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Abstract
Program synthesis is used in various ways to au-
tomate repetitive tasks or to generate software au-
tomatically. Search-based program synthesis con-
stitutes searching the space of candidate programs
created from a given language. However, this form
of program synthesis is very expensive in terms
of computing power. By optimising the synthe-
siser’s parameters on certain tasks, program syn-
thesis can be made more efficient on other simi-
lar tasks. One of these parameters is the domain-
specific language. Using a genetic algorithm, an
optimised language was evolved for three different
domains. This resulted in unnecessary language
predicates being phased out and commonly used
structures being introduced as new language predi-
cates. Overall, using these evolved languages made
program synthesis faster for all three domains.

1 Introduction
”Program synthesis is the task of automatically finding a pro-
gram in the underlying programming language that satisfies
the user intent expressed in the form of some specification.
Since the inception of AI in the 1950s, this has been con-
sidered the holy grail of Computer Science.” [1]. Now, in the
2020s the field of program synthesis is a lot more established.
It has been used by software engineers to validate code qual-
ity [2] but also by others to automate repetitive tasks in the
form of Excell’s Flash Fill [3].

For this research, we go one step beyond this. Instead of
synthesising a certain piece of code, we delve into the holy
grail of the holy grail, meaning we will research how to syn-
thesise a program synthesiser. If successful, one would be
able to discover with relative ease how best to synthesise
something for a certain category of tasks. Therefore not only
the actual synthesised code is likely to perform well but the
synthesising process will also be optimal. Once one is certain
that the synthesising process is optimal for certain tasks, the
same process can then be applied to similar tasks. By doing
this, one can speed up program synthesis by making an in-
vestment once, instead of needing to tune a lot for different
tasks.

Program synthesis uses a few components. One of them
is a domain-specific language (DSL). A domain for program
synthesis is a set of tasks that can be solved by programs
that are constructed using the same set of predicates. For
a domain that involves a robot and a map the predicates in
the language probably include ones that allow the robot to
move around. However, the language for a domain designed
to simulate string manipulation probably includes predicates
that can remove or change letters in some way.

The search space for program synthesis consists of all the
programs that can be created using the DSL. This search
space is infinitely big. However, for each task, a program syn-
thesiser only searches this space until a program that solves
that task has been found. This search space can be seen as a
tree, where all programs are very specific branches. In this

tree, the synthesiser is looking for the exact branch that rep-
resents the program that solves a task. If you add just one
predicate to the DSL, at every single branching point a new
branch has to be added. This makes a synthesiser’s chance of
finding the right branch a lot lower, which means a lot more
time is needed.

To reduce a synthesiser’s search time, it is important that
every predicate in the DSL serves a clear purpose. More
specifically, it should be essential for the task the synthesiser
is trying to solve or it should contribute in another way to
reducing the synthesis time. Figuring out which predicates
contribute to slower or faster synthesis is something that can
be done manually. However, this can be very difficult and
eventually one will still not be sure whether the created DSL
is actually optimal.

Ideally, one would try all the potential DSL’s to be sure
which one is optimal. However, like trying all programs for
a task, this is not feasible. This is why we propose to use a
genetic algorithm to evolve a language automatically for pro-
gram synthesis. Genetic algorithms have been proven useful
for optimisation problems in various fields. Using a combi-
nation of techniques like crossover and mutation over many
generations an optimal solution can be approximated. There-
fore, this paper aims to answer the question:

Can we evolve a programming language
to speed up program synthesis?

This research has two main contributions. The first in-
volves the general use of a genetic algorithm to evolve a
language. We show a language can be evolved for certain
synthesis tasks which speeds up synthesis on similar tasks.
The second contribution is more specific and involves the
creation of new composite language predicates. These com-
posite language predicates are made up of multiple primitive
predicates. In a program, a composite predicate involves the
execution of one or more primitive predicates. The research
shows that in some cases, composite language predicates can
be added to the DSL to speed up program synthesis. To make
these contributions, this paper answers the following research
questions:

• RQ1: How can we translate a DSL into a chromosome?

• RQ2: How can we add composite predicates to a DSL?

• RQ3: How can we use genetic programming techniques
to evolve a DSL?

• RQ4: How does a program synthesiser using an evolved
DSL compare to one using the standard DSL?

For all three domains we considered, evolving a domain-
specific language, proved to be successful. This means that
with the resulting language, the search process was sped up
considerably and more tasks could be solved within a certain
time.

2 Background
In this section, we lay the foundation for our research. First,
we delve into program synthesis and the main issue we are



trying to solve. Then, we describe why we use a genetic al-
gorithm and go over the algorithm’s components. Lastly, we
go over previous work done on reducing the search space for
program synthesis and predicate invention.

2.1 Program Synthesis
The purpose of programming is to find a sequence of instruc-
tions that automates a task. The motivation for program syn-
thesis is derived from this; to automate the finding of a se-
quence that automates a task. To do this, program synthesis
attempts to construct a program, so a sequence of instructions,
that satisfies a certain specification.

Inductive synthesis
Inductive and deductive synthesis are the two main classes of
program synthesis. ”The inductive approach aims to derive
the final program from some traces at a high level of spec-
ification, whereas the deductive approach aims to construct
the final program from a type of specification that expresses
a relationship between the input and output of a desired pro-
gram.” [ [4–9] as cited in [10]].

Inductive synthesis itself can also be divided into a few
paradigms. Example-guided synthesisers rely on a number
of input and desired output examples to construct programs.
Oracle-guided synthesisers use a form of an oracle to answer
the learner’s questions. Finally, component-based synthesis is
used to generate loop-free programs using existing functions
as building blocks.

This research makes use of all of these paradigms in differ-
ent ways. The programs are synthesised for and verified on
examples. The synthesiser is trying to minimise an example-
dependent loss function, which is used as the oracle, as pro-
posed by A. Cropper and S. Dumančić with Brute [11]. Fi-
nally, with our contribution, snippets from successful pro-
grams are used as building blocks for new programs. This
will be described in Section 3.4.

The search space
The search space for inductive program synthesis is immense.
If the wanted program size is known, it can be calculated us-
ing Equation 1.

search space size = dsl sizeprogram size (1)

Assume we have a language with only ten predicates and
we know the resulting program can be made up of only ten
predicates. Then there are already ten billion potential pro-
grams in the resulting search space.

In practice, most likely we do not know the wanted pro-
gram size beforehand and our language will have more predi-
cates, making the search space even more unfathomable. Be-
cause of the vast search space, searching through all potential
programs is not a viable option.

This is why we use a loss function, as proposed with Brute
[11], to guide the program synthesis process. For a perfect
loss function, meaning that the final program is built on top
of programs that each had the lowest loss in their respective
stages, this reduces the search space so that it can be calcu-
lated by Equation 2.

search space size = dsl size ∗ program size (2)

However, even then, creating a program of length 30 with a
language with 20 predicates leads to 600 potential programs
to evaluate. Additionally, the loss function might not be as
perfect as earlier stated. Furthermore, as search space is the
most contributing factor to search time, reducing this search
space will also reduce the search time. This will make pro-
gram synthesis for the end-user less time-consuming. For
these reasons, there is a lot to be gained by reducing this
search space.

2.2 Genetic Algorithms
Genetic algorithms, like program synthesis, started being de-
veloped in the 1950s with the idea that evolution could be
used as a tool for optimisation problems [12]. Now, they
are commonly used to produce high-quality solutions to op-
timisation problems in various fields. J. Holland described
a framework that mimics the process of evolution in nature
[13]. We will briefly summarise the framework’s compo-
nents.

The chromosome is a collection of data one is trying to
optimise to solve a certain problem. Each chromosome is a
collection of genes, which are elements of the data.

The fitness function can be seen as the evaluation mech-
anism of the framework. It allows the algorithm to score the
chromosomes. The parameters of the fitness function are the
values you are trying to optimise for.

Crossover lays the foundation for how new chromosomes
are created. In general, crossover can be thought of as com-
bining one or more parent chromosomes with their offspring
as the result. Chromosomes are selected for crossover with a
certain probability.

Mutation is used to maintain diversity from one generation
to the next. Without mutation, only combinations of initially
generated chromosomes could be evaluated. Mutation meth-
ods randomly change one or more genes in a chromosome.
Like crossover, chromosomes are also selected for mutation
with a certain probability.

Selection is the mechanism that decides which chromo-
somes can pass on their genes and which cannot. In gen-
eral, chromosomes with higher fitness have a higher chance
of passing on their genes to the next generation, enforcing the
principle of ”survival of the fittest”.

A generation is a virtual unit of time that encompasses one
round of evaluation, selection, crossover, and mutation.

The population is the collection of chromosomes that is
being evaluated in each generation. Usually, the population’s
fitness increases over time.

Elitism was first proposed by K. De Jong in [14] and it
is used to always preserve the best performing candidates.
It selects a certain amount of the best chromosomes for the
next generation. These chromosomes can still be used for
crossover but they will not be mutated. It is used to prevent
the case where the algorithm accidentally mutates the best
chromosomes into worse ones.



2.3 Related Work
With this research, we want to achieve two things: to reduce
the search space and evolve a language for program synthe-
sis. Although we are trying to reduce the search space by
evolving a language, there are also approaches that attempt
to directly reduce the search space. This section will discuss
related research, including research that directly inspired our
work.

Reducing the search space
A framework called Blaze, created by X. Wang, I. Dillig, and
R. Singh, makes use of the abstract semantics of the underly-
ing DSL. It uses the semantics to find a program whose ab-
stract behaviour satisfies the examples [15]. It decreases the
search space because multiple programs that do not produce
the same concrete output can have the same abstract output.
Therefore, as soon as Blaze knows a program with a certain
abstract output is inconsistent with the abstraction of the ex-
amples, all programs with a similar abstract output can be
discarded. A complication is that a program that is consis-
tent with examples based on its abstract semantics may not
actually solve the examples. To counter this, Blaze checks if
a program is consistent with the examples using the concrete
semantics, and if so, that program is the solution. If not, Blaze
specifies the abstraction of the examples, making it inconsis-
tent with many programs and therefore discarding them. It
does this until it finds a program that satisfies the examples,
or proves that no such program exists.

In [16], C. Smith and A. Albarghouti do something very
similar. They use a term rewriting system to deduce programs
to their ’normal form’. Then they use equivalence reduction
on these rewritten programs to discard all but one of the pro-
grams with equal normal forms. Eliminating all but one of
the programs with the same normal forms, also drastically re-
duces the search space. Though, it is hard to imagine how
useful this framework and Blaze will actually be for domains
where the abstract semantics or normal forms of the language
predicates are very unclear.

A. Cropper and S. Dumančić created Brute, which reduces
the search space by introducing a domain-specific loss func-
tion to guide program synthesis [11]. It uses two stages: in-
vent and search. In the invent stage, Brute creates composite
predicates from primitive predicates, while eliminating point-
less predicates. In the search stage, Brute builds a program
using best-first search guided by a predetermined loss func-
tion. It starts from an empty program and selects the predicate
that minimises the loss function. This predicate will then be
added to the program. To measure the loss, the sequence of
predicates is executed on an example, and the resulting state
is compared with the desired final state. As soon as the loss
is zero, an example-solving program was found. This means
that instead of finding a complete program that either solves
or does not solve an example, Brute only has to find the best
predicate to add to the program at each stage. This drasti-
cally reduces the search space and it is the foundation for the
synthesis method we use.

Evolving a language
The following two papers formed the inspiration for consider-
ing composite predicates as primitive predicates, which will

be described in Section 3.4.
With Knorf [17], S. Dumančić, T. Guns, and A. Crop-

per proposed a knowledge refactoring system to allow ma-
chines to learn more efficiently. It uses constraint optimisa-
tion to restructure a learner’s knowledge base to reduce its
size and minimise redundancy. They show that compared to
only adding or removing knowledge, restructuring knowledge
can improve performance. Knorf supports predicate inven-
tion, which is the creation of new symbols together with for-
mulas that describe them [18], and it invents predicates after
learning. These new symbols can be thought of as new lan-
guage predicates, with the describing formulas forming the
underlying semantics.

K. Ellis et al. tried to simulate the human’s ability to gen-
eralise knowledge gained on one domain for other domains
[19] with a system named DreamCoder. Broadly speaking,
DreamCoder does two things. First, it designs a suitable DSL
from a more general set of predicates. Second, it trains a
search algorithm that specifically exploits the created DSL.
The final DSL has multiple layers of abstraction below it.
This reduces the search space from one that is made up of all
the low-level language elements, to one derived from only the
abstracted domain-specific elements. Initially, Dreamcoder
attempts to solve tasks with a very low-level programming
language in the wake phase. Then in the abstraction phase,
Dreamcoder finds common program snippets and uses them
in their entirety as new language predicates. Lastly, in the
dreaming phase, the neural network that searches programs
is trained on so-called ”fantasies”. These fantasies are cre-
ated by first randomly creating a program from the learned
language. Then, DreamCoder constructs a task that would be
solved by that program. Finally, a neural network is trained
to predict the created program from the task it solves. The
three phases are repeated until no improvements in synthe-
sis and search performance are made anymore. DreamCoder
and Knorf formed the inspiration for considering successful
program snippets as new language predicates.

3 Methodology
In this section, we describe the methodology for our re-
search. Throughout this section, some terminology will be
used. Therefore, we first give some definitions of these terms.
Then, we delve into how we implemented various genetic al-
gorithm components. Finally, we give an overview of what
happens in the generations at each point in time of the ge-
netic algorithm.

3.1 Terminology
• Example: is a combination of an input, the starting

state(s), and an output, the desired final state(s).

• Domain: is a set of examples that are concerned with the
same general goal. E.g. turning one string into another,
bringing a ball to a goal, or copying a drawing.

• Environment is a state of an example the programs in-
teract with.

• Token: is a predicate that can interact with a state in the
following ways:



– Transform: transforms an environment into an-
other environment. E.g. the MoveRight token:
move the robot one position to the right.

– Observe: observes a characteristic of the environ-
ment. E.g. the AtRight token: confirm if the robot
is at the most right position.

– Control: deals with controlling the execution of
other tokens. Takes observe tokens as input, and
returns transform tokens. E.g. the LoopWhileThen
token: while the robot is not at the right, move
right.

• Domain-specific language: is a combination of trans-
form and observe tokens that are different for each do-
main and that enable the program synthesiser to solve
examples in that domain.

• Program: a sequence of tokens that makes a series of
transformations on an environment. Generally, this se-
ries of transformations attempt to transform the input en-
vironment into the desired output environment.

3.2 Chromosome
Genetic algorithms try to optimise chromosomes. These
chromosomes are representations of a collection of data. In
our case, the collection of data we are trying to optimise is the
DSL. A chromosome is made up of genes, for a DSL these are
language predicates, also known as the tokens. To translate a
DSL into a chromosome we simply create a collection of all
the DSL’s tokens, this answers RQ1.

3.3 Crossover
Various crossover techniques were considered. The first two
methods are applicable to domains that have a clear division
of transform and observe tokens, while the last method is ap-
plicable to all domains involving language tokens.

Exchanging transform and observe tokens
Every chromosome is made up of transform and observe to-
kens. The two parent chromosomes, A and B, exchange their
transform and observe tokens. This results in two new chro-
mosomes being created where one has the transform tokens
of parent A and the observe tokens of parent B and the other
has the opposite tokens, which is illustrated in Figure 1.

Figure 1: Transform and observe tokens crossover

Exchanging half per token type
This method is similar to the last one. However, instead of
exchanging all of their transform and observe tokens, they
exchange half. This results in two new chromosomes being

created where one has half of the transform and observe to-
kens of parent A and B and the other one has the other halves,
as can be seen in Figure 2.

Figure 2: Half of token classes crossover

Exchanging random tokens
For this method, the transform and observe tokens are seen
as one group. Then, two random halves of these groups from
parents A and B are combined to create one chromosome.
With the remaining halves, the other chromosome is created.
Figure 3 is an illustration of this.

Figure 3: Half of random tokens crossover

3.4 Mutation
To preserve the diversity of chromosomes in each generation,
multiple mutation methods were used simultaneously. The
first two simple methods deal with primitive tokens, while
the last deals with snippets from successful programs.

Add Random Token
Most chromosomes will not consist of all of the available to-
kens. They might need an extra token from the full domain-
specific language to either solve more tasks or find the pro-
grams that solve tasks faster. Therefore, this function adds a
random token from the full domain-specific language to the
chromosome.

Remove Random Token
This method is similar to the last one. However, instead of
adding a random token from the full domain-specific lan-
guage, we now remove a random token from the chromo-
some. This is done because every extra token makes the po-
tential program space a lot bigger. Therefore, tokens that do
not contribute enough to solving tasks should be excluded.

Add Composite Token
The previous two mutation methods deal with the primitive
tokens in the standard DSL. This method, however, deals with
more complex tokens. These include sequences of the primi-
tive tokens and LoopWhileThen-tokens with the primitive to-
kens as parameters. Imagine a task where something has to
be picked up somewhere and dropped somewhere else. An



example of a program that the synthesiser can create to solve
that task is then:

LoopWhileThen(NotAtBottom [MoveDown], [MoveUp]),
[Grab, MoveRight, Drop]

This program states to go down until we are at the bottom,
then move up, grab something, move right, and drop it. The
’LoopWhileThen’ token and the sequence enclosed by ’[..]’
perform one or more of the primitive tokens which is why we
refer to them as composite tokens.

The intuition for this special form of mutation stems from
the fact that for a lot of tasks, programs with the same com-
posite tokens are created. One can then look at all the pro-
grams that solved tasks to extract these composite tokens.
The frequently successfully used composite tokens can then
be added to a chromosome which might speed up the syn-
thesis process and could even contribute to more tasks being
solved within a certain timeout. This is because when these
composite tokens are already in the language, the program
synthesiser does not have to rediscover them for each task.

The selection of composite tokens is based on the fre-
quency of appearance. They are picked randomly but the
chance of being picked increases as they appear more fre-
quently. While running experiments we noticed that some
composite tokens are drastically more frequent than others.
To still give a little less frequent composite tokens a decent
chance of being picked the weights are scaled by taking the
n-th root of all frequencies, where n is a parameter that can
be tuned. Giving less frequent composite tokens a chance of
being picked is important because it allows the algorithm to
explore more combinations. This process answers RQ2.

3.5 Fitness
The fitness of a chromosome is calculated by running a pro-
gram synthesiser on a set of tasks using that chromosome as
the domain-specific language. The program synthesiser will
attempt to create task-solving programs from the tokens in
the language. A chromosome without any tokens can only
solve a task where the input is already equal to the output. As
you add tokens the options for the program synthesiser to cre-
ate programs drastically get bigger, which likely results in the
chromosome being able to solve more tasks. However, DSLs
that are very big result in a very big program space which may
make it harder to find a suitable program for a task within a
certain time limit.

The fitness of a chromosome should therefore be a combi-
nation of the number of tasks solved versus the time it took
to solve these tasks. A DSL solving more tasks, meaning it
has a higher mean correct ratio (MCR), should have higher
fitness. A DSL that takes more time per task, meaning it has
a higher mean search time (MST), should have lower fitness.
An issue with this way of calculating fitness is that some, usu-
ally small, chromosomes that only solve a few tasks but solve
them extremely fast have exorbitantly high fitness values. In
practice, it would not be useful to have a DSL that only solves
a few very specific tasks. Therefore we combat these exorbi-
tant fitness scores by checking how many tasks were solved.
If the DSL (C) solves less than half of the tasks the standard

DSL (S) solves, we set their fitness to zero. The fitness func-
tion we used, which covers these requirements, can be seen
in Equation 3.

fitness =

{
0 MCRC < MCRS/2

MCRC/MSTC otherwise
(3)

The way MCR is calculated depends on the domain’s gen-
eralisability. For some domains, a task is a single training
case. The resulting program after synthesising either solves
or does not solve that single training case, which results in the
simple Equation 4.

MCR = solved cases/total tasks (4)
For other domains, each task might consist of multiple train-
ing cases. A program is created for these training cases and is
then evaluated on similar test cases. Therefore, the resulting
function for these domains is as shown in Equation 5.

MCR = (

#tasks∑
t=1

solved testst/total testst)

/total tasks

(5)

3.6 One Generation
In the first generation, we randomly create a population of
chromosomes. These chromosomes have at least one token
and at most all the available tokens in the standard DSL.

For each subsequent generation, we sort the chromosomes
based on their fitness. We apply program synthesis with the
chromosomes as the DSL to calculate their fitness. During
this process, the composite tokens from programs that solved
tasks are stored to be used for mutation later.

After sorting the chromosomes, we go over them. Starting
from the fittest, we select them for crossover with a certain
probability. The offspring along with a number of the fittest
chromosomes that were not selected for reproduction are then
included in the new population. All the chromosomes in the
new population are subjected to mutation. Like crossover,
chromosomes are selected for mutation with a certain prob-
ability. Following the principle of elitism, we select a num-
ber of the fittest chromosomes from the old population to be
immediately included in the new population, without being
subjected to mutation.

After the last generation, we compare the fittest chromo-
some with the standard DSL. We compare them on a, so far
unseen, set of tasks that is similar in terms of complexity to
the one the chromosomes were evolved for. Together with
Sections 3.3, 3.4, and 3.5, this answers RQ3.

4 Experiments and Results
This section will describe the setup and motivation for our
experiments and their results. We ran the experiments on the
DelftBlue supercomputer [20]. Even while doing so, experi-
ments took a long time. So first, we describe how we planned
the whole experiment workflow. We then go into the find-
ings for how best to run our genetic algorithm with regards to
search and other parameters. Then, the domains for the final
experiment are described. Finally, we compare the evolved
DSLs to their original counterparts, discuss the results, and
draw conclusions.



4.1 Order of Experiments
Ideally, one would try all combinations of all parameters to
make sure no interdependencies between parameters are ig-
nored. However, since a single run of the genetic algorithm
can already take hours, trying all combinations is infeasi-
ble. Therefore, each parameter was optimised individually,
so while keeping the others constant. This is relevant with
regard to the reproducibility of the whole experiment work-
flow. To decide the order, the parameters were ranked based
on importance and independence. Experiments for parame-
ters that are important and on which a lot of other parameters
depend were performed first. On the other hand, experiments
for less important parameters that depend on earlier parame-
ters were performed later. This was done to approximate the
results you would get for running experiments with all poten-
tial combinations. The order of experiments is the same order
as how they are documented in this paper.

4.2 Search
In the interest of time, all experiments regarding search were
performed on one domain. Because it was the domain that
had the heaviest search workload, we believe this domain is
representative of all domains. A-star search (AS) [21] out-
performs all of the other search algorithms that were tried, as
can be seen in Figure 4. Compared to Brute [11], running
the genetic algorithm takes >30% less time. Besides this, the
resulting evolved language is able to solve >4% more tasks
using A-star.

With A-star as the search algorithm, using the Opti-
mizedAlignment loss function [22] allowed us to solve >42%
more tasks than while using the second-best, the Levenshtein
loss function [22].

Figure 4: Performance of different search algorithms

A 2-second search time limit per task was chosen for future
experiments as it allowed a relatively decent percentage of
tasks to be solved, but without each generation taking very
long. Higher time limits resulted in only a small fraction of
extra tasks being solved while contributing very significantly
to total execution time.

4.3 Genetic Algorithm Parameters
Various methods for crossover and mutations were created.
Regarding crossover the options considered are exchanging

two chromosomes’ transform and observe tokens, exchang-
ing half of each type, and exchanging a random half. There
were no notable differences in performance. We decided to
use the exchanging a random half method, as it is most gen-
eralisable to program synthesis methods that have no clear
distinction between types of tokens. In general, we found
that selecting chromosomes for crossover with a probability
of 80% worked well.

The options for mutation are to add a composite token,
add a primitive token, and remove a token. We used a com-
bination of the tree, meaning adding a composite and adding
a primitive token happen 25% of the time, and removing a
token happens 50% of the time. Addition and removal are
balanced so that the average chromosome length for the pop-
ulation is not affected by a bias that stems from mutation.
Selecting a chromosome for mutation with a probability of
20% proved to be effective.

The population size and generation limit are very heavy
contributors to the total run-time of the genetic algorithm.
Therefore, optimising these parameters will decrease the time
that is spent unnecessarily. Regarding the population size, a
size of 30 allowed the best chromosomes to be created in the
least amount of time.

Using that population size, after 30 generations no more
improvements were observed. For the final experiments, be-
ing certain that the final results are optimal is more important
than the time it takes. Therefore, the generation limit was
increased by 10.

4.4 Three domains
To increase the likelihood of the research being applicable to
other domains, we ran the final experiments on three different
domains. These domains simulate real-world problems. They
are also so different that a method that works for all of them,
is likely to work for other domains as well. In this section,
the three different domains will be described.

String transformation (string):
• Task: to transform a string into another string.
• Input: a string.
• Output: a different string.
• Standard DSL: {MoveRight, MoveLeft, MakeUpper-

case, MakeLowercase, AtEnd, NotAtEnd, AtStart, No-
tAtStart, IsLetter, IsNotLetter, IsUppercase, IsNotUp-
percase, IsLowercase, IsNotLowercase, IsNumber, Is-
NotNumber, IsSpace, IsNotSpace, Drop}

Robot planning (robot):
• Task: to move a robot to a ball, make it pick it up and

bring it to the goal.
• Input: a grid with a robot, ball, and goal at various lo-

cations on that grid.
• Output: the same grid with the robot and ball at the

same location as the goal.
• Standard DSL: {MoveRight, MoveDown, MoveLeft,

MoveUp, Drop, Grab, AtTop, AtBottom, AtLeft,
AtRight, NotAtTop, NotAtBottom, NotAtLeft, NotA-
tRight}



ASCII art (pixel):
• Task: to move to the relevant grid locations and draw

pixels there.

• Input: an empty grid, can be thought of as a canvas.

• Output: the same grid with some pixels drawn; the
ASCII art.

• Standard DSL: {MoveRight, MoveDown, MoveLeft,
MoveUp, Draw, AtTop, AtBottom, AtLeft, AtRight, No-
tAtTop, NotAtBottom, NotAtLeft, NotAtRight}

4.5 Evolved versus Standard Language
In this section, we compare the DSL evolved by the genetic
algorithm and the standard DSL. For these experiments, the
DSLs were evolved on a subset of all the available tasks. To
measure their performance, they were then tested on a differ-
ent subset with similar tasks. We compared the evolved and
standard DSLs on three criteria: average search time, percent-
age of tasks solved, and average created program length. We
also observed if the complexity of the tasks had an impact on
the DSLs created. The results from these experiments answer
RQ4 and thereby also the main research question.

Search time
We start with arguably the most important results, the aver-
age search time. For each task, the timer starts the moment
the synthesiser starts looking for programs and stops when it
finds a task-solving program or hits the time limit. As can be
seen in Figure 5, the search time was reduced significantly in
all domains.

Figure 5: Standard vs evolved DSL average search time

For the string domain, the genetic algorithm evaluated 646
possible DSLs. The best candidate, when compared to the
standard language, had five tokens (AtStart, IsLowercase,
IsNotLowercase, IsSpace, and IsNotSpace) taken out. For
some, it is easier to reason why than for others. For in-
stance, taking out AtStart seems logical, especially when you
have NotAtStart that can be used in a LoopWhileThen-token.
Since then you can specify to move the cursor to the left until
you are at the start and you never need to verify whether you
are actually at the start. Besides this, knowing whether letters

were lowercase or not was deemed not important, probably
because we already have tokens to check whether letters are
uppercase. The same is true for knowing whether a symbol
is a space or not, which is probably unnecessary because we
can already check if something is a letter or number.

The most significant reduction in search time was observed
in the robot domain. Out of the 601 candidates explored, the
best candidate had some significant changes. Namely, all the
observe-tokens were taken out, keeping only the transform-
tokens (Drop, Grab, MoveDown, MoveLeft, MoveRight,
MoveUp). Apparently, the creation of LoopWhileThen-
tokens was not important enough to keep any observe-tokens
to do so.

For the pixel domain, 540 DSLs were evaluated. The
evolved DSL is comparable to the one for the robot domain.
It also only kept the transform-tokens (Draw, MoveDown,
MoveLeft, MoveRight, MoveUp).

Tasks solved
We wanted to make sure that the evolved DSLs, although
faster, did not contribute to a significant loss in the number
of tasks that could be solved. As can be seen in Figure 6,
there was no loss in any domain.

Figure 6: Standard vs evolved DSL percentage tasks solved

In fact, for the string domain, we see a slight increase, and
for the pixel domain, more than twice as many tasks were
solved using the evolved DSL. The increase in the number
of tasks solved is inherently correlated to the search time.
This is because of two reasons. First, as the average search
time is lower, it is more likely a task-solving program can be
found within the set time limit. Second, unsolved tasks are
attributed a search time that is equal to the time limit. This
means the search time is skewed to the time limit as fewer
tasks are solved.

Program length
An interesting observation can be made with regard to the
program length. As you can see from Figure 7, synthesis with
the evolved DSL creates longer programs in every domain.
This indicates that fewer LoopWhileThen-tokens are created.
For the robot domain, and even more so for the pixel domain,
the differences are significant. For both, it is a direct result



of not having the observe-tokens. For the string domain, each
task often has multiple examples for which a general program
must be found. Therefore you would expect more tokens that
can be used in a general context, like LoopWhileThen-tokens,
instead of very specific sequences of primitive tokens.

Figure 7: Standard vs evolved DSL program length

Evolving for specific complexity
In general, the tasks were grouped based on complexity. Of
course, for more complex tasks, the search times were higher.
Furthermore, fewer of these tasks were solved, and the cre-
ated programs were bigger. One could also imagine that for
more complex tasks, a different DSL would be evolved. For
instance, for the robot domain, a more complex task has a
bigger area for the robot to traverse. Perhaps, because it al-
lows the synthesiser to create LoopWhileThen tokens, this
would result in the observe-tokens being in the optimal lan-
guage. This is because a LoopWhileThen-token could re-
duce the probability of the synthesiser needing to find a very
long sequence of the same tokens. In practice, this was not
the case. The DSLs that were evolved specifically for very
easy and very complex tasks were almost completely identi-
cal. From this, we can conclude that the benefit of the ability
to create a LoopWhileThen does not outweigh the increase in
size of the search space resulting from these extra tokens.

Composite tokens
In some cases, DSLs with composite tokens allowed for faster
program synthesis than just using the standard DSL. How-
ever, the optimal DSL for each domain did not have any
composite tokens. Therefore, it could be that DSLs with
these composite tokens outperformed the standard DSL de-
spite having composite tokens, instead of because of it. For
each domain, we discuss why this could be.

For the robot and pixel domain, the reason is similar. Take
for instance the robot domain. To search a program for this
domain, a loss function was used that took into account the
distance from the ball to the robot and from the robot to the
goal. When a synthesiser is trying to solve a task, it builds
up a sequence of tokens and evaluates which token to add
next, based on which minimises the distance to the next tar-
get. Only for some steps in some tasks will a LoopWhileThen

token decrease this loss function. Namely, when the next tar-
get location is very close to an edge of the grid. In contrast,
one of the primitive tokens always decreases the loss, since
going in the right direction always minimises the distance to
the next target.

For the string domain, it is a bit more complicated. A task
in the string domain has multiple inputs and outputs for which
a general program must be found. This is why DSLs for this
domain need to be able to create the general LoopWhileThen
tokens. However, apparently, the same configuration of this
token is not used frequently enough for it to be worth it to
add to the DSL. This means that not having to rediscover this
token does not weigh up against the increase in search space,
and thus search time.

5 Conclusion

Evolving a domain-specific language (DSL) can make induc-
tive program synthesis more efficient. Applying an evolved
DSL to a program synthesis task can lower synthesis time
and can increase the probability of a task being solved within
a certain time limit. We have shown that a genetic algorithm
works adequately to discover which language predicates con-
tribute to lower or higher search times. The programs created
during program synthesis had some frequently used snippets,
in the form of composite predicates. Introducing these com-
posite predicates as new language predicates sped up program
synthesis in some cases. We have shown that, for the three
domains we used, the optimal languages did not use these
composite predicates.

6 Future Work

In this section, we make two suggestions for future work.
First, during each run of the genetic algorithm, many point-
less DSLs were evaluated which contributed heavily to the
total runtime. For some domains, some of the language pred-
icates are essential. For instance, when the task is to draw
something, the predicate ’Draw’ is essential. Without these
predicates in the language, no task will be solved. Still, the
search algorithm would attempt to find a program until the
time limit is reached. To reduce the probability of evaluating
these pointless DSLs, one could use weight-based mutation.
The genetic algorithm could keep track of individual predi-
cates that contribute to solving many tasks fast. Then when
mutating a DSL, removing these predicates would be discour-
aged, while adding them would be encouraged.

The second suggestion has to do with a certain predicate
type. Control predicates control the execution of one or more
primitive predicates. The control predicates used for creating
loops were found frequently in successful programs, but the
control predicate for if-statements was never found. These
unnecessary control predicates increase the search space very
significantly, just like primitive predicates. One could try to
evolve a language that is made up of all the available primitive
and control predicates. It would be interesting to see if this
could be used to further speed up program synthesis.



7 Responsible Research
The best research is reproducible, credible, and complete. In
this section, we highlight some of the positives of our re-
search regarding these factors. However, to provide full dis-
closure, we also identify some issues and propose potential
solutions.

7.1 Reproducibility
All the experiments can be run through the published code-
base [23]. Instructions on how to run the experiments can
be found in the README file. In case one wants to exper-
iment with different parameters this can be easily done, and
the experiments are designed in a way that allows this. This
involves parameters for program synthesis, the genetic algo-
rithm, and how results are displayed.

The experiments were run on the DelftBlue supercomputer
[20]. For this, we used a ’compute’ node: an Intel Xeon node
which parallelised the workload over 48 cores with 4 GB of
memory. For program synthesis tasks, we use a time limit
for finding a task-solving program. Using the same time limit
on a system with more or less performance might result in
more or less solving programs being created before that limit
is reached. This may also impact the results for the aver-
age search time. To mitigate this, ideally one would run the
experiments on the same supercomputer using the same con-
figuration. However, as one might not have access one could
also tune the synthesis time limit down or up depending on
whether they solve more or fewer tasks than indicated in this
research.

7.2 Credibility
Many of the experiments involve random factors. Ideally,
to exclude this randomness completely from the results you
would run the experiments many times and take the averages
of the results. However, as the experiments take many hours
if not days, more time is needed to achieve this.

Also in the interest of time, interdependencies between pa-
rameters were estimated to decrease the number of total ex-
periments needed to approximate optimal results. However,
these interdependencies are often very hard to estimate accu-
rately. To mitigate this, an interdependency analysis should
be done that is substantiated by actual data. This would still
decrease the total amount of experiments to run and would
result in more accurate optimal results.

7.3 Complete Results
To prevent the duplication of work as much as possible, re-
searchers should publish all the relevant results they found,
not only the positive ones. During this research and while
showcasing the results this was kept in mind. Domains and
metrics for which the methods used had little to no impact
were still included. Also, when methods, in general, did not
provide great results, this was still documented. An example
of this is the technique of adding composite predicates to the
language.

7.4 Acknowledgements
I would like to thank my supervisor Sebastijan Dumančić and
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