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Abstract: Nowadays, Thin Dense Chromium (TDC) coatings are being industrially used in rolling
bearings applications due to their claimed advantages such as high hardness, low wear, and good
corrosion resistance. However, despite their broad commercial use, very little has been published
in the open scientific literature regarding their microstructure, nanomechanical, and tribological
properties. In this paper, TDC coatings with a thickness of about 5 µm were deposited by a customized
electrochemical process on ASTM 52100 bearing steel substrates. Surface microstructure and chemical
composition analysis of the TDC coatings was carried out by scanning electron microscopy and
atomic force microscopy. The results revealed a coating with a dense, nodular, and polycrystalline
microstructure. Unlike standard electrodeposited “Hard Chromium” coatings, TDC coatings show
no presence of micro/nano-cracks, likely contributing to their superior corrosion resistance. The
nanomechanical behavior, studied by nanoindentation as a function of penetration depths, exhibits a
pronounced size effect near the coating surface that can be linked to the nodular microstructure. A
hard surface with hardness HIT 14.9 ± 0.5 GPa and reduced elastic modulus Er = 216.8 ± 3.9 GPa
was observed. Tribological characterization under the presence of lubricants was performed by
two single-contact tribometers using coated and uncoated steel balls against flat steel substrates.
An in-house fretting wear rig was used to measure the lubricated friction coefficient in pure sliding
conditions, whilst the friction performance in rolling/sliding lubricated conditions was evaluated
using a WAM test rig. In pure sliding, TDC/TDC contacts show ~13% lower friction than for steel.
Under rolling/sliding conditions with 5% sliding, the traction coefficient of TDC/TDC coating contact
was at least 20% lower than that for steel/steel contact. The tribological results obtained in various
contact conditions demonstrate the benefits of applying TDC coatings to reduce bearing friction.

Keywords: thin dense chromium coatings; TDC coatings; electroplating; nanoindentation; friction;
wear; sliding friction; rolling-sliding friction

1. Introduction

The first reference to chromium electrodeposition can be found in a French patent
published by Junot de Bussy in 1848 [1]. After this pioneer work, many patents and research
works started to be published in Europe and the USA, trying to understand and improve
the process. However, it was Dr. G. J. Sargent at Cornell University who published in 1920
a systematic research study about the electrolytic behavior of different combinations of
chromium sulphate and chromic acid solutions to produce electrodeposited Cr coatings. In
the conclusions section of his publication, Sargent predicted the commercial possibilities
of the new coating process owing to its resistance to corrosion by air, moisture, and
many chemicals [2]. Indeed, commercial Cr plating processes started to be successfully
marketed by end of the 1920s in the UK, Germany, and the USA [3]. Nowadays, the world
chromium plating market is valued at USD 18.01 billion and it is predicted to increase to
USD 26.08 billion by 2032 [4].
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Commercial chromium coatings are offered under two kind of selection possibilities:
“hard chromium” and “decorative chromium” layers. Hard chromium is used in many indus-
trial applications to improve the equipment components’ resistance to corrosion and wear
and to decrease friction between machine elements. Decorative chrome plating, which is
thinner than hard chromium, has more limited applications; although it does not offer the
same strength and wear resistance as hard chrome, in addition to its aesthetic advantage,
these kinds of coatings are used to provide a corrosion protection to automobile parts,
tools, kitchen utensils, etc. The chemical electrochemical baths used in both cases are very
similar in formulation, except that for hard chromium the solutions are less concentrated
and higher temperatures and higher current densities are used [3]. The majority of hard
chromium coatings have microcracks; cracking appears during the electroplating process
when the internal coating stress surpasses the chromium’s tensile strength. Numerous
factors influence the microcracks’ depth, width, and population density. In general, a
microcrack structure with a high population density of shallow, narrow cracks is preferred
because the deposit usually has greater corrosion resistance, good wearability, higher
lubricity, and lower stress [3].

A new kind of electrodeposited chromium coating was introduced in 1957 [5]. Denom-
inated “thin dense chromium” (TDC), the film was presented as having a dense micronodular
structure that results to be hard, thin, and corrosion resistant. Unlike hard chromium, TDC
can be deposited crack free with thickness in the range 1–17 µm [5].

A series of technical research was published in the period 1984–1995, with most of
the research conducted for aerospace turbines and other military applications. In all of
these reports, the main target was to study corrosion resistance and bearing life. Testing of
TDC coated steel bearings has shown the improvement in the corrosion resistance and the
increase of the rolling contact fatigue life number L10 (the number of hours at a constant
speed that a group of bearings will reach before 10% of the bearings fail) over uncoated
bearings [6–11]. However, these technical reports lack a comprehensive scientific study of
the coatings’ microstructure, nanomechanical, and tribological properties.

Simple information about the microstructure, hardness, and friction coefficient can be
found nowadays in commercial brochures and websites offering TDC coating services, but
there is no scientific support or information about how these data were obtained [12–14].
A nodular microstructure is usually shown with a low magnification scanning electron
microscopy (SEM) image [15,16] and the friction coefficient is mentioned without much
information about measurement conditions [17]. Disclosed mechanical properties have
only been reported in terms of Hardness Rockwell C (HRC) indentations, which turns the
data into suspicion because it is impossible to measure thin coatings with such method
without the influence of the substrate hardness [18]. The only existing standard to measure
microhardness of electrodeposited coatings is ASTM B578, which applies the measurement
in a cross-section [19], and this method is impossible to apply for TDC coatings due to their
low thickness range. No measurements are reported by the use of nanoindentation, which
is the only technique able to measure the hardness and elastic modulus of TDC coatings,
which usually have a thickness below 10 µm [18].

Despite the fact that nowadays TDC coatings have a high commercial demand for
tribological applications like in rolling bearings, no studies can be found to understand their
microstructure, mechanical, and tribological behavior. In this paper, we present for first
time a scientific study on the microstructural, nanomechanical, and tribological properties
of Thin Dense Chromium coatings: morphological studies are conducted by scanning
electron microscopy and atomic force microscopy, nanomechanical properties (hardness
and elastic modulus) by nanoindentation, and tribological properties (friction and wear) by
sliding and rolling test experiments.
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2. Experimental Section
2.1. Steel Substrate and Coating

SKF Steel Substrates: ASTM 52100 (100Cr6) steels with typical compositions of 0.98%–1.10%
carbon, 1.30%–1.60% chromium, 0.15%–0.30% silicon, 0.25%–0.45% manganese, and trace
amounts of other elements like sulfur (≤0.025%) and phosphorus (≤0.025%) were selected
as substrates. The bearing steel material was through-hardened to a hardness of 690–790 HV
and finally polished to have a roughness similar to the raceway of a rolling bearing. Samples
with a rectangular shape of 15 mm × 25 mm × 5 mm were used for the microstructural,
nanomechanical, fretting, and adhesion tests, while washer-shaped samples of 50 mm (OD)
× 10 mm (ID) × 5 mm (thick) were used for the rolling-sliding tribological tests.

SKF Thin Dense Chromium (TDC): The coating selected in our studies is a proprietary
layer process commercialized by SKF [11,20,21], which is also known under the trade name
Endurakote® [22]. After being degreased in a heated alkaline solution, the workpieces
are either etched or shot with a mildly abrasive powder blaster. In the next step, the
components are submerged in a chromium acid electrolyte (Cr(VI)). In order to create a
thin layer of chromium with the required surface structure at a lower current density and a
shorter coating duration, for instance, potassium dichromate is utilized in the process as a
catalyst. Cleaning and preservation bring the procedure to a close.

2.2. Microstructural, Nanomechanical, and Adhesion Characterizations

Surface morphology was analyzed using a scanning electron microscope (SEM), model
FEI TENEO (Eindhoven, The Netherlands), operated at 5 kV, 0.4 nA, with a working
distance of 10 mm. Atomic force microscopy (AFM) measurements were conducted with
a Bruker Dimension Edge (Billerica, MA, USA) equipped with an n-type doped silicon
single-crystal pyramid tip (TESPA-V2), featuring a tip height of 10–15 µm and a tip radius
of 7 nm. Both height and amplitude signals were recorded in tapping mode with a pixel
resolution of 512 × 512 and a scan frequency of 0.3 Hz. Surface roughness Ra (average
roughness) and the wear track depths were measured by a white light interferometer (GT
Contour, Brucker, Elk Grove Village, IL, USA).

Nanoindentation characterization was conducted by using a TI Premier Hysitron
(Bruker, Minneapolis, MN, USA) with a diamond Berkovich indenter with a tip radius
of ~150 nm. Indentations were performed under load-controlled feedback to keep the
maximum load identical for all tests. The hardness HIT and reduced elastic modulus
Er were calculated according to the methods of Oliver and Phar [18,23]. Indents were
performed on both plain and cross-sectional samples.

Cross-section samples for SEM imaging and nanoindentation were prepared by cutting
the specimen with a diamond disc saw, followed by hot mounting. Polishing was conducted
in two stages: initial polishing with an alumina slurry (3 µm) and final polishing with OPS
containing 0.25 µm agglomerated particles.

The scratch adhesion test was performed by using a MFT-5000 tribometer (RTEC, San
José, CA, USA). A 200 µm radius diamond was drawn over the coating surface with an
increasing load in the range 0–100 N under a distance of 15 mm. An optical microscope
was used to evaluate the scratch failure modes and the corresponding critical loads (Lc) of
the TDC film under which the coating adhesion failure occurs [24]. The experiment was
repeated three times.

2.3. Tribological Characterization

For the tribological characterization of the TDC layer, two distinct situations were
tested: (a) pure sliding reciprocating tests and (b) rolling/sliding tests, which simulated
rolling bearing contact. For both kinds of tribological tests, general bearing conditions were
chosen during the experiments regarding lubricant type and temperature.
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2.3.1. Reciprocating Sliding Test

A Fretting Wear rig was used internally to quantify the friction coefficient under
pure sliding conditions (Figure 1). The ASTM 52100 through-hardened flat steel plate and
steel balls used in the experiments were both either uncoated or coated with TDC. The
orientation of the substrate surface topography was placed perpendicular to the direction
the ball. Table 1 outlines the testing parameters. Every test was conducted at least twice.
The reciprocal displacement’s amplitude is less than the semi-contact width associated
with fretting corrosion [25].
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Figure 1. Fretting Test (adapted from [25]).

Table 1. Fretting Wear Rig test conditions (adapted from [25]).

Parameter Values

Ball Diameter 12.7 mm
Initial Hertzian Contact Pressure 1.25 GPa

Reciprocal stroke 100 µm
Frequency 20 Hz

Temperature Room Temperature
Number of Cycles 72,000

Total Distance 7.2 m
Test Duration 1 h

Lubricant Grease (PAO base oil ISO VG100)

2.3.2. Ball-on-Disk Rolling/Sliding Tests

A WAM test rig (Wedeven Associates Machine, Inc., Edgmont, PA, USA) was used to
assess friction performance under rolling/sliding conditions. Using a 20.64 mm diameter
ASTM 52100 steel ball (Rq = 50 ± 10 nm) and an independently driven disk in the ball-on-
disk test (Figure 2), different slide-to-roll ratios can be achieved. The steel disks, which are
crafted from ASTM 52100 steel that had been hardened throughout, are honed in a circular
manner so that the topography aligns with the rolling direction, similar to a bearing ring.

A computer can control the speeds of rotation for both the ball and disk, as well as
adjust the load and test temperature according to a pre-determined test plan. The continual
measurement of the traction force between the ball and the disk is recorded. The test
sequence includes conducting Stribeck curves and traction curves both before and after a
70 h duration step.

Table 2 specifies the test conditions for the setup. The lubricant ISO VG 32 was applied
to the spinning disk, guaranteeing complete flooding. The speed of rotation was modified
to operate in mixed lubrication, taking into account a lubrication parameter λ of 0.3 based
on the disk’s initial roughness before coating (where λ represents the ratio of central film
thickness to the root mean square roughness Rq). The WAM tests were conducted a
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minimum of two times each. The test sequence also comprises Stribeck curves and traction
curves performed before and after a duration step of 70 h.

Coatings 2025, 15, x FOR PEER REVIEW 5 of 18 
 

 

2.3.2. Ball-on-Disk Rolling/Sliding Tests 

A WAM test rig (Wedeven Associates Machine, Inc., Edgmont, PA, USA) was used 
to assess friction performance under rolling/sliding conditions. Using a 20.64 mm diame-
ter ASTM 52100 steel ball (Rq = 50 ± 10 nm) and an independently driven disk in the ball-
on-disk test (Figure 2), different slide-to-roll ratios can be achieved. The steel disks, which 
are crafted from ASTM 52100 steel that had been hardened throughout, are honed in a 
circular manner so that the topography aligns with the rolling direction, similar to a bear-
ing ring. 

A computer can control the speeds of rotation for both the ball and disk, as well as 
adjust the load and test temperature according to a pre-determined test plan. The contin-
ual measurement of the traction force between the ball and the disk is recorded. The test 
sequence includes conducting Stribeck curves and traction curves both before and after a 
70 h duration step. 

 

Figure 2. Schematic of a WAM rig showing the ball-on-disk setup with independent regulation of 
ball speed Ub and disk speed Ud. (adapted from [25]). 

Table 2 specifies the test conditions for the setup. The lubricant ISO VG 32 was ap-
plied to the spinning disk, guaranteeing complete flooding. The speed of rotation was 
modified to operate in mixed lubrication, taking into account a lubrication parameter λ of 
0.3 based on the disk�s initial roughness before coating (where λ represents the ratio of 
central film thickness to the root mean square roughness Rq). The WAM tests were con-
ducted a minimum of two times each. The test sequence also comprises Stribeck curves 
and traction curves performed before and after a duration step of 70 h. 

Table 2. Test conditions for the ball-on-disk WAM tests. 

Setup Ball-on-Disk 
Initial Contact Pressure PH 1.5 GPa 

Entrainment Speed 0.8 m/s (Stribeck: 0 to 2.5 m/s) 
SRR (slide-to-rolling ratio) 5%; −15% to +15% 

Lubricant Mineral oil of 32 cSt at 100 °C with no EP/AW additives 
Temperature  100 °C 

Lubrication Parameter λ λ = 0.3 
Test duration 70 h 

3. Results and Discussion 
3.1. Morphology 

Figure 3a–c present top-view, low- and high-magnification SEM images of a TDC 
coating captured through secondary electron (SE) and backscatter electron (BSE) signals. 
The SE-SEM images in Figure 3a,c reveal a distinctive, uniformly distributed nodular 

Figure 2. Schematic of a WAM rig showing the ball-on-disk setup with independent regulation of
ball speed Ub and disk speed Ud. (adapted from [25]).

Table 2. Test conditions for the ball-on-disk WAM tests.

Setup Ball-on-Disk

Initial Contact Pressure PH 1.5 GPa
Entrainment Speed 0.8 m/s (Stribeck: 0 to 2.5 m/s)

SRR (slide-to-rolling ratio) 5%; −15% to +15%
Lubricant Mineral oil of 32 cSt at 100 ◦C with no EP/AW additives

Temperature 100 ◦C
Lubrication Parameter λ λ = 0.3

Test duration 70 h

3. Results and Discussion
3.1. Morphology

Figure 3a–c present top-view, low- and high-magnification SEM images of a TDC
coating captured through secondary electron (SE) and backscatter electron (BSE) signals.
The SE-SEM images in Figure 3a,c reveal a distinctive, uniformly distributed nodular
surface morphology with an average diameter of 3.6 ± 0.5 µm. In addition, the BSE-SEM
image in Figure 3b highlights the nodular boundaries with no signs of micro-cracks or
other surface defects. Cross-sectional SEM imaging of the TDC coating in Figure 3d further
confirms a flawless chromium layer, applied with a thickness close to ~5 µm that is free
from micro-cracks within the microstructure. Furthermore, no inclusions or defects were
observed at the coating–steel interface,

Additional surface morphology and topography details of the TDC coating were
obtained by using AFM, as shown in Figure 4. The topography and amplitude mapping
signals of the TDC coating, measured over a 10 × 10 µm2 area (Figure 4a,b), reveal nodular
features of varying heights with deep gaps at nodule boundaries. The average surface
roughness (Ra) of the TDC coating is 204 ± 40 nm. Furthermore, the topography histogram
in Figure 4c illustrates a pseudo-heterogeneous distribution of nodules and boundaries,
which is characterized by darker regions representing the gaps between nodules.
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3.2. Mechanical Properties

Nanoindentations were performed using a quasi-static partial unload test schedule,
as shown in Figure 5a,b. It consists of 20 cycles, where the maximum load (Lmax) was
10 mN (Figure 5a) or 1 N (Figure 5b). At each load increment, a partial unloading is set to
provide a measurement of hardness (HIT) and reduced elastic modulus (Er) at the reached
penetration depth (h) of the cycle. In this way, it is possible to obtain HIT an Er versus h in
a single indentation. Figure 6a,b show typical load–displacement curves obtained when
indenting a TDC coated steel substrate.
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Figure 7 displays two examples of HIT vs. penetration depth curves obtained at
Lmax = 1 N. It can be observed that there is a strong indentation size effect (ISE) at low
penetrations depths. On the other hand, at very high penetrations, the curves tend to
a value of HiT~9 GPa which is the steel substrate hardness. According to the graphical
method of the ISO 14525 standard [26], the nanoindentation hardness can be found on
the part of the curve where HIT is constant over a certain range of h. We can observe
that Figure 7a presents a flat region in the range ~500 nm < h < 800 nm with a value of
HIT~13 GPa. For h > 800 nm, the steel substrate starts to influence the hardness values and
at h~1900 nm, the hardness is close to the steel substrate’s hardness. However, most of the
obtained curves after several tests were similar to Figure 7b, where the indentation size
effect is very strong and therefore it is not possible to determine the TDC coating hardness.
The nanoindentation size effect could be originated by the high roughness introduced by
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the nodular microstructure and/or the presence of nodular grain dislocations due to the
strain gradients generated around the indenter tip [18,27].
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for the coating cannot be determined. The horizontal dashed line represents the hardness of the
steel substrate.

Similar observations were obtained for the reduced elastic modulus, as displayed in
Figure 8. In some cases, a value of Er~225 GPa could be determined for the TDC coatings
according to the ISO 14525 standard, while in most of the tests, the indentation size effect
and the influence of the steel substrate denied the possibility to measure an elastic modulus
value. At high penetration depths, all curves tend to a value Er~200 GPa, which is similar
to the steel substrate’s reduced elastic modulus.
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is possible to distinguish the ISE and Er for the coating regions. In (b), the ISE is more dominant and
the Er for the coating cannot be determined. The horizontal dashed line represent the elastic modulus
of the steel substrate.

In order to have a more systematic determination of the TDC nanomechanical proper-
ties, cross-sectional samples were measured by using the surface probe microscopy (SPM)
mode feature of the nanoindenter. In this mode, the nanoindentation tip is first used
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as a SPM to scan the topography of the sample and determine the position of the TDC
cross-section layer (Figure 9). Then, the polished cross-section area was indented four
times following the method shown in Figure 5a, and HIT vs. penetration depth curves
were obtained (Figure 10a). At low penetration depths, we can observe a strong increase
of hardness, which can be associated with the nanoindentation size effect that in this case
is originated by the presence of residual stresses and strain-hardening appearing from
the sample preparation and polishing [18,27]. At high penetration depths, the hardness
converges to a value of HIT = 14.9 ± 0.5 GPa. In the case of elastic modulus (Figure 10b),
we also can observe the indentation size effect at low penetration depths for the four
experiments and a convergence at high penetrations depths of the reduced elastic modulus
Er = 216.8 ± 3.9 GPa. These measurements contrast with the lower values measured for
ASTM 52100 hardened bearing steel [25]: HIT = 8.98 ± 0.97 GPa and Er = 197.6 ± 8.4 GPa.
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Figure 10. (a) Hardness and (b) reduced elastic modulus vs. penetration depth for the TDC coatings
measured in the cross-section area. Each set of color points represents a different experiment. The
dashed black line represents the hardness and elastic modulus of the steel in (a) and (b), respectively.

There are no published data on the elastic modulus of TDC coatings. Furthermore, all
published TDC hardness values are reported in the range 70–78 HRC [6,16,28,29]. However,
none of these publications describe how the hardness has been measured to avoid the
influence of the substrate hardness. Indeed, the Rockwell C hardness HRC made by the
indentation with a ball indenter is calculated by the equation:

HRC = 130–500 h (1)

where h (in mm) is the difference in penetration between two applied loads (one of them
of 9.8 N) [18]. For a hardness of 78 HRC, we deduce from Equation (1) a value of h = 104 µm
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and therefore, the ball indenter has fully penetrated the coating thickness and more than
80 µm of the steel substrate, which would be strongly influencing the measurement.

Standard AMS2438 [30] establishes that Vickers hardness of TDC coatings should be
900 HV100 or higher, when measured on a sample cross-section with minimum thickness
of 25 µm; this thickness condition limits the possibility to measure the hardness of TDC
coatings in standard bearing applications.

The results presented in this section made by nanoindentation, HIT = 14.9 ± 0.5 GPa
and Er = 216.8 ± 3.9 GPa, are the first reported hardness and elastic modulus values of
TDC coatings without influence of the substrate.

3.3. Adhesion Characterization

Figure 11a–c displays the scratches at the beginning, middle, and end of the test.
No delamination of the coating is observed at any applied load in the range 0–100 N.
Figure 11d shows the friction coefficient between the diamond tip and the TDC coating
measured during the scratch. The friction shows a steady growth with no presence of
spikes or sudden increase in the friction value, which are observable characteristics during
the presence of adhesion failures [24].
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Figure 11. Optical micrographs of the scratches at (a) the beginning (low load); (b) at 50 N load, and
(c) at the end (100 N) of the test. The arrows indicate the scratch direction. (d) Friction coefficient of
the diamond tip against the TDC coating as a function of the scratch distance.

There are no reports regarding the adhesion measurement of TDC coatings by the
scratch test. There is, however, one conference paper by Jones et al. where the authors
measured a thin (10 µm) electrodeposited hard chromium by using a Revetest® scratch
tester [31]. Their measurement, which was conducted under the same conditions of our
test, found that a full delamination occurred at Lc~61 N.

Adhesion scratch tests of typical hard coatings used in the tool industry, like TiN [32]
and diamond-like CNx [33] coatings obtained by reactive magnetron sputtering, have been
reported to show full delamination at values of Lc = 74 N and 84 N, respectively. Our
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results indicate that the adhesion of the TDC coatings onto steel is higher than standard
hard chromium, TiN, and CNx coatings.

3.4. Reciprocal Sliding Tribological Tests

Figure 12 compares the friction coefficient behavior of the pairs steel–steel and TDC–
TDC at the end of the reciprocating tests with 1.25 GPa contact pressure, where after a short
run-in period, they display a constant friction.
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Table 3 displays the wear scars after the test. We have observed that both, the uncoated
steel and TDC pairs present just some smoothening of the initial roughness peaks. Further-
more, comparing roughness values outside the wear track, we notice that the roughness
values of steel and TDC are similar (Ra~247 nm for steel and ~291 nm for TDC). The result
indicates that under the fixed fretting wear conditions, the friction coefficient is ~13% lower
for TDC coatings, which is likely due to the eased smoothening of the initial roughness
peak. No coating adhesion failures were observed after the tests.

Table 3. Optical micrography, surface topography, and profile transverse to the wear mark after the
re-ciprocating sliding test at 1.25 GPa for the test 1 samples in Figure 11.

Micrograph Profile

Steel
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Table 3. Cont.

Micrograph Profile

TDC
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0.14 [34,35], but without details about the measurement conditions. J. F. Braza [36] is the 
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friction reduction was confirmed in our experiments, our reported values cannot be com-
pared with the results of J. F. Braza because they were conducted under different tribo-
logical conditions. 

3.5. Rolling-Sliding Tribological Tests 

Figure 13 represents the mean traction coefficient during the WAM ball-on-disk tests. 
During the WAM measurement, the traction force is continuously measured during the 
whole 70 h experiment length; however, for reasons of clarity, the average traction coeffi-
cients of the last 5 h phase in the mixed lubrication experiment (λ = 0.3) are presented. 
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ings in sliding contacts is very scarce. Some coating companies advertise a 10%–60%
friction reduction in comparison to the steel–steel contact, with friction values in the range
0.12–0.14 [34,35], but without details about the measurement conditions. J. F. Braza [36] is
the only researcher who reported the sliding friction values of TDC coated steel samples.
The tribometer consisted of two ASTM 52100 rollers, one stationary and the second rotating
at a sliding speed of 2 m/s, being lubricated with synthetic turbine oil. After the tests, the
TDC coated rollers were observed to have only polishing wear, with no formation of cracks
or delamination. The rolling friction coefficient for TDC coatings at 250 N (0.33 GPa contact
pressure) under mixed lubricated contact conditions was reported to be 0.067, while for the
uncoated steel the recorded value was 0.097. Therefore, the use of TDC coatings represented
a friction reduction of ~30% under the tested conditions. While a ~13% friction reduction
was confirmed in our experiments, our reported values cannot be compared with the results
of J. F. Braza because they were conducted under different tribological conditions.

3.5. Rolling-Sliding Tribological Tests

Figure 13 represents the mean traction coefficient during the WAM ball-on-disk tests.
During the WAM measurement, the traction force is continuously measured during the
whole 70 h experiment length; however, for reasons of clarity, the average traction coeffi-
cients of the last 5 h phase in the mixed lubrication experiment (λ = 0.3) are presented.

Figure 14 illustrates the typical evolution of friction during the rolling/sliding test.
We can observe that after a run-in of about 5 h, the TDC–TDC coating contact presents
consistently at least a 20% lower friction coefficient than the steel–steel pair.

The Stribeck curves shown in Figure 15 compare the friction versus the lubricant
entrainment speed. We can observe that both curves have the classical non-linear func-
tion, demonstrating again that the TDC coatings have a lower traction coefficient for all
tested speeds.

Figure 16 shows the traction coefficient at different slide-to-roll ratios between −15%
and +15%. For all values, TDC has lower friction values, and it looks like the difference
increases with the increase in SRR.
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In order to better understand the improved frictional behavior of the TDC coatings,
we have studied the morphology of the TDC wear tracks. Figure 17a displays the BSE SEM
image of a wear track, ~550 µm wide, at the TDC coated ball measured after the 70-h WAM
experiments. Figure 17b corresponds to the surface in area #1, which is at the center of
the wear track. We can observe the presence of the apparently plastically deformed top
of the nodules, while it is still possible to observe some deep gaps at nodule boundaries.
Figure 17b illustrates the morphology of the TDC coating outside the wear track (position
#2 in Figure 17a), which is like the morphology shown in Figure 3. We have also identified
in area #3 at Figure 17a) the existence of some Cr transfer material (Figure 17d, which
was highlighted using SE-SEM). Furthermore, the measurement of the wear track by light
interferometry reveals a track depth of 0.22 ± 0.02 µm, which is much lower than the wear
track depth of 0.6 ± 0.1 µm obtained in the WAM experiment when using the uncoated steel
ball and disk. We should also highlight that no coating adhesion failures were observed
after the tests.
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No data have been published regarding TDC friction coefficient and wear in rolling-
sliding contacts. Our test series demonstrates that in all studied cases (time duration,
entrapment speed, and SRR) the TDC coatings in rolling–sliding contacts always have
lower friction and present lower wear than the baseline steel–steel contact. The nodular
texture promotes the retention of lubricant and also promotes a decrease in the surface
contact, which in turn lowers friction and wear.
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4. Conclusions

We studied for first time the microstructural, nanomechanical, and tribological proper-
ties of Thin Dense Chromium (TDC) coatings.

SEM and AFM analyses of the TDC coating reveal a semi-uniform, nodular surface
morphology with an average diameter of 3.6 ± 0.5 µm that is free from micro-cracks
or surface defects. The cross-sectional SEM confirms a consistent chromium layer of
approximately 5 µm thickness that is devoid of internal microstructural cracks. AFM
topography mapping over a 10 × 10 µm2 area indicates nodular features with variable
heights and distinct gaps at the boundaries, resulting in an average surface roughness
Ra = 204 ± 40 nm.

The nanomechanical study has shown the difficulties introduced by the micronodular
microstructure when trying to indent in a direction perpendicular to the coated surface.
A careful analysis of the coating cross-section has revealed for the first time the hardness
(HIT = 14.9 ± 0.5 GPa) and the reduced elastic modulus (Er = 216.8 ± 3.9 GPa) of TDC
coatings. These values contrast with the lower values measured for standard ASTM 52100
hardened bearing steel.

Tribological characterization of TDC coatings in sliding and rolling–sliding conditions
has shown that the friction coefficient and wear of the TDC–TDC contact are consistently
lower than the ones for the steel–steel pair measured under the same tribological condi-
tions. Furthermore, scratch adhesion characterization has shown no adhesion failures in
the range 0–100 N. As well, no adhesion failures have been found after the sliding and
rolling/sliding tests.

The better performance of the TDC coatings can be related to the presence of the
nodular microstructure. By minimizing the surface area that comes into contact with
other surfaces, and by trapping lubricant in the nodule borders, the nodular structure
promotes a decrease in friction and wear. The tribological results obtained in various
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contact conditions demonstrate the benefits of applying TDC coatings to reduce the friction
and wear in rolling bearings.
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