 µl of PBS, 20 µl of Proteinase,
20 µl of RNase A were added to each tube, mixed and incubated for
2minutes at room temperature. Then, 200 µl of PureLinkTM Pro 96
Genomic Lysis/Binding Buffer was added to each tube, mixed and
incubated for 15minutes at 55 °C. The produced tissue lysate was
mixed with 200 µl of 100% ethanol and then transferred to a Pure-
LinkTM gDNA filter plate, centrifuged at ≥ 2100 × g for 10minutes,
then washed with 500 µl of wash buffer 1 and wash buffer 2 separately;
the purified DNA was eluted in 50 µl of elution buffer.

For library preparation, DNA quantity and quality were assessed
by Qubit Fluorometer 4.1 (Invitrogen). Bisulfite conversion was per-
formed using the EpiTect Fast DNA Bisulfite Kit (Qiagen Cat# 59824).
An input of 10 ng was used for library preparation, and QIAseq Methyl
DNA Library Kit (Cat# 180502) was used for amplification and ligation
of Illumina adaptors. Library purification was performed using QIAseq
Beads. The library quality was assessed using an Agilent Bioanalyzer
2100 and Qubit Fluorometer 4.1.

For sequencing, multiple libraries were pooled in equal molarity,
and a final concentration of 300 pM was loaded onto the NovaSeq
6000 sequencer (Illumina) for 150 bp paired-end sequencing.
Approximately 200 million read pairs (400 million reads total) were
generated per library for ~15–20× calculated coverage. The actual final
measured coverage averages 11.8× after processing. An EpiTect
Unmethylated DNA control (Qiagen Cat# 59568) and EpiTect Methy-
lated DNA control (Qiagen Cat# 59655) were sequenced as controls.

For analysis, sequencing quality control, mapping, and methyla-
tion analysis were performed using the pipeline with FastC (v.0.11.5)
and MultiQC (v.1.8). TrimGalore (v.0.6.7) was used to remove Illumina
adapter sequences and ten 5’ prime bp and five 3’ prime bp. Bismark
(v.0.23.1) DNA non-directional mapping was used to align to the hg38/
GRCh38 reference genome. Duplicated reads were removed. Methy-
lation extractor was used to define CpG regions. Alignment was per-
formed on the Carbonate Cluster at Indiana University. Batch effect
correction was performed by an empirical Bayes framework57 by SVAR
package. To test reproducibly between batches, biological replicants
were applied to the Rank–Rank Hypergeometric Overlap (RRHO2)58 to
determine agreement.

DNAmethylation data was stored in a methylKit (v.1.20.0) object.
This object accepted CpG sites with coverage greater than 5 reads
across all samples for the GLOM and TI. Whole genome DNAm was
extracted (Supplementary Fig. 1) for each nucleotide. Methylated
cytosines (#C’s), unmethylated cytosines (#T’s) and coverage
(#C’s + #T’s) were quantified per nucleotide in the glomerulus (g) and
tubulointerstitium (ti) for each sample i. Regions of interest were
extracted using Grange GenomicRanges (v.1.46.1), where each row has
information for genomic regions as small as one base pair to those
spanning an entire chromosome. Regions were subset and summed
(coverage, numC’s, and numT’s). For each region, the methylation
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levels are given by Eq. (1) GLOM and Eq. (2) in TI:

mlGLOM =
P15

i = 1#C
0s gi

P15
i= 1#T

0s gi +#C
0s gi

ð1Þ

mlTI =
P15

i = 1#C
0s tii

P15
i = 1#T

0s tii +#C
0s tii

ð2Þ

A t test is applied with multiple testing correction for mlGLOMi
and mlTI i.

The relative, differential, or hyper-methylation (Hyper) is given by
Eq. (3):

Hyper = log2
mlGLOM +β
mlTI +β

� �

ð3Þ

were β =0.001. The measurement compares the GLOM and TI
compartments to assess relative methylation levels. A positive value
points to greater methylation in the GLOM and a negative value has
greater methylation in the TI. Hyper was calculated for any region.

Using the annotatr (v.1.21.0) R package (PMID: 28369316), genes
were annotated with whole gene and gene regions (1 to 5 kb upstream
of TSS, exons, introns, promoters, 3’ UTRs, 5’ UTRs, CpG islands, CpG
shelves, CpG shores, CpG intergenic). Methylation status was summed
across CpGs in a region for each gene.

Regional transcriptomics sample processing, library prepara-
tion, sequencing, and analysis
For sample processing, an overlapping set of samples (11 of 14 distinct
biologic WGBS samples) were processed for regional transcriptomics
of GLOM and TI according to a laser microdissection protocol23,
available on protocols.io47. Briefly, glomeruli and the tubulointer-
stitium were microdissected from a frozen OCT section using a rapid
staining antibody-based protocol.

For library preparation, cDNA was synthesized with the SMARTer
Universal Low InputRNAKit protocol (Clontech, cat. no. 634938) using
the standard RiboGone–Mammalian Kit protocol.

For sequencing, barcoded libraries were pooled in equal molarity
and sequenced on an Illumina HiSeq 4000 for about 100million reads
per library.

For analysis, mRNA expression was calculated according to a
negative binomial dispersion exact test. Statisticswere performedwith
negative binomial generalized linear models59 in edgeR (v.3.36.0).

Regional proteomics sample processing, protein measurement,
and analysis
For sample processing, an overlapping set of samples (8 of 14 distinct
biologic WGBS samples) were processed for regional proteomics of
GLOM and TI according to the protocol available on protocols.io
(https://doi.org/10.17504/protocols.io.bew6jfhe). Briefly, glomeruli
and the tubulointerstitium were microdissected from a frozen OCT
section. Protein content was measured by Liquid chromatography-
tandem mass spectrometry. Analysis was performed with an Easy-nLC
1000 coupled to an Orbitrap Fusion mass spectrometer (Thermo-
Scientific, Waltham, MA).

For protein measurement and analysis, protein was quantitated
by high-performance liquid chromatography with mass
spectrometry10.

Spatial transcriptomics sample processing, library preparation,
sequencing, and analysis
For sample processing, human kidney tissue (N = 3) was prepared and
imaged using the Visium Spatial Gene Expression protocols (10x
Genomics, CG000240 protocol)60. From optimal-cutting temperature

(OCT) compound embedded blocks, tissue was sectioned at a thick-
ness of 10 µm.Hematoxylin and eosin (H&E) stained brightfield Images
were acquired from a Keyence BZ-X810 microscope. The microscope
was equipped with a Nikon 10X CFI Plan Fluor objective. Brightfield
mosaics were stitched and aligned with Visium fiducials. mRNA was
isolated from the tissue sections after 12minutes of permeabilization.
mRNA was bound to oligonucleotides in the fiducial spots and then
reverse transcribed.

For library preparation and sequencing, the mRNA underwent
second-strand cDNA synthesis, denaturation, cDNA amplification, and
SPRIselect cDNA cleanup (Visium CG000239 protocol). cDNA was
sequenced on an Illumina NovaSeq 6000.

Analysis. Space Ranger (v2.0.0) with the reference genome GRCh38
2020-A was used to perform expression anEalysis, mapping, counting,
and clustering. To localize transcription factor activity, we first created
trajectories to obtain gene regulatory networks (GRNs) in scMEGA61.
The multiome data was subdivided into aPT/PT-S1S2 cells and aTAL /
C-TAL cells to identify the pseudotime spectrumof cells fromhealth to
adaptive injury states. Harmony was applied for batch correction62.
The R package Destiny63 was used to construct a diffusion map and
apply a reduction in non-linear space. Computational inference of
GRNs was obtained in order to map TF activity with scMEGA. Briefly, a
composite vector accounting for target gene expression, target gene
open chromatin accessibility, and TF expression are localized over
renal tissue using spatial transcriptomic expression patterns.

Cohen’s Kappa measurement of alignment
All datasets were aligned to the hg38/GRCh38 reference genome. The
agreement of multiome peaks, each CUT&RUN antibody peak, and
WGBS dips were assessed. Regions were defined as peak or no-peak in
the multiome dataset by Signac. To evaluate peak alignment, the
podocyte (POD), proximal tubule (PT-s1/S2), and cortical TAL (cTAL)
cell types were defined with the findmarker function and cell-type
specific marker genes were selected from the merged HuBMAP/KPMP
sc/snRNAseq atlas v 1.03. A Gisch filter was implemented to select cell-
type specific peaks for the multiome and remove background signals
from other technologies. For this filter, the AUC was calculated for
each gene region (exon, intron, etc.). In regions where the peak AUC
was greater than the average AUC of the entire gene, the region was
called a peak. Other regions were considered no-peak regions. Peaks
were called similarly for H3K27ac, H3K27me3, H3K4me1, and
H3K4me3 antibody marks. WGBS dips were called when the AUC of a
region was less than the average AUC of the whole gene. Fisher’s exact
andCohen’s Kappa tests were used to evaluate the agreement of peaks
across technologies.

Heatmap analysis
Heatmaps of the alignment of histone modifications with genomic
features were generated using DeepTools. Genomic features assayed
were restricted to those that overlapped with a macs2 called ATAC
peak (bulk ATAC-seq or PT-specific snATAC-seq peaks). Promoters
were defined as a 2 kb region centered on an annotated GRCh38
transcription start site. Putative enhancers were called by the overlap
ofmacs2 calledH3K4me1+/H3K27ac+/H3K4me3- bulk ATAC-seq peaks
not located within an annotated gene body or promoter. DNA
methylation dips were called based on a DNAm value of ≤0.4 across a
50 bp region or larger.

Cell-type deconvolution
Cell-type deconvolutionwas performedusing theDtangle algorithm in
the Granulator (v.1.7.0) R Package. The RNA Signature was derived
from the merged HuBMAP/KPMP snRNAseq kidney atlas. The top 10%
marker DEGswere selected for which CUT&RUN promoter peaks were
detected in H3K27ac, H3K4me1, or H3K4me3. Cell types were
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restricted to those with ≥20Marker Genes in this top 10% of DEGs. The
descending thin limb and endothelial cell clusters were removed
because of similarity to TAL signature and poor algorithm perfor-
mance, respectively. The Detangle algorithm then identified the per-
centage of cells from each cell cluster based on the histone mark.

Transcription factor analysis
TRIPOD (v.0.01) R package was employed to identify regulatory trios
from the multiome dataset between: (1) open chromatin with cis-
regulatory regions of target genes (100–200 kb surrounding the TSS),
(2) target gene expression, and (3) TF expression24. The TF definitions
were based on the Signac enrichment method55 and the JASPAR2020
dataset64. TRIPOD creates a meta cells matrix to link RNA expression
(snRNAseq) and open chromatin (snATAC-seq). Briefly, the steps in the
TRIPODmethod include: (1) RNA is normalizedby regularized negative
binomial regression, nuclei are clustered by PCA and UMAP, (3) the
open chromatin in the snATAC-seq assay is normalized by default
options, and (4) using the PCA (RNA) and LSI (ATAC) reduction, a
weighted nearest neighbor (WNN) graphwasbuilt65 to cluster RNA and
ATAC together. Thematrix is used to compare each regulatory trio and
identify TF and target gene associations with high confidence.

For pseudotime trajectories of transcription factor activity and
expression, scMEGA (v.1.0.1) was used as described above61. For dif-
ferentially expressed genes, a Seurat findmarker function was run
using the test.use =wilcox and plotted as a volcano plot with a
Bonferroni-corrected P value < 0.05 and percent of cells expressed
above 2%.

To calculate the differential accessibility (DA) of genes, the Seurat
function FindMarkers was used with the logistic regression LR. Peaks
were classified as DA peaks with a Bonferroni-corrected P value < 0.05
and an absolute log2 fold change >0 between the cell types, with the
setting only.pos = FALSE. An average log2 fold change >0 means
greater open chromatin in adaptive injury cell states.

In silico perturbation
Co-accessibility networks for the PT cells were obtained with Cicero66.
Following the CellOracle (v.0.10.12) pipeline34, 9 subclusters were
identified, and the connections in gene expression weremodeled with
a graph abstraction. A combined knockout of ELF3, KLF6 and KLF10
was simulated in silico, and changes in gene expression and cell velo-
city were calculated. Highly aPT-changing genes were selected by the
higher variation in Fold Change between aPT and PT-S12.

Expression modeling
DNA methylation was summed across CpG sites within gene region
annotations for whole gene bodies (N = 30,024), exons (27,830),
introns (25,904), promoters (28,625) and CpG Islands (18,849).
Methylation was compared to mRNA and protein expression derived
from a set of completely overlapping samples in differentially
expressed genes (DEGs, N = 5942) or proteins (N = 1917) between
GLOM and TI dissections. The correlation of differential DNA methy-
lation with expression of DEGs or DEPs was assessed by univariate
linear regression, and residuals were calculated using ggplot2 and stat
R packages. A best-fit regressionmodel was developed wherein a gene
annotation (CpG island, exon, intron, promoter)was selected based on
the greatest C-statistic between log2 differential expression and dif-
ferential gene region methylation for each gene (Fig. 2c, Supplemen-
tary Fig. 5).

Analogously, DNA methylation was summed within four sets of
CUT&RUN peaks, bulk ATAC-seq peaks, and single-cell multiome
peaks (PT-S1 and C-TAL for TI, and Podocyte for GLOM). The peaks of
these orthogonal technologies acted as filters for univariate regres-
sions in which summative DNA methylation was plotted within each
peak set against mRNA or protein expression for all DEGs and DEPs.

Enrichment analyses
pathfindR (v.2.1.0) was used to combine a BioGRID active subnetwork
search with a gene ontology (GO) pathway enrichment analysis. We
input a gene interest list with adjusted P value from gene differential
expression67. The enriched terms are clustered and identify sig-
nificative adjusted P value < 0.05 and are called representative path-
ways and their members. The P values obtained from the enrichment
tests are adjusted by Bonferroni method.

Kidney cell culture
Normal human proximal tubular kidney (NHPTK) cells68 were plated at
a density of 4.5 × 104 in a 24-well flat-bottom plate and maintained in
Renal Epithelial Growth media (REGM, Lonza, Basel, Switzerland) and
9% fetal bovine serum (HyClone). Cells were diluted to 20–30% con-
fluency three times a week and maintained at 37 °C in 95% humidified
atmosphere with 5% CO2.

siRNA knockdown and real-time polymerase chain reaction
We conducted siRNA-mediated knockdown of ELF3, KLF10, and KLF6
in NHPTK cells with lipofectamine. Cells were plated on Day 1 with
lipofectamine and a pool of up to 6 directed siRNA constructs (20 nM
concentration each) for 5 conditions: (1) Silencer, (Cat. No. 4390843)
scrambled siRNA control, (Cat. No. 4427037), (2) a pool of two ELF3
siRNA molecules (siRNA ID s4623 and s4624), (3) a pool of two KLF6
siRNA molecules (siRNA ID s3376 and s3375), (4) a pool of two KLF10
siRNA molecules (siRNA ID s14129 and s14130), and (5) a combination
of 6 siRNAmolecules targeting ELF3, KLF10, andKLF6. Gene expression
of (Cat. No. 4448892) ELF3 (Assay ID Hs00963877_g1), TPM1 (Assay ID
Hs04398572_m1), ITGB8 (Assay ID Hs00174456_m1), (Cat. No.
4453320), KLF10 (Assay ID Hs00921811_m1), KLF6 (Assay ID
Hs00810569_m1) and VCAM1 (Assay ID Hs01003372_m1) was mea-
sured 48 hours after siRNAor scrambled control transfection. RNAwas
isolated with the miRNeasy Mini Kit (Cat. No. 217004, Qiagen, Hilden,
Germany) and converted to cDNA with the High-Capacity cDNA
Reverse TranscriptionKit (Cat. No. 4368814, ThermoFisher) according
to the manufacturer’s protocol. Real-time PCR was performed on the
ViiA7Real‐TimePCRSystem (AppliedBiosystems,Waltham,MA) using
TaqMan Gene Expression assays for all six genes (Life Technologies,
Foster City, CA) with GAPDH as a control (Cat. No. 4448489, Assay ID
Hs02786624_g1).

The ΔΔCT technique was used to calculate the relative gene
expression in samples with the fold difference between the siRNA
knockdown and scrambled control calculated as: fold difference = 2^(
ΔΔCT). Gene expression after siRNA transfection is expressed as a
percentage relative to the scrambled control expression for each gene.
Four replicates were performed for the control and each individual
siRNA knockdown. Two replicates were performed for the combined
3-gene knockdown. For each experiment, significancewas determined
by an t test.

Statistics
For basic statistical analyses and when not otherwise specified, a t test
was used to compare two continuous variables, and a Fisher’s exact
test was used for categorical comparisons.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
BigWig tracks are available for all datasets in the Kidney chromatin
landscape browser at https://doi.org/10.48698/HHE6-YV15. Due to
privacy considerations and the nature of DNA information, raw FASTQ
and BAM files are available upon request at www.kpmp.org. These files
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are availablewithout timeframe limitations. Downloadable BigWigfiles
for whole genome bisulfite sequencing and CUT&RUN are available at
https://doi.org/10.48698/HHE6-YV15. The expression matrices for the
multiome are available at https://doi.org/10.48698/HHE6-YV15. The
Seurat object is available in Zenodo at https://doi.org/10.5281/zenodo.
8029990. All differentially expressed genes and differentially acces-
sible peaks for all analyses are included in the supplementary data.
Source data files are provided with underlying data for statistics
included in figure panels. Source data are provided with this paper.

Code availability
Code is available at https://github.com/GischD/gisch-et-al-2023.git.
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