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Abstract. In this work we present Reynolds-averaged Navier-Stokes (RANS) simulations of
the flow past the constant design shape of a leading-edge inflatable (LEI) wing. The simulations
are performed with a steady-state solver using a k− ω SST turbulence model, covering a range
of Reynolds numbers between 105 ≤ and ≤ 15 × 106 and angles of attack varying between −5◦

and 24◦, which are representative for operating conditions in airborne wind energy applications.
The resulting force distributions are used to characterize the aerodynamic performance of the
wing. We found that a γ− R̄eθ transition model is required to accurately predict the occurrence
of stall up to at least Re= 3 × 106. The work highlights similarities with the flow past a
two-dimensional LEI airfoil, in particular, with respect to flow transition and its influence on
the aerodynamic properties. The computed values of the lift and drag coefficients agree well
with in-flight measurements acquired during the traction phase of the LEI wing operation. The
simulations show that the three-dimensional flow field exhibits a significant cross flow along the
span of the wing.

1. Introduction
In recent years, the size and height of conventional horizontal wind turbines have not ceased to
increase in view of harnessing ever larger quantities of wind energy. This increase however brings
structural challenges to the design of future wind turbines. One of the promising alternatives
to harness wind energy at increasing altitudes is to use a flying device that is tethered to the
ground. There are different concepts and modes of operation of such airborne wind energy
(AWE) devices [3, 26]. A prominent example is to fly a wing crosswind and tether it to a
generator on the ground. The aerodynamic force on the wing reels out the tether and turns a
drum, hence generating mechanical power that can be converted to electrical power. Although
these AWE devices present several advantages compared to conventional wind turbines, they face
also many challenges for large-scale commercial deployment. One of them is related to the lack
of knowledge and reference data concerning the aerodynamics of such wings. The understanding
of the flow dynamics past the wing is however important to improve the system design and, to
some extent, relate to the structural deformations observed during flight.

The present work focusses on the aerodynamics of a LEI wing, which consists of an inflated
tubular frame with an attached membrane canopy. The aerodynamic load on the canopy is



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 032007

IOP Publishing

doi:10.1088/1742-6596/1618/3/032007

2

transferred to the tubular frame and from there via multiple bridle lines to the tether. As a
consequence of the lightweight flexible construction, the entire wing deforms during flight. This
aeroelastic behavior significantly influences the flow field and the aerodynamic performance of
LEI wings. For the purpose of simplicity, the strut tubes are omitted in this paper and the wing
is assumed to be rigid so that fluid-structure interactions are neglected. The present study has
two primary objectives, firstly, to better understand the fundamental flow phenomena governing
the aerodynamics of LEI wings and, secondly, to provide reference data to verify aerodynamic
simulation tools for thin membrane wings.

The aerodynamics of LEI wings, also called sailwings, has been investigated to some extent
experimentally and numerically in the literature. Potential flow methods with viscous corrections
have been used, both in the context of airborne wind energy and sailing. For example, Fiddes
and Gaydon [9] used a 3D free wake vortex lattice method (VLM) combined with an integral
boundary layer method to correct for viscous effects on yacht sails. Lorillu et al. [17] developed
a potential flow method with a Helmholtz thick wake model to aid prediction of flow separation
on 2D yacht sails. The resultant sail shape and free streamline computed with this approach
were in good agreement with experimental data, for both attached and separated flows. Graf
et al [12] used a lifting line method combined with lift and drag airfoil data obtained through
2D RANS simulations for analysis of wing sails. Similarly, Vimalakanthan et al [29] used a
non-linear lifting line model and a free vortex code combined with polar data obtained from 2D
CFD for the power prediction analysis of an energy harvesting airplane. Potential flow methods
have also been applied to flows around LEI wings. Gaunaa et al. [11] present an efficient
method for determining aerodynamic performance of such a wing by using VLM coupled with
2D airfoil data to take into account effects of airfoil thickness and fluid viscosity. The method
achieved good agreement with a 3D RANS simulation of a simplified kite geometry, especially
for attached flow. Similarly to other studies including potential flow methods, the correlation
worsens as the flow undergoes severe separation. Leuthold [16] investigated the aerodynamics
of a 3D LEI wing using a quasi-steady multiple wake vortex lattice method and compared the
results to experimental measurements, 3D lifting line model and 3D RANS simulations. It was
found that the model struggles to predict pressure side flow reattachment correctly, which is
very common to occur on LEI wings during flight.

In light of the limitations of potential flow methods, computational fluid dynamics (CFD)
models that solve the Navier–Stokes equations have also been used. For example, Kheiri et
al [14] applied modified actuator disc theory to a crosswind kite power system and compared
power production results with URANS and a k − ε turbulence model. The study assumed
fully turbulent attached flow in all cases and considered a straight rigid wing. When applied
to separated flows, the k − ε model fails to accurately predict lift and drag coefficients, even
if the prediction is better than when using potential flow methods [4]. Smith and Shyy [27]
performed an analysis of viscous turbulent flow over 2D flexible membranes using the k − ω
SST turbulence model and found better results than with a k − ε model when investigating
single-surface membrane wing aerodynamics. The k − ω SST has also been applied to both
2D aeroelastic applications [28], yacht sails [30] and LEI wing analyses [6, 7, 25]. Popular
turbulence models, such as the k − ω SST model, assume that the boundary layer is always
turbulent, as they cannot model the transition from laminar to turbulent flow. Folkersma et al
[10] investigated boundary layer transition of a LEI airfoil using the k−ω SST turbulence model
with a γ − R̄eθ transition model. Their results were in agreement with experimental data at
relatively low Reynolds numbers (Re = 105) over all the considered angles of attack. The results
obtained from simulations with the transition model were closer to the experimental values than
the ones obtained without transition model. The k − ω SST turbulence model with γ − R̄eθ
transition was also used to validate a new potential flow method using vortex elements [11].

Besides numerical studies, experimental analyses have been described in the literature.



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 032007

IOP Publishing

doi:10.1088/1742-6596/1618/3/032007

3

However, wind tunnel experiments for airborne wind energy devices can be very challenging,
especially in the context of LEI wings, because the thin membrane canopy cannot be scaled down
easily. Experimental studies on single membrane sailwing sections are available at moderate
Reynolds numbers [2, 1]. Field tests have also been performed more recently for airborne wind
energy wings. One option are tow tests, for which the wing is tethered to a moving vehicle, to
measure both static flight performance and dynamic flight history [5, 23, 13, 24]. This testing
method is however limited in terms of maximum traction force. There are also measurement
uncertainties due to wind variations and limitations in the measurement of lift-to-drag ratios for
dynamic maneuvers [22]. Alternatively, the flow past the wing can be measured in situ using
on-board sensors [21].

Despite these studies, there is still a lack of reference data for the detailed aerodynamics of
LEI wings. The objective of this work is to provide numerical data for the aerodynamics of
a LEI wing, in order to better understand the flow phenomena and to support future model
validation in the context of airborne wind energy. It will also assess the importance of 3D flow
effects on aerodynamic performances, by comparing with the work of Folkersma et al [10] which
was performed in 2D with the same airfoil section. The paper is organised as follows. Section 2
presents the numerical approach used to solve the flow problem, including numerical methods,
meshes and turbulence modelling. Section 3 presents the results for different Reynolds numbers
and angles of attack, as well as comparison with in-flight measurement data. Flow visualisations
are also provided. Finally, Section 4 summarises the main observations of the study.

2. Methodology
2.1. Fluid dynamics equations
The open-source CFD solver Open-FOAM-v1812 is used in this study. The solver is based on a
finite-volume discretisation of the incompressible steady-state Reynolds-averaged Navier–Stokes
equations for a Newtonian fluid, see for example [31]. These equations are closed by a k−ω SST
turbulence model [20]. The specific implementation of the model is that presented by [19], with
a revised turbulence specific dissipation rate production term from [18]. The detailed equations
are available in the literature, see for example [10]. As it will be shown in Section 3, the use
of a transition model is needed to get accurate results over a large range of Reynolds numbers.
Here, the γ − R̃eθt model [15] is adopted. This is a correlation-based model that uses empirical
transition correlations obtained from experimental databases covering a variety of geometries
and flow conditions. As such, it does not attempt to capture the actual physics of the flow
transition. The model uses an intermittency parameter γ, that represents the probability for
a point in the flow field to be located in the turbulent region. The transport equation for the
intermittency is based on the wall distance and the local flow field quantities. It is given by

∂γ

∂t
+
∂γuj
∂xj

= Pγ −Dγ +
∂

∂xj

[(
ν +

νt
σf

)
∂γ

∂xj

]
, (1)

in which

Pγ = Flengthca1
∂u

∂y
(γFonset)

1/2 (1− ce1γ) , (2)

where the function Flength controls the transition length and its correlation is given in [15], and
y is the distance from the nearest wall. Furthermore, Fonset controls the transition onset and
quickly grows from 0 to 1 when the boundary layer becomes turbulent, based on the ratio between

the vorticity Reynolds number Reν = y2

ν
∂u
∂y and the critical momentum thickness Reynolds

number Reθc. The expression for the latter is also given by a correlation, as detailed in [15].
Both correlations for Reθc and Flength are a function of the local transition onset momentum

thickness Reynolds number R̃eθt. The function Fonset activates an intermittency source term
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and leads to turbulence production. The destruction term, or relaminarisation source, is defined
as

Dγ = ca2ΩγFturb (ce2γ − 1) , (3)

where Ω stands for the vorticity magnitude. The function Fturb is designed to disable
intermittency destruction outside of the laminar boundary layer or in the viscous sublayer and
is given by

Fturb = e

(
−RT

4

)4

, (4)

with RT = k/(νω). Finally, the intermittency is modified to be able to exceed γ = 1 during
the laminar boundary layer separation, in order to improve the prediction of separation-induced
transition. Thus,

γsep = min

(
s1 max

[
0,

(
Reν

3.235Reθc

)
− 1

]
Freattach, 2

)
Fθt, (5)

where Freattach = e
−
(

RT
20

)4

and s1 = 2. A second transport equation is formulated for the local
transition onset momentum thickness Reynolds number R̃eθt and is expressed as

∂R̃eθt
∂t

+
∂R̃eθtuj
∂xj

= Pθt +
∂

∂xj

[
σθt (ν + νt)

∂R̃eθt
∂xj

]
. (6)

In the free stream, the source term Pθt forces R̃eθt to match the local value of Reθt that is
determined from the empirical correlations,

Pθt =
cθt
t

(
Reθt − R̃eθt

)
(1− Fθt) , (7)

where t = 500ν
U2 is a time scale and U represents the velocity magnitude. The function Fθt turns

off the source term within the boundary layer, thus enabling diffusion of R̃eθt from the free
stream into the boundary layer. It is expressed as

Fθt = min

(
max

(
Fwake · e−( yδ )

4

, 1−
(
γ − 1/ce2
1− 1/ce2

)2
)
, 1

)
, (8)

with

δ =
375Ωy

U2
R̃eθtν, Fwake = e−

(
Reω
105

)2
, Reω =

ωy2

ν
. (9)

Furthermore, the function Fwake turns off Fθt in the wake regions. The values of the model
constants are: ce1 = 1, ca1 = 2, ce2 = 50, ca2 = 0.06, σf = 1, cθt = 0.03, and σθt = 2.The
transition model is integrated in the k−ω SST turbulence model by scaling the production term
of the original transport equation for k with γeff and the destruction term as

D̃k = min (max (γeff , 0.1) , 1.0)Dk, (10)

where γeff = max (γ, γsep). The transition model also modifies the blending function F1 of the
original k − ω SST turbulence model, in order to prevent switching to the k − ε model within a
laminar boundary layer, i.e.

F1 = max (F1, F3) , F3 = e
−
(
Ry
120

)8

, Ry =
y
√
k

ν
. (11)

In terms of discretisation, the continuity and momentum equations are discretised using
second-order methods. The equations for k, ω and the transition model are solved using a first-
order upwind scheme. All simulations were run for 4000 iterations, although convergence was
reached after 1000 iterations in most cases, with normalised residuals between 10−5 and 10−6.
Only when the wing is in stall, the largest residuals were between 10−4 and 10−5.
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Figure 1. Left: Original (dashed line) and filled in (solid line) profile at the wing symmetry
plane. Right: LEI V3A CAD model. Figures taken from [8].

2.2. Meshing
The wing geometry considered here is the LEI V3A wing, as described in [8]. It is the nominal
design shape without any deformations. Generating a high quality volume mesh for this wing
is non-trivial due to the inflated leading edge, the very thin canopy, and the large anhedral
angle. The original geometry was exported from the kite design software SurfplanTM to a
format readable by the Computer Aided Design software Rhinoceros. Multiple simplifications
and enhancements were made. First, the bridle system and chordwise struts were removed.
Second, the membrane canopy was given a small thickness with a rounded trailing edge to fulfill
the requirements of the meshing software. A small filling behind the leading edge was added
to improve the mesh quality in that region. As shown by [7], such a filling has a negligible
effect on the flow solution. The filling originates from the leading edge tube at about 60◦ angle
and connects to the lower surface of the canopy at about 25% of the chord length. Both the
original and the modified profiles are shown in Fig. 1 (left), whilst Fig. 1 (right) shows the
resulting 3D CAD model. The wing is placed in a circular domain whose radius equals to 100c,
c being the wing chord in the symmetry plane. A hybrid structured and unstructured mesh
was generated using the T-Rex algorithm of mesh-generation software Pointwise R©. This uses a
structured mesh in the boundary layer and near-wall region, and an unstructured mesh in the
far field. The detailed meshing procedure is described in [8]. The surface mesh of the wing and
the volume mesh of the computational domain are shown in Fig. 2 (left) and Fig. 2 (right),
respectively. A mesh convergence study was performed with six different meshes but keeping
the height of the smallest cell close to the wing boundary such that y+ < 1. It was found that
a mesh with 330 points along the leading edge in the spanwise direction, 120 points along the
airfoil profile, and a cell growth ratio of 1.15 in the boundary layer, leads to sufficiently accurate
and converged results. Overall, this gives a mesh containing approximately 6 million cells and
this was used for all the results presented in this paper. At the inlet, the magnitude of the
velocity field is set to unity and its direction varies depending on the desired angle of attack.
The pressure gradient is set to zero. The turbulence intensity is set to 0.02 and the ratio of eddy
viscosity to physical viscosity equals 10. Finally, γ = 1 and R̃eθt is calculated using the empirical
correlations. At the outlet, the pressure is set to zero and a zero gradient is prescribed for the
velocity field and the turbulence quantities. A no-slip boundary condition is applied at the wing
surface. At the walls, both γ and R̃eθt experience a zero normal flux. The model requires that
the first cell near the wall satisfies y+ ≈ 1, in order to capture the transitional boundary layer
adequately. Finally, a symmetry boundary condition is imposed at the plane of symmetry, so
that only half of the wing is modelled.

3. Results
Figure 3 shows the lift and drag polars of the three-dimensional wing for a range of Reynolds
numbers 105 ≤ Re ≤ 15 × 106 and angles of attack varying between −5◦ and 24◦. It is worth
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Figure 2. Left: Surface mesh of the wing. Right: Volume mesh of the computational domain.
Figures taken from [8].
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Figure 3. Lift coefficient (left) and ratio of lift-to-drag coefficients (right) for the LEI wing
computed at various Reynolds numbers.

noting that, due to the choice of solver that is steady-state, the results for angles of attack
before stall are considered most reliable. The results at stall and post-stall are mostly indicative,
knowing that the same model did give accurate results in these conditions for the two-dimensional
flow past a sailwing [10]. In Fig. 3, it is apparent that the lowest considered Reynolds number of
Re = 105 gives significantly different results than the others, as flow separation occurs directly
from a laminar boundary layer. The angle of attack at which stall occurs increases with Re,
until Re = 106, at which point it decreases until Re = 107. For Re > 107, the stall angle and
maximum lift coefficient increase again. Interestingly, this behavior was already observed in
the two-dimensional simulations of [10]. This behaviour can be explained by the mechanism
of flow transition and can therefore only be captured when a transition model is used. Before
giving more insight into the mechanism of flow transition, simulation results with and without
transition models are compared. Figure 4 shows the lift (left) and drag (right) coefficients at
three Reynolds numbers with (solid line) and without (dashed line) transition model. It is
shown that the lift and drag coefficients with and without transition model agree well for angles
of attack before stall for all the Reynolds numbers considered. At stall, however, discrepancies
are obtained for both the lift and drag coefficient for Re = 5×105 and Re = 3×106. As expected,
the need for a transition model decreases at higher Reynolds numbers. Similar observations are
made when analysing the skin friction coefficient at the surface of the wing. Here, the chordwise
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Figure 4. Lift (left) and drag (right) polars for the LEI wing computed at various Reynolds
numbers, with (solid line) and without (dashed line) transition model. Figures taken from [8].

skin friction coefficient is calculated as

cf =
2τw,x
ρU2
∞
, (12)

where τw,x is the wall shear stress in the chordwise direction defined as

τw,x = µ
∂Ux
∂y

∣∣∣∣
y=0

. (13)

Negative values of cf indicate regions of flow recirculation, while a sudden increase in skin friction
represents laminar to turbulent transition. Figure 5 shows the skin friction coefficient at the
suction side of the wing, for three Reynolds numbers (increasing from left to right) and an angle
of attack of α = 12◦. Results are shown with (top) and without (bottom) transition model. At
the lowest Reynolds number, the surface plots with transition model show a distinct laminar
separation bubble across the whole span of the wing. This bubble vanishes at Re = 3 × 106,
where the boundary layer transitions before flow separation. These flow phenomena are absent
when the k − ω SST model is used without transition model. For Re = 107, the boundary
layer transitions very early on the suction side of the wing. Thus, the results with and without
transition model are similar. To give more insight into this, Fig. 6 shows the chord-wise pressure
and skin friction coefficients at the symmetry plane for α = 6◦ and various Reynolds numbers.
Only results with transition model are presented. Note that the reference chord cref is the
distance between the attachment point of the bridle system and the trailing edge, as presented
in [21]. It can be observed that the laminar separation bubble present for 105 < Re < 106

begins at approximately the same point for all the Reynolds numbers, namely x/cref = 0.16,
and its size diminishes with increasing Re. At Re = 106, the laminar separation bubble almost
vanishes and the laminar boundary layer is the longest. These characteristics lead to a large
lift coefficient and a low drag coefficient, compared to those at other Reynolds numbers. As the
Reynolds number increases to Re = 107, the transition point moves towards the leading edge and
the height of the separation bubble decreases. The height of the separation bubble effectively
changes the apparent camber of the wing. Thus. the smaller the height of the separation bubble,
the smaller the lift coefficient. For Re > 107, the boundary layer is fully turbulent which leads
to a new increase in the maximum lift coefficient and stall angle.
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Figure 5. Skin friction coefficient at the suction side of the wing for an angle of attack of
α = 12◦ and three Reynolds numbers: Re = 5× 105 (left), Re = 3× 106 (centre), and Re = 107

(right). Results are shown with (top) and without (bottom) transition model. Figures taken
from [8].

Another feature of the CL/CD plots is a noticeable difference between the results for Re ≥ 107,
especially at small angles of attack. As explained in [10], this difference can be attributed to
the drag crisis occurring at the cylindrical leading-edge tube. Based on the dimensions of the
leading edge, the drag crisis for the leading edge of the present wing is expected at a chord-based
Reynolds number of about Re = 107. This corresponds to a critical flow, for which a cylinder
experiences significantly reduced drag and a smaller recirculation zone downstream. It is caused
by the laminar to turbulent flow transition occurring before the typical laminar separation point,
resulting in the separation point moving significantly further downstream. This is also observed
in the present results, for which the recirculation zone at Re = 107 is much smaller than that at
lower Reynolds numbers (not shown here). For smaller Reynolds numbers, the flow separates
from the laminar boundary layer on the pressure side of the LE tube, hence increasing the drag
coefficient and the recirculation zone on the pressure side.

Figure 7 further compares the numerical results with some experimental data obtained during
operation of the kite power system [21]. The wing is identical to that considered in the CFD
simulations, except for the presence of struts. During flight, the wing follows a figure-of-eight
path. However, the experimental data is plotted for the straight flight segments on the flight
path during crosswind operation. The turns and the retraction phases are filtered out for the
sake of comparison with the numerical results. On the straight flight segments, a small amount
of steering is still required to create a side force which balances the effect of gravity. The
experimental data was generated from a flight test conducted on 8 October 2019. Note that
the V3 wing used here is from an early design of the kite power system, and therefore, the data
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Figure 6. Pressure coefficient (top) and skin friction coefficient (bottom) along kite surface at
the symmetry plane for α = 6◦ and different Re: suction side (left) and pressure side (right).
The reference chord length is denoted by cref .

does not reflect the state-of-art in airborne wind energy production. The statistics were analysed
using the model-based system identification algorithm described in [21] on a more extensive data
set covering 128 complete pumping cycles, each containing 6 figure-of-eight maneuvers. For the
experimental conditions to be as close as possible to the conditions used for the CFD analysis,
only the upwards-directed straight flight segments of the acquired data were taken into account,
resulting in 768 individual data points. The apparent wind speed used for the estimation of the
aerodynamic coefficients was directly measured with a Pitot tube suspended in the bridle line
system of the wing. The average measured apparent wind speed for all accounted data points is
18.96 m/s, and the corresponding average Reynolds number is 3.9×106. Figure 7 (left) shows the
lift coefficient as a function of angle of attack. Experimentally, the calculation of these quantities
is detailed in [21]. The angle of attack is measured with respect to the heading vector of the
kite. The forces are measured with respect to the tether angles and corrected to account for the
difference in angle. Although there are clear discrepancies between numerical and experimental
data, such a comparison has never been shown before and can provide indicative results. One of
the difference between numerical and in-flight data stems from the fact that the wing deforms
during flight, which lowers its aerodynamic performance, and is not taken into account in the
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Figure 7. Comparison between CFD and in-flight measurements for the lift (left) and drag
(right) coefficients as a function of angle of attack.

numerical simulations. Also, the kite slightly rolls in flight, which shifts part of the lift into
a side force component. Figure 7 (right) shows that the measured drag coefficients are larger
than the computed ones. As for the lift coefficient, the wing deformation affects its aerodynamic
performance, hence increasing drag. In fact, flight tests on this wing have shown that the wing
does not only deform in the spanwise direction (the tips being pulled in) but that there is also
a distinct kink in the chord at around 15% from the leading edge at high force. Both these
deformations result in a higher drag force and explain the discrepancies with the CFD data.
Note that these effects have been solved in the newer designs of the kite power system. Another
effect that also explains the difference between CFD and experimental drag forces is due to the
orientation of the tether at the attachment point. In particular, an increase in the angle between
the tether and the kite diminishes the values of the drag coefficient by 0.015 on average, whilst
only the spread of the lift coefficient is affected. Thus, the wing orientation partly explains the
difference in drag coefficient. Another effect comes from the asymmetry caused by the steering
of the wing, which increases the drag coefficient by a value of 0.01 on average. Therefore, wing
deformation, orientation of the tether and steering of the wing are believed to be the main
factors explaining the discrepancies between measurements and CFD data. Note that the drag
associated with the bridle line is believed to have a negligible effect on the overall lift and drag
coefficients.

Lastly, flow visualisations are provided in Fig. 8 for Re = 3 × 106 and an angle of attack
α = 12◦. The left figure shows the streamlines colored by the magnitude of the component of
the velocity normal to the symmetry plane. On the suction side, the flow tends to move inwards,
whilst it moves outwards on the pressure side. Also, there is a non-uniform flow recirculation
zone behind the leading edge. This was observed for all the angles of attack considered and
is illustrated in Fig. 8 (right) through the contours of the streamwise component of the flow
velocity along the wing span, at a streamwise location x = 0.3.

4. Conclusions
This work provides numerical data for the aerodynamic performance of a leading-edge inflatable
wing under a range of flow conditions that are representative for the operation of airborne wind
energy systems. The simulations were performed using a steady-state RANS solver with a k−ω
SST turbulence model and a flow transition model. It is shown that the transition model was
required to accurately predict the occurrence of stall up to at least Re = 3×106. It is important
to note, however, that the present results at stall and post-stall conditions should be considered
with care due to the use of a steady-state solver. Further work is needed at these conditions
using unsteady and higher-fidelity models in order to confirm the present results. Despite the
limitations of the solver, the polars show similar trends to the results of a two-dimensional
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Figure 8. Visualisations for Re = 3 × 106 and α = 12◦. Left: Streamlines colored by the
magnitude of the component of the velocity normal to the symmetry plane Uz. Right: Contours
of the streamwise component of the flow velocity along the wing span, at x = 0.3. Figures taken
from [8].

flow past a LEI airfoil. The results also highlight a large amount of cross flow along the span
of the wing. Finally, additional insights are provided based on a comparison with in-flight
measurements. In future work, the influence of the presence of struts on the wing will also need
to be further investigated.
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